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Abstract. In this paper, we consider an optimal control problem for the two-dimensional
stationary Navier-Stokes system. Looking for sparsity, we take Borel measures as controls. We prove
the well-posedness of the control problem and derive necessary and sufficient conditions for local
optimality of the controls. Finally, under a second order condition, we prove rates of the optimal
states with respect to small perturbations in the data of the control problem.
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1. Introduction. In this paper we investigate the following optimal control pro-
blem

(P) min
(y,u)∈L2(Ω)×M(ω)

J (y,u) =
1

2

∫
Ω

|y − yd|2 dx+ α‖u‖M(ω),

where y and u are related by the Navier-Stokes system{
−ν∆y + (y · ∇)y +∇p = f0 + χωu in Ω,

div y = 0 in Ω, y = 0 on Γ.
(1.1)

Here, Ω denotes a bounded domain in R2 with a C2 boundary Γ, and ω is a relatively
closed subset of Ω. We denote M(ω) = M(ω)×M(ω), where M(ω) is the space of real
and regular Borel measure in ω. In the cost functional J , the target yd ∈ L2(Ω) and
the parameter α > 0 are fixed. Regarding the state equation, ν > 0 is the kinematic
viscosity coefficient, χωu denotes the extension of u by zero outside ω, and f0 is a
given element of W−1,p(Ω)×W−1,p(Ω), where p ∈ (4/3, 2) is fixed.

Let us comment about the norm in M(ω) appearing in J . First, we recall that
M(ω) is a Banach space when endowed with the norm

‖u‖M(ω) = sup
‖φ‖C0(ω)≤1

∫
ω

φ(x) du(x) = |u|(ω),

where

C0(ω) = {φ ∈ C(ω̄) : φ(x) = 0 ∀x ∈ ∂ω ∩ Γ},

is a separable Banach space, and |u| represents the total variation measure of u; see
[23, page 130]. Associated to a norm | |R2 in R2 we define

‖u‖M(ω) = |(‖u1‖M(ω), ‖u2‖M(ω))|R2 , (1.2)
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which makes M(ω) a Banach space. It is the dual space of C0(ω) = C0(ω)× C0(ω).

To the best of our knowledge this is the first work that addresses the optimal
control of Navier-Stokes equations with Borel measures as controls. The motivation
for this approach is the search of optimal controls which are sparse, allowing controls
having a support of zero Lebesgue measure. Such type of controls have been inves-
tigated for linear partial differential equations; see [1], [2], [3], [5], [9], [8], [10], [11],
[19],[20]. The only work addressing the case of nonlinear partial differential equa-
tions is [4]. Different type of sparsity promoting formulations in a function space
setting have been investigated. We mention the first one in the framework of partial
differential equations [25] and refer to [1] for additional references.

A first difficulty in the analysis of the control problem (P) is its well-posedness.
The usual approach to prove the existence of an optimal solution is based on the
coercivity of the cost functional with respect to the control, which implies boundedness
of the states with respect to the controls through the state equation. For our state
equation, estimates of the states in terms of the measure space norm of the controls
are not available. To address this difficulty we also require coercivity of the cost
functional with respect to the state variable. The choice of this functional enjoying
the required coercivity is delicate. Here we want to do it in such a way that we obtain
existence of solutions and at the same time a second order analysis can be carried
out. For this purpose we have carefully analyzed the state equation getting estimates
showing that the coercivity of the cost functional with respect to the state in Lp for
any p ∈ [1,∞) is sufficient for existence. The choice p = 2 allows us to prove existence
of a solution and to address the second order analysis. In particular, this permits us
to treat the classical tracking cost functional.

Due to the non uniqueness of solution of the Navier-Stokes systems, an assump-
tion guarantying local uniqueness of the state equation around the optimal controls
is needed to derive first and second order optimality conditions. In the literature
this assumption relates to the smallness of the controls with respect to the kinematic
viscosity. Our regularity condition is more general in the sense that it is satisfied
whenever the smallness assumption on the the controls is fulfilled. Since the norm of
the measures appears in the cost functional, the second order optimality conditions
does not fit in the classical second order analysis. We provide a second order con-
dition which is finally used to prove stability of the optimal states with respect to
perturbations of the data in the formulation of the control problem.

For related papers addressing the control of the stationary Navier-Stokes system
the reader is referred to [6], [12], [13], [17], [26].

All along this paper the following spaces will be considered.

• H1
0(Ω) = H1

0 (Ω)×H1
0 (Ω)

• W1,p
0 (Ω) = W 1,p

0 (Ω)×W 1,p
0 (Ω)

• V = {y ∈ H1
0(Ω) : div y = 0 in Ω}

• Wp = {y ∈W1,p
0 (Ω) : div y = 0 in Ω}

• Lp(Ω)/R = {φ ∈ Lp(Ω) :
∫

Ω
φ(x) dx = 0}

2. Analysis of the state equation. In this section, we will study the existence
and regularity of solutions of (1.1), as well as the differentiable dependence with
respect to the right hand side. The analysis of existence of solution will be carried
out for an arbitrary p ∈ (1,∞) and f ∈W−1,p(Ω). We recall that M(ω) is compactly
embedded in W−1,p(Ω) for every 1 < p < 2. Later, in the analysis of (P) we will fix
p in (4/3, 2).
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Let us start by giving the definition of solution of (1.1). To this end we first
observe that (y · ∇)y ∈ L1(Ω) for all y ∈ W1,p

0 (Ω) with p ≥ 4/3. This inclusion

is a consequence of the embedding W1,p
0 (Ω) ⊂ Lp

′
(Ω) for p ≥ 4/3. However, the

integrability can fail for p < 4/3. Therefore, the function (y ·∇)y is not a distribution
in such a case. To overcome this difficulty we formulate the state equation in the
following way {

−ν∆y + div(y
⊗

y) +∇p = f in Ω,

div y = 0 in Ω, y = 0 on Γ.
(2.1)

Due to the fact that div y = 0 in Ω, then we have div(y
⊗

y) = (y · ∇)y for every
y ∈ W1,p

0 (Ω) with p ≥ 4/3. If (y · ∇)z ∈ L1(Ω) we write indistinctly div(y
⊗

z) or
(y · ∇)z.

Definition 2.1. Given f ∈ W−1,p(Ω) with 1 < p < ∞, we say that (y, p) ∈
W1,p

0 (Ω)×Lp(Ω)/R is a solution of (2.1) if the partial differential equations of (2.1)
are satisfied in the distribution sense in Ω. This is equivalent to the following varia-
tional identities

∫
Ω

(∇y∇z− (y · ∇)z y) dx−
∫

Ω

pdiv z dx = 〈f , z〉 ∀z ∈W1,p′

0 (Ω),∫
Ω

qdiv y dx = 0 ∀q ∈ Lp
′
(Ω)/R.

(2.2)

Remark 2.2. From (2.2) we deduce that y ∈Wp and∫
Ω

(∇y∇z− (y · ∇)z y) dx = 〈f , z〉 ∀z ∈Wp′ . (2.3)

Conversely, if y ∈ Wp satisfies (2.3), then de Rham’s theorem implies the existence
of p ∈ Lp(Ω)/R such that the first identity of (2.2) holds.

Theorem 2.3. For every f ∈W−1,p(Ω) there exists at least one solution (y, p) ∈
Wp ×Lp(Ω)/R of (2.1). Furthermore, there exist constants Cp and Mp such that for
any solution (y, p) we have

‖y‖W1,p
0 (Ω) + ‖p‖Lp(Ω) ≤ Cp‖f‖W−1,p(Ω)

(
1 + ‖f‖W−1,p(Ω)

)
if p > 2, (2.4)

‖y‖W1,p
0 (Ω) + ‖p‖Lp(Ω) ≤ Cp

(
‖f‖W−1,p(Ω) + ‖y‖2L2p(Ω)

)
if p < 2, (2.5)

‖y‖W1,p
0 (Ω) + ‖p‖Lp(Ω) ≤Mp‖f‖W−1,p(Ω)

(
1 + ‖y‖L4(Ω)

)
if

4

3
≤ p < 2. (2.6)

Proof. The existence of a solution is well-known from [18, 24]. Let us prove the
estimates (2.4)-(2.6). For p = 2 the a-priori estimate is well-known to be

‖y‖H1
0(Ω) ≤ C2‖f‖H−1(Ω). (2.7)

It uses the conservative property of the nonlinearity. Let us then turn to the case
p > 2 and write (2.1) in the form{

−ν∆y +∇p = g in Ω,

div y = 0 in Ω, y = 0 on Γ,
(2.8)
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where g = f − div(y
⊗

y). We aim to apply the well known estimates for the Stokes
problem [15, Theorem IV.6.1]

‖y‖W1,p
0 (Ω) + ‖p‖Lp(Ω) ≤ C‖g‖W−1,p(Ω). (2.9)

In order to use this estimate to deduce (2.4) we need to prove that div(y
⊗

y) ∈
W−1,p(Ω) and to get an appropriate estimate for it. For this purpose we introduce
the trilinear form

b(y, z,w) =

∫
Ω

(y · ∇)z w dx =

2∑
i,j=1

∫
Ω

yi∂xizjwj dx = −〈div(y
⊗

w), z〉.

We have for y ∈W1,p
0 (Ω) and z ∈W1,p′

0 (Ω)

|b(y, z,y)| ≤
∫

Ω

|y|2|∇z| dx ≤ ‖y‖2L2p(Ω)‖z‖W1,p′
0 (Ω)

,

which implies that div(y
⊗

y) ∈W−1,p(Ω) and

‖ div(y
⊗

y)|W−1,p(Ω) ≤ ‖y‖2L2p(Ω). (2.10)

Now, from (2.7) and the continuous embeddings W1,p
0 (Ω) ⊂ H1

0(Ω) ⊂ L2p(Ω) and
W−1,p(Ω) ⊂ H−1(Ω) for p > 2, we infer from the above inequality and (2.7)

‖ div(y
⊗

y)‖W−1,p(Ω) ≤ C‖f‖2W−1,p(Ω) ∀p > 2.

Hence, g ∈W−1,p(Ω) and

‖g‖W−1,p(Ω) ≤ ‖f‖W−1,p(Ω) + C‖f‖2W−1,p(Ω) ∀p > 2.

Combining this inequality with (2.9) we obtain (2.4). Inequality (2.5) follows from

(2.9), (2.10), and the fact that W1,p
0 (Ω) ⊂ L

2p
2−p (Ω) ⊂ L2p(Ω) for 1 < p < 2.

Finally, we prove (2.6). We consider the Stokes problem{
−ν∆φ+∇π = f in Ω,

divφ = 0 in Ω, φ = 0 on Γ.

