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Optimal control approaches have proved useful in designing RF pulses for large
tip-angle applications. A typical challenge for optimal control design is the in-
clusion of constraints resulting from physiological or technical limitations, that
assure the realizability of the optimized pulses. In this work we show how to treat
such inequality constraints, in particular, amplitude constraints on the B1 �eld,
the slice-selective gradient and its slew rate, as well as constraints on the slice
pro�le accuracy. For the latter a pointwise pro�le error and additional phase con-
straints are prescribed. Here, a penalization method is introduced that corresponds
to a higher-order tracking instead of the common quadratic tracking. The order is
driven to in�nity in the course of the optimization. We jointly optimize for the RF
and slice-selective gradient waveform. The amplitude constraints on these control
variables are treated e�ciently by semismooth Newton or quasi-Newton methods.

The method is �exible, adapting to many optimization goals. As an application
we reduce the power of refocusing pulses, which is important for spin echo based
applications with a short echo spacing. Here, the optimization method is tested in
numerical experiments for reducing the pulse power of simultaneous multislice
refocusing pulses. The results are validated by phantom and in-vivo experiments.

Keywords: RF pulse design, slice-selective, optimal control, physical constraints,
inequality constraints

1. Introduction

Magnetic resonance imaging at high �eld strength is restricted by the speci�c absorption rate
(SAR) and technical limitations of the hardware. For single transmit MR imaging the SAR is
proportional to the overall or global pulse power. SAR limitations apply mainly for sequences
with larger �ip angles (e.g. turbo or multi spin echo) or short TR (e.g. True FISP, SSFP).

Various methods exist to design slice-selective RF pulses [6]. For small �ip angles the Bloch
equation can be approximated by the inverse Fourier transform, while large �ip angles require
the full Bloch equation. Neglecting the relaxation terms and assuming pointwise constancy, the
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Bloch equation can be expressed in the spin domain [19] and inverted by the Shinnar Le-Roux
transform for large tip angle RF pulse design [25].

In the context of Simultaneous Multislice (SMS) imaging [3] the global RF power typically
increases linearly with the multiband (MB) factor, while the increase in the maximum B1 peak
amplitude can be reduced by phase scrambling [34], time shifting [2] or root �ipping [28].
Using sampling and replication properties from the Fourier transform, the PINS method [24]
allows for a refocusing of many periodic slices without a power increase at the cost of a reduced
bandwith and long pulse durations, which makes PINS or its enhancement MultiPINS [10] the
gold standard for large MB factors. A di�erent approach to reduce the power of a given RF pulse
with a distinct slice pro�le can be accomplished by applying the VERSE principle [8, 15, 20].
Alternatively, the pulse can be improved iteratively by optimal control approaches [1, 12, 21, 33].
Here, one typically minimizes a quadratic objective subject to the Bloch equations.

The aim of this work is to introduce new models and optimal control methods for minimizing
the global RF power while restricting the maximal slice pro�le error. To e�ectively reduce
the pulse power, both the RF pulse and the slice-selective gradient (Gs) are controlled jointly.
For ensuring the practical applicability of the optimized pulses, technical constraints on the
MR hardware are included into the optimization. Among these are amplitude constraints on
Gs and its slew rate, as well as amplitude constraints on the RF pulse. In contrast to existing
optimal control approaches, the proper excitation/refocusing pattern is modeled in a detailed
way using an error band around a desired pattern. Accordingly we cast the design objectives
as inequality constraints rather than as quadratic tracking type functionals. New methods for
solving the resulting inequality-constrained optimal control problems for RF pulse design are
introduced. Since a reduced pulse power is highly important especially in SMS acquisition [3],
test examples from this �eld are chosen for numerical experiments, as well as phantom and
in-vivo measurements.

In our preceding work [1] we set up e�cient second-order optimization methods for optimal
control of the Bloch equations with relaxation. Here we show how to extend second-order
methods to di�erent types of inequality constraints. Semismooth Newton and quasi-Newton
methods are introduced and combined with new penalization techniques for assuring the pro�le
accuracy. Furthermore, we extend the optimization framework to the common spin-domain
description [19, 25] at the cost of neglecting the relaxation.

2. Theory

The nuclear magnetization vector M is described by the Bloch equation (without relaxation)
in the on-resonance case Ṁ(t , z) = γB(t , z) ×M(t , z). The external magnetic �eld B(t , z) =
(Re(B1 (t )), Im(B1 (t )),д(t )z) depends on the complex-valued RF pulse B1 (t ) and the amplitude
д(t ) of Gs, as well as the spatial position z and time t ∈ (0,T ). The aim of the optimization will
be to control B1 (t ) and д(t ) jointly in order to approximately reach a space-dependent desired
magnetization pattern at the terminal time T with a minimum pulse power. The optimization
model will be de�ned in the spin domain.

