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Abstract

In this paper local exact controllability to the trajectories for the one-dimensional mon-

odomain equations with the FitzHugh-Nagumo and Rogers-McCulloch ionic models using

distributed controls with a moving support is investigated. In a first step a new Carleman

inequality for the linearized monodomain equations, under assumptions on the movement of

the control region is presented. It leads to null controllability at any positive time. Subse-

quently, a local result concerning the exact controllability to the trajectories for the nonlinear

monodomain equations is deduced.
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1 Introduction

The main objective of this paper is to study controllability properties of nonlinear reaction-diffusion

systems which model the electrical activity in the heart. Our reference model for the heart’s

electrical activity is the so-called bidomain model, formulated mathematically in [20], see also

e.g. [19, Chapter 2] and the references therein. Next, we describe such a model in order to

motivate the controllability results studied. Since the bidomain model is not frequently discussed

in mathematical publications we allow more space for our description. At the end of this section

we shall relate our results to results on the exact controllability of the heat equation with memory

terms.

We start by saying that heart muscle cells belong to a class of cells known as excitable cells,

which have the ability to respond actively to an electrical stimulus. In absence of an electrical

stimulus cells remain electrically quiescent at a given potential difference across the cell membrane.

At rest the potential inside the cells, called the intracellular potential, is negative compared to

the extracellular potential, which is the potential in the interstitial space between the cells and

the potential difference is referred to as transmembrane voltage. When such cells are stimulated

electrically they depolarize the transmembrane voltage towards less negative or positive values. If

the delivered stimulus is strong enough to depolarize the cell above an intrinsic firing threshold an

active response is elicited, otherwise the cell returns to its resting state. The active response of the

cell is of all or none type, that is, the elicited active response is always the same independently of

the applied stimulus strength. This threshold behavior discriminating between active non-linear

and passive linear response is referred to as excitability. The depolarization of cells above the

firing threshold is a very fast process which is followed by a slower repolarization that restores the

potential difference to its resting value. The complete cycle of depolarization and repolarization is

called an action potential. In tissue the intracellular spaces of cells are interconnected and thus an

ongoing action potential in one cell can depolarize the resting potential in neighboring cells up to

the firing threshold and thus provide a mechanism for the propagation of electrical signals. This

ability enables an electric activation occurring in one part of the heart to propagate through the

muscle and activate the entire heart.

The bidomain model is a macroscopic model based on the assumption that, at mesoscopic

scale, cardiac tissue can be viewed as partitioned into two ohmic conducting media separated by

the cell membrane: the intracellular medium formed by the interior space of cardiac cells and the

extracellular medium which represents the space between cells. Both domains are assumed to be

continuous, and they both fill the complete volume of the heart muscle. This latter assumption

of interpenetrating domains, that is intracellular space, extracellular space and membrane co-

exist at any point in space, does not reflect biophysical reality at a cellular size scale, but can

be justified at a mesoscopic size scales based on homogenization arguments. The justification

for viewing the intracellular space as continuous is that the muscle cells are interconnected via

conducting pores referred to as gap junctions. Because of the gap junctions, substances such as

ions or small molecules may pass directly from one cell to another, without entering the space

between the two cells (the extracellular domain). Having said this, in each of the two domains a

macroscopic electric potential is defined and the membrane acts as an electrical insulator between

the two domains, since otherwise we could not have a potential difference between the intracellular

and extracellular domains. Although the resistance of the cell membrane itself is very high, it

allows electrically charged molecules (ions) to pass through specific channels embedded in the

membrane. Then, an electrical current referred to as ionic current will cross the membrane, the
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magnitude of which will depend on the driving force across the membrane, that is the difference

between transmembrane voltage and the equilibrium potential for a given ion species, and on the

channel’s permeability to the this ion species. The transmembrane voltage is defined as the potential

difference across the membrane for every point in the heart. The bidomain formulation recognizes

that cardiac tissue is electrically anisotropic and that current flows in both extracellular and

intracellular domains. Bidomain models are necessary to simulate defibrillation and the biophysical

mechanisms underlying the initiation of propagation with pacing stimuli where the current is

injected in the extracellular domain, and have the further advantage that the most commonly

measured cardiac electrical signals – extracellular potential and transmembrane voltage – are direct

model outputs.

In the following let Ω denote a sample cardiac tissue in dimension two or three and denote by

ν the outward unit normal vector. Let ui = ui(t, x) and ue = ue(t, x) be the intracellular and

extracellular electric potentials, respectively, and denote by v = ui−ue the transmembrane electric

potential. The anisotropic properties of the media are modeled by intracellular and extracellular

conductivity tensors σi(x) and σe(x), respectively. We assume that σe, σi ∈ C1(Ω;MN (R)) (N = 2

ou N = 3) with (σe(x)ξ, ξ) ≥ σe,0|ξ|2 in Ω (σe,0 > 0) and (σi(x)ξ, ξ) ≥ σi,0|ξ|2 in Ω (σi,0 > 0).

In this way the propagation of the electrical signal through the cardiac tissue is described by the

following parabolic system:

am(cmvt + Iion)−∇ · [σi(x)∇ui] = Is,i in Ω× R>0,

am(cmvt + Iion) +∇ · [σe(x)∇ue] = Is,e in Ω× R>0,

[σi(x)∇ui] · ν = 0 on ∂Ω× R>0,

[σe(x)∇ue] · ν = 0 on ∂Ω× R>0,

v(·, 0) = v0 in Ω,

(1)

where cm > 0 is the capacitance of the cell membrane, am > 0 is the homogenized surface-to-volume

ratio of the cell membrane, Iion is the ionic current across the membrane, Is,i and Is,e model the

intracellular and extracellular stimulation current used to trigger the action potential of the cell.

The boundary conditions imply that the heart is surrounded by a non-conductive medium, and

thus we require that the normal component of both the intracellular and extracellular current to

be zero.

The ionic current term Iion in (1) for a given ion species is a function of the transmembrane

voltage, the equilibrium potential of the ion species and additional cellular state variables w (ionic

concentrations and gating variables). Let us explain briefly the appearance of these state vari-

ables: although the cell membrane itself is impermeable to ions, it has embedded in it a number

of large proteins that form channels through the membrane where the ions can pass. Some trans-

port proteins form pumps and exchangers, which are important for maintaining the correct ionic

concentrations in the cells. Both pumps and exchangers have the ability to transport ions in the

opposite direction of the flow generated by concentration gradients and electrical fields. In addi-

tion to the pumps and exchangers, certain proteins form channels in the membrane, through which

ions may flow passively along the direction of the electrochemical gradient which is a function of

transmembrane voltage and ion concentrations. These channels are extremely important for the

behavior of excitable cells because most of the channels are highly selective regarding which ions

are allowed to pass. This property of the channels is essential for generating and maintaining the

potential difference across the membrane. The channels, so-called gating channels, also have the

ability to open and close in response to changes in the transmembrane voltage or the presence of
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ligand molecules, and this ability is essential for the signal propagation in excitable tissue. Together

with the constitutive equations for the cellular state variables w system (1) can be rewritten as:

am(cmvt + Iion(v,w))−∇ · (σi(x)∇ui) = Is,i in Ω× R>0,

am(cmvt + Iion(v,w)) +∇ · (σe(x)∇ue) = Is,e in Ω× R>0,

wt + g(v,w) = 0 in Ω× R>0,

(σi(x)∇ui) · ν = 0 on ∂Ω× R>0,

(σe(x)∇ue) · ν = 0 on ∂Ω× R>0,

v(·, 0) = v0, w(·, 0) = w0 in Ω,

(2)

where g(v,w) is a vector function that depends on the electrophysiological behavior of the heart

cells. For simplicity, let us consider that we have only one celullar state variable w and therefore

a scalar function g.

Some typical models for the ionic current include the FitzHugh-Nagumo model (see [10])

Iion(v, w) = bv(a− v)(1− v) + cw and g(v, w) = −γ(v − βw) (3)

as well as the Rogers-McCulloch model (see [18])

Iion(v, w) = bv(a− v)(1− v) + c vw and g(v, w) = −γ(v − βw) (4)

where a, b, c, γ, β are positive “membrane” parameters that define the shape of the action potential

pulse. For additional discussion of related physiological models leading to systems comparable to

(2) we refer to [13] and for one dimensional models [16, 17].

Since the bidomain model for the electrical activity in the heart which is difficult to solve and

analyze, by making an assumption on the conductivity tensors σi and σe, it is possible to simplify

the model. Precisely, if we assume equal anisotropy rates, i.e. σe = µσi, where µ is a constant

scalar, then σi can be “eliminated” from (2), resulting in
am(cmvt + Iion(v, w))− 1

1+µ∇ · (σe(x)∇v) = 1
1+µ (Is,e + µ Is,i) in Ω× R>0,

wt + g(v, w) = 0 in Ω× R>0,

(σe(x)∇v) · ν = 0 on ∂Ω× R>0,

v(·, 0) = v0, w(·, 0) = w0 in Ω,

(5)

this particular reduction of the bidomain model is the so-called monodomain model.

In this paper we shall study controllability properties for a simplified 1D nonlinear monodomain

version of (5). From now on, let us consider Iion and g to be given by (4) (in fact, the results

presented in this paper holds for both FitzHugh-Nagumo and Rogers-McCulloch models) Assuming

that L > 0 be a positive length and T > 0 a positive time, system (5) takes the form:
am(cmvt + Iion(v, w))− 1

1+µ (σe(x)vx)x = µ
1+µ Is,i + 1

1+µIs,e in (0, L)× (0, T ),

wt + g(v, w) = 0 in (0, L)× (0, T ),

σe(x)vx
∣∣
x=0

= σe(x)vx
∣∣
x=L

= 0 in (0, T ),

v(·, 0) = v0, w(·, 0) = w0 in (0, L).

