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Abstract. Optimal control problems for semilinear elliptic equations with control costs in the
space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and
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1. Introduction. This paper is dedicated to the study of the optimal control
problem

(P) min
u∈BV (ω)

J(u) =
1

2

∫
Ω

|y−yd|2 dx+α

∫
ω

|∇u|+ β

2

(∫
ω

u(x) dx
)2

+
γ

2

∫
ω

u2(x) dx,

where y is the unique solution to the Dirichlet problem{
−∆y + f(x, y) = uχω in Ω,

y = 0 on Γ.
(1.1)

The control domain ω is an open subset of Ω. We assume that α > 0, β ≥ 0, γ ≥ 0,
yd ∈ L2(Ω), and Ω is a bounded domain in Rn, n = 2 or 3, with Lipschitz boundary
Γ. Additionally we make the following hypothesis:

if n = 3, then γ > 0 is assumed. (1.2)

Here, BV (ω) denotes the space of functions of bounded variation in ω and
∫
ω
|∇u|

stands for the total variation of u. The assumptions on the nonlinear term f(x, y) in
the state equation will be formulated later. By introducing the penalty term involving
the mean of u when β > 0 we realize the fact that constants functions constitute the
kernel of the BV-seminorm. If γ = 0, in dependence on the order of the nonlinearity
f it can be necessary to choose β > 0 to guarantee that (P) admits a solution.

The use of the BV-seminorm in (P) enhances that the optimal controls are piece-
wise constant in space. Thus the cost functional in (P) models the objective of simul-
taneously determining a control of simple structure and resulting in a state y = y(u)
which is as close to yd as possible. Comparing with the common formulation of using
L2(ω) or Lp(ω) control-cost functionals, with p > 2 to match the nonlinearity f , these
later functionals will produce smooth optimal controls which may be more intricate
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to realize in practice than controls which result from the BV−formulation. Piecewise
constant behavior of the optimal controls can also be obtained by introducing bilat-
eral bounds a ≤ u(x) ≤ b̄ together with only the tracking term in (P). In this case we
can expect optimal controls which exhibit bang-bang structure. If an L1(ω) control
cost term is added then the optimal control will be of the form bang-zero-bang. But
this type of behavior is distinctly different from that which is allowed in (P), since the
value of the piecewise constants plateaus is not prescribed. This is distinctly different
from the bilaterally constraint case where the optimal control typically assumes one
of the extreme values a or b̄. This in turn can lead to unnecessarily high control costs.

Possibly one of the first papers where this was pointed out, but not systematically
investigated is [15]. In [9] semilinear parabolic equations with temporally dependent
BV-functions as controls were investigated. Thus we were focusing on controls which
are optimally switching in time. The analysis for this case is simpler and exploits
specific properties of BV-functions in dimension one. Numerically the simple structure
of the controls which is obtained for BV-constrained control problems was already
demonstrated in [5, 9] and a recent master thesis [19]. BV-seminorm control costs
are also employed in [8], where the control appears as coefficient in the p-Laplace
equation. Beyond these papers the choice of the control costs related to BV-norms or
BV-seminorms has not received much attention in the optimal control literature yet.

In mathematical image analysis, to the contrary, the BV-seminorm has received
a tremendous amount of attention. The beginning of this activity is frequently dated
to [22]. Let us also mention the recent paper [2] which gives interesting insight into
the structure of the subdifferential of the BV-seminorm. Fine properties of BV-
functions, in the context of image reconstruction problems, in particular the stair
casing effect were, analyzed for the one-dimensional case in [21], and in higher dimen-
sions in [20, 14], for example. In [13] the authors provided a convergence analysis
for BV-regularized mathematical imaging problems by finite elements, paying special
attention to the choice of the vector norm in the definition of the BV-seminorm.

Let us also compare the use of the BV-term in (P) with the efforts that have
been made for studying optimal control problems with sparsity constraints. These
formulations involve either measure-valued norms of the control or L1-functionals
combined with pointwise constraints on the control. We cite [5, 7] from among the
many results which are now already available. The BV-seminorm therefore can also
be understood as a sparsity constraint for the first derivative.

Let us briefly describe the structure of the paper. Section 2 contains an analysis
of the state equation and the smooth part of the cost-functional. The non-smooth
part of the cost-functional is investigated in Section 3. Special attention is given to
the consequences which arise from the specific choice which is made for the vector
norm in the variational definition of the BV-seminorm. In particular, we consider
the Euclidean and the infinity norms. Existence of optimal solutions and first order
optimality conditions are obtained in Section 4. Second order sufficient optimality
conditions are provided in Section 5. Finally in Section 6 we consider (P) with an
additional H1(ω) regularisation term and investigate the asymptotic behavior as the
weight of the H1(ω) regularisation tends to 0.

2. Analysis of the state equation and the cost functional. We recall that
a function u ∈ L1(ω) is a function of bounded variation if its distributional derivatives
∂xiu, 1 ≤ i ≤ n, belong to the Banach space of real and regular Borel measuresM(ω).
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Given a measure µ ∈M(ω), its norm is given by

‖µ‖M(ω) = sup{
∫
ω

z dµ : z ∈ C0(ω) and ‖z‖C0(ω) ≤ 1} = |µ|(ω),

where C0(ω) denotes the Banach space of continuous functions z : ω̄ −→ R such that
z = 0 on ∂ω, and |µ| is the total variation measure associated with µ. On the product
space M(ω)n we define the norm

‖µ‖M(ω)n = sup{
∫
ω

z dµ : z ∈ C0(ω)n and |z(x)| ≤ 1 ∀x ∈ ω},

where | · | is a norm in Rn.

On BV (ω) we consider the usual norm

‖u‖BV (ω) = ‖u‖L1(ω) + ‖∇u‖M(ω)n ,

that makes BV (ω) a Banach space; see [1, Chapter 3] or [18, Chapter 1] for details.
We recall that the total variation of u is given by

‖∇u‖M(ω)n = sup{
∫
ω

divz u dx : z ∈ C∞0 (ω)n and |z(x)| ≤ 1 ∀x ∈ ω}.

We also use the notation ∫
ω

|∇u| = ‖∇u‖M(ω)n ,

as already employed in (P). For these topologies ∇ : BV (ω) −→ M(ω)n is a linear
continuous mapping.

In the sequel we will denote

au =
1

|ω|

∫
ω

u(x) dx and û = u− au for every u ∈ BV (ω).

By using [1, Theorem 3.44] it is easy to deduce that there exists a constant Cω such
that

‖u‖ := |au|+ ‖∇u‖M(ω)n ≤ max
(
1,

1

|ω|
)
‖u‖BV (ω) ≤ Cω‖u‖. (2.1)

In addition, we mention that BV (ω) is the dual space of a separable Banach space.
Therefore every bounded sequence {uk}∞k=1 in BV (ω) has a subsequence converging

weakly∗ to some u ∈ BV (ω). The weak∗ convergence uk
∗
⇀ u implies that uk → u

strongly in L1(ω) and ∇uk
∗
⇀ ∇u in M(ω)n; see [1, pages 124-125]. We will also use

that BV (ω) is continuously embedded in Lp(ω) with 1 ≤ p ≤ n
n−1 , and compactly

embedded in Lp(0, T ) for every p < n
n−1 ; see [1, Corollary 3.49]. From this property

we deduce that the convergence uk
∗
⇀ u in BV (ω) implies that uk → u strongly in

every Lp(0, T ) for all p < n
n−1 .