2.1. Spin domain Bloch equation

Assuming the external magnetic �eld to be piecewise constant in time, this Bloch equation can
be solved in the spin domain [19, 25] as a sequence of rotations, where the magnetization vector
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M can be described by the complex-valued Cayley-Klein parameters (am ), (bm ),m = 1, . . . ,Nt
with evolution

am = αmam−1 − β∗mbm−1,

bm = βmam−1 + α
∗
mbm−1,

(1)

and with initial conditions a0 = 1, b0 = 0.

The RF pulse is described in polar coordinates B1 (t ) = r (t ) exp(iϑ (t )) with RF amplitude r (t ),
RF phase ϑ (t ) and imaginary unit i . An equidistant time grid tk = kτ ,k = 0, . . . ,Nt with step
size τ = T /Nt is chosen with piecewise constant RF pulse and Gs described by (rm ,ϑm ,дm ),
m = 1, . . . ,Nt . The coe�cients am , bm are then given by

αm = cos(ϕm/2) + iγτzдm sin(ϕm/2)/ϕm ,
βm = iγτrm exp(iϑm ) sin(ϕm/2)/ϕm ,

(2)

withϕm = −γτ
√
r 2
m + (zдm )2 and the gyromagnetic ratioγ . Here, the variablesam ,bm ,αm , βm ,ϕm

depend on the spatial coordinate z ∈ Ω = [−L,L] in slice direction based on an equidistant
spatial discretization −L = z1 < · · · < zNz = L with step size δ .

2.2. Optimal control of the Bloch equation in the spin-domain

The slice-selective excitation or refocusing is modeled as optimal control problem with inequality
constraints. We jointly optimize for the RF pulse and Gs amplitude, hence we de�ne the control
vector x = (r1, . . . , rNt ,ϑ1, . . . ,ϑNt ,д2, . . . ,дNt−1)

T . The boundary values for the Gs amplitude
are �xedд1 = д0 andдNt = дT with given д0,дT ∈ R. The optimal control problem is to minimize
the pulse power

min
x

τ

2

Nt∑

m=1
r 2
m(3)

subject to the spin domain Bloch equation (1) in every spatial point zj , j = 1, . . . ,Nz , and an
amplitude constraint on the Gs slew rate

|дm − дm−1 | ≤ τsmax, m = 2, . . . ,Nt ,(4)

with given smax > 0. Additionally, we prescribe amplitude constraints r (t ) ≤ rmax with rmax > 0
and bounds for Gs дmin ≤ д(t ) ≤ дmax denoted by дmax > 0 and дmin < дmax. They are collected
in the pointwise control constraints

cmin ≤ x ≤ cmax(5)

with vectorized lower and upper bound cmin = (0, . . . , 0,−π , . . . ,−π ,дmin, . . . ,дmin)
T and cmax =

(rmax, . . . , rmax,π , . . . ,π ,дmax, . . . ,дmax)
T .

The slice pro�le accuracy is now modeled by constraints on the pro�le and on the phase
according to the type of the RF pulse, see [6, Tab 2.3] for excitation, inversion or refocusing pulses.
Below, we concentrate on a spin-echo pro�le for SMS refocusing with initial magnetization
(0,M0, 0)T and ideal crusher gradients. The refocusing pro�le at the terminal timeT is described
by |bNt (z) |2 using the last Cayley-Klein parameter bNt = bNt (z) in (1). It is enforced to stay in a
neighborhood of the ideal rectangular refocusing for all z in the observation domain Ωobs ⊂ Ω,
which is partitioned into the in-slice and out-of-slice domain Ωobs = Ωin ∪ Ωout.

|bNt (z) |2 − 1 ≤ e (z), ∀z ∈ Ωin,

|bNt (z) |2 ≤ e (z), ∀z ∈ Ωout,
(6)
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with tolerance e = e (z) > 0 that may depend on z. In particular a di�erent in-slice and
out-of-slice error can be prescribed. The pro�le is not �xed in between the two regions i.e.
on Ω \ (Ωin ∪ Ωout). For ease of notation we do not write the dependence on zj below and
introduce the vector b = (bNt (z1), . . . ,bNt (zNz )). In case of NMB slices with in-slice domain
Sl , l = 1, . . . ,NMB, Ωin = ∪NMB

l=1 Sl a constant phase per slice can be modeled as

��φ (b (z)) − φ̄l (b)�� ≤ ep , ∀z ∈ Sl , l = 1, . . . ,NMB,(7)

with phaseφ (b (z)) = arg(b2
Nt
(z)) and arithmetic mean of the phase φ̄l (b) in slice l , and tolerance

ep = ep (z) > 0.

The control constraints (5) and the state constraints (6), (7) need di�erent solution techniques.
Below, we suggest semismooth Newton techniques for the pointwise control constraints (5),
which is computationally very inexpensive. In contrast, (4) and the state constraints (6, 7) will
be treated by an iterative penalization method.