(6)

The aim is to prove that we can steer the transmembrane voltage-state variable pair from any

initial state (v0, w0) to a desired state (the final datum of a given trajectory), with the help of
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an extracellular stimulation Is,e, also called the control, acting only on arbitrary small ω part of

(0, L) which moves into (0, L) during an arbitrary small time interval (0, T ). This idea of a moving

control domain to guarantee controllability has been used for many different problems in the past

few years. See [15] for the pioneer work. Here we use the approach introduced in [5], relying on

Carleman inequalities, which allows us to treat problems posed on bounded domains. The result

will give the exact controllability to the trajectories for the monodomain model (6) as long as the

control domain ω moves in an appropriate manner and covers the whole domain (0, L). Without

loss of generality we can suppose that cm = µ = 1 and am = 1
2 . We will deal with the controllability

for the following system
vt + Iion(v, w)− (σi(x)vx)x = Is,i + Is,e in (0, L)× (0, T ),

wt + g(v, w) = 0 in (0, L)× (0, T ),

σi(x)vx
∣∣
x=0

= σi(x)vx
∣∣
x=L

= 0 on (0, T ),

v(·, 0) = v0, w(·, 0) = w0 in (0, L),

(7)

where Is,i ∈ H1(0, T ;H1(0, L)) and Is,e ∈ L2((0, L)×(0, T )), with supp Is,e(·, t) ⊂ ω(t) ∀t ∈ (0, T ).

Let us recall the definitions of some usual spaces in the context of parabolic equations with

boundary conditions of Neumann type

H2
ν (0, L) := {u ∈ H2(0, L) : ux

∣∣
x=0

= ux
∣∣
x=L

= 0} and H3
ν (0, L) := H3(0, L) ∩H2

ν (0, L).

Note that, for every (v0, w0) ∈ H1(0, L) × L2(0, L) and every Is,i, Is,e ∈ L2((0, L) × (0, L)),

there exists a unique solution (v, w) to (7) that satisfies (among other things)

(v, w) ∈ C0([0, T ];H1(0, L)× L2(0, L)),

see for instance [3, Theorem 1.1].

Let us now fix a trajectory (v̄, w̄), that is, a sufficiently regular solution to the related uncon-

trolled system 
v̄t + Iion(v̄, w̄)− (σi(x)v̄x)x = Is,i in (0, L)× (0, T ),

w̄t + g(v̄, w̄) = 0 in (0, L)× (0, T ),

σi(x)v̄x
∣∣
x=0

= σi(x)v̄x
∣∣
x=L

= 0 on (0, T ),

v̄(·, 0) = v̄0, w̄(·, 0) = w̄0 in (0, L),

(8)

with (v̄0, w̄0) ∈ H1(0, L)× L2(0, L).

The main result of this paper is the following:

Theorem 1.1 Assume that σi ∈ C1(Ω;R), T > 0, Is,i ∈ H1(0, T ;H1(0, L)), (v̄, w̄) satisfies (8)

with (v̄0, w̄0) ∈ H3
ν (0, L) × H2

ν (0, L) and that the control support ω : (0, T ) → 2(0,L) contains a

subset satisfying Assumption 1 below. Then there exists δ > 0 such that whenever (v0, w0) ∈
H1(0, L)×H2

ν (0, L) and

‖(v0, w0)− (v̄0, w̄0)‖L2(0,L)×H2
ν(0,L) ≤ δ,

we can find a control Is,e ∈ L2((0, L) × (0, T )), with supp Is,e(·, t) ⊂ ω(t) ∀t ∈ (0, T ), such that

the associated state (v, w), solution of system (7), satisfies

(v, w)(·, T ) = (v̄, w̄)(·, T ) in (0, L). (9)
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The property which is established in Theorem 1.1 is called local exact controllability to trajec-

tories. It is proof will be given at the end of Section 3. It relies, in part, on arguments and results

from [5] and [6] which need to be changed to account for the PDE-ODE coupling and to Neumann

boundary conditions. Thus, let us set v = v̄ + y, w = w̄ + z and let us use these identities in (7).

Taking into account that (v̄, w̄) solves (8), we find:
yt − (σi(x)yx)x + Iion(y, z) + 3bv̄y2 + `y(v̄, w̄)y + cv̄z = Is,e in (0, L)× (0, T ),

zt + g(y, z) = 0 in (0, L)× (0, T ),

σi(x)yx
∣∣
x=0

= σi(x)yx
∣∣
x=L

= 0 on (0, T ),

y(·, 0) = y0, z(·, 0) = z0 in (0, L),

(10)

where `y(v̄, w̄) := 3bv̄2− 2b(1 + a)v̄+ cw̄ is the coefficient of the linear term in y and y0 := v0− v̄0

and z0 := w0 − w̄0 are the initial data.

In this way the local exact controllability to the trajectories for system (7) is reduced to a local

null controllability problem for the solution (y, z) to the nonlinear problem (10).

Notice that if we introduce the variables p = γeγβty and q = eγβtz, then null controllability for

system (10) is equivalent to null controllability for the system
pt − (σi(x)px)x + `p(v̄, w̄)p+ `q(v̄, w̄)q +N (p, q) = h1ω in (0, L)× (0, T ),

qt = p in (0, L)× (0, T ),

σi(x)px
∣∣
x=0

= σi(x)px
∣∣
x=L

= 0 on (0, T ),

p(·, 0) = p0, q(·, 0) = q0 in (0, L),

(11)

where N (p, q) := bγ−1e−γβt[3v̄ − (1 + a)]p2 + ce−γβtpq + bγ−2e−2γβt p3 is the nonlinear term, and

`p(v̄, w̄) := `y(v̄, w̄)− γβ + ab and `q(v̄, w̄) := γcv̄ are the coefficients of the linear terms in p and

q, respectively, p0 := γy0 and q0 := z0 are the initial data, and h := γeγβtIs,e is the control and

1ω is the characteristic function of ω.

In order to solve the latter, following a standard approach, we will first deduce (global) null

controllability of a suitable linearized version, namely:
pt − (σi(x)px)x + `p(v̄, w̄)p+ `q(v̄, w̄)q = G+ h1ω in (0, L)× (0, T ),

qt = p in (0, L)× (0, T ),

σi(x)px
∣∣
x=0

= σi(x)px
∣∣
x=L

= 0 on (0, T ),

p(·, 0) = p0, q(·, 0) = q0 in (0, L),

(12)

where G is an appropriate function that decays exponentially as t→ T−.

Then, appropriate and rather classical arguments will be used to deduce the local null control-

lability of the nonlinear system (11).

Remark 1.2 In the case of the FitzHugh-Nagumo model, i.e. with Iion chosen as in (3), the minor

difference consist in `q = γc , `y(v̄, w̄) := 3bv̄2 − 2b(1 + a)v̄ + c, and N (p, q) := bγ−1e−γβt[3v̄ −
(1 + a)]p2 + ce−γβtq + bγ−2e−2γβt p3.

Let us note in particular that for q0 = 0, `q = 1, and G = 0, system (12) becomes
pt − (σi(x)px)x + d p+

∫ t

0

p(x, s) ds = h1ω in (0, L)× (0, T ),

σi(x)px
∣∣
x=0

= σi(x)px
∣∣
x=L

= 0 on (0, T ),

p(·, 0) = p0 in (0, L),

(13)
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with d = `p(v̄, w̄). Proposition 3 below will imply (global) null controllability for the heat equation

with memory.

Exact controllability is a challenging topic which has received a tremendous amount of attention

in the literature. We only comment on a few, closely related publications. For this purpose

we first note that the linearized system (12) above can be transformed into a parabolic system

with a distributed memory term, and an additional time-dependent source term if q0 6= 0. In

[3] optimal control of the monodomain equations is considered and the question of approximate

controllability of the heat equation with Dirichlet boundary conditions and with memory term is

raised as interesting open problem. In [12] it was verified that the heat equation with Dirichlet

boundary conditions and memory terms is not exactly null controllable. A related negative result

was obtained in [4] were it was shown that the linearized monodomain system with Neumann

boundary conditions is not exactly null controllable for a range of physically relevant parameters.

All these negative results refer to the case that the control domain is a fixed domain ω strictly

contained in Ω. In the recent publication [7] exact null controllability of the linear heat equation

with memory terms and Dirichlet boundary condition is obtained if the control domain sweeps the

domain Ω appropriately.

In this paper, we are going to treat different situations which lead to new difficulties compared

to the previous works on parabolic equations with memory terms. Let us discuss these differences:

• Neumann boundary condition. The main strategy consist of a Carleman inequality with

suitable weights which allows to simultaneously treat the parabolic equation with Neumann

boundary conditions and the ODEs. The Carleman inequalities obtained in [7] are inequalities

for parabolic equations with Dirichlet boundary condition and cannot be applied for our

situation.

• Nonlinearities. Here we are going to consider two kinds of (cubic) nonlinearities arising in

the FitzHugh Nagumo and Rogers-McCulloch models which differ due to the way in which

the memory term w appears in the PDE equation, compare (3) and (4). The main argument

to obtain the exact control result for the nonlinear system relies on the Liusternik inverse

mapping theorem.

• Inhomogeneities. Another difficulty to verify exact null controllability arises due to the

inhomogeneities G and q0 in the linear PDE-ODE system.

The paper is organized as follows. In Section 2, we shall present Carleman inequalities with

moving observations and regularity results for trajectories. Section 3 deals with the null control-

lability for linear monodomain equations and the local exact controllability to trajectories for the

nonlinear monodomain equations. Finally, in Section A, we present a Carleman inequality for a

parabolic equation with Neumann boundary conditions and moving observations.

2 Preliminaries

This section is devoted to introduce some appropriate Carleman inequalities with moving obser-

vations for ODE’s and PDE’s and regularity results for the trajectory solutions for (8).
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2.1 Carleman inequalities with moving observations

In this section, we shall present the main assumptions on moving support of the controls and

the observations and their consequences in terms of Carleman inequalities. Many of them were

introduced or inspired by [1, 5, 9, 15]. These results will play a crucial role in order to obtain

the exact controllability to trajectories for the monodomain equations. The control domain ω is

required to contain a subset ω0 which is required to satisfy the following geometric requirements.