We make the following assumption on the nonlinear term of the state equation.
We assume that f : Ω× R −→ R is a Borel function, of class C2 with respect to the
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last variable, and satisfies for almost all x ∈ Ω

f(·, 0) ∈ Lp̂(Ω) with p̂ >
n

2
, (2.2)

∂f

∂y
(x, y) ≥ 0 ∀y ∈ R, (2.3)

∀M > 0 ∃CM :

∣∣∣∣∂f∂y (x, y)

∣∣∣∣+

∣∣∣∣∂2f

∂y2
(x, y)

∣∣∣∣ ≤ CM ∀|y| ≤M, (2.4)
∀M > 0 and ∀ρ > 0 ∃ε > 0 such that∣∣∣∣∂2f

∂y2
(x, y2)− ∂2f

∂y2
(x, y1)

∣∣∣∣ ≤ ρ if |y2 − y1| < ε and |y1|, |y2| ≤M.
(2.5)

Let us observe that if f is an affine function, f(x, y) = c0(x)y + d0(x), then
(2.2)-(2.5) hold if c0 ≥ 0 in Ω, c0 ∈ L∞(Ω), and d0 ∈ Lp̂(Ω).

By using these assumptions, the following theorem can be proved in a standard
way; see, for instance, [26, §4.2.4]. For the Hölder continuity result, the reader is
referred to [17, Theorem 8.29].

Proposition 2.1. For every u ∈ Lp̂(ω) the state equation (1.1) has a unique
solution yu ∈ Cσ(Ω̄)∩H1

0 (Ω) for some σ ∈ (0, 1). In addition, for every M > 0 there
exists a constant KM such that

‖yu‖Cσ(Ω̄) + ‖yu‖H1
0 (Ω) ≤ KM ∀u ∈ Lp̂(ω) : ‖u‖Lp̂(ω) ≤M. (2.6)

In the sequel we will denote Y = C(Ω̄)∩H1
0 (Ω) and S : Lp̂(ω) −→ Y the mapping

associating to each control u the corresponding state S(u) = yu. We have the following
differentiability property of S.

Proposition 2.2. The mapping S : Lp̂(ω) −→ Y is of class C2. For all elements
u, v and w of Lp̂(ω), the functions zv = S′(u)v and zvw = S′′(u)(v, w) are the solutions
of the problems −∆z +

∂f

∂y
(x, yu)z = vχω in Ω,

z = 0 on Γ,

(2.7)

and −∆z +
∂f

∂y
(x, yu)z +

∂2f

∂y2
(x, yu)zvzw = 0 in Ω,

z = 0 on Γ,

(2.8)

respectively.
The proof is a consequence of the implicit function theorem. Let us give a sketch.

We define the space

V = {y ∈ Y : ∆y ∈ Lp̂(Ω)}

endowed with the norm

‖y‖V = ‖y‖C(Ω̄)) + ‖y‖H1
0 (Ω) + ‖∆y‖Lp̂(Ω).
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Thus, V is a Banach space. Now we introduce the mapping F : V ×Lp̂(Ω) −→ Lp̂(Ω)
by

F(y, u) = −∆y + f(x, y)− u.

From (2.4) we deduce that F is of class C2 and

∂F
∂y

(y, u)z = −∆z +
∂f

∂y
(x, y)z.

From the monotonicity condition (2.3), we obtain that ∂F
∂y (y, u) : V −→ Lp̂(Ω) is an

isomorphism. Hence, the implicit function theorem and Proposition 2.1 with ω = Ω
imply the existence of a C2 mapping Ŝ : Lp̂(Ω) −→ Y associating to every element
u its corresponding state Ŝ(u) = yu. When ω  Ω, we use that S = Ŝ ◦ Sω, where
Sω : Lp̂(ω) −→ Lp̂(Ω) is defined by Sωu = uχω. Hence the chain rule leads to the
result.

Next, we separate the smooth and the non smooth parts in J : J(u) = F (u) +
αG(u) with

F (u) =
1

2

∫
Ω

|yu − yd|2 dx+
β

2

( ∫
ω

u(x) dx
)2

+
γ

2

∫
ω

u2(x) dx and G(u) = g(∇u),

where g : M(ω)n −→ R is given by g(µ) = ‖µ‖M(ω)n . In the rest of this section we
study the differentiability of F . From Proposition 2.2 and the chain rule the following
proposition can be obtained.

Proposition 2.3. The functional F : L2(ω) −→ R is of class C2. The deriva-
tives of F are given by

F ′(u)v =

∫
ω

[
ϕu(x) + γu(x) + β

( ∫
ω

u(s) ds
)]
v(x) dx, (2.9)

and

F ′′(u)(v, w) =

∫
Ω

(
1− ϕu

∂2f

∂y2
(x, yu)

)
zvzw dx+ γ

∫
ω

vw dx+ β
(∫

ω

v dx
)(∫

ω

w dx
)

(2.10)
with zv = S′(u)v, zw = S′(u)w, and ϕu ∈ Y the adjoint state which satisfies−∆ϕu +

∂f

∂y
(x, yu)ϕu = yu − yd in Ω,

ϕu = 0 on Γ.

(2.11)

The C(Ω̄) regularity of ϕu follows from the assumptions on yd ∈ L2(Ω) and the
fact that yu ∈ L∞(Ω).

Remark 2.4. If n = 2, since BV (ω) is embedded in L2(ω), then the functional
F : BV (ω) −→ R is well defined and it is of class C2 with derivatives given by (2.9)
and (2.10). However, if n = 3, then BV (ω) is only embedded in L3/2(ω). Hence, for
elements u ∈ BV (ω) Proposition 2.1 is not applicable and, therefore, the functional
F is not defined in BV (ω). To deal with the case n = 3 we introduced the assumption
(1.2), i.e. γ > 0. Hence, the functional F : BV (ω) ∩ L2(ω) −→ R is well defined and
of class C2.
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The assumption (1.2) can be avoided if we suppose that the nonlinearity f(x, y)
has only polynomial growth of arbitrary order in y. In this case, Propositions 2.1 and
2.2 hold if we change Y to Yq = Lq(Ω)∩H1

0 (Ω) with q <∞ arbitrarily big. We recall
that for a right hand side of the state equation belonging to L3/2(Ω) the solution of
the state equation does not belong to L∞(Ω), in general, even for linear equations.
However, since L3/2(Ω) ⊂ W−1,3(Ω), we can use [25, Theorem 4.2] to deduce that
yu ∈ Lq(Ω) ∀q < ∞. To analyze the semilinear case one can follow the classical
approach of truncation of the nonlinear term, Schauder’s fix point theorem, and Lq-
estimates from the linear case combined with the monotonicity of the nonlinear term.
Finally, since γ = 0, we have that the functional F : BV (ω) −→ R is of class C2.

Remark 2.5. In the state equation, the Laplace operator −∆ can be replaced by a
more general linear elliptic operator with bounded coefficients. All the results proved
in this paper hold for these general operators.

3. Analysis of the functional G. Now, we analyze the functional G. We
already expressed G as the composition G = g ◦ ∇. Concerning the functional g,
we note that it is Lipschitz continuous and convex. Hence, it has a subdifferential
and a directional derivative, which are denoted by ∂g(µ) and g′(µ; ν), respectively.
Before giving an expression for g′(µ; ν), we have to specify the norm that we use in
Rn. Indeed, in the definition of the norm ‖µ‖M(ω)n we have considered a generic
norm | · | in Rn. The choice of the specific norm strongly influences the structure of
the optimal controls. In this paper, we focus on the Euclidean and the | · |∞ norms,
which lead to different properties for g, that we consider separately in the following
two subsections. To illustrate one aspect, let us observe that the use of the | · |∞ norm
on Rn in the definition of ‖ · ‖M(ω)n implies that

‖µ‖M(ω)n =

n∑
j=1

‖µj‖M(ω) ∀µ ∈M(ω)n. (3.1)

In particular, it holds that∫
ω

|∇u| =
n∑
j=1

‖∂xju‖M(ω) ∀u ∈ BV (ω).