2.3. Penalization

State-constrained optimal control problems are known to be challenging since the Lagrange
multipliers are typically irregular, which may lead to a decrease of the convergence speed and
accuracy of numerical solution methods. To address these di�culties, regularization techniques
within Newton-type methods for state-constrained optimal control problems were introduced
by several authors, in particular primal-dual active-set strategies applied to a Moreau-Yosida
regularization [4,5], which are under appropriate conditions equivalent to a semismooth Newton
method [16]. Solution by interior-point methods were proposed in [32]. For further investigations
of the topic we refer to [17] and the references therein.

Here we suggest a related but di�erent method, which is designed to facilate the convergence
and globalization properties of the problem at hand. We suggest an Lp -penalization of the state
constraints (6) with parameters µout, µin > 0, and an integer exponent p ≥ 1, which is driven to
∞ as we approach the optimizer. Therefore, we eliminate (6) and add

δµout
2p

∑

zj ∈Ωout

( |bNt |2
e

)p
+
δµin
2p

∑

zj ∈Ωin

�����
|bNt |2 − 1

e

�����
p

(8)

to the objective with parameters µin, µout > 0 and the spatial step size δ > 0. While p = 1
corresponds to the widespread quadratic tracking, the power-p penalty recovers the original
state constraint (6) for p → ∞. This follows from the simple observation that |s |p → ∞ for
|s | > 1 and |s |p → 0 for |s | < 1 if p → ∞. We propose a loop around the optimization where p
is increased successively until the minimum pulse power solution is attained. We do not start
with large p from the beginning, since a small value of p turns out to be advantageous for the
globalization, as will be shown in the results section.

The constraints onд in (4) and on the in-slice phase in (7) are treated analogously. For algorithmic
purposes we also add a small regularization for the controls ϑm ,дm with parameter ζ > 0, which
is driven to 0 as we approach the optimizer. To avoid absolute values we restrict p > 0 to be
even. Altogether the penalized objective is de�ned as

J (x, b) =
τ

2

Nt∑

m=1
r 2
m + ζϑ

2
m + ζд

2
m +

δµout
2p

∑

zj ∈Ωout

( |bNt |2
e

)p
(9)

+
δµin
2p

∑

zj ∈Ωin

( |bNt |2 − 1
e

)p
+
δµp

p

L∑

l=1

∑

zj ∈Sl

(
φ − φ̄l
ep

)p
+
τ µд

p

Nt∑

m=2

(
дm − дm−1
τsmax

)p

with parameters ζ , µp , µд > 0.
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3. Methods

3.1. Semismooth (quasi-)Newton method

Semismooth Newton methods are a generalization of Newton’s method for speci�c nonsmooth
equations. In the context of optimal control problems they were introduced by [16, 30], see
also the monographs [18, 31]. With local superlinear convergence, these methods turned out
to be highly e�cient for optimal control problems with pointwise control or (regularized)
state constraints, with sparsity, or with variational inequalities. Here, the penalized optimal
control problem (1,5,9) for a �xed p is solved with semismooth Newton methods. Semismooth
Newton methods ful�ll the remaining inequality constraints e�ciently based on projections.
This procedure allows for the inclusion of these constraints into the optimization code without
increasing the computational e�ort. For e�ciency the optimization is done purely on the controls
x, while the state variables are eliminated using the discrete Bloch and auxiliary equations. We
introduce the reduced objective

j (x) = J (x, b(x),w(x)) =
1
2x

TEx + F (x),

with the diagonal matrix E = τdiag(1, . . . , 1, ζ , . . . , ζ , ζ , . . . , ζ ) and penalization terms F . With its
gradient j′(x) = Ex+F′(x) the �rst order necessary optimality conditions for mincmin≤x≤cmax j (x)
are given by

x = Pad (−E−1F′(x)),(10)

where Pad = min
(
cmax,max(cmin, z)

)
denotes the componentwise projection to the feasible

set. F′(x) is given in terms of a forward and backward solve using a Lagrange calculus in
Appendix A. The calculations are done with the Wirtinger calculus [11], which for the spin
domain description allows for an e�cient derivation and a compact form of both, the equations
and the subsequent code. We reformulate (10) equivalently by introducing c := −E−1F′(x) as
independent variable and parametrize the control x = Pad (c). Then a minimizer has to ful�ll
G(c) := Ec+ F′(Pad (c)) = 0. G is nonsmooth but semismooth, which allows for the semismooth
Newton iteration ck+1 = ck + δc,

DNG (ck )δc = −G(ck ).(11)