They are needed for the construction of a suitable weight function for the Carleman estimate.

First, let us use the following notation to stand for the control domain:

ω : [0, T ]→ 2(0,L),

meaning that any t ∈ [0, T ] is associated to a set ω(t) ⊂ (0, L) or also, in the space-time domain

[0, L] × [0, T ], the control domain ω can be refer to the set
⋃
t∈[0,T ] ω(t) × {t}. Throughout this

paper, ω is required to contain (in a sense given below) a subset ω0 : [0, T ]→ 2(0,L) satisfying the

following geometric requirements:

Requirements 1 There exist two times t1, t2 with 0 < t1 < t2 < T such that:

a) The interval ω0(t) 6= (0, L), for all t ∈ (0, T );

b)
⋃

t∈(0,T )

ω0(t) = (0, L);

c) (0, L) \ ω0(t) is nonempty and connected in (0, L) for any t ∈ (0, t1] ∪ [t2, T );

d) (0, L) \ ω0(t) has two nonempty connected components in (0, L) for any t ∈ (t1, t2);

Let ω1 : [0, T ]→ 2(0,L) be a subset of ω such that

ω0 ⊂ ω̊1 ⊂ ω1 ⊂ ω̊, (14)

where ω̊1 and ω̊ denote the relative interiors with respect to [0, L]× [0, T ] of ω1 and ω, respectively.

We are now prepared for the construction of a suitable weight function.

Lemma 1 There exist a positive number τ ∈ (0,min{1, T/2}), a positive constant C0 > 0, and a

function η ∈ C∞([0, L]× [0, T ]) such that

ηx(x, t) 6= 0 ∀x ∈ (0, L) \ ω0(t), ∀t ∈ [0, T ], (15)

ηt(x, t) 6= 0 ∀x ∈ (0, L) \ ω0(t), ∀t ∈ [0, T ], (16)

ηt(x, t) > 0 ∀x ∈ (0, L) \ ω0(t), ∀t ∈ [0, τ ], (17)

ηt(x, t) < 0 ∀x ∈ (0, L) \ ω0(t), ∀t ∈ [T − τ, T ], (18)

ηx(0, t) ≥ C0 ∀t ∈ [0, T ], (19)

ηx(L, t) ≤ −C0 ∀t ∈ [0, T ], (20)

min
(x,t)∈[0,L]×[0,T ]

{η(x, t)} =
3

4
‖η‖L∞([0,L]×[0,T ]). (21)

The proof of Lemma 1 can by obtained by similar arguments as in [5, Appendix A]. It differs with

respect to properties (19) and (20).
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Next, we introduce a real function r ∈ C∞(0, T ), symmetric with respect to t = T
2 , i.e. r(t) =

r(T − t) for any t ∈ (0, T ), and such that for some τ > 0

r(t) =


1

t
for 0 < t ≤ τ

2 ,

strictly decreasing for τ
2 < t < τ,

1 for τ ≤ t ≤ T
2 .

(22)

For this choices of η and r let us define the weights

α(x, t) := r(t)(e2λ‖η‖∞ − eλη(x,t)) and ξ(x, t) := r(t)eλη(x,t) ∀(x, t) ∈ (0, L)× (0, T ), (23)

where λ > 0 is a sufficiently large parameter that will be chosen later. We have the following

technical result.

Lemma 2 There exist positive real numbers λ1 > 0, s1 > 0 and C1 > 0 (depending on L and ω1)

such that for all λ ≥ λ1, all s ≥ s1 and all ϕ ∈ H1(0, T ;L2(0, L)), the following inequality holds

sλ2

∫ T

0

∫ L

0

e−2sαξ|ϕ|2 dxdt ≤ C1

(∫ T

0

∫ L

0

e−2sα|ϕt|2 dxdt+ s2λ2

∫ T

0

∫
ω1(t)

e−2sαξ2|ϕ|2 dxdt

)
. (24)

The proof of this result is obtained by similar arguments as in [5, Appendix C] and relies on ideas

from [1].

For our purposes, we also need the following Carleman inequality for the heat equation with

Neumann boundary conditions:

Lemma 3 There exist constants λ2 > 0, s2 > 0 and C2 > 0 (depending on L and ω1) such that

for any λ ≥ λ2, any s ≥ s2(λ), and any terminal datum ψT ∈ L2(0, L), and any source term

f ∈ L2((0, L)× (0, T )), the unique weak solution for
−ψt − (σi(x)ψx)x = f in (0, L)× (0, T ),

σi(x)ψx
∣∣
x=0

= σi(x)ψx
∣∣
x=L

= 0 in (0, T ),

ψ(T ) = ψT in (0, L),

satisfies

s−1

∫ T

0

∫ L

0

e−2sαξ−1(|ψxx|2 + |ψt|2) dxdt

+ sλ2

∫ T

0

∫ L

0

e−2sαξ|ψx|2 dxdt+ s3λ4

∫ T

0

∫ L

0

e−2sαξ3|ψ|2] dxdt

+ s3λ3

∫ T

0

e−2sαξ3|ψ|2
∣∣
x=L

+ s3λ3

∫ T

0

e−2sαξ3|ψ|2
∣∣
x=0

≤ C2

(∫ T

0

∫ L

0

e−2sα|f |2 dxdt+ s3λ4

∫ T

0

∫
ω1(t)

e−2sαξ3|ψ|2 dxdt

)
.

(25)

We will give a proof for this result in Appendix A.
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2.2 Regular trajectories

In this section let us present some regularity results for the uncontrolled solutions to (8). We have

the following result:

Proposition 1 Let Is,i ∈ L2(0, T ;L2(0, L)) and (v̄0, w̄0) ∈ H1(0, L) × H2
ν (0, L). Then, (8) pos-

sesses exactly one solution (v̄, w̄), with{
v̄ ∈ L2(0, T ;H2

ν (0, L)) ∩H1(0, T ;L2(0, L)) ∩ C0([0, T ];H1(0, L))

w̄ ∈ H1(0, T ;H2
ν (0, L)) ∩ C1([0, T ];H1(0, L)).

(26)

For the proof, we just have to adapt the proof of [3, Theorem 1.1], taking into account that w̄0 6≡ 0

and the boundary conditions are Neumann instead of Dirichlet. In this way, we can also obtain

the following result.

Proposition 2 Let Is,i ∈ H1(0, T ;H1(0, L)) and (v̄0, w̄0) ∈ H3
ν (0, L) × H2

ν (0, L). Then, (8)

possesses exactly one solution (v̄, w̄), with v̄, w̄ ∈W 1,∞(0, T ;L∞(0, L)).

Proof: By Proposition 1 and that the spatial dimension is 1, the nonlinearity Iion(v̄, w̄) belongs

to the space H1(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)) ∩ L∞(0, T ;L∞(0, L)). Hence Is,i − Iion(v̄, w̄)

belongs to H1(0, L;L2(0, L)). Since v̄0 ∈ H2
ν (0, L), thanks to [8, Theorem 5, p. 361], we have{

v̄ ∈ L∞(0, T ;H2
ν (0, L)) ∩W 1,∞(0, T ;L2(0, L)) ∩H1(0, T ;H1(0, L))

w̄ ∈W 1,∞(0, T ;H2
ν (0, L)) ∩H2(0, T ;H1(0, L)) ∩W 2,∞(0, T ;L2(0, L)).

(27)

Next, taking the spatial derivative in the first equation of (8) we obtain a parabolic equation

for v̄x with right hand side ∂x(Is,i − Iion(v̄, w̄)), homogeneous Dirichlet boundary conditions, and

initial condition v̄0,x. By (27) we have that ∂x(Is,i − Iion(v̄, w̄)) belongs to H1(0, L;L2(0, L)).

Again, since v̄0,x ∈ H2(0, L) ∩H1
0 (0, L) and thanks to [8, Theorem 5, p. 361], we have

v̄x ∈ L∞(0, T ;H2(0, L) ∩H1
0 (0, L)) ∩W 1,∞(0, T ;L2(0, L)) ∩H1(0, T ;H1

0 (0, L)). (28)

Finally, from (27) and (28), we deduce that{
v̄ ∈ L∞(0, T ;H3

ν (0, L)) ∩W 1,∞(0, T ;H1(0, L)) ∩H1(0, T ;H2
ν (0, L))

w̄ ∈W 1,∞(0, T ;H2
ν (0, L)) ∩H2(0, T ;H1(0, L)) ∩W 2,∞(0, T ;L2(0, L)).

(29)

Remark 2.1 As a consequence of the previous result we conclude that

`p(v̄, w̄), `q(v̄, w̄) ∈W 1,∞(0, T ;H1(0, L)).

3 Exact controllability to trajectories of the monodomain

equations

3.1 Controllability for the linear monodomain model

In this Section, we will present a suitable Carleman inequality for a properly chosen adjoint system.

This will lead to the null controllability result for (12), see Proposition 3 below.
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Notice that, for every (p0, q0) ∈ L2(0, L) × H1(0, L) and every G, h1ω ∈ L2((0, L) × (0, T )),

there exists a unique weak solution (p, q) to (12) that satisfies

p ∈ L2(0, T ;H1(0, L)) ∩W 1,2(0, T ; (H1(0, L))′)

and

q ∈W 2,2(0, T ; (H1(0, L))′) ∩W 1,2(0, T ;H1(0, L))

and the variational formulation for a.e. t ∈ [0, T ]∣∣∣∣∣∣∣
〈pt, w〉+ (σpx, wx) + (`p(v̄, w̄)p, w) + (`q(v̄, w̄)q, w) = (G+ h1ω, w), ∀w ∈ H1(0, L),

(qt, v) = (p, v), ∀v ∈ L2(0, L),

p(·, 0) = p0 and q(·, 0) = q0,

(30)

where 〈·, ·〉 := 〈·, ·〉(H1(0,L))′,H1(0,L).