Using again [15, Theorem IV.6.1] as above we infer that φ ∈W1,p
0 (Ω) and for some

constant depending on p, but independent of f

‖φ‖W1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C1‖f‖W−1,p(Ω).

Set (z, q) = (y − φ, p− π). From the above equation and (2.1) we obtain{
−ν∆z +∇q = −div(y

⊗
y) in Ω,

div z = 0 in Ω, z = 0 on Γ.
(2.11)

For every w ∈ H1
0(Ω) we have

−〈div(y
⊗

y),w〉 =

∫
Ω

(y · ∇)w y dx ≤ ‖y‖2L4(Ω)‖w‖H1
0(Ω).



Control of Navier-Stokes Equations with Measures 5

Hence, −div(y
⊗

y) ∈ H−1(Ω) and

‖ div(y
⊗

y)‖H−1(Ω) ≤ ‖y‖2L4(Ω).

Therefore, z ∈ H1
0(Ω) holds. Multiplying (2.11) by z, integrating by parts, and using

that y = z + φ and the properties of the trilinear form b, we infer

ν‖z‖2H1
0(Ω) = 〈− div(y

⊗
y), z〉 = b(y, z,y) = b(y, z,φ) ≤ ‖y‖L4(Ω)‖φ‖L4(Ω)‖z‖H1

0(Ω)

≤ C2‖y‖L4(Ω)‖φ‖W1,p
0 (Ω)‖z‖H1

0(Ω) ≤ C1C2‖f‖W−1,p(Ω)‖y‖L4(Ω)‖z‖H1
0(Ω).

Here we have used that W1,p
0 (Ω) ⊂ L4(Ω) because p ≥ 4/3. The above inequality

leads to

‖z‖H1
0(Ω) ≤

C1C2

ν
‖f‖W−1,p(Ω)‖y‖L4(Ω)

and, hence

‖y‖W1,p
0 (Ω) ≤ ‖z‖W1,p

0 (Ω) + ‖φ‖W1,p
0 (Ω) ≤Mp‖f‖W−1,p(Ω)(1 + ‖y‖L4(Ω)),

which proves the estimate (2.6) for y. The estimate for p follows de Rham’s theorem.

Remark 2.4. Let us observe that W1,p
0 (Ω) ⊂ L

2p
2−p (Ω) ⊂ L2p(Ω) for all 1 < p < 2.

Hence, the right hand side in (2.5) is finite.
Remark 2.5. Theorem 2.3 proves that for f0 ∈W−1,p(Ω) with p ∈ [4/3, 2) and all

u ∈M(ω) system (1.1) has a solution (y, p) ∈W1,p
0 (Ω)×Lp(Ω)/R, and the following

estimate holds

‖y‖W1,p
0 (Ω) + ‖p‖Lp(Ω) ≤Mp

(
‖f0‖W−1,p(Ω) + ‖u‖M(ω)

)(
1 + ‖y‖L4(Ω)

)
. (2.12)

Remark 2.6. In dimension 3, the embedding M(Ω) ⊂ W−1,p(Ω) is valid only
for p < 3/2. However, the existence of a solution of (2.1) in dimension 3 for f ∈
W−1,p(Ω) with 1 < p ≤ 3/2 is an open issue; see [18] or [24]. Thus the three
dimensional case will require a treatment which is different of that used in the present
paper.

Definition 2.7. Let (ȳ, p̄) be a solution of (1.1) associated to some control
ū ∈M(ω). We say that ȳ is regular if for every g ∈ H−1(Ω) the system{

−ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇q = g in Ω,

div z = 0 in Ω, z = 0 on Γ,
(2.13)

has a unique solution (z, q) ∈ H1
0(Ω)× L2(Ω)/R.

Observe that the above definition implies that the linear operator

T : V × L2(Ω)/R −→ H−1(Ω)
(z, q) −→ −ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇q (2.14)

is an isomorphism.
Remark 2.8. Let us mention that the regularity assumption of ȳ fails only if 0

is an eigenvalue of the operator T . We recall that the spectrum of T is formed by
an unbounded sequence of eigenvalues with no finite accumulation point. This type
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of assumption on the linearized Navier-Stokes equations has been considered by some
authors in different contexts; see, for instance, [6] and [16, §IV-3.1]. In Remark 3.3,
we will show that for ν large enough the optimal states for problem (P) are regular.

Assumption: From now on it will be assumed that f0 ∈ W−1,p(Ω) and p ∈
(4/3, 2) is fixed.

Theorem 2.9. Let ȳ be a regular solution of (1.1) associated to some control
u ∈M(ω). Then, for all g ∈W−1,p(Ω) system (2.13) has a unique solution (z, q) ∈
W1,p

0 (Ω)× Lp(Ω)/R. Hence,

Tp : Wp × Lp(Ω)/R −→ W−1,p(Ω)
(z, q) −→ −ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇q (2.15)

is an isomorphism.
Proof. The proof is based on a duality argument and it is split in several steps.

Step 1 - Adjoint System in V × L2(Ω)/R. Given ψ ∈ H−1(Ω), we consider the
system {

−ν∆φ− (ȳ · ∇)φ+ (∇ȳ)Tφ+∇π = ψ in Ω,

divφ = 0 in Ω, φ = 0 on Γ.
(2.16)

Associated with the above system, we define the operator

S : V × L2(Ω)/R −→ H−1(Ω)
(φ, π) −→ −ν∆φ− (ȳ · ∇)φ+ (∇ȳ)Tφ+∇π.

We prove that S is an isomorphism. To this end, we first establish the following
estimate:

∃C > 0 : ‖φ‖H1
0(Ω) +‖π‖L2(Ω) ≤ C‖S(φ, π)‖H−1(Ω) ∀(φ, π) ∈ V×L2(Ω)/R. (2.17)

Let us take g ∈ H−1(Ω) arbitrarily and (z, q) ∈ V × L2(Ω)/R such that T (z, q) = g.
Then, integrating by parts and using that divφ = div z = 0 we obtain

〈g,φ〉 = 〈T (z, q),φ)〉 = 〈S(φ, π), z)〉
≤ ‖S(φ, π)‖H−1(Ω)‖z‖H1

0(Ω) ≤ C1‖S(φ, π)‖H−1(Ω)‖g‖H−1(Ω).

The last inequality follows from the fact that T is an isomorphism due to the regularity
of ȳ. Since g was arbitrary in H−1(Ω), we conclude that

‖φ‖H1
0(Ω) ≤ C1‖S(φ, π)‖H−1(Ω).

Now, from this estimate, (2.16) and arguing as in (2.10) with p = 2 we conclude that

‖∇π‖H−1(Ω) ≤ ‖S(φ, π)‖H−1(Ω) + ‖ν∆φ+ (ȳ · ∇)φ− (∇ȳ)Tφ‖H−1(Ω)

≤ ‖S(φ, π)‖H−1(Ω) +
(
ν + C2‖ȳ‖L4(Ω)

)
‖φ‖H1

0(Ω) ≤ C3‖S(φ, π)‖H−1(Ω).

Hence, (2.17) is proved.
From (2.17) we deduce that S is an injective operator with a closed range in

H−1(Ω). Let us prove that it is surjective. We proceed by contradiction. If it
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is not surjective, then there exists an element z ∈ H1
0(Ω) with z 6= 0 such that

〈S(φ, π), z〉 = 0 for all (φ, π) ∈ V × L2(Ω)/R. This means that∫
Ω

{
ν∇φ · ∇z− [(ȳ · ∇)φ− (∇ȳ)Tφ]z +∇πz

}
dx = 0 ∀(φ, π) ∈ V × L2(Ω)/R.

Setting φ = 0 and π arbitrary in L2(Ω)/R, we infer that div z = 0, hence z ∈ V.
Now, setting π = 0 and φ ∈ V arbitrary we get after integration by parts∫

Ω

{ν∇φ · ∇z + [(ȳ · ∇)z + (z · ∇)ȳ]φ} dx = 0 ∀φ ∈ V.

Once again, from de Rham’s theorem we infer the existence of q ∈ L2(Ω)/R such that

−ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇q = 0.

This means that T (z, q) = 0, and thus z = 0, which contradicts our assumption.Thus
S is surjective and (2.17) holds. This implies that S is an isomorphism.

Step 2 - Adjoint System in Wp′ × Lp
′
(Ω)/R. Associated with the system (2.16),

we define the operator

Sp′ : Wp′ × Lp
′
(Ω)/R −→ W−1,p′(Ω)
(φ, π) −→ −ν∆φ− (ȳ · ∇)φ+ (∇ȳ)Tφ+∇π.

We will prove that Sp′ is an isomorphism. First, we prove surjectivity. Let ψ ∈
W−1,p′(Ω) be arbitrary. Since p < 2, we have that W−1,p′(Ω) ⊂ H−1(Ω). Therefore,
there exists (φ, π) ∈ V × L2(Ω)/R such that S(φ, π) = ψ. This implies that{

−ν∆φ+∇π = ψ + (ȳ · ∇)φ− (∇ȳ)Tφ in Ω,

divφ = 0 in Ω, φ = 0 on Γ.
(2.18)

Let us prove that the right hand side of this equation belongs to W−1,p′(Ω). Let
us take w ∈W1,p

0 (Ω), then with the Hölder inequality for r = 2p−2
2−p and r′ = 2p−2

3p−4∣∣∣∣∫
Ω

(ȳ · ∇)φw dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(ȳ · ∇)wφ dx

∣∣∣∣
≤ ‖ȳ · φ‖Lp′ (Ω)‖w‖W1,p

0 (Ω) ≤ ‖ȳ‖
L

2p
2−p (Ω)

‖φ‖
L

2p
3p−4 (Ω)

‖w‖W1,p
0 (Ω).

From here we deduce

‖(ȳ · ∇)φ‖W−1,p′ (Ω) ≤ ‖ȳ‖
L

2p
2−p (Ω)

‖φ‖
L

2p
3p−4 (Ω)

≤ C1‖ȳ‖W1,p
0 (Ω)‖φ‖H1

0(Ω) ≤ C2‖ψ‖H−1(Ω) ≤ C3‖ψ‖W−1,p′ (Ω).

The estimate for ‖(∇ȳ)Tφ‖W−1,p′ (Ω) follows in an analogous way. Now, from es-

timates for the Stokes system (2.18) we obtain the existence of a constant C such
that

‖φ‖
W1,p′

0 (Ω)
+ ‖π‖Lp′ (Ω)/R ≤ C‖ψ‖W−1,p′ (Ω); (2.19)

see [15, Theorem IV.6.1]. We have proved the surjectivity of Sp′ .
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Let us establish the injectivity. Assume that Sp′(φ, π) = 0 for some (φ, π) ∈
Wp′×Lp

′
(Ω)/R. Due to the embeddings Wp′ ⊂ V and Lp

′
(Ω)/R ⊂ L2(Ω)/R, we have

that S(φ, π) = Sp′(φ, π) = 0. Since S is an isomorphism we infer that (φ, π) = (0, 0).
Hence, Sp′ is an isomorphism.