Therein, DNG (ck )δc is the generalized Newton-derivative ofG applied to the direction δc in the
current point ck . While the assembling of the full matrix DNG (ck ) is computationally expensive,
it is well-known that the evaluation of a matrix vector product can be performed e�ciently,
without knowledge of the full matrix. This technique is basis of matrix-free Newton-Krylov
methods, where the Newton equation is solved iteratively using a Krylov method. We already
presented this technique in [1] in the absence of inequality constraints and for the Crank-
Nicolson Bloch solver. Here, we apply the technique in the spin domain, generalize the Newton
method to the semismooth case with inequality constraints, and to quasi-Newton methods. By
the calculus for Newton derivatives [31], the left-hand side of (11) can be computed as

DNG (ck )δc = Eδc + F ′′(Pad (ck ))DN Pad (ck )δc(12)

where DN Pad (ck ) is the Newton-derivative of the projection Pad at the current iterate ck . The
second summand can be realized by a forward backward solve consisting in a linearized Bloch
equation and its adjoint analogously to [1, eq. (6,7)]. We introduce the inactive set I = {m | −
cmin,m < cm < cmax,m} and its characteristic function χI (m) which is 1 for m ∈ I and 0
otherwise. Then it holds that DN Pad (c) = χ with χ = diag(χI (1), . . . , χI (3Nt − 2)). In order to
save computational e�ort, the system is �rstly solved on the inactive set I, where DNG (c) is
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symmetric, using the Steihaug-cg method [29]. Finally the components on the active set can be
easily obtained by adding the last residual, for background see [26, Algorithm 2]. Steihaug-cg is
embedded into a trust-region framework based on [29] and [26, Algorithm 3].

In case of a semismooth quasi-Newton method we approximate F ′′ using the Broyden-Fletcher–Goldfarb-
Shanno (BFGS) formula [23]

Bk+1 = Bk −
BksksTk Bk
sTk Bksk

+
ykyTk
yTk sk

,(13)

with sk = xk+1 − xk and yk = F′(Pad (ck+1)) − F′(Pad (ck )). The expression DNG (c)δc is then
replaced by (E+Bk+1χ )δc. The update is skipped if the trust-region step is rejected. For e�ciency,
we apply Bk+1 in the (matrix-free) limited-memory BFGS method using the compact form of [23]
and [7], which requires less storage and computational e�ort by storing only data from the last
LBFGS steps with a �xed limit LBFGS ∈ N.

We note that the presented trust-region semismooth Newton method coincides with the trust-
region Newton method of [1] in the absence of control constraints (5). In this case Pad (c) = c,
and the active set is empty.

3.2. Implementation

The optimal control approach is implemented in Matlab (The MathWorks, Inc., Natick, USA).
The Bloch state and adjoint solvers are parallelized in C using OpenMP and included using a
MEX �le. The computations are done on one node of the HPC Cluster "RADON 1" (RICAM Linz,
Austria) with 16 CPU cores with 2.4 GHz.

The parameters of the penalized objective are adapted automatically throughout the optimization.
Therefore, the maximum errors in the constraints (4), (6), (7) are de�ned

εд = max
m=2, ...,Nt

|дm−1 − дm |/(τsmax),

εout = max
z∈Ωout

|bNt |2/e,
εin = max

z∈Ωin
(1 − |bNt |2)/e,

εph = max
l=1, ...,L

max
z∈Sl
|φ − φ̄l |/ep .

(14)

Note that these errors are dimensionless and scaled to 1. Every 20th optimization step we adapt
the parameter µд by multiplication with min(10,max(0.3, 1 + 10(εд − 1))). Accordingly we
increase µд if д is not admissible to the slew rate constraint (εд > 1), keep µд if д is admissible
but active (εд = 1), and reduce it if the slew rate constraint is not active at all (εд < 1). The other
parameters (µout, µin, µp ) are adapted in the same way by exchanging εд with εout, εin, εph. This
technique ensures that the di�erent penalty terms remain balanced, and that the results are
insensitive to the initialization of the parameters. Initially we set µout = 105, µin = 104, µp = 1,
and µg = 1.

4. Results

In this section we demonstrate the application of the proposed design method to reduce the
overall RF pulse power using di�erent initial guesses in the �eld of SMS refocusing. We consider
four di�erent experiments for a varying number of slices and slice thicknesses. The initial
pulses are designed with six di�erent state of the art methods for SMS RF pulse design [3]
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Table 1: Parameters of the experiments. tr denotes the transition region
Example MB factor T Nt L Nz tr smax e |Ωin e |Ωout ep

ms mm mm T m−1 s−1

SUP MB3 3 10.42 515 60 2401 1.1 200 0.03 0.02 ∞
Root-�ipped MB6 6 8.41 258 36 961 1.2 200 0.05 0.04 ∞