The following analysis depends in a crucial manner on a transformation of (12) which takes

the control from the PDE to the ODE. In view of the regularity assumed for the initial data

and their boundary conditions we will verify that null controllability for (12) is equivalent to null

controllability for
θt + {`q(v̄, w̄)− [`p(v̄, w̄)]t}q = G+ h1ω in (0, L)× (0, T ),

qt − (σi(x)qx)x + `p(v̄, w̄)q = θ in (0, L)× (0, T ),

σi(x)qx
∣∣
x=0

= σi(x)qx
∣∣
x=L

= 0 on (0, T ),

θ(·, 0) = θ0, q(·, 0) = q0 in (0, L),

(31)

where θ0 = p0 − (σi(x)q0,x)x + `p(v̄0, w̄0)q0.

First we verify the equivalence of systems (12) and (31). Note that, for every (p0, q0) ∈
L2(0, L) × H1(0, L) and every G, h1ω ∈ L2((0, L) × (0, T )), there exists a unique weak solution

(θ, q) to (31) that satisfies

θ ∈W 1,2(0, T ; (H1(0, L))′)

and

q ∈W 1,2(0, T ;H1(0, L)) ∩W 2,2(0, T ; (H1(0, L))′)

and the variational formulation for a.e. t ∈ [0, T ]∣∣∣∣∣∣∣
〈θt, v〉+ ({`q(v̄, w̄)− [`p(v̄, w̄)]t}q, v) = (G+ h1ω, v), ∀v ∈ H1(0, L)

〈qt, w〉+ (σqx, wx) + (`p(v̄, w̄)q, w) = 〈θ, w〉, ∀w ∈ H1(0, L)

θ(·, 0) = θ0 and q(·, 0) = q0,

(32)

where again θ0 = p0 − (σi(x)q0,x)x + `p(v̄0, w̄0)q0.

To check the equivalence one can start by defining θ ∈W 1,2(0, T ; (H1(0, L))′) such that∣∣∣∣∣ θt + {`q(v̄, w̄)− [`p(v̄, w̄)]t}q = G+ h1ω in (0, L)× (0, T ),

θ(·, 0) = θ0 in (0, L),
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Then for each w ∈ H1(0, L) and integrating w.r.t t the first equation in (30)

〈qt, w〉+ (σqx, wx) =

(∫ t

0

[G+ h1ω − `p(v̄, w̄)p− `q(v̄, w̄)q]ds, w

)
+ (p0, w) + (σq0,x, wx)

=

〈∫ t

0

θtds, w

〉
+

(∫ t

0

(`p(v̄, w̄)q)tds, w

)
+ (p0, w) + (σq0,x, wx)

=〈θ, w〉+ (`p(v̄, w̄)q, w) + 〈θ(0)− θ0, w〉
=〈θ, w〉+ (`p(v̄, w̄)q, w).

Thus (θ, q) is the variational solution of (32). Conversely, let (p0, q0) ∈ L2(0, L) ×H1(0, L) then

θ0 = p0 − (σi(x)q0,x)x + `p(v̄0, w̄0)q0 ∈ (H1(0, L))′ and

θ ∈W 1,2(0, T ; (H1(0, L))′)

and

q ∈W 1,2(0, T ;H1(0, L)) ∩W 2,2(0, T ; (H1(0, L))′)

Consider

〈qt, w〉+ (σqx, wx) + (`p(v̄, w̄)q, w) = 〈θ, w〉 ∀w ∈ H1(Ω), a.e. t ∈ [0, T ].

Regularity allows to differentiate w.r.t t, setting p = qt

〈pt, w〉+ (σpx, wx) + (`p(v̄, w̄)p, w) = 〈θt, w〉 − ({`p(v̄, w̄)}tq, w)

= − (`q(v̄, w̄)q, w) + (G+ h1ω, w).

Thus (p, q) is the variational solution of (30).

Let us introduce the function A(x, t) := {`q(v̄, w̄)− [`p(v̄, w̄)]t} and the non-autonomous elliptic

operator Kq := −(σi(x)qx)x + `p(v̄, w̄)q. Then, the controllability for system (31) is formulated

as follows: for any (θ0, q0) ∈ L2(0, L) × L2(0, L) and any G satisfying (50) below, there exists a

control h ∈ L2((0, L)× (0, T )), where its support contains a subset satisfying Assumption 1, such

that the associated solution to
θt +A(x, t) q = G+ h1ω in (0, L)× (0, T ),

qt +Kq = θ in (0, L)× (0, T ),

σi(x)qx
∣∣
x=0

= σi(x)qx
∣∣
x=L

= 0 on (0, T ),

θ(·, 0) = θ0, q(·, 0) = q0 in (0, L),

(33)

satisfies

θ(·, T ) = q(·, T ) = 0 in (0, L).

3.1.1 Carleman inequality

In this Section, we will present a suitable Carleman inequality for the so called adjoint of (33),

namely: 
−ϕt − ψ = R in Q,

−ψt +Kψ +A(x, t)ϕ = S in Q,

σi(x)ψx
∣∣
x=0

= σi(x)ψx
∣∣
x=L

= 0 on Σ,

ϕ(T ) = ϕT , ψ(T ) = ψT in Ω.

(34)
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where R,S ∈ L2((0, L)× (0, T )).

Note that, for every (ϕT , ψT ) ∈ L2(0, L)× L2(0, L) and every R,S ∈ L2((0, L)× (0, T )) there

exists a unique weak solution (ϕ,ψ) to (34) that satisfies

ϕ ∈ H1(0, T ;L2(0, L)) and ψ ∈ C0([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L))

and the variational formulation∣∣∣∣∣∣∣∣
−(ϕt, v)− (ψ, v) = (R, v) ∀v ∈ L2(0, L), a.e. t ∈ [0, T ]

− d

dt
(ψ,w) + (σψx, wx) + (`p(v̄, w̄)ψ,w) + (Aϕ,w) = (S,w) ∀w ∈ H1(Ω), a.e. t ∈ [0, T ]

ϕ(·, T ) = ϕT and ψ(·, T ) = ψT .

In order to prove the linear controllability result, we have to establish an appropriate Carleman

estimate. Precisely, we have the following result:

Theorem 3.1 There exist positive constants s3, λ3 ≥ 1 and C3 > 0, only depending on L and ω,

such that, for any ϕT , ψT ∈ L2(0, L) the solution (ψ,ϕ) to the adjoint system (34) satisfies:∫ T

0

∫ L

0

[(sξ)−1(|ψxx|2 + |ψt|2) + λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2 + λ2(sξ)|ϕ|2]e−2sαdxdt

≤ C3

(∫ T

0

∫ L

0

[λ4(sξ)3|R|2 + |S|2]e−2sαdxdt+ s7λ6

∫ T

0

∫
ω(t)

ξ7|ϕ|2e−2sαdxdt

)
.

for all s ≥ s3(T + T 2) and for all λ ≥ λ3.

Proof: First, applying Lemma 2 to (34)1, we obtain

sλ2

∫ T

0

∫ L

0

ξ|ϕ|2e−2sαdxdt ≤ C1

(∫ T

0

∫ L

0

|ψ +R|2e−2sαdxdt+ s2λ2

∫ T

0

∫
ω1(t)

ξ2|ϕ|2e−2sαdxdt

)
. (35)

Next, applying Lemma 3 to (34)2, we obtain∫ T

0

∫ L

0

[(sξ)−1(|ψxx|2 + |ψt|2) + λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2]e−2sα dx dt

≤ C2

(∫ T

0

∫ L

0

|S − `y(v̄, w̄)ψ −A(x, t)ϕ|2e−2sα dx dt+

∫ T

0

∫
ω1(t)

λ4(sξ)3|ψ|2e−2sα dx dt

)
.

(36)

Adding (35) and (36), and absorbing the lower order terms from the right hand side by taking

λ large enough, we get∫ T

0

∫ L

0

[((sξ)−1(|ψxx|2 + |ψt|2) + λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2 + λ2(sξ)|ϕ|2]e−2sαdxdt

≤ C

(∫ T

0

∫ L

0

(|R|2 + |S|2)e−2sαdxdt+

∫ T

0

∫
ω1(t)

[λ2(sξ)2|ϕ|2 + λ4(sξ)3|ψ|2]e−2sαdxdt

)
.

(37)

Now, we need to eliminate the local integral of ψ appearing in the right hand side of (37). To

do that, let us introduce a function ζ ∈ C∞([0, L]× [0, T ]) satisfying

0 ≤ ζ ≤ 1 ∀(x, t) ∈ [0, L]× [0, T ],

ζ(x, t) = 1 ∀x ∈ ω1(t), ∀t ∈ [0, T ],

ζ(x, t) = 0 ∀x ∈ [0, L] \ ω(t), ∀t ∈ [0, T ].

(38)
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This way, we have that

s3λ4

∫ T

0

∫
ω′(t)

ξ3|ψ|2e−2sαdxdt ≤ s3λ4

∫ T

0

∫ L

0

ζξ3|ψ|2e−2sαdxdt. (39)

Then, using (34)1 and integrating by parts with respect to t, we obtain

s3λ4

∫ T

0

∫ L

0

ζξ3|ψ|2e−2sαdxdt =− s3λ4

∫ T

0

∫ L

0

ζξ3ψ(ϕt +R)e−2sαdxdt

= s3λ4

∫ T

0

∫ L

0

ζξ3ψtϕe
−2sαdxdt+ s3λ4

∫ T

0

∫ L

0

ζtξ
3ϕψe−2sαdxdt

+ s3λ4

∫ T

0

∫ L

0

ζξ2(3ξt − 2sξαt)ϕψe
−2sαdxdt

− s3λ4

∫ T

0

∫ L

0

ζξ3ψRe−2sαdxdt

:=D1 +D2 +D3 +D4.

For D1, we notice that for every ε > 0, we obtain

|D1| ≤ ε

∫ T

0

∫ L

0

(sξ)−1|ψt|2e−2sαdxdt+ Cεs
7λ8

∫ T

0

∫ L

0

ζ2ξ7|ϕ|2e−2sαdxdt

≤ ε

∫ T

0

∫ L

0

(sξ)−1|ψt|2e−2sαdxdt+ Cεs
7λ8

∫ T

0

∫
ω(t)

ξ7|ϕ|2e−2sαdxdt.