Step 3 - Tp is an isomorphism. Let us consider a sequence {gk}∞k=1 ⊂ H−1(Ω)
such that gk → g in W−1,p(Ω). Due to the regularity of ȳ, we know that there exists
a unique element (zk, qk) ∈ V × L2(Ω)/R such that T (zk, qk) = gk. We are going to
prove the boundedness of {(zk, qk)}∞k=1 in W1,p

0 (Ω)×Lp(Ω)/R by a duality argument.

To this end, given ψ ∈W−1,p′(Ω) arbitrarily we take (φ, π) ∈Wp′ × Lp
′
(Ω)/R such

that Sp′(φ, π) = ψ. Using that div zk = divφ = 0 and integrating by parts we infer

〈ψ, zk〉 = 〈Sp′(φ, π), zk〉 = 〈T (zk, qk),φ〉 = 〈gk,φ〉
≤ ‖gk‖W−1,p(Ω)‖φ‖W1,p′

0 (Ω)
≤ C1‖g‖W−1,p(Ω)‖ψ‖W−1,p′ (Ω).

This implies that

‖zk‖W1,p
0 (Ω) ≤ C1‖g‖W−1,p(Ω) ∀k.

Thus, on a subsequence, we have that zk ⇀ z in W1,p
0 (Ω). We have div z = 0 and

passing to the limit in the variational equation for zk we get∫
Ω

{ν∇z · ∇w + [(ȳ · ∇)z + (z · ∇)ȳ]w} dx = 〈g,w〉 ∀w ∈Wp′ .

By de Rham’s theorem we deduce the existence of q ∈ Lp(Ω)/R such that (z, q)
satisfies (2.13). We have proved that Tp is surjective.

To prove injectivity, let us assume that Tp(z, q) = 0 for some (z, q) ∈ Wp ×
Lp(Ω)/R. Therefore, 〈Tp(z, q),φ〉 = 0 for all φ ∈ W1,p′

0 (Ω). Hence, since div z = 0,
this equality implies after integration by parts that∫

Ω

{
ν∇φ · ∇z− [(ȳ · ∇)φ− (∇ȳ)Tφ]z +∇πz

}
dx = 0 ∀(φ, π) ∈Wp′ × Lp

′
(Ω)/R.

This means that 〈Sp′(φ, π), z〉 = 0 for every (φ, π) ∈ Wp′ × Lp
′
(Ω)/R. From the

surjectivity of Sp′ on W−1,p′(Ω) we deduce that z = 0. Now, from Tp(z, q) = 0 we
deduce that ∇q = 0 and, hence, q = 0. Finally, since Tp is obviously continuous, we
conclude that Tp is an isomorphism.

The next theorem addresses the differentiability of the relationship f → (y, p)
around a regular velocity ȳ.

Theorem 2.10. Let (ȳ, p̄, ū) ∈Wp ×Lp(Ω)/R×M(ω) satisfy equation (1.1). If
ȳ is regular, then there exist open neighborhoods Np, Yp and Pp of f0 +χωū, ȳ and p̄
in W−1,p(Ω), Wp and Lp(Ω)/R, respectively, and a C∞ mapping G : Np −→ Yp×Pp
such that G(f0+χωū) = (ȳ, p̄) and (yf , pf ) = G(f), f ∈ Np, is the only solution of (2.1)
in Yp×Pp. Moreover, Np can be taken such that G′(f) : W−1,p(Ω) −→Wp×Lp(Ω)/R
is an isomorphism for each f ∈ Np. Furthermore, if we denote (zg, qg) = G′(f)g and
(z, q) = G′′(f)(g1,g2) with g,gi ∈W−1,p(Ω), then the following relations are fulfilled{

−ν∆zg + (yf · ∇)zg + (zg · ∇)yf +∇qg = g in Ω,

div zg = 0 in Ω, zg = 0 on Γ,
(2.20)
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and{
−ν∆z + (yf · ∇)z + (z · ∇)yf +∇q = −(zg2

· ∇)zg1
− (zg1

· ∇)zg2
in Ω,

div z = 0 in Ω, z = 0 on Γ.

(2.21)

Proof. The proof is based on the implicit function theorem. For this purpose we
define

F : Wp × Lp(Ω)/R×W−1,p(Ω) −→W−1,p(Ω)

F(y, p, f) = −ν∆y + (y · ∇)y +∇p− f .

It is easy to check that F is well defined and it is of class C∞. Moreover, we have
F(ȳ, p̄, ū) = 0 and

∂F
∂(y, p)

(ȳ, p̄, f0 + χωū)(z, q) = −ν∆z + (ȳ · ∇)z + (z · ∇)ȳ +∇q = Tp(z, q).

According to Theorem 2.9 this is an isomorphism. Then, the implicit function theorem
implies the existence of open neighborhoods Np, Yp and Pp of f0 + χωū, ȳ and p̄ in
W−1,p(Ω), Wp and Lp(Ω)/R, respectively, and a C∞ mapping G : Np −→ Yp×Pp such
that G(f0 +χωū) = (ȳ, p̄) and (yf , pf ) = G(f) is the only solution of (2.1) in Yp ×Pp.
Since G′ : Np −→ L(W−1,p(Ω),Wp × Lp(Ω)/R) is continuous and G′(f0 + χωū) =
T−1
p is an isomorphism, then G′(f) is also an isomorphism if f ∈ Np and this open

neighborhood of f0 +χωū is small enough. Finally, equations (2.19) and (2.20) follow
differentiating the identity F(G(f), f) = 0.

Corollary 2.11. Let (ȳ, p̄, ū) satisfy the assumptions of Theorem 2.10. Then
there exists an open neighborhood Up of ū in M(ω) and a C∞ mapping (with respect to
the norm in M(ω)) G : Up −→ Yp × Pp such that G(ū) = (ȳ, p̄) and (yu, pu) = G(u)
is the unique solution in Yp × Pp of (1.1). Furthermore, the derivatives G′(u)v and
G′′(u)(v1,v2), for v,vi ∈ M(ω), are the solutions of (2.19) and (2.20) replacing g
and (yf , qf ) by χωv and (yu, qv), respectively.

Proof. Since the mapping ι : M(ω) ↪→ W−1,p(Ω) defined by ι(u) = f0 + χωu is
continuous and affine, then Up = ι−1(Np) is an open set in M(ω) containing ū. Now,
with G = G ◦ ι the statements of the corollary follow.

3. Existence of solutions of (P) and first order optimality conditions.
In this section, we prove the existence of at least one solution of (P). Then, assuming
the regularity of the optimal velocity, we derive the first order optimality conditions
and deduce the sparsity structure of the optimal controls.

Theorem 3.1. There exists at least one solution (ȳ, ū) of (P).

Proof. Let y0 be a solution of (1.1) associated to the control u = 0. It is obvious
that (y0, 0) is a feasible point of (P). We assume that yd 6= y0, otherwise (y0, 0) is
the unique solution of (P). Take a minimizing sequence {(yk,uk)}∞k=1 with

J (yk,uk) ≤ J (y0, 0) =
1

2
‖y0 − yd‖2L2(Ω) ∀k ≥ 1.

This implies that {(yk,uk)}∞k=1 is bounded in L2(Ω) ×M(ω). Let us prove that

{yk}∞k=1 is bounded in W1,p
0 (Ω). Since p > 4

3 , then the embedding W1,p
0 (Ω) ⊂ L4(Ω)
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is compact. From (2.12) we obtain

‖yk‖W1,p
0 (Ω) + ‖pk‖Lp(Ω) ≤Mp

(
‖f0‖W−1,p(Ω) + ‖uk‖M(ω)

)
(1 + ‖yk‖L4(Ω))

≤Mp

(
‖f0‖W−1,p(Ω) + 1

2‖y0 − yd‖2L2(Ω)

)
(1 + ‖yk‖L4(Ω)).

(3.1)

Applying the Lions Lemma [22, Lemma 2.6.1] to the spaces W1,p
0 (Ω) ⊂ L4(Ω) ⊂

L2(Ω) we deduce the existence of a constant C > 0 such that

‖yk‖L4(Ω) ≤
1

2Mp

(
‖f0‖W−1,p(Ω) +

1

2
‖y0 − yd‖2L2(Ω)

)−1

‖yk‖W1,p
0 (Ω) + C‖yk‖L2(Ω).

The last two inequalities imply

‖yk‖W1,p
0 (Ω) + ‖pk‖Lp(Ω) ≤

1

2
‖yk‖W1,p

0 (Ω)

+Mp

(
‖f0‖W−1,p(Ω) +

1

2
‖y0 − yd‖2L2(Ω)

)
(1 + C‖yk‖L2(Ω)).

From here and the inequality J (yk,uk) ≤ J (y0, 0) we deduce

1

2
|yk‖W1,p

0 (Ω) + ‖pk‖Lp(Ω)

≤Mp

(
‖f0‖W−1,p(Ω) +

1

2
‖y0 − yd‖2L2(Ω)

)(
1 + C[‖yd‖L2(Ω) + ‖y0 − yd‖L2(Ω)]

)
.

Then, we can extract a subsequence, denoted in the same way, such that (yk, pk) ⇀

(ȳ, p̄) in W1,p
0 (Ω) × Lp(Ω) and uk

∗
⇀ ū in M(ω). We prove that (ȳ, p̄) is a solution

of (1.1) corresponding to ū. To this end, we pass to the limit in the identity∫
Ω

(∇yk∇z− (yk · ∇)z yk) dx−
∫

Ω

pk div z dx = 〈f0, z〉+

∫
Ω

z duk ∀z ∈W1,p′

0 (Ω).

The only delicate point in this limit concerns the nonlinear term. Observe that since
W1,p

0 (Ω) is compactly embedded in L2p(Ω), we obtain yk → ȳ in L2p(Ω). Hence,

taking z ∈W1,p′

0 (Ω) we have∫
Ω

(yk · ∇)zyk dx→
∫

Ω

(ȳ · ∇)zȳ dx.

Therefore, we infer that (ȳ, p̄) is a solution of (1.1) associated to ū. Finally, from the
lower weak∗ semicontinuity of the norm in M(ω) we conclude that

J (ȳ, ū) ≤ lim inf
k→∞

J (yk,uk) = inf (P).

Remark 3.2. For estimates below (3.1) it is essential that the norm of y on the
right hand side of (2.12) appears linearly rather than of quadratic nature.