PINS MB10 10 9.46 946 120 4801 1.2 200 0.03 0.02 0.01
Comparison MB5 5 6.02 602 125 5001 1.8 200 0.03 0.02 0.01

including a conventional superposition [22], superposition with VERSE [9, 15], PINS [24], PINS
with VERSE, MultiPINS [10] and root-�ipped SMS design [28]. For all simulations we assume
perfect spoiling for the computed refocusing pro�le in the spin-domain description [25]. Tab. 1
lists the parameters of the four examples. The peak amplitudes are generally set to rmax = 18
µT for B1, дmax = 24 mT m−1 for the gradient, and 200 T m−1 s−1 for the gradient slew rate. The
minimum gradient value дmin is set to −дmax. However, the second example below investigates
the in�uence of the choice of smax and дmin on the optimal solution. Typical spatial and the
temporal discretizations are chosen (50 to 75 µm and 10 to 40 µs). The excluded transition
regions are listed in Tab. 1 and shown graphically in Row 3 of Fig. 1-5 where black lines mark
the in-slice/out-of-slice error tolerance. In all examples we set дT = д0 determined by the used
initial guess. To compare the overall pulse power of the initials and the optimized RF pulse
candidates, we compute the (scaled) pulse power using

S = 104τ
Nt∑

m=1
r 2
m , [S] = 10−5T2s.(15)

As standard parameters for the optimization the exponent p in the penalization is initially set
to 2 and increased by a factor of 2 every 350th iteration of the quasi-Newton method (with
LBFGS = 30), which is shown below to be the preferable strategy in general. In addition, we give
the best results using individually tuned parameters per example. Whenever p is increased, ζ is
divided by 10 starting from ζ = 0.01.

4.1. Superposition (SUP) MB3

We designed a 180 degree single slice refocusing pulse based on the SLR [25] (in-slice and
out-of-slice error of 0.02, time bandwidth product (TBP) = 2.8 and slice thickness of 2 mm). To
generate a SMS refocusing pulse with a MB factor of three, we superposed three partially phase
shifted subpulses together with a constant Gs amplitude. The symmetry of the slices around
the isocenter leads to a real valued pulse, rather than a complex pulse. This RF pulse was scaled
to a maximal peak B1 amplitude of 18 µT resulting in a pulse duration of 10.42 ms and is shown,
together with a Bloch simulation, in the �rst row of Figure 1. The optimized results for this
example are given in the second row of Figure 1. The simulated refocusing pro�le is shown
for the full �eld of view (FOV) of 120 mm and in detail for the central slice in the third row of
Figure 1 with the non-optimized but still stable phase. The overall pulse power is reduced by
59% from initially S = 1.859 to S = 0.767 after the optimization.

Di�erent strategies for choosing the penalty exponent p were tested, see Tab. 2. In the upper
seven cases 3500 quasi-Newton iterations are performed in total. The optimized values of S for
the �rst three examples presented in this paper are depicted. As can be seen in the �rst three
rows, constant values of p do not allow to �nd a small pulse power. Especially, the classical
quadratic tracking in the �rst row cannot improve S within 3500 iterations.
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Figure 1: Optimization results and spin domain Bloch simulations for a MB3 pulse. Initial (Row 1)
and optimized (Row 2) RF and Gs (Re(RF) in blue, Im(RF) in yellow and Gs in red) with
refocusing pro�le |bNt |2. Zoom of the central slice (black lines mark the in-slice/out-
of-slice error tolerance) with phase angle(bNt ) (not part of the optimization) for the
optimized pulse (Row 3).

Table 2: Optimization results: optimized pulse power in dependence of the choice rule for p (in
Matlab colon notation). p is increased every maxit iteration (or stopping in case of
maximum p)

choice rule maxit optimized pulse power S
for p SUP MB3 RF MB6 PINS MB10

2 3500 1.859 4.501 1.697
25 3500 0.931 3.087 1.087
210 3500 1.298 4.501 0.929
21:10 350 0.767 2.199 0.819
41:5 700 0.768 2.240 0.828
24:10 500 0.770 2.232 0.851
81:4 875 0.799 2.433 0.879

21:10 100 1.577 2.632 1.697
21:10 250 0.771 2.237 0.840
21:10 350 0.767 2.199 0.819
21:10 450 0.797 2.184 0.816
21:10 500 0.805 2.168 0.914
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Figure 2: Optimization results and spin domain Bloch simulations for a MB6 pulse. Initial (Row 1)
and optimized (Row 2) RF and Gs (Re(RF) in blue, Im(RF) in yellow and Gs in red) with
refocusing pro�le |bNt |2. Zoom of the central slice (black lines mark the in-slice/out-
of-slice error tolerance) with phase angle(bNt ) (not part of the optimization) for the
optimized pulse (Row 3)

In contrast, the proposed strategy of increasing p from a small initial value to a large value
performs well, independently of the particular protocol, see rows four to seven. The best results
were gained with the strategy p = 2k ,k = 1, . . . , 10. The lower part shows that the number of
350 iterations is a reasonable choice for that strategy. Therefore, this strategy is applied for all
other optimization results throughout the paper. We observed that larger values p > 1024 lead
to many more iterations without a signi�cant gain. However, we mention the best observed
run for this example, which yielded a power S = 0.744 with individually tuned parameters
p = 2k ,k = 1, . . . , 12 with maxit = 500 and LBFGS = 180.