(40)

Next, D2 is estimated like the term D1:

|D2| ≤ εs3λ4

∫ T

0

∫ L

0

ξ3|ψ|2e−2sαdxdt+ Cεs
3λ4

∫ T

0

∫
ω(t)

ξ3|ϕ|2e−2sαdxdt. (41)

for any ε > 0.

Since |ξt|+ |αt| ≤ Cλξ2, for every ε > 0, we infer that

|D3| ≤ Cs4λ5

∫ T

0

∫ L

0

ζξ5|ϕψ|e−2sαdxdt

≤ εs3λ4

∫ T

0

∫ L

0

ξ3|ψ|2e−2sαdxdt+ Cεs
5λ6

∫ T

0

∫
ω(t)

ξ7|ϕ|2e−2sαdxdt.

Finally, D4 is estimated as follows:

|D4| ≤ εs3λ4

∫ T

0

∫ L

0

ξ3|ψ|2e−2sαdxdt+ Cεs
3λ4

∫ T

0

∫ L

0

ξ3|R|2e−2sαdxdt. (42)

for any ε > 0.

Combining (37) and (39)-(42), and absorbing the lower order terms, we get∫ T

0

∫ L

0

[((sξ)−1(|ψxx|2 + |ψt|2) + λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2 + λ2(sξ)|ϕ|2]e−2sαdxdt

≤ C3

(∫ T

0

∫ L

0

[λ4(sξ)3|R|2 + |S|2]e−2sαdxdt+ s7λ6

∫ T

0

∫
ω(t)

ξ7|ϕ|2e−2sαdxdt

)
.

(43)
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3.1.2 Null controllability

We will now deduce a second Carleman inequality with weights that do not vanish at t = 0. More

precisely, let us consider the function

l(t) =

{
1 for 0 ≤ t ≤ T/2,
r(t) for T/2 ≤ t ≤ T,

with r defined in (22), and the following associated weight functions:

ᾱ(x, t) := l(t)(e2λ‖η‖∞ − eλη(x,t)) ∀(x, t) ∈ (0, L)× (0, T ),

ξ̄(x, t) := l(t)eλη(x,t) ∀(x, t) ∈ (0, L)× (0, T ),

ᾱ∗(t) := min
x∈[0,L]

ᾱ(x, t) = l(t)(e2λ‖η‖∞ − eλ‖η(·,t)‖∞), ∀t ∈ (0, T ),

ξ̄∗(t) := max
x∈[0,L]

ξ̄(x, t) = l(t)eλ‖η(·,t)‖∞ ∀t ∈ (0, T ),

ˆ̄α(t) := max
x∈[0,L]

ᾱ(x, t), ∀t ∈ (0, T ),

ˆ̄ξ(t) := min
x∈[0,L]

ξ̄(x, t) ∀t ∈ (0, T ),

and

ρ1(t) = (ξ̄∗)−3/2esᾱ
∗
, ρ2(t) = esᾱ

∗
, ρ3(t) = (ξ̄∗)−7/2esᾱ

∗
, ρ4(t) = (ˆ̄ξ)−1/2es

ˆ̄α.

Remark 3.2 Notice that ᾱ∗ and ˆ̄α blow up exponentially as t → T− and ξ̄∗ and ˆ̄ξ blow up

polynomially as t→ T−.

By combining Theorem 3.1 and classical energy estimates satisfied by ϕ and ψ, we easily deduce

the following result:

Lemma 4 Under the assumptions of Theorem 1.1, there exist positive constants s4, λ4 ≥ 1

and C4 > 0, only depending on L and ω such that, for any ϕT , ψT ∈ L2(0, L) and any R,S ∈
L2((0, L)× (0, T )), the solution to the adjoint system (34) satisfies:∫ T

0

∫ L

0

[ξ̄|ψx|2 + ξ̄3|ψ|2 + ξ̄|ϕ|2]e−2sᾱdxdt+ ‖ϕ(·, 0)‖2L2(0,L) + ‖ψ(·, 0)‖2L2(0,L)

≤ C4

(∫ T

0

∫ L

0

[ρ−2
1 |R|2 + ρ−2

2 |S|2]dxdt+

∫ T

0

∫
ω(t)

ρ−2
3 |ϕ|2dxdt

)
. (44)

for all s ≥ s4(T + T 2) and for all λ ≥ λ4.

Proof: Let us start by proving the following estimate for system (34):

‖ϕ‖2H1(0,T/2;L2(0,L)) + ‖ψ‖2L2(0,T/2;H1
ν(0,L))∩C0([0,T/2];L2(0,L)) (45)

≤C
(
‖(R,S)‖2L2(0,3T/4;[L2(0,L)]2) +

1

T 2
‖(ϕ,ψ)‖2L2(T/2,3T/4;[L2(0,L)]2)

)
. (46)

To do that, let us introduce a function κ ∈ C1([0, T ]) with

κ ≡ 1 in [0, T/2], κ ≡ 0 in [3T/4, T ], |κ′| ≤ C/T,
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for some C > 0. Using classical energy estimates for the system satisfied by (κϕ, κψ), which is

analogous to (34), we obtain

‖κϕ‖2H1(0,T ;L2(0,L)) + ‖κψ‖2L2(0,T ;H1
ν(0,L))∩C0([0,T ];L2(0,L))

≤C
(
‖(κR, κS)‖2L2(0,T ;[L2(0,L)]2) + ‖(κ′ϕ, κ′ψ)‖2L2(0,T ;[L2(0,L)]2)

)
,

which leads to (45).

Since the weights are bounded from above and below, using (45), we obtain a first estimate in

(0, L)× (0, T ):∫ T/2

0

∫ L

0

[ξ̄|ψx|2 + ξ̄3|ψ|2 + ξ̄|ϕ|2]e−2sᾱdxdt+ ‖ϕ(·, 0)‖2L2(0,L) + ‖ψ(·, 0)‖2L2(0,L)

≤ C(T, s, λ)

(∫ 3T/4

0

∫ L

0

[ρ−2
1 |R|2 + ρ−2

2 |S|2]dxdt+

∫ 3T/4

T/2

∫ L

0

[ξ̄3|ψ|2 + ξ̄|ϕ|2]e−2sᾱdxdt

)
. (47)

On the other hand, since α = ᾱ and ξ = ξ̄ in (0, L)× (T/2, T ), we have:∫ T

T/2

∫ L

0

[λ2(sξ̄)|ψx|2 + λ4(sξ̄)3|ψ|2 + λ2(sξ̄)|ϕ|2]e−2sᾱdxdt

=

∫ T

T/2

∫ L

0

[λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2 + λ2(sξ)|ϕ|2]e−2sαdxdt (48)

≤
∫ T

0

∫ L

0

[((sξ)−1(|ψxx|2 + |ψt|2) + λ2(sξ)|ψx|2 + λ4(sξ)3|ψ|2 + λ2(sξ)|ϕ|2]e−2sαdxdt.

In this way we obtain by Theorem 3.1,∫ T

T/2

∫ L

0

[ξ̄|ψx|2 + ξ̄3|ψ|2 + ξ̄|ϕ|2]e−2sᾱdxdt

≤ C(T, s, λ)

(∫ T

0

∫ L

0

[ξ3|R|2 + |S|2]e−2sαdxdt+

∫ T

0

∫
ω(t)

ξ7|ϕ|2e−2sαdxdt

)
.

Finally, from the definition of ᾱ, ξ̄, ᾱ∗ and ξ̄∗, we deduce:∫ T

T/2

∫ L

0

[ξ̄|ψx|2 + ξ̄3|ψ|2 + ξ̄|ϕ|2]e−2sᾱdxdt

≤ C(T, s, λ)

(∫ T

0

∫ L

0

[ρ−2
1 |R|2 + ρ−2

2 |S|2]dxdt+

∫ T

0

∫
ω(t)

ρ−2
3 |ϕ|2dxdt

)
.

which, combined with (47), provides (44).

The next step is to prove null controllability of the linear system (12). Of course, we will need

some specific conditions on the source G. Thus, let us introduce the linear operatorsM1 andM2

by

M1(θ) = θt and M2(q) = qt +Kq, (49)
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and the spaces

E0 = { (q, h) : ρ1M2(q), ρ2q, ρ3h1ω ∈ L2((0, L)× (0, T )),

ρ
1/2
4 q ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2

ν (0, L)) ∩ L∞(0, T ;H1(0, L)),

ρ
1/2
4 M2(q) ∈ H1(0, T ;L2(0, L)) }

and

E = { (q, h) : (q, h) ∈ E0, ρ4[M1(M2(q)) +Aq − h1ω] ∈ L2((0, L)× (0, T ))

ρ
1/2
4 M1(q) ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2

ν (0, L)) ∩ L∞(0, T ;H1(0, L)),

ρ
1/2
4 M1(q) ∈ L4((0, L)× (0, T )), ρ

1/3
4 M1(q) ∈ L6((0, L)× (0, T )), q(·, 0) ∈ H2

ν (0, L) }.

It is clear that E0 and E are Banach spaces for the norms ‖ · ‖E0
and ‖ · ‖E , where

‖(q, h)‖E0 =
(
‖ρ1M2(q)‖2L2((0,L)×(0,T )) + ‖ρ2q‖2L2((0,L)×(0,T )) + ‖ρ3h1ω‖2L2((0,L)×(0,T ))

+ ‖ρ1/2
4 (M2(q), q)‖2H1(0,T ;L2(0,L)) + ‖ρ1/2

4 q‖2L2(0,T ;H2
ν(0,L))∩L∞(0,T ;H1(0,L)))

1/2

and

‖(q, h)‖E =
(
‖(q, h)‖2E0

+ ‖ρ4[M1(M2(q)) +Aq − h1ω]‖2L2((0,L)×(0,T ))

‖ρ1/2
4 M1(q)‖2L4((0,L)×(0,T )) + ‖ρ1/3

4 M1(q)‖2L6((0,L)×(0,T )) + ‖q(·, 0)‖2H2
ν(0,L))

1/2.