Since (P) is not a convex problem, it is convenient to discuss necessary opti-
mality conditions in the context of local solutions. Here, we say that (ȳ, ū) is a
local solution of (P) if there exists a neighborhood A of (ȳ, ū) in W1,p

0 (Ω) ×M(ω)
such that J (ȳ, ū) ≤ J (y,u) for all (y,u) ∈ A. If the inequality is strict for all
(y,u) ∈ A \ {(ȳ, ū)}, we say that (ȳ, ū) is a strict local solution. We will also
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consider local solutions in the W1,p
0 (Ω) ×W−1,p(Ω) topology. Let us observe that

the continuous embedding M(ω) ⊂ W−1,p(Ω) implies that any local solution in the
W1,p

0 (Ω)×W−1,p(Ω) topology is also a local solution in the W1,p
0 (Ω)×M(ω) topology.

In the rest of this section, (ȳ, ū) will be a local solution such that ȳ is regular. In
this case, Corollary 2.11 implies the existence of neighborhoods Up, Yp and Pp of ū, ȳ

and p̄ in M(ω), W1,p
0 (Ω) and Lp(Ω)/R, and a C∞ function G : Up −→ Yp × Pp such

that G(ū) = (ȳ, p̄) and (yu, pu) = G(u) is the unique solution of (1.1) in Yp × Pp
associated to u.

Remark 3.3. Here, we show that ȳ is regular if the kinematic viscosity ν is
big enough. Arguing as in the proof of the previous theorem, we can prove that if
J (ȳ, ū) ≤ J (y0, 0), then the following estimate holds

‖ȳ‖W1,p
0 (Ω) ≤ M̄p

= Mp

(
2‖f0‖W−1,p(Ω) + ‖y0 − yd‖2L2(Ω)

)(
1 + C[‖yd‖L2(Ω) + ‖y0 − yd‖L2(Ω)]

)
.

Tracking the proof of this estimate it is easy to check that M̄p = Kp/ν for some con-
stant Kp independent of ν. Let us study the coercivity of the bilinear form associated
to the operator T on the space V:

ν

∫
Ω

[|∇z‖2 + (ȳ · ∇)zz + (z · ∇)ȳz] dx = ν

∫
Ω

[|∇z‖2 − (z · ∇)zȳ] dx

≥ ν‖∇z‖2L2(Ω) − ‖ȳ‖L4(Ω)‖z‖L4(Ω)‖∇z‖L2(Ω)

≥ ν‖∇z‖2L2(Ω) − CΩ,p‖ȳ‖W1,p
0 (Ω)‖∇z‖2L2(Ω) ≥

(
ν − CΩ,pKp

ν

)
‖∇z‖2L2(Ω).

Then, the bilinear form is coercive if ν >
√
CΩ,pKp. Hence, the existence and unique-

ness of the velocity z follows from the Lax-Milgram theorem and the associated pressure
is deduced by de Rham’s theorem. This proves that ȳ is regular if J (ȳ, ū) ≤ J (y0, 0)
and ν >

√
CΩ,pKp.

For the local analysis of (P), we introduce the functions F : Up −→ R and
j : M(ω) −→ R by

F (u) =
1

2

∫
Ω

|yu − yd|2 dx and j(u) = ‖u‖M(ω).

Additionally we set J : Up −→ R as J(u) = J (yu,u) = F (u) + αj(u). With this
notation and the above discussion, we have that ū is a local solution in the M(ω)
topology of the problem

(Ploc) min
u∈Up

J(u).

By assuming the regularity of ȳ we have reduced the problem (P) with two variables
and a pde constraint to an unconstrained problem in one variable. In addition the
functional F involved in J is differentiable as we prove next.

Theorem 3.4. The functional F is of class C∞ and the following identities hold

F ′(u)v =

∫
Ω

ϕu(x) dv(x), (3.2)

F ′′(u)v2 =

∫
Ω

{
|zv|2 − 2(zv · ∇)zvϕu

}
dx, (3.3)



12 E. CASAS AND K. KUNISCH

for all v ∈ M(ω), where zv = G′(u)v and ϕu ∈ W1,p′

0 (Ω) is the adjoint state, the
unique solution along with πu of{

−ν∆ϕu − (yu · ∇)ϕu + (∇yu)Tϕu +∇πu = yu − yd in Ω,

divϕu = 0 in Ω, ϕu = 0 on Γ.
(3.4)

Proof. The C∞ differentiability of F is a straightforward consequence of Corollary
2.11 and the chain rule. The existence, uniqueness and regularity of the adjoint state
is obtained as follows. First, we recall that y − yd ∈ L2(Ω) ⊂ W−1,p′(Ω). As
established in the proof of Theorem 2.9, the equation (2.16) has a unique solution

(φ, π) ∈ W1,p′

0 (Ω) × Lp′(Ω)/R for every ψ ∈ W−1,p′(Ω). Setting ψ = yu − yd, we

infer that (3.4) has a unique solution (ϕu, πu) ∈ W1,p′

0 (Ω) × Lp
′
(Ω)/R, and with

(2.19)

‖ϕu‖W1,p′
0 (Ω)

+ ‖πu‖Lp′ (Ω)/R ≤ C‖yu − yd‖L2(Ω). (3.5)

Finally, (3.2) and (3.3) follow from (2.20), (2.21), (3.4), and an integration by parts.

Recall that W1,p′

0 (Ω) ⊂ C0(ω) because p′ > 2, hence the integral in (3.2) is well
defined.

Contrary to F , the functional j is not differentiable, but it is convex and Lipschitz.
Hence the directional derivatives j′(u; v) at every point u ∈ M(ω) and in every
direction v ∈ M(ω) exist. The functional j is also subdifferentiable at every point
u ∈M(ω). We recall that λ ∈ ∂j(u) ⊂M(ω)

∗
if

〈λ,v − u〉M(ω)∗,M(ω) + j(u) ≤ j(v) ∀v ∈M(ω). (3.6)

This definition is equivalent to the following two relationships

〈λ,u〉M(ω)∗,M(ω) = j(u), (3.7)

〈λ,v〉M(ω)∗,M(ω) ≤ j(v) ∀v ∈M(ω). (3.8)

Indeed, (3.7) is deduced from (3.6) taking v = 0 and then v = 2u, and using that
j(ρu) = ρj(u) for every ρ ≥ 0. Inequality (3.8) is an immediate consequence of (3.6)
and (3.7). The converse implication is obvious. Next, we derive some important
relations between λ and u when λ ∈ C0(ω) ∩ ∂j(u). To this end, we will distinguish
three cases according to the norm | |R2 considered in the definition of ‖ ‖M(ω); see
(1.2). Let us introduce the following notation for u = (u1, u2)

‖u‖1 = |(‖u1‖M(ω), ‖u2‖M(ω))|1 = ‖u1‖M(ω) + ‖u2‖M(ω), (3.9)

‖u‖2 = |(‖u1‖M(ω), ‖u2‖M(ω))|2 =
(
‖u1‖2M(ω) + ‖u2‖2M(ω)

)1/2

, (3.10)

‖u‖∞ = |(‖u1‖M(ω), ‖u2‖M(ω))|∞ = max
{
‖u1‖M(ω), ‖u2‖M(ω)

}
. (3.11)

We also set j1(u) = ‖u‖1, j2(u) = ‖u‖2 and j∞(u) = ‖u‖∞. Analogously, for any
function λ = (λ1, λ2) ∈ C0(ω) we consider the dual norms

‖λ‖∞ = |(‖λ1‖∞, ‖λ2‖∞)|∞ = max
{
‖λ1‖∞, ‖λ2‖∞

}
, (3.12)

‖λ‖2 = |(‖λ1‖∞, ‖λ2‖∞)|2 =
(
‖λ1‖2∞ + ‖λ2‖2∞

)1/2

, (3.13)

‖λ‖1 = |(‖λ1‖∞, ‖λ2‖∞)|1 = ‖λ1‖∞ + ‖λ2‖∞. (3.14)
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As usual, given a measure u ∈ M(ω), we denote the Jordan decomposition of u
by u = u+ − u−.

With the above notations, we have the following result.
Proposition 3.5. Let u ∈M(ω) with u = (u1, u2) 6= 0 and λ ∈ C0(ω) ∩ ∂j(u).

Then, the following properties are fulfilled
1. If j = j1, then ‖λ‖∞ = 1. Moreover, if ui 6= 0, then ‖λi‖∞ = 1 and{

Supp(u+
i ) ⊂ {x ∈ ω : λi(x) = +1},

Supp(u−i ) ⊂ {x ∈ ω : λi(x) = −1}. (3.15)

2. If j = j2, then ‖λ‖2 = 1. Moreover, for i = 1, 2, if ui 6= 0, then{
Supp(u+

i ) ⊂ {x ∈ ω : λi(x) = +‖λi‖∞},
Supp(u−i ) ⊂ {x ∈ ω : λi(x) = −‖λi‖∞}.

(3.16)

3. If j = j∞, then ‖λ‖1 = 1. Moreover, for i = 1, 2, if ui 6= 0, then (3.16) holds.
Proof. Case j = j1. Taking v = (v1, u2) in (3.8), we get∫

ω

λ1(x) d(v1 − u1)(x) + ‖u1‖M(ω) ≤ ‖v1‖M(ω) ∀v1 ∈M(ω).

Analogously to (3.7)-(3.8), the above inequality is equivalent to∫
ω

λ1(x) du1(x) = ‖u1‖M(ω),∫
ω

λ1(x) dv1(x) ≤ ‖v1‖M(ω) ∀v1 ∈M(ω).

From the second inequality, it follows that ‖λ1‖∞ ≤ 1. Moreover, if u1 6= 0, the first
inequality implies that ‖λ1‖∞ = 1. The relations (3.15), for i = 1, were proved in [3,
Lemma 3.4]. In the same way we can argue for i = 2. Finally, since u 6= 0, then the
identity ‖λi‖∞ = 1 holds for at least one i. Therefore, we have ‖λ‖∞ = 1.

Case j = j2. From (3.7)-(3.8) we infer∫
ω

λ1(x) du1(x) +

∫
ω

λ2(x) du2(x) = ‖u‖2, (3.17)∫
ω

λ1(x) dv1(x) +

∫
ω

λ2(x) dv2(x) ≤ ‖v‖2 ∀v ∈M(ω). (3.18)

Using (3.17) we obtain

‖u‖2 =

∫
ω

λ1(x) du1(x) +

∫
ω

λ2(x) du2(x)

≤
∫
ω

|λ1(x)| d|u1|(x) +

∫
ω

|λ2(x)| d|u2|(x) ≤ ‖λ1‖∞‖u1‖M(ω) + ‖λ2‖∞‖u2‖M(ω)

≤ (‖λ1‖2∞ + ‖λ2‖2∞)1/2(‖u1‖2M(ω) + ‖u2‖2M(ω))
1/2 = ‖λ‖2‖u‖2. (3.19)

Since u 6= 0, the above inequality implies that ‖λ‖2 ≥ 1. To prove the equality
we select two points xi ∈ ω, i = 1, 2, such that |λi(xi)| = ‖λi‖∞. Setting v =
(λ1(x1)δx1

, λ2(x2)δx2
) in (3.18) we obtain

‖λ‖22 =

∫
ω

λ1(x) dv1(x) +

∫
ω

λ2(x) dv2(x) ≤ ‖v‖2 = ‖λ‖2.
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Hence, ‖λ‖2 ≤ 1 and the equality ‖λ‖2 = 1 holds. Now, we assume that u1 6= 0 and
denote

ω1 = {x ∈ ω : |λ1(x)| = ‖λ1‖∞}.