4.2. Root-flipped MB6

For this example we used a SMS refocusing pulse designed with the root-�ipped method [28]
as an initial guess for the numerical optimization together with a constant Gs amplitude. This
complex RF pulse refocuses six slices with a slice thickness of 1.75 mm and TBP = 4. Scaled to a
peak B1 amplitude of 13 µT, the pulse duration results in 9.46 ms with S = 4.501. By optimization
the pulse power was reduced down to approximately S = 2.2 corresponding to a SAR reduction
of 51%. Below we show that the reduction can even be increased to 77%. This best solution is
plotted together with the initial guess in Figure 2. Bloch simulations at the terminal time of
the spoiled refocusing pro�le are given for the full FOV = 72 mm and in detail for one slice
together with the refocusing phase. Please note, that the phase was intentionally not part of the
optimization.
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Table 3: Optimization results: optimal pulse power in dependence of the optimization method.
maxit is the iteration per step for p, i.p. denotes individually tuned parameters per
example.

optimization method maxit optimized pulse power S
SUP RF PINS
MB3 MB6 MB10

semism. Newton, p = 22:7 300 1.471
semism. Newton i.p. 1.041
semism. BFGS, LBFGS = 10 350 0.790 2.257 0.997
semism. BFGS, LBFGS = 30 350 0.767 2.199 0.819
semism. BFGS, LBFGS = 50 350 0.763 2.172 0.813
semism. BFGS, LBFGS = 80 350 0.761 2.163 0.808
semism. BFGS, LBFGS = 200 i.p. 0.744 1.166 0.803

Table 4: Optimization results for a MB6 pulse: optimal pulse power S in dependence of the
maximum slew rate smax and the minimum gradient �eld дmin.

smax дmin optimized S SAR reduction

200 −24 2.199 51.1%
100 −24 2.248 50.1%
50 −24 2.357 47.6%
30 −24 2.458 45.4%
10 −24 2.683 40.4%

200 −24 2.199 51.1%
200 0 2.211 50.9%
200 1 2.289 49.1%
200 2 2.621 41.8%
200 2.3 2.896 35.7%
200 2.3091 2.901 35.6%

Here, we compare di�erent values of the limit parameter LBFGS for the limit-memory BFGS,
as well as the full semismooth Newton method, see Tab. 3. As can be seen from the table,
LBFGS = 10 does not improve the pulse power satisfactorily. In contrast, LBFGS = 30 already
yields very small values in a computation time of 2.3 min. Further increasing the limit in the
BFGS method yields slightly better results at the costs of a higher computational e�ort. Due to
this trade-o� we decided to use LBFGS = 30 in all other optimization results. However, if much
more computational time can be invested, the SAR of the MB6 pulse can be even reduced by
74% using individually tuned parameters. Then, the pulse power is reduced to S = 1.166 using
p = 2k ,k = 1, . . . , 10 with maxit = 5000 and LBFGS = 200 leading to a computation time of 55
min. On the other hand, the exact Hessian within the semismooth Newton method allows for the
best power values that were observed at the cost of an increased numerical e�ort. Here, we �nd
S = 1.471 in the standard con�guration (300 iterations per step for p = 2k ,k = 2, . . . , 7) with a
computation time of about 2h (with standard Matlab parallelization instead of C/OpenMP).
With individually tuned parameters the semismooth Newton method gives S = 1.041 which is a
reduction of 77% of the pulse power.

The in�uences of the maximum slew rate smax and the minimum gradient дmin on the gain of
the optimal solution are depicted in Tab. 4. With smaller smax the SAR reduction decreases
slightly from 51% down to 40%. An increase of дmin up to 1 does not in�uence the optimal
SAR signi�cantly, which is related to the given boundary conditions д0 = дT = 2.31. However,
larger values decrease the SAR reduction signi�cantly. The optimal solutions for di�erent smax
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are depicted in Fig. 3. It can be seen that the slew rate is hitting the constraint at many time
instances and in all settings. With smaller smax the gradient waveform gets smoother, while the
maximum RF amplitude increases slightly. All optimal solutions show a good slice pro�le, one
that is admissible to the underlying inequality constraints. Up to now the lower constraint on
д was never active due to дmin = −24. In contrast, Figure 4 shows the optimized results with
di�erent tight constraints on the minimal gradient amplitude ({0, 1, 2.31} mT m−1) and standard
parameters. As can be seen, the lower bound constraint on д is active at many time instances,
especially for дmin = 2.31.
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Figure 3: Optimized MB6 RF pulse (Re(RF) in blue, Im(RF) in red), slice-selective gradient Gs and
gradient slew rate for di�erent maximum values of s: smax ∈ {100, 50, 10} T m−1 s−1.
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(black lines mark the in-slice/out-of-slice error tolerance) with phase angle(bNt ) for
the optimized pulse (Row 3)