However, for the Euclidean norm we have, in general, that

‖µ‖M(ω)n 6=
( n∑
j=1

‖µj‖2M(ω)

)1/2

. (3.2)

Indeed, the identity (3.1) is an immediate consequence of the definitions of the norms
‖·‖M(ω) and ‖·‖M(ω)n . To verify (3.2) we give an example. Let us fix n different points
{ξi}ni=1 in ω and take ε > 0 small enough such that the balls Bε(ξ

i) are disjoint. Now,
applying Uryshon’s lemma, cf. [23, Lemma 2.12], we get functions zi ∈ C0(ω) such
that 0 ≤ zi(x) ≤ 1 ∀x ∈ ω, zi(ξ

i) = 1 and supp(zi) ⊂ Bε(ξi). We set z = (z1, . . . , zn)
and µ = (δξ1 , . . . , δξn). Then, since |z(x)|2 ≤ 1 ∀x ∈ ω, we have

‖µ‖M(ω)n ≥
n∑
i=1

∫
ω

zi(x) dµi(x) =

n∑
i=1

zi(ξ
i) = n.

On the other hand, we get ( n∑
j=1

‖µj‖2M(ω)

)1/2

=
√
n.
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3.1. The use of the Euclidean norm | · |2. In order to give an expression for
g′(µ; ν), let us introduce some notation. We recall that if µ ∈ M(ω)n, its associated
total variation measure is defined as a positive scalar measure as follows

|µ|(A) = sup
{ ∞∑
k=1

|µ(Ek)|2 : {Ek}k ⊂ B are pairwise disjoint and A =

∞⋃
k=1

Ek

}
,

where B is the σ-algebra of Borel sets in ω, and |µ(Ek)|2 denotes the Euclidean norm
in Rn of the vector µ(Ek). Let us denote by hµ the Radon-Nikodym derivative of µ
with respect to |µ|. Thus we have

hµ ∈ L1(ω, |µ|), |hµ(x)|2 = 1 for |µ|−a.e.x ∈ ω and µ(A) =

∫
A

hµ(x) d|µ|(x) ∀A ∈ B.

Given a second vector measure ν ∈M(ω)n, the following Lebesgue decomposition
holds: ν = νa + νs, dνa = hνd|µ|, where νa and νs are the absolutely continuous and
singular parts of ν with respect to |µ|, and hν is the Radon-Nikodym derivative of ν
with respect to |µ|. Then, the following identity is fulfilled

‖ν‖M(ω)n = ‖νa‖M(ω)n + ‖νs‖M(ω)n =

∫
ω

|hν(x)|2 d|µ|(x) + ‖νs‖M(ω)n .

The reader is referred to [1, Chapter 1].
Now, we analyze the subdifferential ∂g(µ). It is well known that an element

λ ∈ ∂g(µ) if

〈λ, ν − µ〉+ ‖µ‖M(ω)n ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n. (3.3)

This is equivalent to the next two relations

〈λ, µ〉 = ‖µ‖M(ω)n , (3.4)

〈λ, ν〉 ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n. (3.5)

Observe that λ belongs to the dual ofM(ω)n, which is not a distributional space. In
the special case where λ ∈ C0(ω)n, we can establish some precise relations between λ
and µ. Before proving these relations, let us mention that here we have

‖z‖C0(ω)n = sup{|z(x)|2 : x ∈ ω} ∀z ∈ C0(ω)n.

Proposition 3.1. If λ ∈ C0(ω)n ∩ ∂g(µ), then ‖λ‖C0(ω)n ≤ 1. Moreover, if
µ 6= 0, then the following properties hold

1. ‖λ‖C0(ω)n = 1, and
2. supp(µ) ⊂ {x ∈ ω : |λ(x)|2 = 1}.

Proof. The inequality ‖λ‖C0(ω)n ≤ 1 follows from (3.5). Additionally, if µ 6= 0,
then (3.4) implies 1. To prove 2. we use (3.4) as follows∫

ω

d|µ|(x) = ‖µ‖M(ω)n = 〈λ, µ〉 =

∫
ω

λ(x) dµ(x) =

∫
ω

λ(x) · hµ(x) d|µ|(x).

Then, using that |λ(x)|2 ≤ 1 ∀x ∈ ω and |hµ(x)|2 = 1 |µ|-a.e. in ω we deduce from
the identity ∫

ω

d|µ|(x) =

∫
ω

λ(x) · hµ(x) d|µ|(x)
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that λ(x) ·hµ(x) = 1 |µ|-a.e. in ω. Using again that |hµ(x)|2 = 1, |µ|-a.e., we conclude
that λ(x) = hµ(x), |µ|-a.e. Therefore, we have that

|µ|
(
{x ∈ ω : |λ(x)|2 < 1}

)
= 0,

which implies 2.
Next we study the directional derivatives of g.
Proposition 3.2. Let µ, ν ∈M(ω)n, then

g′(µ; ν) =

∫
ω

hν dµ+ ‖νs‖M(ω)n , (3.6)

where ν = νa + νs = hνd|µ|+ νs is the Lebesgue decomposition of ν respect to |µ|.
Proof. As above, let us write dµ = hµd|µ|. Then we have

g′(µ; ν) = lim
ρ↘0

‖µ+ ρν‖M(ω)n − ‖µ‖M(ω)n

ρ

= lim
ρ↘0

‖µ+ ρνa‖M(ω)n + ‖ρνs‖M(ω)n − ‖µ‖M(ω)n

ρ

= lim
ρ↘0

1

ρ

(∫
ω

|hµ(x) + ρhν(x)|2 d|µ|(x)−
∫
ω

|hµ(x)|2 d|µ|(x)

)
+ ‖νs‖M(ω)n

=

∫
ω

lim
ρ↘0

|hµ(x) + ρhν(x)|2 − |hµ(x)|2
ρ

d|µ|(x) + ‖νs‖M(ω)n

=

∫
ω

hµ(x) · hν(x)

|hµ(x)|2
d|µ|(x) + ‖νs‖M(ω)n =

∫
ω

hν dµ+ ‖νs‖M(ω)n .

Since the quotients are dominated by |hν |2, we applied Lebesgue’s dominated con-
vergence theorem above. Moreover, we use that |hµ(x)|2 = 1 |µ|-a.e. in ω in the last
equality and also to justify the differentiability of the norm | · |2 at every hµ(x) with
x in the support of |µ|.

Now, we come back to the mapping G. To this end, let us recall that the adjoint
operator ∇∗ is defined by

∇∗ : [M(ω)n]∗ −→ BV (ω)
∗
, 〈∇∗λ, u〉BV (ω)∗,BV (ω) = 〈λ,∇u〉[M(ω)n]∗,M(ω)n .

Proposition 3.3. The following identities hold for all u ∈ BV (ω):

∂G(u) = ∂(g ◦ ∇)(u) = ∇∗∂g(∇u), (3.7)

G′(u; v) = (g ◦ ∇)′(u; v) =

∫
ω

hv d(∇u) + ‖(∇v)s‖M(ω)n , (3.8)

where ∇v = hvd|∇u| + (∇v)s is the Lebesgue decomposition of ∇v with respect to
|∇u|.

Proof. Since ∇ : BV (ω) −→ M(ω)n is a linear and continuous mapping and
g :M(ω)n −→ R is convex and continuous, we can apply the chain rule [16, Chapter I,
Proposition 5.7] to deduce that ∂(g ◦∇)(u) = ∇∗∂g(∇u), which immediately leads to
(3.7).

To verify (3.8) it is enough to observe that

(g ◦ ∇)′(u; v) = g′(∇u;∇v)

and to apply (3.6).
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3.2. The use of the | · |∞ norm. The use of | · |∞ norm implies that

‖z‖C0(ω)n = sup{|z(x)|∞ : x ∈ ω} ∀z ∈ C0(ω)n.

We recall that every scalar real measure µ ∈M(ω) admits a Jordan decomposition
µ = µ+−µ−, where µ+ and µ− are positive measures with disjoint supports. Further,
if hµ is the Radon-Nikodym derivative of µ with respect to |µ|, then µ+ = h+d|µ| and
µ− = h−d|µ|, where h = h+ − h− is the decomposition of h in positive and negative
parts.