Let K ⊂ ω \ ω1 an arbitrary compact set. By definition of ω1, wee have that ρK =
‖λ1‖C(K) < ‖λ1‖∞. For every element z ∈ C(K) with ‖z‖C(K) ≤ ‖λ1‖∞ − ρK ,
extended by zero to ω, we have ‖λ1 + z‖∞ = ‖λ1‖∞. Then, using (3.17) we infer∫

ω

(λ1(x) + z(x)) du1(x) +

∫
ω

λ2(x) du2(x) ≤ (‖λ1 + z‖2∞ + ‖λ2‖2∞)1/2‖u‖2

= ‖λ‖2‖u‖2 = ‖u‖2 =

∫
ω

λ1(x) du1(x) +

∫
ω

λ2(x) du2(x).

This yields∫
K

z(x) du1(x) =

∫
ω

z(x) du1(x) ≤ 0 ∀z ∈ C(K) : ‖z‖C(K) ≤ ‖λ1‖∞ − ρK .

This implies that |u1|(K) = 0. Since K is an arbitrary compact subset of ω \ ω1

and u1 is a regular Borel measure, we conclude that |u1|(ω \ ω1) = 0. Therefore, the
support of u1 is contained in ω1. To deduce (3.16), we observe that (3.19) and the
fact that ‖λ‖2 = 1 imply∫

ω

λ1(x) du1(x) +

∫
ω

λ2(x) du2(x) =

∫
ω

|λ1(x)| d|u1|(x) +

∫
ω

|λ2(x)| d|u2|(x).

This identity and the inequalities∫
ω

λi(x) dui(x) ≤
∫
ω

|λi(x)| d|ui|(x) for i = 1, 2,

lead to the identities∫
ω

λi(x) dui(x) =

∫
ω

|λi(x)| d|ui|(x) for i = 1, 2.

This identity for i = 1 and the fact that Supp(u1) ⊂ ω1 prove (3.16) for i = 1. The
same arguments can be applied for i = 2 if u2 6= 0.

Case j = j3. The same arguments used in the previous case can be repeated to
deal with this case. Let us point out some small differences. The relations (3.19)
change this time as follows

‖u‖∞ =

∫
ω

λ1(x) du1(x) +

∫
ω

λ2(x) du2(x)

≤
∫
ω

|λ1(x)| d|u1|(x) +

∫
ω

|λ2(x)| d|u2|(x) ≤ ‖λ1‖∞‖u1‖M(ω) + ‖λ2‖∞‖u2‖M(ω)

≤ (‖λ1‖∞ + ‖λ2‖∞) max
{
‖u1‖M(ω), ‖u2‖M(ω)

}
= ‖λ‖1‖u‖∞.

This proves that ‖λ‖1 ≥ 1. To prove the contrary inequality we select two points
x1, x2 ∈ ω such that |λi(xi)| = ‖λi‖∞ and set v = (sign(λ1(x1))δx1 , sign(λ2(x2))δx2).
Thus we obtain with (3.8)

‖λ‖1 =

∫
ω

λ1(x) dv1(x) +

∫
ω

λ2(x) dv2(x) ≤ ‖v‖∞ = 1.
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The rest of the proof follows the steps of the second case.
Next, we study the derivatives j′(u; v) for the previous three cases. To this end,

let us introduce some additional notation. Given two measures u, v ∈ M(ω), we
consider the Lebesgue decomposition of v = va + vs with respect to |u|, where va is
the absolutely continuous part of v with respect to |u|, and vs is the singular part.
Now, we take the Radon-Nikodym derivative of va with respect to |u|, dva = gvd|u|.
Then we have

‖v‖M(ω) = ‖va‖M(ω) + ‖vs‖M(ω) =

∫
ω

|gv| d|u|+ ‖vs‖M(ω).

In particular, it is obvious that u is absolutely continuous with respect to |u|. Hence,
we can express du = hd|u|, where h is measurable with respect to |u| and |h(x)| = 1
for all x ∈ ω, du+ = h+d|u| and du− = h−d|u|, where u = u+ − u− is the Jordan
decomposition of u. See, for instance, [23, Chapter 6] for details.

Let us define j0 : M(ω) −→ [0,∞) by j0(u) = ‖u‖M(ω). The authors proved in
[4, Proposition 3.3] that

j′0(u; v) =

∫
ω

gv(x) du(x) + ‖vs‖M(ω) ∀u, v ∈M(ω), (3.20)

where v = gvd|u| + vs is the Lebesgue decomposition of v with respect to |u|. Using
this identity we get the following result.

Proposition 3.6. For every u,v ∈M(ω) the following identities hold

j′1(u; v) = j′0(u1; v1) + j′0(u2; v2), (3.21)

j′2(u; v) =

 ‖v‖2 if u = 0,
1

‖u‖2
(
‖u1‖M(ω)j

′
0(u1; v1) + ‖u2‖M(ω)j

′
0(u2; v2)

)
if u 6= 0,

(3.22)

j′∞(u; v) =

 j′0(u1; v1) if ‖u1‖M(ω) > ‖u2‖M(ω),
j′0(u2; v2) if ‖u1‖M(ω) < ‖u2‖M(ω),

max{j′0(u1; v1), j′0(u2; v2)} if ‖u1‖M(ω) = ‖u2‖M(ω).
(3.23)

Proof. The identity (3.21) is an immediate consequence of (3.20) and the fact
that j1(u) = j0(u1) + j0(u2). If u = 0, the first identity of (3.22) is obvious. For
u 6= 0, the identity is easily deduced from the fact that j2 is the composition of the
mapping u ∈M(ω) −→ (j0(u1), j0(u2)) ∈ R2 and the Euclidean norm in R2. The first
identity of (3.23) is a straightforward consequence of the fact that j∞(u) = j0(u1)
and j∞(u + ρv) = j0(u1 + ρv1) for all ρ sufficiently small if ‖u1‖M(ω) > ‖u2‖M(ω).
The same argument proves the second identity. To prove the last identity we use that
j0(u1) = j0(u2) as follows

lim
ρ↘0

j∞(u + ρv)− j∞(u)

ρ
= lim
ρ↘0

max{j0(u1 + ρv1), j0(u2 + ρv2)} − j0(u1)

ρ

= lim
ρ↘0

max
{j0(u1 + ρv1)− j0(u1)

ρ
,
j0(u2 + ρv2)− j0(u2)

ρ

}
= max{j′0(u1; v1), j′0(u2; v2)}.

Now, we write the first order optimality conditions satisfied by the local solution
(ȳ, ū).
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Theorem 3.7. Let (ȳ, ū) be a local solution of (P) such that ȳ is regular. Then,

there exists a unique element (ϕ̄, π̄) ∈W1,p′

0 (Ω)× Lp′(Ω)/R such that{
−ν∆ϕ̄− (ȳ · ∇)ϕ̄+ (∇ȳ)T ϕ̄+∇π̄ = ȳ − yd in Ω,

div ϕ̄ = 0 in Ω, ϕ̄ = 0 on Γ,
(3.24)

− 1

α
ϕ̄ ∈ ∂j(ū) ∩C0(ω). (3.25)

Proof. First, we recall that ū is a local solution of (Ploc). We also have that

Theorem 3.4 implies that (3.24) has a unique solution (ϕ̄, π̄) ∈W1,p′

0 (Ω)×Lp′(Ω)/R,
and

F ′(ū)v =

∫
ω

ϕ̄(x) dv(x) ∀v ∈M(ω).

Now, using the convexity of j and the local optimality of ū we infer

0 ≤ lim
ρ↘0

J(ū + ρ(v − ū))− J(ū)

ρ
≤ lim
ρ↘0

F (ū + ρ(v − ū))− F (ū)

ρ
+ αj(v)− αj(ū)

= F ′(ū)(v − ū) + αj(v)− αj(ū) =

∫
ω

ϕ̄ d(v − ū) + α[j(v)− j(ū)] ∀v ∈M(ω).

By definition of ∂j(ū), the above inequality implies that − 1
α ϕ̄ ∈ ∂j(ū). Recall that

the inclusion ϕ̄ ∈ C0(ω) follows from the embedding W1,p′

0 (Ω) ⊂ C0(ω).
As an immediate consequence of Theorem 3.7 and Proposition 3.5 we obtain the

following corollary.
Corollary 3.8. Under the assumptions of Theorem 3.7 and assuming that

ū 6= 0 the following statements hold.
1. If j = j1, then ‖ϕ̄‖∞ = α. Moreover, if ūi 6= 0, then ‖ϕ̄i‖∞ = α and{

Supp(ū+
i ) ⊂ {x ∈ ω : ϕ̄i(x) = −α},

Supp(ū−i ) ⊂ {x ∈ ω : ϕ̄i(x) = +α}. (3.26)

2. If j = j2, then ‖ϕ̄‖2 = α. Moreover, for i = 1, 2, if ūi 6= 0, then{
Supp(ū+

i ) ⊂ {x ∈ ω : ϕ̄i(x) = −‖ϕ̄i‖∞},
Supp(ū−i ) ⊂ {x ∈ ω : ϕ̄i(x) = +‖ϕ̄i‖∞}.

(3.27)

3. If j = j∞, then ‖ϕ̄‖1 = α. Moreover, for i = 1, 2, if ūi 6= 0, then (3.27)
holds.

4. Second order optimality conditions. In this section, we prove the second
order necessary and sufficient conditions for a local minimum. This will be done for
the case j = j1, i.e.

j(u) = ‖u1‖M(ω) + ‖u2‖M(ω).