4.3. PINS MB10

For the third example we designed a SMS refocusing pulse applying the PINS method [24] on
a SLR based 180 degree refocusing pulse (in-slice and out-of-slice error of 0.02, TBP = 3, slice
thickness of 2 mm). Accordingly, the Gs amplitude is built up of regular PINS blips, see the
upper left plot of Figure 5. Here, we include phase constraints with a maximum phase deviation
of ep = 0.01 rad from the mean phase per slice. This PINS refocusing pulse was scaled to a peak
B1 amplitude of 18 µT producing T = 10.36 ms. The optimized real valued controls are given in
Figure 5 together with the used initial and Bloch simulations with FOV = 240 mm.

The power of the shown RF pulse was reduced to S = 0.819 by roughly 53% compared to the
inital PINS guess. With individually tuned parameters we even �nd S = 0.803 with p = 2k ,k =
1, . . . , 12, maxit = 500 and LBFGS = 170. For each example the reduction of the required pulse
power is depicted in Tab. 5. The last three rows of Tab. 5 contain the optimization results without
joint control, i.e. when only the RF pulse is controlled while д is kept �x at its initialization.
For the superposition pulse with a �xed and constant д the reduction in the pulse power S is
limited, while for the root-�ipped pulse we observe a good reduction of 35% (compared to 51%
reduction for joint control). In case of PINS initialization, keeping the non-constant д �xed
yields a reduction of 46% which is just slightly below the value of 53% that was observed for
joint control.
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Table 5: Pulse power S of initial and optimized pulse with standard parameters and with indi-
vidually tuned parameters/method.

Example initial S optimized S SAR reduction

PINS 1.724 0.819 52.5%
PINS best 1.724 0.803 53.4%

SUP 1.859 0.767 58.7%
SUP best 1.859 0.744 60.0%

Root-�ipped 4.501 2.199 51.1%
Root-�ipped best 4.501 1.041 76.9%

PINS (д �xed) 1.724 0.925 46.3%
SUP (д �xed) 1.859 1.471 20.9%

Root-�ipped (д �xed) 4.501 2.927 35.0%

4.4. Comparison of di�erent initializations for MB5

In a �nal study we compare the performance of the optimization method for di�erent initial-
izations (superposition, superposition with VERSE, PINS, PINS with VERSE, and MultiPINS).
For an intermediate MB factor of 5, these �ve initializations can be designed with the same
duration (T = 6.02 ms) and comparable slice pro�le properties (slice thickness 2 mm, TBP = 2,
maximum in-slice and out-of-slice error, and maximum phase error, see Tab.1) resulting in
di�erent peak B1 amplitudes and RF power (see Tab.6). The boundary conditions are in general
set to д0 = дT = 0, which is implemented with a ramp-up/ramp down for the superposition
pulse to reach the constant gradient of 4.65 mT m−1, respectively 5.00 mT m−1 with VERSE.
Furthermore, the peak B1 for the superposition pulse is projected down to the allowed maximum
of 18 µT. The optimized pulse power S is shown in the last two columns of Tab.6 for standard
parameters in the optimization (column S) and for LBFGS = 200, p = 2k ,k = 1, . . . , 12 with each
350 iterations (column S best). Depicted are also the maximum errors of the slice pro�le.

In the �rst two rows the superposition pulse without and with VERSE are compared. We see
that the version with VERSE allows for a smaller pulse power S after optimization. The last three
rows show that the optimization method yields the best power values for PINS, PINS with VERSE
and MultiPINS pulses. While their initial values for S are di�erent, the optimized values in the
last column coincide for these three initialization. However, the optimized pulses behind these
power values are very di�erent. The maximum errors in the optimum are increased out-of-slice
and in the phase, however, the maximum allowed errors are in most cases not attained. The
maximum in-slice errors of the initializations and the optima agree and are at the bound 0.03.