Proposition 3.4. If λ ∈ C0(ω)n∩∂g(µ), then ‖λj‖C0(ω) ≤ 1 for all j = 1, . . . , n.
Moreover, if µj 6= 0, then the following properties hold

1. ‖λj‖C0(ω) = 1, and

2. supp(µ+
j ) ⊂ {x ∈ ω : λj(x) = +1} and supp(µ−j ) ⊂ {x ∈ ω : λj(x) = −1}.

Proof. Inserting (3.1) in (3.4) and (3.5) we get

n∑
i=1

〈µi, λi〉 =

n∑
i=1

‖µi‖M(ω), (3.9)

n∑
i=1

〈νi, λi〉 ≤
n∑
i=1

‖νi‖M(ω) ∀ν ∈M(ω)n. (3.10)

Let us fix 1 ≤ j ≤ n and take in (3.10) νi = 0 for every i 6= j and νj = ±δx with
x ∈ ω arbitrary. Then, we obtain

±λj(x) = 〈νj , λj〉 ≤ ‖νj‖M(ω) = 1.

This proves that |λj(x)| ≤ 1 ∀x ∈ ω for every j. Now, we assume that µj 6= 0. From
(3.9) we infer

n∑
i=1

‖µi‖M(ω) =

n∑
i=1

〈µi, λi〉 ≤
n∑
i=1

‖µi‖M(ω)‖λi‖C0(ω) ≤
n∑
i=1

‖µi‖M(ω).

This implies that ‖λi‖C0(ω) = 1 for every i such that µi 6= 0. Hence, 1. holds. The
second part was proved in [6, Lemma 3.4].

Now, we compute the directional derivatives of g′(µ; ν). Then, we have the fol-
lowing expression which is similar but different from the one obtained in Proposition
3.2.

Proposition 3.5. Let µ, ν ∈M(ω)n, then

g′(µ; ν) =

∫
ω

hν dµ+ ‖νs‖M(ω)n =

n∑
j=1

{∫
ω

hνj dµj + ‖(νj)s‖M(ω)

}
, (3.11)

where νj = (νj)a + (νj)s = hνjd|µj | + (νj)s is the Lebesgue decomposition of νj with
respect to |µj | for 1 ≤ j ≤ n.

Proof. For the proof it is enough use (3.1) to obtain

g′(µ; ν) = lim
ρ↘0

‖µ+ ρν‖M(ω)n − ‖µ‖M(ω)n

ρ
=

n∑
i=1

lim
ρ↘0

‖µi + ρνi‖M(ω)n − ‖µi‖M(ω)n

ρ
.

Then, we proceed as in the proof of [10, Proposition 3.3].
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With the same proof we infer that Proposition 3.3 is also true for the | · |∞ norm
with (3.8) being interpreted as follows

G′(u; v) = (g ◦ ∇)′(u; v) =

∫
ω

hv d(∇u) + ‖(∇v)s‖M(ω)n

=

n∑
j=1

{∫
ω

hv,j d(∂xju) + ‖(∂xjv)s‖M(ω)

}
, (3.12)

where ∂xjv = hv,j |∂xju|+ (∂xjv)s is the Lebesgue decomposition of ∂xjv with respect
to |∂xju|.

4. Existence of an optimal control and first order optimality conditions.
The proof of the existence of an optimal control follows the lines of [9, Theorem 3.1]
with the obvious modifications.

Theorem 4.1. Let us assume that one of the following assumptions hold.
1. β + γ > 0.
2. There exist q ∈ [1, 2) and C > 0 such that

∂f

∂y
(x, y) ≤ C(1 + |y|q) for a.a. x ∈ Ω and ∀y ∈ R.

Then, problem (P) has at least one solution. Moreover, if f is affine with respect to
y, the solution is unique.

Now, we prove the first order optimality conditions satisfied by any local minimum
of (P).

Theorem 4.2. Let ū be a local solution of (P). Then, there exists λ̄ ∈ ∂g(∇ū)
such that

α〈λ̄,∇v〉[M(ω)n]∗,M(ω)n+

∫
ω

(
ϕ̄+γū+β

∫
ω

ū dz
)
v dx = 0 ∀v ∈ BV (ω)∩L2(ω), (4.1)

where ϕ̄ ∈ H1
0 (Ω) ∩ C(Ω̄) is the adjoint state corresponding to ū.

Proof. Let us denote by ϕ̄ ∈ C(Ω̄)∩H1
0 (Ω) the adjoint state corresponding to the

local solution ū. Given v ∈ BV (ω) ∩ L2(ω), from the local optimality of ū and the
convexity of G we deduce for every 0 < ρ < 1 small enough

0 ≤ J(ū+ ρv)− J(ū)

ρ
=
F (ū+ ρv)− F (ū)

ρ
+ α

G(ū+ ρv)−G(ū)

ρ

≤ F (ū+ ρv)− F (ū)

ρ
+ α[G(ū+ v)−G(ū)].

Passing to the limit as ρ → 0 in the above inequality and using (2.9) we obtain for
every v ∈ BV (ω)

0 ≤
∫
ω

(
ϕ̄(x) + γū(x) + β

∫
ω

ū ds
)
v(x) dx+ α[G(ū+ v)−G(ū)].

Replacing v by u− ū, this inequality can be written

− 1

α

∫
ω

(
ϕ̄+ γū+ β

∫
ω

ū ds
)

(u− ū) dx+G(ū) ≤ G(u) ∀u ∈ BV (ω) ∩ L2(ω).
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This along with (3.7) implies

− 1

α

(
ϕ̄+ γū+ β

∫
ω

ū ds
)
∈ ∂G(ū) = ∇∗∂g(∇ū).

Hence, there exists λ̄ ∈ ∂g(∇ū) ⊂ [M(ω)n]∗ such that

〈λ̄,∇v〉[M(ω)n]∗,M(ω)n =
−1

α

∫
ω

[
ϕ̄+ β

∫
ω

ū ds
]
v dx ∀v ∈ BV (ω) ∩ L2(ω),

which implies (4.1).
Since λ̄ ∈M(ω)n andM(ω)n is not a distribution space, sometimes it can be more

convenient to handle a different optimality system involving distributional spaces,
mainly if we think of the numerical analysis. To this end, we present the following
equivalent optimality conditions.

Theorem 4.3. Let us assume that n = 2. Given ū ∈ BV (ω), let ȳ and ϕ̄ be the
associated state and adjoint state. Then, there exists λ̄ ∈ ∂g(∇ū) satisfying (4.1) if
and only if there exists Φ̄ ∈ C0(ω)n such that

α〈∇v, Φ̄〉M(ω)n,C0(ω)n +

∫
ω

[
ϕ̄+ γū+ β

∫
ω

ū ds
]
v dx = 0 ∀v ∈ BV (ω), (4.2)

〈∇v, Φ̄〉M(ω)n,C0(ω)n ≤ ‖∇v‖M(ω)n ∀v ∈M(ω)n, (4.3)

〈∇ū, Φ̄〉M(ω)n,C0(ω)n = ‖∇ū‖M(ω)n . (4.4)

Proof. Assume that λ̄ ∈ ∂g(∇ū) satisfies (4.1). We define a linear form T0 in
M(ω)n as follows

D(T0) = {∇v : v ∈ BV (ω)} and T0(µ) = 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n if µ = ∇v.