Proposition 3 Let the assumptions of Theorem 1.1 hold, and assume that p0 ∈ L2(0, L), q0 ∈
H2
ν (0, L), and

ρ4G ∈ L2((0, L)× (0, T )). (50)

Then, there exists a control h such that for the solution (q, p) to (12) we have that (q, h) ∈ E. In

particular, we have that

p(·, T ) = q(·, T ) = 0. (51)

Proof: We will follow the general method introduced and used in [11] for linear parabolic problems.

The existence proof will be based in a Lax-Milgram argument. To motivate the introduction of

the appropriate bilinear form it is useful to introduce the following auxiliary extremal problem

Minimize J(θ, q, h) =
1

2

∫ T

0

∫ L

0

[
ρ2

1|θ|2 + ρ2
2|q|2 + ρ2

3|h|21ω
]
dx dt

subject to h ∈ L2((0, L)× (0, T )), supp(h(·, t)) ⊂ ω(t) ∀t ∈ (0, T ) and
M1(θ) +A(x, t) q − h1ω = G in (0, L)× (0, T ),

M2(q) = θ in (0, L)× (0, T ),

σi(x)qx
∣∣
x=0

= σi(x)qx
∣∣
x=L

= 0 on (0, T ),

θ(·, 0) = θ0, q(·, 0) = q0 in (0, L).

(52)

Observe that due to the behavior of the weights ρi at t = T a solution (θ̂, q̂, ĥ) to (52) is a good

candidate to satisfy (q̂, ĥ) ∈ E.
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Let us suppose for the moment that (θ̂, q̂, ĥ) solves (52). Then, by the Lagrange’s multipliers

formalism the dual variables ϕ̂ and ψ̂ satisfy the following system
θ̂ = ρ−2

1 [M∗1(ϕ̂)− ψ̂] in (0, L)× (0, T ),

q̂ = ρ−2
2 [M∗2 (ψ̂) +Aϕ̂] in (0, L)× (0, T ),

ĥ = −ρ−2
3 ϕ̂1ω in (0, L)× (0, T ),

σi(x)ψ̂x
∣∣
x=0

= σi(x)ψ̂x
∣∣
x=L

= 0 on (0, T ),

(53)

where M∗i is the adjoint operator of Mi (i = 1, 2), i.e.,

M∗1(ϕ) = −ϕt, and M∗2(ψ) = −ψt +Kψ.

Now let us set:

P0 =

{
(ϕ,ψ) ∈ C2([0, L]× [0, T ];R2) : σiψx

∣∣
x=0

= σiψx
∣∣
x=L

= 0 in (0, T )

}
,

the bilinear form on P0 × P0

B((ϕ̃, ψ̃), (ϕ,ψ)) =

∫ T

0

∫ L

0

ρ−2
1 [M∗1(ϕ̃)− ψ̃][M∗1(ϕ)− ψ] dx dt

+

∫ T

0

∫ L

0

ρ−2
2 [M∗2(ψ̃) +Aϕ̃][M∗2(ψ) +Aϕ] dx dt+

∫ T

0

∫ cr(t)

cl(t)

ρ−2
3 ϕ̂ ϕ dx dt

and the linear form on P0

〈L, (ϕ,ψ)〉 =

∫ T

0

∫ L

0

Gϕdxdt+

∫ L

0

θ0 ϕ(0) dx+

∫ L

0

q0 ψ(0) dx.

For these definitions we note that (ϕ̂, ψ̂) should satisfies

B((ϕ̂, ψ̂), (ϕ,ψ)) = 〈L, (ϕ,ψ)〉 ∀(ϕ,ψ) ∈ P0, (54)

i.e., the solution to (52) satisfies (54). Conversely, if we are able to solve (54) in suitable sense and

then use (53) to define (θ̂, q̂, ĥ), then we will be able to prove that we have found a solution to 52.

Next we will focus on the Lax-Milgram problem (54). It is clear that B : P0 × P0 → R is a

symmetric, definite positive and bilinear form on P0, i.e. a scalar product in this linear space (thanks

to the Carleman estimate (44)). We will denote by P the completion of P0 for the norm induced by

B. Then P is a Hilbert space for the scalar product B. On the other hand, in view of the Carleman

estimate (44), (50) and the fact that (ξ̄)−1/2esᾱ ≤ ρ4, the linear form (ϕ,ψ) 7→ 〈L, (ϕ,ψ)〉 is well-

defined and continuous on P . Hence, from Lax-Milgram’s lemma, we deduce that the variational

problem

B((ϕ̂, ψ̂), (ϕ,ψ)) = 〈L, (ϕ,ψ)〉 ∀(ϕ,ψ) ∈ P, (55)

possesses exactly one solution (ϕ̂, ψ̂) ∈ P .

With (ϕ̂, ψ̂) given let θ̂, q̂ and ĥ be given by (53). It is readily seen that

J(θ̂, q̂, ĥ) =
1

2
B((ϕ̂, ψ̂), (ϕ̂, ψ̂)) < +∞ (56)

and, also, that (θ̂, q̂) is the unique weak solution to the system in (52) for h = ĥ.



3 EXACT CONTROLLABILITY TO TRAJECTORIES OF THEMONODOMAIN EQUATIONS19

Finally, it remains to prove that (q̂, ĥ) ∈ E. Using (56) and the linear system in (52), we

can easily check that ρ1M2(q̂), ρ2q̂, ρ3ĥ1ω ∈ L2((0, L) × (0, T )), ρ4[M1(M2(q̂)) + Aq̂ − ĥ1ω] ∈
L2((0, L) × (0, T )) and q̂(·, 0) ∈ H2

ν (0, L). We set (θ̃, q̃, h̃) := ρ
1/2
4 (θ̂, q̂, ĥ) and we can see that

(θ̃, q̃, h̃) solves the following problem
M1(θ̃) = −A(x, t) q̃ + ρ

1/2
4 G+ h̃1ω + (ρ

1/2
4 )tθ̂ in (0, L)× (0, T ),

M2(q̃) = θ̃ + (ρ
1/2
4 )tq̂ in (0, L)× (0, T ),

σi(x)q̃x
∣∣
x=0

= σi(x)q̃x
∣∣
x=L

= 0 on (0, T ),

θ̃(·, 0) = ρ
1/2
4 (0)θ0, q̃(·, 0) = ρ

1/2
4 (0)q0 in (0, L).

(57)

Notice that, thanks to the fact that ρ1M2(q̂) and ρ2q̂ belong to L2((0, L)× (0, T )), we deduce that

(ρ
1/2
4 )tq̂, (ρ

1/2
4 )tθ̂ ∈ L2((0, L)× (0, T )). Thus, since θ0 ∈ L2(0, L), q0 ∈ H2

ν (0, L), we have that∣∣∣∣∣ θ̃ ∈ H1(0, T ;L2(0, L))

q̃ ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2
ν (0, L)) ∩ C0([0, T ];H1(0, L)).

(58)

Notice that the linear system in (52) is equivalent to (12) for (p̂, q̂), with p̂ = q̂t, and control

h = ĥ. In fact, by a similar argument as used to obtain (58), we get that ρ
3/4
4 p ∈ L2((0, L)×(0, T )).

We set (p̃, q̃, h̃) := ρr4(p̂, q̂, ĥ) (with r = 1/3 and r = 1/2) and we observe that (p̃, q̃, h̃) solves the

following problem
p̃t − (σi(x)p̃x)x + `p(v̄, w̄)p̃+ `q(v̄, w̄)q̃ = ρr4G+ h̃1ω + (ρr4)tp̂ in (0, L)× (0, T ),

q̃t = p̃+ (ρr4)tq̂ in (0, L)× (0, T ),

σi(x)p̃x
∣∣
x=0

= σi(x)p̃x
∣∣
x=L

= 0 on (0, T ),

p̃(·, 0) = ρr4(0)p0, q̃(·, 0) = ρr4(0)q0 in (0, L),

(59)

Since p0 ∈ L2(0, L), q0 ∈ H2
ν (0, L) and (ρr4)tq̂, (ρ

r
4)tp̂ ∈ L2((0, L)× (0, T )), we deduce that∣∣∣∣∣ q̃ ∈ H1(0, T ;L2(0, L))

p̃ ∈ L2(0, T ;H1(0, L)) ∩ C0([0, T ];L2(0, L)).
(60)

We conclude using [14, Chapter II. §3] to get p̃ ∈ Lκ̃((0, L)× (0, T )), for 1 ≤ κ̃ ≤ 6.

Finally, we need to argue that (51) holds. For this propose, we use that (q̂, ĥ) ∈ E and

consequently (ρ2q̂, ρ1θ̂) ∈ L2((0, L)× (0, T ))× L2((0, L)× (0, T )). Since q̂, θ̂ ∈ C0([0, T ];L2(0, L))

the singularities of ρ1 and ρ2 imply (51).

3.2 Controllability for the nonlinear monodomain model

We can now end the proof of Theorem 1.1. We will use the following inverse mapping theorem

(see [2]):

Theorem 3.3 Let B1 and B2 be two Banach spaces and let A : B1 7→ B2 satisfy A ∈ C1(B1;B2).

Assume that e0 ∈ B1, A(e0) = i0 and A′(e0) : B1 7→ B2 is surjective. Then, there exists δ > 0

such that, for every i ∈ B2 satisfying ‖i− i0‖B2 < δ, there exists one solution to the equation

A(e) = i, e ∈ B1.
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We shall apply this result with B1 = E, B2 = F1 × F2 and for any e = (q, h) ∈ B1 we set

A(e) = (M1(M2(q)) +Aq − h1ω +N (qt, q), q(0),M2(q)(0)).

Here, F1 = ρ−1
4 L2((0, L)× (0, T )) and F2 = H2

ν (0, L)× L2(0, L).