Let (ȳ, ū) ∈ W1,p
0 (Ω) ×M(ω) along with the pressure p̄ satisfy the state equation

(1.1). Throughout this section we assume that ȳ is regular, as introduced in Definition

2.7. We also assume that ϕ̄ ∈W1,p′

0 (Ω) satisfies the first order optimality conditions
(3.24) and (3.25). Then, for every τ ≥ 0 we consider the cones of critical directions

Cτū = {v ∈M(ω) : F ′(ū)v + αj′(ū; v) ≤ τ‖zv‖L2(Ω)}.
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Observe that

F ′(ū)v + αj′(ū; v) ≥ 0 ∀v ∈M(ω). (4.1)

Indeed, this follows from (3.2), (3.25) and the fact that

〈λ,v − ū〉 ≤ j′(ū; v) ∀λ ∈ ∂j(ū).

This inequality is consequence of the convexity and Lipschitz property of j. Thus,
when τ = 0, the cone Cū = C0

ū is given by

Cū = {v ∈M(ω) : F ′(ū)v + αj′(ū; v) = 0}.

Therefore, the cones Cτū with τ > 0 small can be considered as small extensions of
Cū. While the necessary second order conditions will be formulated, as expected, on
the cone Cū, the sufficient second order conditions require an extended cone; see, for
instance, [14] and [21]. To this end, we have introduced the cones Cτū.

Let us state some properties of Cū.
Proposition 4.1. The following statements hold.
1. Cū is a convex cone of M(ω).
2. Given v = (v1, v2) ∈M(ω), we have that v ∈ Cū if and only if the following

identities hold ∫
ω

ϕ̄i dvi + αj′0(ūi; vi) = 0 for i = 1, 2. (4.2)

3. For every v ∈ M(ω) such that vi is an absolutely continuous measure with
respect to ūi with i = 1, 2, we have that F ′(ū)v+αj′(ū; v) = 0, hence v ∈ Cū.

4. The following equivalent expression for Cū holds

Cū = {v ∈M(ω) : F ′(ū)vs + αj′(ū; vs) = 0} (4.3)

with vs = (v1s, v2s), where vis is the singular part of vi with respect to |ūi|,
i = 1, 2.

Proof. 1. - Because of (4.1), v ∈ Cū if and only if F ′(ū)vs + αj′(ū; vs) ≤ 0.
Then, the convexity of Cū follows from the linearity of F ′(ū) and the convexity of the
mapping v→ j′(ū; v).

2. - Since

F ′(ū)v + αj′(ū; v) =
2∑
i=1

(∫
ω

ϕ̄i dvi + αj′0(ūi; vi)

)
(4.4)

holds, then v ∈ Cū if (4.2) is satisfied. For the converse implication, we take v ∈ Cū

and apply (4.1) to (v1, 0) and deduce that∫
ω

ϕ̄1 dv1 + αj′0(ū1; v1) ≥ 0.

Analogously we proceed with (0, v2) to deduce the same inequality. Adding both
inequalities we infer with (4.4) that (4.2) holds.

3. - From (3.20) and (3.21) we get that the mapping v→ j′(ū; v) is linear on the
space of measures v = (v1, v2) such that vi is absolutely continuous with respect to
ūi for i = 1, 2. Therefore, (4.1) implies F ′(ū)v + αj′(ū; v) = 0.
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4. - From (3.20), (3.21), and 3 we have that

F ′(ū)v + αj′(ū; v) = F ′(ū)va + αj′(ū; va)

+ F ′(ū)vs + αj′(ū; vs) = F ′(ū)vs + αj′(ū; vs),

where v = va + vs, with via the absolutely continuous part of vi with respect to |ui|
and vis the singular part. The above identity implies (4.3).

Next we prove the second order necessary conditions.
Theorem 4.2. If (ȳ, ū) is a local solution of (P), then J ′′(ū)v2 ≥ 0 for all

v ∈ Cū holds.
Proof. This proof follows the steps of the Theorem 3.7 in [4]. Given v = (v1, v2) ∈

Cū we consider the Lebesgue decomposition dvi = gvid|ūi| + dvis for i = 1, 2. For
every integer k ≥ 1 we set

gvi,k(x) = Proj[−k,+k](gvi(x)), dvi,k = gvi,kd|ūi|+dvis, i = 1, 2, and vk = (v1,k, v2,k).

Then, we have

‖v − vk‖M(ω) =

2∑
i=1

‖gvi − gvi,k‖L1(|ūi|) → 0

by Lebesgue’s dominated convergence theorem. Moreover, since the singular parts of
vi,k and vi coincide for i = 1, 2, and v ∈ Cū, then (4.3) implies that vk ∈ Cū for every
k.

Next let us express dūi = hid|ūi|, where hi is measurable with respect to |ūi| and
|hi(x)| = 1 for all x ∈ ω, dū+

i = h+
i d|ūi| and dū−i = h−i d|ūi|, where ūi = ū+

i − ū
−
i

is the Jordan decomposition of ūi, for i = 1, 2. See, for instance, [23, Chapter 6] for
details. Let us define the sets

ω+
i = {x ∈ ω : hi(x) = +1} and ω−i = {x ∈ ω : hi(x) = −1}, i = 1, 2.

For any 0 < ρ < 1
k we have for i = 1, 2

j0(ūi + ρvi,k)− j0(ūi)

ρ

=

∫
ω+
i

|1 + ρgvi,k | − 1

ρ
dū+

i +

∫
ω−i

| − 1 + ρgvi,k | − 1

ρ
dū−i + ‖vis‖M(ω)

=

∫
ω

gvi,k dūi + ‖vis‖M(ω) = j′0(ūi; vi,k).

Using that ū is a local minimum of J and making a Taylor expansion of F we get
for every k and 0 < ρ < 1

k the existence of θ = θ(k, ρ), with 0 < θ < 1, such that

0 ≤ J(ū + ρvk)− J(ū)

ρ

= F ′(ū)vk +
ρ

2
F ′′(ū + θρvk)v2

k + αj′(ū; vk) =
ρ

2
F ′′(ū + θρvk)v2

k,

since vk ∈ Cū. Finally, dividing the last term by ρ/2 and taking the limit when
k →∞, we get that F ′′(ū)v2 ≥ 0.
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Now we formulate our second order condition for local optimality:

∃τ > 0 and ∃δ > 0 : F ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ Cτū. (4.5)

Theorem 4.3. Let ū satisfy the first order optimality conditions (3.24)-(3.25),
and assume that (4.5) holds. Then, there exist ε > 0 and κ > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(Ω) ≤ J(u), ∀u ∈M(ω) such that ‖u− ū‖W−1,p(Ω) ≤ ε. (4.6)

We will establish some lemmas required for the proof of this theorem. Ac-
cording to Theorem 2.10, Np can be chosen bounded and convex and such that
G′(u) : W−1,p(Ω) −→Wp × Lp(Ω)/R is an isomorphism and

∃MG such that ‖G′(f)‖L(W−1,p(Ω),Wp×Lp(Ω)/R) ≤MG ∀f ∈ Np. (4.7)

Following the notation introduced in Corollary 2.11, we set Up = ι−1(Np) =
(Np − f0) ∩M(ω), which is also an open, bounded and convex subset of M(ω).

Lemma 4.4. The following inequality holds

‖yu − ȳ‖W1,p
0 (Ω) ≤MG‖u− ū‖W−1,p(Ω) ∀u ∈ Up. (4.8)

Proof. This is an immediate consequence of the mean value theorem and (4.7).
Lemma 4.5. Given u ∈ Up and v ∈M(ω), we set zu,v = G′(f0 + χωu)χωv and

zv = G′(f0 + χωū)χωv, Then there exist constants M1 > 0 and M2 > 0 independent
of u and v such that

‖zu,v − zv‖W1,p
0 (Ω) ≤M1‖u− ū‖W−1,p(Ω)‖zv‖L2(Ω), (4.9)

‖zu,v‖L2(Ω) ≤M2‖zv‖L2(Ω). (4.10)

Proof. According to (2.20), the equations satisfied by zu,v and zv are

− ν∆zu,v + (yu · ∇)zu,v + (zu,v · ∇)yu + qu = χωv,

− ν∆zv + (ȳ · ∇)zv + (zv · ∇)ȳ + q̄ = χωv.

Subtracting both equations and setting e = zu,v − zv and q = qv − q̄ we get

−ν∆e + (yu · ∇)e + (e · ∇)yu + q = g, (4.11)

where g = −[(yu − ȳ) · ∇]zv − (zv · ∇)(yu − ȳ). Let us estimate g in W−1,p(Ω).
We prove the estimate for the first term, the second being identical. For arbitrary

w ∈W1,p′

0 (Ω) we have∣∣∣∣∫
Ω

[(yu − ȳ) · ∇]zvw dx

∣∣∣∣ =

∣∣∣∣∫
Ω

[(yu − ȳ) · ∇]wzv dx

∣∣∣∣
≤ ‖zv‖L2(Ω)‖yu − ȳ‖

L
2p

2−p (Ω)
‖∇w‖Lp′ (Ω)/R

≤ CΩ,p‖zv‖L2(Ω)‖yu − ȳ‖W1,p
0 (Ω)‖∇w‖Lp′ (Ω).
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Then, we obtain

‖g‖W−1,p(Ω) ≤ 2CΩ,p‖zv‖L2(Ω)‖yu − ȳ‖W1,p
0 (Ω).

Taking into account that (e, q) = G′(f0 + χωu)g, from (4.7) and (4.8) we infer

‖e‖W1,p
0 (Ω) ≤ 2MGCΩ,p‖zv‖L2(Ω)‖yu − ȳ‖W1,p

0 (Ω)

≤ 2M2
GCΩ,p‖zv‖L2(Ω)‖u− ū‖W−1,p(Ω).

Hence, (4.9) holds with M1 = 2M2
GCΩ,p. Finally, with the triangle inequality and

(4.9) we deduce

‖zu,v‖L2(Ω) ≤ ‖zu,v − zv‖L2(Ω) + ‖zv‖L2(Ω) ≤ C ′Ω,p‖zu,v − zv‖W1,p
0 (Ω) + ‖zv‖L2(Ω)

≤
(
C ′Ω,pM1‖u− ū‖W−1,p(Ω) + 1

)
‖zv‖L2(Ω).

Inequality (4.10) follows from the above inequality using the boundedness of Up.
Lemma 4.6. There exist ε1 > 0 and M3 > 0 such that

‖yu − ȳ‖L2(Ω) ≤M3‖zu−ū‖L2(Ω) ∀u ∈ Up with ‖u− ū‖W−1,p(Ω) ≤ ε1, (4.12)

where zu−ū = G′(f0 + χωū)(χω(u− ū)).
Proof. Let us consider the equations satisfied by yu, ȳ and zu−ū:

− ν∆yu + (yu · ∇)yu +∇pu = χωu,

− ν∆ȳ + (ȳ · ∇)ȳ +∇p̄ = χωū,

− ν∆zu−ū + (ȳ · ∇)zu−ū + (zu−ū · ∇)ȳ +∇qu−ū = χω(u− ū).