From (3.4) and (3.5) we have

T0(∇ū) = ‖∇ū‖M(ω)n , (4.5)

T0(µ) ≤ ‖µ‖M(ω)n ∀µ ∈ D(T0). (4.6)

We prove that T0 is weakly∗ continuous on its domain. Let {µk}k ⊂ D(T0) and

µ ∈ D(T0) be such that µk
∗
⇀ µ in M(ω)n. By definition of D(T0) there exists

elements {vk}k ⊂ BV (ω) and v ∈ BV (ω) such that µk = ∇vk and µ = ∇v. Without
loss of generality we assume that the integrals of each vk and v in ω are zero. Using
(2.1), we know that {vk}k is bounded in BV (ω). From the continuity of the embedding

BV (ω) ⊂ L2(ω) due to n = 2 and the convergence ∇vk
∗
⇀ ∇v in M(ω)n, we obtain

that vk ⇀ v in L2(ω). Therefore, we get with (4.1)

lim
k→∞

T0(µk) = lim
k→∞

〈λ̄,∇vk〉[M(ω)n]∗,M(ω)n

= lim
k→∞

−1

α

∫
ω

[
ϕ̄+ γū+ β

∫
ω

ū ds
]
vk dx (4.7)

=
−1

α

∫
ω

[
ϕ̄+ γū+ β

∫
ω

ū ds
]
v dx = 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n = T0(µ),

which implies the weak∗ continuity of T0. Hence, there exists a weakly∗ continuous
linear form T :M(ω)n −→ R extending T0; [24, Theorem 3.6]. In this case, we know
that T can be identified with an element Φ̄ ∈ C0(ω)n, i.e.

T (µ) = 〈µ, Φ̄〉M(ω)n,C0(ω)n =

∫
ω

Φ̄ dµ ∀µ ∈M(ω)n;
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see [3, Proposition 3.14]. The function Φ̄ fulfills (4.2)–(4.4). Indeed, (4.2) follows from
the definition of T0 and (4.1), and (4.3)-(4.4) are the same as (4.5)-(4.6).

Reciprocally, assume that Φ̄ ∈ C0(ω)n satisfies (4.2)–(4.4). This time we define
the linear operator

D(T0) = {∇v : v ∈ BV (ω)} and T0(µ) = 〈∇v, Φ̄〉M(ω)n,C0(ω)n if µ = ∇v.

From (4.3) we know that T0 is a continuous operator in D(T0) for the strong topology
of M(ω)n, and ‖T0‖[M(ω)n]∗ ≤ 1. Hence, the Hahn-Banach theorem implies the
existence of an operator λ̄ ∈ [M(ω)n]∗ extending T0 and such that ‖λ̄‖[M(ω)n]∗ ≤ 1.
This along with (4.3) implies that

〈λ̄,∇ū〉 = ‖∇ū‖M(ω)n ,

〈λ̄, ν〉 ≤ ‖ν‖M(ω)n ∀ν ∈M(ω)n.

Hence, we have λ̄ ∈ ∂g(∇ū); see (3.3)–(3.5). Finally, (4.1) follows from (4.2) and the
definition of T0. This concludes the proof.

Remark 4.4. Theorem 4.3 is still valid in dimension n = 3 if we take γ = 0 and
we assume that the nonlinearity of f(x, y) has a polynomial growth of arbitrary order
with respect to the variable y; see Remark 2.4. Indeed, let us observe that the limit
(??) is still valid because vk ⇀ v in L3/2(Ω) and ϕ̄+β

∫
ω
ū ds is a continuous function

in Ω̄.
Remark 4.5. It would be interesting to prove the existence of a function Φ̄ ∈

C0(ω)n ∩ ∂g(∇ū) satisfying (4.3)–(4.5). Indeed, Theorem 4.3 does not guarantee that
‖Φ‖C0(ω)n ≤ 1. In this hypothetic case, we could deduce from Propositions 3.1 and
3.4 the following sparsity structure of ∇ū.

1. For the | · |2 norm, if ∇ū 6= 0 we have ‖Φ̄‖C0(ω)n = 1 and

supp(∇ū) ⊂ {x ∈ ω : |Φ̄(x)|2 = 1}.

2. For the | · |∞ norm, for any 1 ≤ j ≤ n such that if ∂xj ū 6= 0 we have
‖Φ̄j‖C0(ω) = 1, and

supp([∂xju]+) ⊂ {x ∈ ω : Φ̄j(x) = +1},

supp([∂xj ū]−) ⊂ {x ∈ ω : Φ̄j(x) = −1}.

5. Second order optimality conditions. The goal of this section is to prove
necessary and sufficient second order optimality conditions for problem (P). In the
whole section, ū will denote a fixed element of BV (ω)∩L2(ω) satisfying the optimality
conditions given in Theorem 4.2. As in Section 3, we will distinguish the cases where
the norms | · |2 and | · |∞ in Rn are used in the definition of the measure ‖∇u‖M(ω)n .

5.1. The use of the | · |∞ norm. As pointed out in (3.1), the use of the | · |∞
norm in Rn leads to the identity

‖∇v‖M(ω)n =

n∑
j=1

‖∂xjv‖M(ω) =

n∑
j=1

{∫
ω

|hv,j | d|∂xj ū|+ ‖(∂xjv)s‖M(ω)

}
(5.1)

∀v ∈ BV (ω), where ∂xjv = hv,j |∂xj ū|+(∂xjv)s is the Lebesgue decomposition of ∂xjv
with respect to the measure |∂xj ū|, 1 ≤ j ≤ n. Moreover, for every 1 ≤ j ≤ n there
exists a Borel function h̄j such that

|h̄j(x)| = 1, |∂xj ū|−a.e., and ∂xj ū = h̄j |∂xj ū|. (5.2)
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In the sequel, we will denote hv = (hv,1, . . . , hv,n) and h̄ = (h̄1, . . . , h̄n).
First, we state the second order necessary optimality conditions. To this end we

define the cone of critical directions Cū as the closure in L2(ω) of the cone

Eū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) = 0

and hv,j ∈ L2(|∂xj ū|), 1 ≤ j ≤ n}. (5.3)

Then, we have the following result.
Theorem 5.1. If ū is a local minimum of (P), then F ′′(ū)v2 ≥ 0 ∀v ∈ Cū.
Proof. We will prove the result for every v ∈ Eū. Then, the theorem follows by

using the continuity of quadratic from v ∈ L2(ω)→ F ′′(ū)v2 ∈ R. Given v ∈ Eū and
ρ > 0 we set

ωρ,j = {x ∈ ω : ρ|hv,j(x)| ≤ 1

2
} 1 ≤ j ≤ n.

We have with Schwarz inequality

|∂xj ū|(ω \ ωρ,j) ≤ 2ρ

∫
ω\ωρ,j

|hv,j(x)| d|∂xj ū|

≤ 2ρ
√
|∂xj ū|(ω \ ωρ,j)

(∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)1/2

,

which implies√
|∂xj ū|(ω \ ωρ,j) ≤ 2ρ

(∫
ω\ωρ,j

|hv.j(x)|2 d|∂xj ū|
)1/2

1 ≤ j ≤ n. (5.4)

Taking into account (5.2) we get for 1 ≤ j ≤ n

|h̄j(x) + ρhv,j(x)| − |h̄j(x)|
ρ

= hv,j(x)h̄j(x) [|∂xj ū|]−a.e. x ∈ ωρ,j .

Using this identity and (5.1) we get

G(ū+ ρv)−G(ū)

ρ

=

n∑
j=1

{∫
ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū|+ ‖(∂xjv)s‖M(ω)n

}
+

n∑
j=1

∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄|
ρ

d|∂xj ū|

=

n∑
j=1

{∫
ωρ,j

(hv,j h̄j) d|∂xj ū|+ ‖(∂xjv)s‖M(ω)n

}
+

n∑
j=1

∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū|

=

n∑
j=1

{∫
ω

hv,j d∂xj ū+ ‖(∂xjv)s‖M(ω)n

}
+

n∑
j=1

{∫
ω\ωρ,j

|h̄j + ρhv,j | − |h̄j |
ρ

d|∂xj ū| −
∫
ω\ωρ,j

(hv,j h̄j) d|∂xj ū|
}
.
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Now, from (3.12), (5.2), Schwarz inequality, and (5.4) we infer

G(ū+ ρv)−G(ū)

ρ
≤ G′(ū; v) + 2

n∑
j=1

∫
ω\ωρ,j

|hv,j |d|∂xj ū|

≤ G′(ū; v) + 2

n∑
j=1

√
|∂xj ū|(ω \ ωρ,j)

(∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)1/2

≤ G′(ū; v) + 4ρ

n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|.