Thanks to the definition of the space E, it is not difficult to check that A, which contains linear,

bilinear and trilinear terms, is continuous and therefore A ∈ C1(B1;B2). Let e0 be the origin of B.

Notice that A′(e0) : B1 7→ B2 is the mapping that, to each (q, h) ∈ B1, associates the function

(M1(M2(q)) +Aq − h1ω, q(0),M2(q)(0)) in B2. In view of the null controllability result for (12)

given in Proposition 4, A′(e0) is surjective.

Consequently, we can indeed apply Theorem 3.3 with these data and, in particular, there exists

δ > 0 such that, if

‖(0, q0, θ0)‖B2
= ‖(q0, θ0)‖H2

ν(0,L)×L2(0,L) ≤ δ,

we can find a control h such that the associated solution to (11) satisfies p(·, T ) = 0 and q(·, T ) = 0

in (0, L).

A Neumann Carleman inequality for a parabolic equation

To verify Lemma 3 we start with the following remark.

Remark A.1 Notice that the function r blows up at t = 0 and t = T . Also, observe that ∂kt r(t) =
(−1)kk!
tk+1 = (−1)kk!(r(t))k+1 close to t = 0 and ∂kt r(t) = k!

(T−t)k+1 = k!(r(t))k+1 close t = T .

Further we have

αx = λξ(−ηx),

αxx = λ2ξ(−η2
x − λ−1ηxx),

αxxx = λ3ξ(−η3
x − 3λ−1ηxxηx − λ−2ηxxx),

αxxxx = λ4ξ(−η4
x − 6λ−1η2

xηxx − 3λ−2η2
xx − λ−3ηxxxx),

αt = λξ2

[
−ξ−1ηt + λ−1

(
e2λ(‖η‖∞−η) − e−λη

)(1

r

)
t

]
,

αtt = λ2ξ3
[
−ξ−2η2

t − λ−1ξ−2ηtt − 2λ−1e−2ληηt
rt
r3

+ λ−2
(
eλ(2‖η‖∞−3η) − e−2λη

) rtt
r3

]
,

αxt = λ2ξ2
[
−ξ−1ηtηx − λ−1ξ−1ηxt + λ−1e−λη(r−1)tηx

]
.

(61)

It follows that there exists a positive constant C > 0, such that for (x, t) ∈ [0, L] × (0, T )we have

the following pointwise estimates:

|αxx| ≤ Cλ2ξ,

|αxxx| ≤ Cλ3ξ,

|αxxxx| ≤ Cλ4ξ,

|αt| ≤ C(T + e2λ‖η‖∞)λξ2,

|αtt| ≤ C(T 2 + T + e2λ‖η‖∞)λ2ξ3,

|αxt| ≤ C(T + 1)λ2ξ2.

(62)

We set w = e−sαψ and observe that

wx = −sαxw + e−sαψx.
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Using the boundary conditions of ψ, we deduce wx = −sαxw on {0, L} × (0, T ).

Remark A.2 From the definition of α, given in (23), notice that w(·, T ) = w(·, 0) = 0 and

wx(·, T ) = wx(·, 0) = 0.

Now, let us introduce the partial differential operator P := ∂t + ∂xx. Then, we have the

following decomposition

e−sαP (esαw) = Pe w + Pk w,

where

Pew := wxx + (sαt + s2α2
x)w

is the self-adjoint part of the operator P and

Pkw := wt + 2sαxwx + sαxxw

is the skew-adjoint part of P . It follows that

‖e−sαP (esαw)‖2L2((0,L)×(0,T )) = ‖Pew‖2L2((0,L)×(0,T )) + ‖Pkw‖2L2((0,L)×(0,T ))

+ 2(Pew,Pkw)L2((0,L)×(0,T )).
(63)

The rest of the proof is devoted to analyzing the term (Psw,Paw)L2((0,L)×(0,T )). Indeed, from

the above definition of the operators Pe and Pk it follows

2(Pew,Pkw)L2((0,L)×(0,T )) = 2 (wxx, wt) + 2 (wxx, 2sαxwx) + 2 (wxx, sαxxw)

+ 2
(
sαtw + s2α2

xw,wt
)

+ 2
(
sαtw + s2α2

xw, 2sαxwx
)

+ 2
(
sαtw + s2α2

xw, sαxxw
)

=: I1 + I2 + I3 + I4 + I5 + I6.

(64)

Now, in order to get estimates for the term 2(Pew,Pkw)L2((0,L)×(0,T )), first let us work with

each integral term Ii, i = 1, . . . , 6.

For the first integral term, we integrate by parts in time and we obtain

I1 = −2

∫ T

0

∫ L

0

wxwxt + 2

∫ T

0

wtwx

∣∣∣∣x=L

x=0

.

Then, thanks to Remark A.2 and the fact that wx = −sαxw on {0, L}×(0, T ), after an integration

by parts in the last term we have

I1 = s

∫ T

0

αxtw
2

∣∣∣∣x=L

x=0

. (65)

For the second term, we integrate by parts in space and we deduce

I2 = − 2s

∫ T

0

∫ L

0

αxxw
2
x + 2s

∫ T

0

αxw
2
x

∣∣∣∣x=L

x=0

. (66)

For the third term, after two integration by parts, we obtain

I3 = −2s

∫ T

0

∫ L

0

αxxxwxw − 2s

∫ T

0

∫ L

0

αxxw
2
x + 2s

∫ T

0

αxxwwx

∣∣∣∣x=L

x=0

.
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And again integrating by parts in space the first term, we deduce

I3 = s

∫ T

0

∫ L

0

αxxxxw
2 − 2s

∫ T

0

∫ L

0

αxxw
2
x + 2s

∫ T

0

αxxwwx

∣∣∣∣x=L

x=0

− s
∫ T

0

αxxxw
2

∣∣∣∣x=L

x=0

. (67)

Fourthly, we integrate by parts in time and using Remark A.2, we get

I4 = − s
∫ T

0

∫ L

0

αttw
2 − 2s2

∫ T

0

∫ L

0

αxαxtw
2. (68)

And for the fifth term, we conclude

I5 = −
∫ T

0

∫ L

0

(
2s2αxαxt + 4s3α2

xαxx
)
w2 − 2

∫ T

0

∫ L

0

(s2αt + s3α2
x)αxxw

2

+ 2

∫ T

0

(s2αtαx + s3α3
x)w2

∣∣∣∣x=L

x=0

.

(69)

For the last term, we obtain

I6 = 2

∫ T

0

∫ L

0

(s2αt + s3α2
x)αxxw

2. (70)

From (64)-(70), we get

2(Psw,Paw) = − 4s

∫ T

0

∫ L

0

αxxw
2
x +

∫ T

0

∫ L

0

(
sαxxxx − sαtt − 4s2αxαxt − 4s3α2

xαxx
)
w2

+

∫ T

0

(
2sαxw

2
x + 2sαxxwwx + 2s2αtαxw

2 + 2s3α3
xw

2 + sαxtw
2 − sαxxxw2

) ∣∣∣∣x=L

x=0

.

Recalling that wx = −sαxw on {0, L} × (0, T ), from the previous identity we deduce

2(Psw,Paw) = − 4s

∫ T

0

∫ L

0

αxxw
2
x +

∫ T

0

∫ L

0

(
sαxxxx − sαtt − 4s2αxαxt − 4s3α2

xαxx
)
w2

+

∫ T

0

[
4s3α3

x + 2s2αx (αt − αxx) + s(αt − αxx)x
]
w2

∣∣∣∣x=L

x=0

= DT1 +DT2 +BT,

(71)

where DT1 and DT2 correspond to the distributed terms and BT corresponds to the boundary

terms.

Then, thanks to the identities (61), we obtain

BT = − 4s3λ3

∫ T

0

η3
xξ

3w2

∣∣∣∣x=L

x=0

− 2s2λ

∫ T

0

(αt − αxx) ηxξw
2

∣∣∣∣x=L

x=0

+ s

∫ T

0

(αt − αxx)xw
2

∣∣∣∣x=L

x=0

.

Therefore, using the estimates (62) and the property (19)-(20) of η, we have the following bound

BT ≥ 4C3s3λ3

∫ T

0

ξ3w2
∣∣
x=L
− 2s2λ2C2

(
T + e2λ‖η‖∞

)∫ T

0

ξ3w2
∣∣
x=L
− 2s2λ3C2

∫ T

0

ξ2w2
∣∣
x=L

− C(T + 1)sλ2

∫ T

0

ξ2w2
∣∣
x=L
− Csλ3

∫ T

0

ξw2

∣∣∣∣
x=L

+ 4C3s3λ3

∫ T

0

ξ3w2
∣∣
x=0
− 2s2λ2C2

(
T + e2λ‖η‖∞

)∫ T

0

ξ3w2
∣∣
x=0
− 2s2λ3C2

∫ T

0

ξ2w2
∣∣
x=0

− C(T + 1)sλ2

∫ T

0

ξ2w2
∣∣
x=0
− Csλ3

∫ T

0

ξw2

∣∣∣∣
x=0

.
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Hence, we have for any λ ≥ C and any s ≥ C
(
1 + T + e2λ‖η‖∞

)
:

BT ≥ 4C3s3λ3

∫ T

0

ξ3w2
∣∣
x=L

+ 4C3s3λ3

∫ T

0

ξ3w2
∣∣
x=0

. (72)

Now, let us estimate the distributed terms in DT . Thanks to (15) and (61), for DT1 we have:

DT1 = 4sλ2

∫ T

0

∫ L

0

η2
xξw

2
x + 4sλ

∫ T

0

∫ L

0

ηxxξw
2
x

≥ Csλ2

∫ T

0

∫ L

0

ξw2
x − Csλ2

∫ T

0

∫
ω0(t)

ξw2
x − Csλ

∫ T

0

∫ L

0

ξw2
x.