Setting e = yu − ȳ− zu−ū and q = pu − p̄− qu−ū, we infer from the above equations

−ν∆e + (ȳ · ∇)e + (e · ∇)ȳ +∇q = −[(yu − ȳ) · ∇](yu − ȳ).

Arguing as in the previous lemma, we can prove that [(yu−ȳ)·∇](yu−ȳ) ∈W−1,p(Ω),
and with (4.8)

‖[(yu − ȳ) · ∇](yu − ȳ)‖W−1,p(Ω) ≤ CΩ,p‖yu − ȳ‖L2(Ω)‖yu − ȳ‖W1,p
0 (Ω)

≤ CΩ,pMG‖u− ū‖W−1,p(Ω)‖yu − ȳ‖L2(Ω) ≤ CΩ,pMGε1‖yu − ȳ‖L2(Ω).

Now, using that (e, q) = G′(f0 + χωū)(−[(yu − ȳ) · ∇](yu − ȳ)) and (4.7) we get

‖e‖L2(Ω) ≤ C ′Ω,p‖e‖W1,p
0 (Ω) ≤ CΩ,pC

′
Ω,pM

2
Gε1‖yu − ȳ‖L2(Ω).

With ‖yu − ȳ‖L2(Ω) ≤ ‖e‖L2(Ω) + ‖zu−ū‖L2(Ω) and taking

0 < ε1 <
1

C ′Ω,pCΩ,pM2
G

and M3 =
1

1− CΩ,pC ′Ω,pM
2
Gε1

(4.12) follows.
Lemma 4.7. There exists a constant M4 > 0 such that

‖ϕu − ϕ̄‖W1,p′
0 (Ω)

≤M4‖yu − ȳ‖L2(Ω) ∀u ∈ Up. (4.13)
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Proof. Let us write the equations satisfied by ϕu and ϕ̄

− ν∆ϕu − (yu · ∇)ϕu + (∇yu)Tϕu +∇πu = yu − yd,

− ν∆ϕ̄− (ȳ · ∇)ϕ̄+ (∇ȳ)T ϕ̄+∇π̄ = ȳ − yd.

Now, setting e = ϕu − ϕ̄ and q = πu − π̄, and subtracting the above equations we
infer

−ν∆e−(ȳ·∇)e+(∇ȳ)Te+∇q = (yu−ȳ)+[(yu−ȳ)·∇]ϕu−(∇yu−∇ȳ)Tϕu. (4.14)

We can estimate e in W1,p′

0 (Ω) by using (2.19). To this end, we need to estimate the

three terms of the right hand side of the above equation in W−1,p′(Ω). Moreover, to
prove (4.13), this estimate should be obtained in terms of ‖yu− ȳ‖L2(Ω). For the first

term it is enough to observe that W1,p
0 (Ω) ⊂ L2(Ω) and, hence, L2(Ω) ⊂W−1,p′(Ω).

To estimate the second term we take an arbitrary function w ∈W1,p
0 (Ω) and proceed

as follows∣∣∣∣∫
Ω

[(yu − ȳ) · ∇]ϕuw dx

∣∣∣∣ ≤ ‖yu − ȳ‖L2(Ω)‖∇ϕu‖Lp′ (Ω)‖w‖
L

2p
2−p (Ω)

≤ CΩ,p‖yu − ȳ‖L2(Ω)‖ϕu‖W1,p′
0 (Ω)

‖w‖W1,p
0 (Ω).

Using (3.5) and (4.8) we deduce that ‖ϕu‖W1,p′
0 (Ω)

≤ C2 for all u ∈ Up. Therefore,

we conclude that

‖[(yu − ȳ) · ∇]ϕu‖W−1,p′ (Ω) ≤ CΩ,pC2‖yu − ȳ‖L2(Ω).

For the last term we observe that∫
Ω

(∇yu −∇ȳ)Tϕuw dx = −
∫

Ω

(w · ∇)ϕu(yu − ȳ) dx

and then we obtained the same estimate as for the second term. Finally, as mentioned
above, (4.13) follows from (2.19) applied to the equation (4.14) and the obtained
estimates.

Lemma 4.8. For every ρ > 0 there exists ερ > 0 such that

|[F ′′(u)− F ′′(ū)](u− ū)2| ≤ ρ‖zu−ū‖2L2(Ω) ∀u ∈ Bερ(ū), (4.15)

where Bερ(ū) = {u ∈ Up : ‖u− ū‖W−1,p(Ω) ≤ ερ}.
Proof. Let us denote v = u − ū, zu,v = G′(f0 + χωu)χωv and zv = G′(f0 +

χωū)χωv. According to (3.3) we have

|[F ′′(u)− F ′′(ū)]v2|

=

∣∣∣∣∫
Ω

[|zu,v|2 − 2(zu,v · ∇)zu,vϕu] dx−
∫

Ω

[|zv|2 − 2(zv · ∇)zvϕ̄] dx

∣∣∣∣
≤
∫

Ω

|zu,v + zv| |zu,v − zv| dx+ 2

∣∣∣∣∫
Ω

[(zu,v − zv) · ∇]ϕuzu,v dx

∣∣∣∣
+ 2

∣∣∣∣∫
Ω

(zv · ∇)(ϕu − ϕ̄)zu,v dx

∣∣∣∣+ 2

∣∣∣∣∫
Ω

(zv · ∇)ϕ̄(zu,v − zv) dx

∣∣∣∣
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We proceed to estimate the last four integrals. For the first one we use Lemma 4.5 as
follows ∫

Ω

|zu,v + zv| |zu,v − zv| dx ≤ ‖zu,v + zv‖L2(Ω)‖zu,v − zv‖L2(Ω)

≤ C ′Ω,p(1 +M2)M1‖u− ū‖W−1,p(Ω)‖zv‖2L2(Ω). (4.16)

Let us estimate the second integral. First, we observe that, as pointed out in the
proof of Lemma 4.7, there exists a constant C2 such that ‖ϕu‖W1,p′

0 (Ω)
≤ C2 for every

u ∈ Up. Using again Lemma 4.5 and this inequality we get∣∣∣∣∫
Ω

[(zu,v − zv) · ∇]ϕuzu,v dx

∣∣∣∣ ≤ ‖(zu,v − zv)zu,v‖Lp(Ω)‖∇ϕu‖Lp′ (Ω)

≤ C2‖zu,v − zv‖
L

2p
2−p (Ω)

‖zu,v‖L2(Ω) ≤ C2CΩ,p‖zu,v − zv‖W1,p
0 (Ω)‖zu,v‖L2(Ω)

≤ C2CΩ,pM1M2‖u− ū‖W−1,p(Ω)‖zv‖2L2(Ω). (4.17)

For the third integral we select ε1 > 0 so that (4.12) holds. Moreover, we observe
that (4.7) implies

‖zv‖W1,p
0 (Ω) ≤MG‖v‖W−1,p(Ω) = MG‖u− ū‖W−1,p(Ω). (4.18)

Then, with (4.10), (4.12), (4.13), (4.18) and recalling that v = u− ū we obtain∣∣∣∣∫
Ω

(zv · ∇)(ϕu − ϕ̄)zu,v dx

∣∣∣∣ ≤ ‖|zu,v| |zv|‖Lp(Ω)‖ϕu − ϕ̄‖W1,p′
0 (Ω)

M4‖zu,v‖L2(Ω)‖zv‖
L

2p
2−p (Ω)

‖yu − ȳ‖L2(Ω) ≤ CΩ,pM2M3M4‖zv‖W1,p
0 (Ω)‖zv‖

2
L2(Ω)

≤ CΩ,pM2M3M4MG‖u− ū‖W−1,p(Ω)‖zv‖2L2(Ω). (4.19)

Finally, the estimation for the fourth integral is the same as the one proved for
the second integral just replacing C2 by ‖ϕ̄‖

W1,p′
0 (Ω)

. From the obtained estimates

for the integrals the existence of ερ ∈ (0, ε1) such that (4.15) holds is immediate.
Proof of Theorem 4.3. Let us first estimate |F ′′(u)(u−ū)2|. To this end, we recall

the existence of a constant C2 > 0 such that ‖ϕu‖W1,p′
0 (Ω)

≤ C2 for every u ∈ Up.
Using the expression for F ′′ given in (3.3), (4.7) and (4.10) we find for all u ∈ Up

|F ′′(u)(u− ū)2| ≤ ‖zu,u−ū‖2L2(Ω) + 2‖zu,u−ū‖L2(Ω)‖zu,u−ū‖
L

2p
2−p (Ω)

‖ϕu‖W1,p′
0 (Ω)

≤ (C ′Ω,p + 2CΩ,pC2)‖zu,u−ū‖W1,p
0 (Ω)‖zu,u−ū‖L2(Ω)

≤ (C ′Ω,p + 2CΩ,pC2)MGM2‖u− ū‖W−1,p(Ω)‖zu−ū‖L2(Ω).

We recall that the sufficient condition (4.5) is assumed and it involves two constants
τ and δ. Selecting

0 < ε2 ≤ min

{
τ

(C ′Ω,p + 2CΩ,pC2)MGM2
,

1

MG
, ε1

}
,

where ε1 was introduced in Lemma 4.6, we get

|F ′′(u)(u− ū)2| ≤ τ‖zu−ū‖L2(Ω) ∀u ∈ Bε2(ū). (4.20)



Control of Navier-Stokes Equations with Measures 23

Now, applying Lemma 4.8 with ρ = δ/4 we infer the existence of ε ∈ (0, ε2] such
that

|[F ′′(u)− F ′′(ū)](u− ū)2| ≤ δ

2
‖zu−ū‖2L2(Ω) ∀u ∈ Bε(ū). (4.21)

Finally, we take

κ = min

{
δ

2M2
3

,
τ

M2
3

}
.

Now, we prove the inequality (4.6). To this end, we take u ∈ Bε(ū). We distinguish
two cases.

Case I: u− ū 6∈ Cτū. In this case, we have

F ′(ū)(u− ū) + αj′(ū; u− ū) > τ‖zu−ū‖L2(Ω).

Due to the Lipschitz and convex properties of j we also have

j(u) ≥ j(ū) + j′(ū; u− ū).

Additionally, from our selection of ε we have with (4.7)

‖zu−ū‖L2(Ω) ≤MG‖u− ū‖W−1,p(Ω) ≤MGε ≤ 1.

Using the last three inequalities, (4.20), (4.12) and making a Taylor expansion of F
around ū we get for some θ ∈ [0, 1]

J(u) ≥ J(ū) + F ′(ū)(u− ū) + αj′(ū; u− ū) +
1

2
F ′′(ū + θ(u− ū))(u− ū)2

≥ J(ū) + τ‖zu−ū‖L2(Ω) −
τ

2
‖zu−ū‖L2(Ω) = J(ū) +

τ

2
‖zu−ū‖L2(Ω)

≥ J(ū) +
τ

2
‖zu−ū‖2L2(Ω) ≥ J(ū) +

τ

2M2
3

‖yu − ȳ‖2L2(Ω) ≥ J(ū) +
κ

2
‖yu − ȳ‖2L2(Ω).