Next we use the local optimality of ū. By a Taylor expansion of F around ū and
using that v ∈ Eū, we get for ρ > 0 small enough

0 ≤ J(ū+ ρv)− J(ū) = ρ[F ′(ū)v + αG′(ū; v)]

+
ρ2

2

(
F ′′(ū+ θρv)v2 + 8α

n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)

=
ρ2

2

(
F ′′(ū+ θρv)v2 + 8α

n∑
j=1

∫
ω\ωρ,j

|hv,j(x)|2 d|∂xj ū|
)

with 0 ≤ θρ ≤ 1. Dividing the above expression by ρ2/2, passing to the limit as
ρ → 0, and taking into account that hv.j ∈ L2(|∂xj ū|) and |∂xj ū|(ω \ ωρ,j) → 0, we
conclude that F ′′(ū)v2 ≥ 0.

For the sufficient second order conditions we introduce the critical cones

Cτū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) ≤ τ‖zv‖L2(Ω)}, (5.5)

where τ > 0 and zv = S′(ū)v. The reader is referred to [4] for some second order
conditions based on these cones; see also [11] and [12]. Let us observe that (4.1) and
the inequality G′(ū; v) ≥ 〈λ̄,∇v〉[M(ω)n]∗,M(ω)n imply that ∀v ∈ BV (ω) ∩ L2(ω)

F ′(ū)v + αG′(ū; v) ≥ F ′(ū)v + α〈λ̄,∇v〉[M(ω)n]∗,M(ω)n = 0. (5.6)

Theorem 5.2. Let ū ∈ BV (ω)∩L2(ω) satisfy the first order optimality conditions
stated in Theorem 4.2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖zv‖2L2(Ω) ∀v ∈ C
τ
ū . (5.7)

Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε, (5.8)

where yu = S(u) and ȳ = S(ū).
Proof. We follow the proof of [4, Theorem 3.6] with some changes. First, from [4,

Lemma 2.7] we deduce the existence of ε0 > 0 such that

|[F ′′(u)− F ′′(ū)]v2| ≤ δ

2
‖zv‖2L2(Ω) ∀v ∈ L

2(ω) and all ‖u− ū‖L2(ω) ≤ ε0. (5.9)

Moreover, from Proposition 2.2 we deduce the existence of a constant C1 > 0 such
that

‖zv‖L2(Ω) = ‖S′(ū)v‖L2(Ω) ≤ C1‖v‖L2(ω) ∀v ∈ L2(ω). (5.10)
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Now, from (2.6) we have that there exists a constant K such that ‖yu‖C(Ω̄) ≤ K if
‖u − ū‖L2(ω) ≤ ε0. From the adjoint state equation (2.11) and (2.3) we deduce that
‖ϕu‖C(Ω̄) ≤ K ′ for every ‖u − ū‖L2(ω) ≤ ε0 and some constant K ′. Finally, using
these estimates, (2.4) and the expression (2.10) we infer the existence of a constant
C2 > 0 such that

F ′′(u)v2 ≥ γ‖v‖2L2(ω)−C2‖zv‖2L2(Ω) for all ‖u−ū‖L2(ω) ≤ ε0 and ∀v ∈ L2(ω). (5.11)

Now, we set

ε = min
{
ε0,

2τ

(δ + C2)C1

}
with τ and δ given in (5.7). Let u ∈ BV (ω) ∩ L2(ω) such that ‖u− ū‖L2(ω) ≤ ε. We
distinguish two cases.

Case I: u−ū ∈ Cτū . Making a Taylor expansion of F around ū, using the convexity
of G and (5.6), (5.7) and (5.9), we get for some 0 ≤ θ ≤ 1

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ 1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū+ θ(u− ū))− F ′′(ū)](u− ū)2

≥ δ

2
‖zu−ū‖2L2(Ω) −

δ

4
‖zu−ū‖2L2(Ω) =

δ

4
‖zu−ū‖2L2(Ω). (5.12)

Case II: u− ū 6∈ Cτū . This implies that

F ′(ū)(u− ū) + αG′(ū;u− ū) > τ‖zu−ū‖L2(Ω). (5.13)

Moreover, from (5.10) and the definition of ε we infer

‖zu−ū‖L2(Ω) ≤ C1‖u− ū‖L2(Ω) ≤
2τ

δ + C2
,

and therefore

δ + C2

2τ
‖zu−ū‖L2(Ω) ≤ 1. (5.14)

Using again the convexity of G, (5.11), (5.13) and (5.14) we infer

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ τ‖zu−ū‖L2(Ω) − C2‖zu−ū‖2L2(Ω)

≥ δ + C2

2
‖zu−ū‖2L2(Ω) −

C2

2
‖zu−ū‖2L2(Ω) =

δ

2
‖zu−ū‖2L2(Ω). (5.15)

From (5.12) and (5.15) we deduce that [4, page 2364]

J(u)− J(ū) ≥ δ

4
‖zu−ū‖2L2(Ω) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε.

Finally, choosing ε still smaller, if necessary, we have that [4, page 2364]

1

2
‖yu − ȳ‖L2(Ω) ≤ ‖zu−ū‖L2(Ω) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε.
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The last two inequalities imply (5.8) with κ = δ
8 .

We observe that (5.7) is a sufficient second order condition for strict local opti-
mality of ū in the L2(ω) sense. Moreover, by using (5.8) we can prove stability of
the optimal states with respect to perturbations in the data of the control problem.
However, it does not provide information on the optimal controls. If γ > 0 we can
change (5.7) by a stronger assumption leading to a quadratic growth of the controls
instead of the states; i.e. ‖yu − ȳ‖2L2(Ω) can be replaced by ‖u − ū‖2L2(ω) in (5.8).

However, if γ = 0, then this is not possible; see [4].
Theorem 5.3. Suppose that γ > 0 and let ū ∈ BV (ω) ∩ L2(ω) satisfy the first

order optimality conditions stated in Theorem 4.2 and the second order condition

∃δ > 0 and ∃τ > 0 : F ′′(ū)v2 ≥ δ‖v‖2L2(ω) ∀v ∈ C
τ
ū . (5.16)

Then, there exist κ > 0 and ε > 0 such that

J(ū) +
κ

2
‖u− ū‖2L2(ω) ≤ J(u) ∀u ∈ BV (ω) ∩ L2(ω) : ‖u− ū‖L2(ω) ≤ ε. (5.17)

Proof. Using again [4, Lemma 2.7] along with (5.10) we infer the existence of
ε > 0 such that

|[F ′′(u)− F ′′(ū)]v2| ≤ δ

2
‖v‖2L2(Ω) ∀v ∈ L

2(ω) and all ‖u− ū‖L2(ω) ≤ ε. (5.18)

Arguing similarly to (5.12), but using (5.16) and (5.18) we obtain for every u ∈
BV (ω) ∩ L2(ω) such that ‖u− ū‖L2(ω) ≤ ε and u− ū ∈ Cτū

J(u)− J(ū) ≥ [F ′(ū)(u− ū) + αG′(ū;u− ū)] +
1

2
F ′′(ū+ θ(u− ū))(u− ū)2

≥ 1

2
F ′′(ū)(u− ū)2 +

1

2
[F ′′(ū+ θ(u− ū))− F ′′(ū)](u− ū)2

≥ δ

2
‖u− ū‖2L2(ω) −

δ

4
‖u− ū‖2L2(ω) =

δ

4
‖u− ū‖2L2(ω). (5.19)