Hence, taking λ ≥ C, we obtain

DT1 ≥ Csλ2

∫ T

0

∫ L

0

ξw2
x − Csλ2

∫ T

0

∫
ω0(t)

ξw2
x. (73)

Also, in order to get an estimate for DT2, we use (15), (16), (61) and (62) to obtain:

DT2 ≥ Cs3λ4

∫ T

0

∫ L

0

ξ3w2 − Cs3λ4

∫ T

0

∫
ω0(t)

ξ3w2 − Cs3λ3

∫ T

0

∫ L

0

ξ3w2

− Csλ4

∫ T

0

∫ L

0

ξw2 − Csλ2

∫ T

0

∫ L

0

ξ3w2 − Cs2λ3

∫ T

0

∫ L

0

ξ3w2.

Therefore, for λ ≥ C, we deduce

DT2 ≥ Cs3λ4

∫ T

0

∫ L

0

ξ3w2 − Cs3λ4

∫ T

0

∫
ω0(t)

ξ3w2. (74)

From (63), (71), (72), (73) and (74), we conclude that

‖Pew‖2L2((0,L)×(0,T )) + ‖Pkw‖2L2((0,L)×(0,T )) + s3λ4

∫ T

0

∫ L

0

ξ3w2 + sλ2

∫ T

0

∫ L

0

ξw2
x

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=L

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=0

≤ C

(
‖e−sαP (esαw)‖2L2((0,L)×(0,T )) + sλ2

∫ T

0

∫
ω0(t)

ξw2
x + s3λ4

∫ T

0

∫
ω0(t)

ξ3w2

)
.

(75)

Now, using that Pew := wxx + (sαt + s2α2
x)w, we can deduce:

s−1

∫ T

0

∫ L

0

ξ−1w2
xx = s−1

∫ T

0

∫ L

0

ξ−1|Pew − (sαt + s2α2
x)w|2

≤ Cs−1

∫ T

0

∫ L

0

ξ−1
(
|Pew|2 + s2α2

tw
2 + s4α4

xw
2
)

≤ Cs−1

∫ T

0

∫ L

0

ξ−1
(
|Pew|2 + s2λ2ξ4w2 + s4λ4ξ4w2

)
≤ C

(
s−1

∫ T

0

∫ L

0

ξ−1|Pew|2 +

∫ T

0

∫ L

0

s3λ4ξ3w2

)
.

(76)
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We can do the same for Pkw := wt + 2sαxwx + sαxxw and then

s−1

∫ T

0

∫ L

0

ξ−1w2
t = s−1

∫ T

0

∫ L

0

ξ−1|Pkw − 2sαxwx − sαxxw|2

≤ Cs−1

∫ T

0

∫ L

0

ξ−1
(
|Pkw|2 + s2α2

xw
2
x + s2α2

xxw
2
)

≤ Cs−1

∫ T

0

∫ L

0

ξ−1
(
|Pkw|2 + s2λ2ξ2w2

x + s4λ4ξ2w2
)

≤ C

(
s−1

∫ T

0

∫ L

0

ξ−1|Pkw|2 +

∫ T

0

∫ L

0

sλ2ξ2w2
x +

∫ T

0

∫ L

0

s3λ4ξ3w2

)
.

(77)

From (75), (76) and (77), we obtain

s−1

∫ T

0

∫ L

0

ξ−1w2
t + s−1

∫ T

0

∫ L

0

ξ−1w2
xx + s3λ4

∫ T

0

∫ L

0

ξ3w2 + sλ2

∫ T

0

∫ L

0

ξw2
x

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=L

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=0

≤ C

(
‖e−sαP (esαw)‖2L2((0,L)×(0,T )) + sλ2

∫ T

0

∫
ω0(t)

ξw2
x + s3λ4

∫ T

0

∫
ω0(t)

ξ3w2

)
.

(78)

To conclude the proof, we need to eliminate the local term wx containing on the right hand side

of the previous inequality. To do that, let us introduce a function ζ̄ ∈ C∞([0, L]× [0, T ]) satisfying

0 ≤ ζ̄ ≤ 1 ∀(x, t) ∈ [0, L]× [0, T ],

ζ̄(x, t) = 1 ∀x ∈ ω0(t), ∀t ∈ [0, T ],

ζ̄(x, t) = 0 ∀x ∈ [0, L] \ ω1(t), ∀t ∈ [0, T ],

where we use (14).

We have

sλ2

∫ T

0

∫
ω0(t)

ξw2
x ≤ sλ2

∫ T

0

∫ L

0

ζ̄ξw2
x

= − sλ2

∫ T

0

∫ L

0

ζ̄ξwxxw − sλ2

∫ T

0

∫ L

0

ζ̄xξwxw − sλ2

∫ T

0

∫ L

0

ζ̄ξxwxw

+ sλ2

∫ T

0

ξwxw

∣∣∣∣x=L

x=0

.

Using the fact that wx = −sαxw on {0, 1} × (0, T ) and (19)-(20) and (61), we deduce

Csλ2

∫ T

0

∫
ω0(t)

ξw2
x ≤ − Csλ2

∫ T

0

∫ L

0

ζ̄ξwxxw − Csλ2

∫ T

0

∫ L

0

ζ̄xξwxw − Csλ3

∫ T

0

∫ L

0

ζ̄ηxwxw

+ Cs2λ3

∫ T

0

ξ2ηxw
2

∣∣∣∣x=L

x=0

≤ 1

2
s−1

∫ T

0

∫ L

0

ξ−1w2
xx +

1

2
sλ2

∫ T

0

∫ L

0

ξw2
x +

C

2
s3λ4

∫ T

0

∫ L

0

(ζ̄2 + ζ̄2
x)ξ3w2.
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Then, we obtain from the above inequality and (75)

s−1

∫ T

0

∫ L

0

ξ−1w2
t + s−1

∫ T

0

∫ L

0

ξ−1w2
xx + s3λ4

∫ T

0

∫ L

0

ξ3w2 + sλ2

∫ T

0

∫ L

0

ξw2
x

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=L

+ s3λ3

∫ T

0

ξ3w2
∣∣
x=0

≤ C

(
‖e−sαP (esαw)‖2L2((0,L)×(0,T )) + s3λ4

∫ T

0

∫
ω1(t)

ξ3w2

)
.

(79)

We finally can turn back to ψ:

s−1

∫ T

0

∫ L

0

ξ−1ψ2
t e
−2sα + s−1

∫ T

0

∫ L

0

ξ−1ψ2
xxe
−2sα + sλ2

∫ T

0

∫ L

0

ξψ2
xe
−2sα + s3λ4

∫ T

0

∫ L

0

ξ3ψ2e−2sα

+ s3λ3

∫ T

0

ξ3ψ2e−2sα
∣∣
x=L

+ s3λ3

∫ T

0

ξ3ψ2e−2sα
∣∣
x=0

≤ C

(∫ T

0

∫ L

0

e−2sαf2 + s3λ4

∫ T

0

∫
ω1(t)

ξ3ψ2e−2sα

) (80)

and hence (25) follows.

(MlH(1/αM−1
l (−∇p · ∇y − βD∗ψ)∇p,∇v) + (y, v)− (z, v) = 0,

(MlH(1/αM−1
l (−∇p · ∇y − βD∗ψ)∇y,∇v)− (f, v) = 0,

(DMlH(1/αM−1
l (−∇p · ∇y − βD∗ψ)∇y · ∇p, φ)− (Ml(∂B∞)γ(M−1

l ψ), φ) = 0,
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[9] E. Fernández-Cara, M. González-Burgos, S. Guerrero, and J.-P. Puel, Null con-

trollability of the heat equation with boundary Fourier conditions: the linear case, ESAIM

Control Optim. Calc. Var., 12 (2006), pp. 442–465 (electronic).

[10] R. A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,

Biophysical Journal, 1 (1961), pp. 445–466.

[11] A. V. Fursikov and O. Y. Imanuvilov, Controllability of evolution equations, vol. 34 of

Lecture Notes Series, Seoul National University Research Institute of Mathematics Global

Analysis Research Center, Seoul, 1996.

[12] S. Guerrero and O. Y. Imanuvilov, Remarks on non controllability of the heat equation

with memory, ESAIM Control Optim. Calc. Var., 19 (2013), pp. 288–300.

[13] J. Keener and J. Sneyd, Mathematical physiology. Vol. I: Cellular physiology, vol. 8/ of

Interdisciplinary Applied Mathematics, Springer, New York, second ed., 2009.

[14] O. A. Ladyˇ zenskaja, V. A. Solonnikov, and N. N. a. Ural′ceva, Linear and quasi-

linear equations of parabolic type, Translated from the Russian by S. Smith. Translations of

Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968.

[15] P. Martin, L. Rosier, and P. Rouchon, Null controllability of the structurally damped

wave equation with moving control, SIAM J. Control Optim., 51 (2013), pp. 660–684.

[16] A. Peskoff, Electric potential in cylindrical syncytia and muscle fibers, Bulletin of Mathe-

matical Biology, 41 (1979), pp. 183–192.

[17] R. Plonsey, R. C. Barr, and F. X. Witkowski, Onde-dimensional model of cardiac

defibrillation, Medical and Biological Engineering and Computing Journal, 29 (1991), pp. 465–

469.

[18] J. M. Rogers and A. D. McCulloch, A collocation-galerkin finite element model of car-

diac action potential propagation, IEEE Transactions on Biomedical Engineering, 41 (1994),

pp. 743–757.

[19] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and A. Tveito,

Computing the electrical activity in the heart, vol. 1 of Monographs in Computational Science

and Engineering, Springer-Verlag, Berlin, 2006.

[20] L. Tung, A bi-domain model for describing ischemic myocardial d–c potentials, Ph.D. thesis,

Massachusetts Institute of Technology, (1978).


	Introduction
	Preliminaries
	Carleman inequalities with moving observations
	Regular trajectories

	Exact controllability to trajectories of the monodomain equations
	Controllability for the linear monodomain model
	Carleman inequality
	Null controllability

	Controllability for the nonlinear monodomain model

	Neumann Carleman inequality for a parabolic equation