Case II: u − ū ∈ Cτū. We proceed similarly to the previous case and use (4.1),
(4.5), (4.21) and (4.12)

J(u) ≥ J(ū) + F ′(ū)(u− ū) + αj′(ū; u− ū) +
1

2
F ′′(ū + θ(u− ū))(u− ū)2

≥ J(ū) +
1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū + θ(u− ū))− F ′′(ū)](u− ū)2

≥ J(ū) +
δ

2
‖zu−ū‖2L2(Ω) −

δ

4
‖zu−ū‖2L2(Ω) = J(ū) +

δ

4
‖zu−ū‖2L2(Ω)

≥ J(ū) +
δ

4M2
3

‖yu − ȳ‖2L2(Ω) ≥ J(ū) +
κ

2
‖yu − ȳ‖2L2(Ω).

5. Stability of the optimal states with respect to perturbations of the
data of (P). In this section we assume that (ȳ, ū) is a strict local solution of (P) in
the W1,p

0 (Ω) ×W−1,p(Ω) topology such that ȳ is regular in the sense of Definition
2.7. Hence, we can formulate the control problem (Ploc) as in section 3, choosing Up
small enough so that ū is the unique global minimizer of J in Up. We recall that, as
proved in section 3, for every u ∈ Up there exists a unique solution yu ∈ Yp of (1.1).



24 E. CASAS AND K. KUNISCH

We are going to prove the stability of ȳ with respect to small perturbations in
some data of the control problem (Ploc). For this analysis the growth condition (4.6)
will play a key role. We recall that (4.6) is deduced from the sufficient second order
condition (4.5). The fact that Bε(ū) in (4.6) is a ball in W−1,p(Ω) rather than in
M(ω) is essential to prove the stability results.

We will consider two kinds of perturbations in (Ploc): perturbations in the forcing
f0 and in the observation yd.

5.1. Perturbations in the forcing. Here we consider the following control
problems

(Pρ) min
u∈Up

Jρ(u) =
1

2

∫
Ω

|yρ,u − yd|2 dx+ α‖u‖M(ω),

yρ,u being the unique solution in Yp of the perturbed system{
−ν∆y + (y · ∇)y +∇p = fρ + χωu in Ω,

div y = 0 in Ω, y = 0 on Γ,
(5.1)

where fρ ∈W−1,p(Ω) satisfies

‖f0 − fρ‖W−1,p(Ω) ≤ C0ρ (5.2)

with C0 independent of ρ. From Theorem 2.10 we know that (5.1) has a unique
solution yρ,u ∈ Yp if ρ is small enough. Moreover, using the mean value theorem and
(4.7) we have

‖yρ,u − yu‖W1,p
0 (Ω) = ‖G(fρ + χωu)− G(f0 + χωu)‖W1,p

0 (Ω)

≤MG‖fρ − f0‖W−1,p(Ω) ≤MGC0ρ. (5.3)

Using this property, by classical arguments (see, for instance, [7]), one can prove
the existence of ρ̂ > 0 and an open neighborhood Ûp ⊂ Up of ū such that for every

ρ ∈ (0, ρ̂) the control problem (Pρ) has a global minimizer ūρ in Ûp. Moreover, it
holds when ρ→ 0

ūρ
∗
⇀ ū in M(ω), (5.4)

(ȳρ, ūρ)→ (ȳ, ū) strongly in W1,p
0 (Ω)×W−1,p(Ω), (5.5)

where ȳρ = ȳρ,ūρ .
The next theorem establishes a rate of the convergence result for ȳρ to ȳ.
Theorem 5.1. Let us assume that ū satisfies (4.6), then there exist ρ0 ∈ (0, ρ̂)

and a constant K > 0 such that

‖ȳρ − ȳ‖L2(Ω) ≤ K
√
ρ ∀ρ ≤ ρ0. (5.6)

Proof. Due to (5.5), there exists ρ0 ∈ (0, ρ̂) such that ūρ ∈ Bε(ū) for every ρ ≤ ρ0.
Let us introduce the functions yρ,ū and yūρ solutions of (5.1) and (1.1) corresponding
to the controls ū and ūρ, respectively. Using that ūρ is a global minimizer of Jρ in

Ûp and (4.6) we infer

Jρ(ū) ≥ Jρ(ūρ) = J(ūρ) + [Jρ(ūρ)− J(ūρ)]

≥ J(ū) +
κ

2
‖yūρ − ȳ‖2L2(Ω) + [Jρ(ūρ)− J(ūρ)].
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From this inequality we deduce

κ‖yūρ − ȳ‖2L2(Ω) ≤ 2[Jρ(ū)− J(ū)]− 2[Jρ(ūρ)− J(ūρ)]

=

∫
Ω

[|yρ,ū − yd|2 − |ȳ − yd|2] dx−
∫

Ω

[|ȳρ − yd|2 − |yūρ − yd|2] dx

≤ ‖yρ,ū + ȳ − 2yd‖L2(Ω)‖yρ,ū − ȳ‖L2(Ω) + ‖ȳρ + yūρ − 2yd‖L2(Ω)‖ȳρ − yūρ‖L2(Ω).

Let us observe that taking u = ū in (5.3) we deduce the convergence yρ,ū → ȳ

in W1,p
0 (Ω). Moreover, by (5.5) yūρ = G(fρ + χωūρ)→ G(f0 + χωū) = ȳ in W1,p

0 (Ω)

holds. Therefore, the sequences {yρ,ū}ρ≤ρ0 and {yūρ}ρ≤ρ0 are bounded in W1,p
0 (Ω).

The boundedness of the sequence {ȳρ}ρ≤ρ0 follows from (5.5). Taking into account
these facts and using twice (5.3) with u = ū and u = ūρ, we obtain from the above
inequality

‖yūρ − ȳ‖L2(Ω) ≤ C
√
ρ ∀ρ ≤ ρ0. (5.7)

Finally, from (5.3) with u = ūρ and (5.7) we conclude

‖ȳρ − ȳ‖L2(Ω) ≤ ‖ȳρ − yūρ‖L2(Ω) + ‖yūρ − ȳ‖L2(Ω) ≤ C1ρ+ C
√
ρ,

which proves (5.6).
While we cannot expect to obtain a rate of convergence for ‖ūρ−u‖M(ω) we still

have the following corollary to the previous theorem.
Corollary 5.2. There exists K ′ > 0 such that |‖ūρ‖M(ω) − ‖u‖M(ω)| ≤ K ′

√
ρ

for all ρ ≤ ρ0.
Proof. From the inequality J(ū) ≤ J(ūρ) we get with (5.7)

α(‖ū‖M(ω) − ‖ūρ‖M(ω)) ≤
1

2

[
‖yūρ − yd‖2L2(Ω) − ‖ȳ − yd‖2L2(Ω)

]
≤ C1‖yūρ − ȳ‖L2(Ω) ≤ C1C

√
ρ. (5.8)

Analogously, using that Jρ(ūρ) ≤ Jρ(ū) and estimates (5.3) and (5.7) we obtain

α(‖ūρ‖M(ω) − ‖ū‖M(ω)) ≤
1

2

[
‖yρ,ū − yd‖2L2(Ω) − ‖ȳρ − yd‖2L2(Ω)

]
≤ C2‖yρ,ū − ȳρ‖L2(Ω) ≤ C2

(
‖yρ,ū − ȳ‖L2(Ω) + ‖ȳ − ȳρ‖L2(Ω)

)
≤ C3

√
ρ. (5.9)

Combining (5.8) and (5.9) the corollary follows.

5.2. Perturbations in the observation. In this section we consider pertur-
bations of the observation yd. We formulate the following control problems

(Pρ) min
u∈Up

Jρ(u) =
1

2

∫
Ω

|yu − yρd|
2 dx+ α‖u‖M(ω),

where yu denotes the solution of (1.1) corresponding to the control u and yρd ∈ L2(Ω)
is a perturbation of yd satisfying

‖yρd − yd‖L2(Ω) ≤ C0ρ. (5.10)

With the notation of the previous subsection and using the arguments of [7], the
existence of (ȳρ, ūρ) and the convergence properties (5.4)-(5.5) follow. Observe that
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now ȳρ = yūρ is the solution of (1.1) associated with ūρ. Concerning the convergence
rate for the optimal states we have the following result.

Theorem 5.3. Let us assume that ū satisfies (4.6). Then there exist ρ0 ∈ (0, ρ̂)
and a constant K > 0 such that

‖ȳρ − ȳ‖L2(Ω) ≤ Kρ ∀ρ ≤ ρ0. (5.11)

Proof. Once again, due to (5.5), there exists ρ0 ∈ (0, ρ̂) such that ūρ ∈ B̄ε(ū) for
every ρ ≤ ρ0. Then, we get

Jρ(ū) ≥ Jρ(ūρ) = J(ūρ) + [Jρ(ūρ)− J(ūρ)]

≥ J(ū) +
κ

2
‖ȳρ − ȳ‖2L2(Ω) + [Jρ(ūρ)− J(ūρ)].

Rearranging terms we get

κ‖ȳρ − ȳ‖2L2(Ω)

≤
∫

Ω

[ |ȳ − yρd|
2 − |ȳ − yd|2] dx−

∫
Ω

[ |ȳρ − yρd|
2 − |ȳρ − yd|2] dx

=

∫
Ω

(2ȳ − yd − yρd) · (yd − yρd) dx−
∫

Ω

(2ȳρ − yρd − yd) · (yd − yρd) dx

= 2

∫
Ω

(ȳ − ȳρ) · (yd − yρd) dx

≤ 2‖ȳ − ȳρ‖L2(Ω)‖yd − yρd‖L2(Ω) ≤ 2C0ρ‖ȳ − ȳρ‖L2(Ω),

which leads to (5.11).
Analogous to Corollary 5.2 we easily obtain the following consequence of the above

theorem.
Corollary 5.4. There exists K ′ > 0 such that | ‖ūρ‖M(ω) − ‖u‖M(ω)| ≤ K ′ρ

for all ρ ≤ ρ0.
Proof. It is enough to observe that

Jρ(ūρ)− J(ūρ) ≤ Jρ(ūρ)− J(ū) ≤ Jρ(ū)− J(ū)

and to use (5.10) and (5.11).
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[26] F. Tröltzsch and D. Wachsmuth, Second-order sufficient optimality conditions for the op-

timal control of Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 12 (2006),
pp. 93–119.