Thus, (5.17) holds with κ = δ
2 assuming that u− ū ∈ Cτū . Now, we argue by contra-

diction, and we assume that there do not exist κ > 0 and ε > 0 such that (5.17) holds
for all the elements u ∈ BV (ω) ∩ L2(ω) with ‖u− ū‖L2(ω) ≤ ε. This implies that for
every integer k > 0, there exists an element uk ∈ BV (ω) ∩ L2(ω) with

‖uk − ū‖L2(ω) ≤
1

k
and J(ū) +

1

2k
‖uk − ū‖2L2(ω) > J(uk). (5.20)

From (5.19) we know that uk − ū 6∈ Cτū , hence with (5.14)

F ′(ū)(uk − ū) + αG′(ū;uk − ū) > τ‖zuk−ū‖L2(Ω) ≥
δ + C2

2
‖zuk−ū‖2L2(Ω) (5.21)

for every k large enough. Using (5.11), (5.20) and (5.21) we obtain

1

2k
‖uk − ū‖2L2(ω) > J(uk)− J(ū)

≥ [F ′(ū)(uk − ū) + αG′(ū;uk − ū)] +
1

2
F ′′(ū+ θk(uk − ū))(uk − ū)2

≥ δ + C2

2
‖zu−ū‖2L2(Ω) +

γ

2
‖uk − ū‖2L2(ω) −

C2

2
‖zuk−ū‖2L2(Ω) ≥

γ

2
‖uk − ū‖2L2(ω),

with is a contradiction because γ > 0.
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5.2. The use of the | · |2 norm. Given an element v ∈ BV (ω), we consider
the Lebesgue decomposition of ∇v with respect to the positive measure |∇ū|: ∇v =
hvd|∇ū|+ (∇v)s. Hence, we have

‖∇v‖M(ω)n =

∫
ω

|hv(x)|2 d|∇ū|+ ‖∇v)s‖M(ω). (5.22)

We also set ∇ū = h̄|∇ū|, where |h̄(x)|2 = 1 |∇ū|-a.e. in ω. Then, we have with (3.8)

G′(ū; v) =

∫
ω

(h̄ · hv) d|∇ū|+ ‖(∇v)s‖M(ω)n . (5.23)

Now, we define the cone of critical directions

Cū = {v ∈ BV (ω) ∩ L2(ω) : F ′(ū)v + αG′(ū; v) = 0 and |hv|2 ∈ L2(|∇ū|)}. (5.24)

Then, we have the following second order necessary optimality conditions.
Theorem 5.4. If ū is a local minimum of (P), then

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ 0 ∀v ∈ Cū. (5.25)

Proof. For fixed v ∈ Cū and given ρ > 0, we define

ωρ = {x ∈ ω : ρ|hv(x)|2 ≤
1

2
}.

Arguing as in the proof of Theorem 5.1 we get the following inequality analogous to
(5.4) √

|∇ū|(ω \ ωρ) ≤ 2ρ
(∫

ω\ωρ
|hv(x)|22 d|∇ū|

)1/2

. (5.26)

Using the differentiability of the | · |2-norm x ∈ Rn → |x|2 for every x 6= 0, the fact
that |h̄(x)|2 = 1 |∇ū|-a.e., the Schwarz inequality, and (5.26) we get for 0 ≤ θρ(x) ≤ 1

G(ū+ ρv)−G(ū)

ρ

=

∫
ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|+ ‖(∇v)s‖M(ω)n +

∫
ω\ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|

=

∫
ωρ

[
h̄ · hv +

ρ

2

( |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

)]
d|∇ū|

+ ‖(∇v)s‖M(ω)n +

∫
ω\ωρ

|h̄+ ρhv|2 − |h̄|2
ρ

d|∇ū|

≤
∫
ω

(h̄ · hv) d|∇ū|+
ρ

2

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|

+ ‖(∇v)s‖M(ω)n + 2

∫
ω\ωρ

|hv|2 d|∇ū|

≤
∫
ω

(h̄ · hv) d|∇ū|+ ‖(∇v)s‖M(ω)n

+
ρ

2

{∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+ 8

∫
ω\ωρ

|hv|22 d|∇ū|
}
.
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Using this inequality and the local optimality of ū, we infer with uρ = ū + θρρv,
0 ≤ θρ ≤ 1,

0 ≤ J(ū+ ρv)− J(ū) = ρ
[
F ′(ū)v + α

G(ū+ ρv)−G(ū)

ρ

]
+
ρ2

2
F ′′(uρ)v

2

≤ ρ[F ′(ū)v + αG′(ū; v)] +
ρ2

2

{
F ′′(uρ)v

2

+ α

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+ 8α

∫
ω\ωρ

|hv|22 d|∇ū|
}
.

Now, taking into account that v ∈ Cū and dividing the above inequality by ρ2/2 we
get

0 ≤ F ′′(uρ)v2 +α

∫
ωρ

[ |hv|22
|h̄+ θρρhv|2

− (h̄+ θρρhv) · hv
|h̄+ θρρhv|32

]
d|∇ū|+ 8α

∫
ω\ωρ

|hv|22 d|∇ū|.

Finally, using that |∇ū|(ω \ ωρ)→ 0 as ρ→ 0, |h̄(x)|2 = 1, and

1

2
≤ 1− ρ|hv(x)|2 ≤ |h̄+ θρρhv|2 ≤ 1 + ρ|hv(x)|2 ≤

3

2
|∇ū|-a.e. in ωρ,

we pass to the limit as ρ → 0 in the above inequality with the aid of the Lebesgue
dominated convergence theorem and we obtain (5.25).

Remark 5.5. The reader can easily check that Theorems 5.2 and 5.3 also hold
when the | · |2 norm is used. However, to reduce the gap between the necessary and
sufficient conditions for optimality, we should prove that the conditions

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ δ‖zv‖2L2(Ω) ∀v ∈ C

τ
ū

and

F ′′(ū)v2 + α

∫
ω

(
|hv(x)|22 − (h̄(x) · hv(x))2

)
d|∇ū| ≥ δ‖v‖2L2(ω) ∀v ∈ C

τ
ū

imply (5.8) and (5.17), respectively. This, however, remains as a challenge.

6. A regularization of problem (P). Here we briefly discuss the effect of an
H1(ω)-regularization term on the first order optimality conditions. For ε > 0 we
consider

(Pε) min
u∈H1(ω)

Jε(u) = J(u) +
ε

2

∫
ω

|∇u(x)|2 dx,

subject to (1.1), and denote a solution by uε. Let us set

Jε(u) = Fε(u) +G(u),

where Fε(u) = F (u) + ε
2

∫
ω
|∇u|2 dx for u ∈ H1(ω). We have

F ′ε(u)v = F ′(u)v + ε

∫
ω

∇u · ∇v dx, and ∂G(u) = ∇∗∂g(∇u) for u ∈ H1(ω),
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where now ∇ : H1(ω) → L2(ω)n, and g : L2(ω)n → R is given by g(v) = ‖v‖L1(ω)n .
We have the analog of Theorem 4.2, i.e. for every local solution uε of (Pε) there exists
λε ∈ ∂G(∇uε) such that

α(λε,∇v)L2(ω)n + F ′ε(uε)v = 0, for all v ∈ H1(ω). (6.1)

Let us focus on λε ∈ ∂g(∇uε) next. It is equivalent to

(λε,∇uε) = ‖∇uε‖L1(ω)n , and (λε, v) ≤ ‖v‖L1(ω)n for all v ∈ L1(ω)n. (6.2)

The use of the Euclidean norm | · |2: Here (6.2) results in

n∑
i=1

(λε,i, ∂xiuε) =

∫
ω

(

n∑
i=1

|∂xiuε|2)
1
2 dx, and

n∑
i=1

(λε,i, vi) ≤
∫
ω

(

n∑
i=1

|vi|2)
1
2 dx, (6.3)

for all v ∈ L1(ω)n. The second expression in (6.3) implies that ‖λε‖L∞(ω,Rn) ≤ 1.
Moreover, if ∇uε 6= 0,

‖λε‖L∞(ω,Rn) = 1 and supp∇uε ⊂ {x ∈ ω : |λε(x)|2 = 1}. (6.4)

The first claim follows from the equality in (6.3). This equality can also be expressed
as
∫
ω
|∇uε|2 dx =

∫
ω

(∇uε ·λε) dx, which, together with |λ(x)|2 ≤ 1 implies the second
assertion in (6.4).
The use of the | · |∞-norm: In this case (6.2) results in

n∑
i=1

(λε,i, ∂xiuε) =

n∑
i=1

‖∂xiuε‖L1(ω) and

n∑
i=1

(λε,i, vi) ≤
n∑
i=1

‖vi‖L1(ω), (6.5)

for all v ∈ L1(ω)n. This implies that ‖λε,j‖L∞(ω) ≤ 1 for all j = 1, . . . , n and if
∂xjuε 6= 0

‖λε,j‖L∞(ω) = 1, and supp (∂xjuε)
± ⊂ {x ∈ ω : λε,j = ±1}. (6.6)

In fact, for any 1 ≤ j ≤ n, let νi = 0 for all i 6= j and νj = λε,j on S+
j = {x : λε,j > 1},

and equal to 0 otherwise. Then
∫
S+
j

(λ2
ε,j − λε,j)(x) dx ≤ 0, while the integrand is

strictly positive a.e. Hence meas(S+
j ) = 0. In an analogous form we exclude the case

λε,j < −1, and hence ‖λε,j‖L∞(ω) ≤ 1, for all j. Using the first expression in (6.5) we
have

n∑
i=1

‖∂xiuε‖L1(ω) =

n∑
i=1

(λε,i, ∂xiuε) ≤
n∑
i=1

‖∂xiuε‖L1(ω),

which implies (6.6).
Asymptotic behavior: Finally we consider the asymptotic behavior of (6.1), (6.2)
as ε → 0+. From the inequality Jε(uε) ≤ J(0) for all ε > 0, we deduce with (1.2)
the boundedness of {uε}ε in BV (ω) ∩ L2(ω). Moreover, (6.4) and (6.6) imply the
boundedness of {λε}ε in L∞(ω)n. Hence there exists (ū, λ̄) ∈ (BV (ω) ∩ L2(ω)) ×
L∞(ω)n such that on a subsequence (uε, λε)

∗
⇀ (ū, λ̄) weakly∗ in (BV (ω) ∩ L2(ω))×

L∞(ω). Moreover yuε → yū in L2(Ω).
Now, given an arbitrary element u ∈ H1(ω), the optimality of uε and the structure

of J implies

J(ū) ≤ lim inf
ε→0

J(uε) ≤ lim sup
ε→0

J(uε) ≤ lim sup
ε→0

Jε(uε) ≤ lim sup
ε→0

Jε(u) = J(u).
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Since H1(Ω) is dense in BV (ω) ∩ L2(ω), the above inequality implies that ū is a
solution of (P) and

J(ū) = lim
ε→0

J(uε) = lim sup
ε→0

Jε(uε) = inf (P) = J(ū). (6.7)

This implies that J(uε)→ J(ū) and ε
2

∫
ω
|∇uε|2 dx→ 0. Moreover, from the conver-

gence properties of {uε}ε and {yε}ε we deduce that

lim
ε→0

[
1

2
‖yuε − yd‖2L2(Ω) +

β

2

(∫
ω

uε dx

)2
]

=
1

2
‖yū − yd‖2L2(Ω) +

β

2

(∫
ω

ū dx

)2

, (6.8)∫
ω

|∇ū| ≤ lim inf
ε→0

∫
ω

|∇ūε|. (6.9)

Combining (6.8) with the convergence J(uε)→ J(ū) we infer

lim
ε→0

(
γ

2
‖uε‖2L2(ω) + α

∫
ω

|∇uε|
)

=
γ

2
‖ū‖2L2(ω) + α

∫
ω

|∇ū|. (6.10)

If γ = 0 then this identity is reduced to
∫
ω
|∇uε| →

∫
ω
|∇ū|. Let us prove that

this convergence property also holds for γ > 0. Using (6.10), the convergence uε ⇀ ū
in L2(ω), and (6.9) we obtain

γ

2
‖ū‖2L2(ω) ≤ lim inf

ε→0
‖uε‖2L2(ω) ≤ lim sup

ε→0
‖uε‖2L2(ω)

≤ lim sup
ε→0

(
γ

2
‖uε‖2L2(ω) + α

∫
ω

|∇uε|
)
− α lim inf

ε→0

∫
ω

|∇ūε|

≤
(
γ

2
‖ū‖2L2(ω) + α

∫
ω

|∇ū|
)
− α

∫
ω

|∇ū| = γ

2
‖ū‖2L2(ω).

Therefore, ‖uε‖L2(ω) → ‖ū‖L2(ω) holds. Combining this fact with the weak conver-
gence we conclude that uε → ū strongly in L2(ω). Inserting this in (6.10) it follows
that

∫
ω
|∇uε| →

∫
ω
|∇ū|.

From (6.1) we have that

α(λε,∇v) +

∫
ω

(
ϕ(uε) + γuε + β

∫
ω

uε dz
)
v dx− ε

∫
ω

uε∆v dx = 0, ∀v ∈ C∞0 (ω).

Taking the limit ε→ 0 we obtain

α(λ̄,∇v) +

∫
ω

(
ϕ(ū) + γū+ β

∫
ω

ū dz
)
v dx = 0, ∀v ∈ C∞0 (ω),

which corresponds to (4.1). Moreover, the above relation implies that λ̄ ∈ L2
div(ω),

and

−α divλ̄+ ϕ(ū) + γū+ β

∫
ω

ū dz = 0 in L2(ω). (6.11)

This relation can also be deduced from (4.1). Thus div λ̄ from Section 4 coincides
with div λ̄ obtained by regularisation and it is uniquely defined by (6.11).
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From (6.1), the above identity, and the established convergence ε
∫
ω
|∇uε|2 dx→ 0

we find

lim
ε→0

(λε,∇uε) = − lim
ε→0

1

α
F ′ε(uε)uε = − lim

ε→0

1

α

(
F ′(uε)uε − ε

∫
ω

|∇uε|2 dx
)

= − 1

α
F ′(ū)ū = −(div λ̄, ū).

Now, from (6.2) and the convergence
∫
ω
|∇uε| →

∫
ω
|∇ū| we infer

lim
ε→0

(λε,∇uε) = ‖∇ū‖M(ω)n .

From the last two identities, and using again (6.2) along with the convergence λε
∗
⇀ λ̄

in L∞(ω) we obtain

(−div λ̄, ū) = ‖∇ū‖M(ω)n , and (λ̄, v) ≤ |v|L1(ω)n for all v ∈ L1(ω)n.

This corresponds to 〈λ̄,∇ū〉[M(ω)n]∗,M(ω)n = ‖∇ū‖M(ω)n , and 〈λ̄, ν〉 ≤ ‖ν‖M(ω)n for
all ν ∈M(ω)n, which was obtained in Theorem 4.2 with λ̄ ∈ ∂g(∇ū) ⊂ [M(ω)n]∗.

7. Conclusions. An analysis for BV-regularised optimal control problems asso-
ciated to semilinear elliptic equations was provided. Existence, first order necessary
and second order sufficient optimality conditions were investigated. Special attention
was given to the different cases which arise due to the choice of a particular vector
norm in the definition of the BV-seminorm. If (P) is additionally regularised by an
H1(ω)-seminorm, then the set where the gradient of the optimal solution vanishes,
can be characterised conveniently by an adjoint variable, see (6.4) and (6.6). For
the original problem (P) without H1(ω)-seminorm regularisation, such a transparent
description of the set where the measure |∇ū| vanishes is not available, rather it was
replaced by the properties specified in Theorem 4.3.
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