4.5. Experimental validation

Figure 6 contains the experimental validation of the optimized refocusing pulse and Gs shape
for MB3 using a superposition initial (Figure 1), MB5 using a MultiPINS initial (not shown)
and MB10 using a PINS initial (Figure 5), on a 3T MR scanner (Magnetom Skyra, Siemens
Healthcare, Erlangen, Germany). The data is acquired with a 2D spin echo sequence (TE =
25 − 30 ms, TR = 100 ms, FOV = 300 mm × 300 mm, matrix = 1536 pixel × 1536 pixel (922
phase encoding steps), readout bandwidth = 130 Hz/pixel) with conventional superposed SMS
excitation pulses using a cylindrical phantom. Figure 7 contains a zoomed view to one slice of the
experimental phantom data shown in Figure 6 and compares it to numerical Bloch simulations
of the optimized refocusing pulses. Figure 8 shows the in-vivo reconstruction of the measured
slice pro�les (optimized MB3) as described above with a TR = 200 ms and a matrix of 512 pixel ×
512 pixel with a measured head SAR of 0.288 W kg−1 (0.512 W kg−1 for the initial MB3 pulse).
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Table 6: Performance of the optimization method for di�erent initializations for an MB5 ex-
ample. Depicted are the maximum errors and the pulse power S both for the initial
and optimized pulse. The maximum errors were constrained by 0.03 in-slice, by 0.02
out-of-slice , and by 0.01 in the phase constraint.

initial
Initialization error error error max |B1 | S

in-slice out-of-slice phase µT 10−5T2s

SUP 0.0318 0.0142 0.0031 18 1.9531
SUP VERSE 0.0297 0.0016 0.0010 14 1.4461

PINS 0.0294 0.0010 0.0009 13 1.1301
PINS VERSE 0.0297 0.0014 0.0008 13 0.9967
MultiPINS 0.0297 0.0016 0.0009 8 0.7262

optimized
Initialization error error error S S best

in-slice out-of-slice phase 10−5T2s 10−5T2s

SUP 0.0300 0.0066 0.0100 0.7712 0.7677
SUP VERSE 0.0300 0.0200 0.0032 0.5603 0.5556

PINS 0.0300 0.0116 0.0030 0.4163 0.4108
PINS VERSE 0.0300 0.0146 0.0093 0.4578 0.4093
MultiPINS 0.0300 0.0200 0.0032 0.4144 0.4127

5. Discussion

We presented a general framework for optimal control based joint design of RF pulses and
gradient waveforms for MRI. The framework is �exible in the primary optimization goal, which
was chosen as SAR reduction in the examples above, and in the desired magnetization pro�le.
The latter can range from a conventional single slice in the isocenter, to asymmetric or o�-
resonance pro�les, or SMS. While we included the most important inequality constraints for RF
pulse design, it is possible to add other constraints and treat them with the presented penalization
method. Otherwise, constraints can also be turned o� by choosing an in�nite bound.

The examples were chosen in the context of SMS imaging, where the pulse power and peak B1
amplitude are easily exceeded and complying the hardware constraints is crucial for practical
applications. Therefore, the optimal control method was tested in the numerical experiments
focusing on SAR reduction of several SMS refocusing pulses for various slice thicknesses, time
bandwidth products and a slice acceleration factor ranging from MB3 to MB10. The initial pulses
are designed with di�erent methods, with conventional superposition [22], VERSE [9, 15], root
�ipping [28], PINS [24] and MultiPINS [10] with SLR based subpulses [25]. We investigated
four di�erent examples for low (MB3), intermediate (MB5 and MB6) and large (MB10) slice
acceleration factors. PINS pulses for low MB factors and superposition pulses for large MB factors
typically have a very long pulse duration. Therefore we chose to use MB3 superposition pulses
for low and MB10 PINS pulses for large MB factors only and compare di�erent initialization
methods (SUP, SUP VERSE, PINS, PINS VERSE and MultiPINS) for the intermediate MB5 case.
The root �ipping pulse is excluded from this comparison and investigated separately for MB6
as it creates refocusing pro�les with a non linear phase.

The results show that the proposed optimal control model and method can reduce the pulse
power dramatically. The overall power of the initial pulses was reduced by roughly 58 percent
for SUP MB3 and 52 percent for PINS MB10 (and by 77 percent for the RF MB6 pulse with a
higher tolerance ein and eout , see Tab. 1). Please note that the initial power of the PINS pulse
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Figure 6: Reconstructed experimental data for the optimized MB3, MB5 and MB10 candidates.

already lies in the range of the MB3 pulse designed with superposition. As can be seen in the
Figures 1-5 the optimal waveforms vary in their shape, and hence depend on the initialization.
The �gures show that the maximum and mean B1 amplitude is reduced and the slice-selective
gradient is modulated. While the initial PINS already uses a time varying Gs, the optimized
superposition and in particular the optimized root �ipped example introduce �uctuating Gs
curves from constant initializations. The extent of the �uctuations in Gs changes with the
prescribed maximum gradient slew rate, see Fig.3, and small �uctuations give a slightly reduced
but still signi�cant reduction in the pulse power, see Tab. 4. Even a constant and �xed Gs
allows for a signi�cant reduction of the pulse power for the root �ipped initialization, but only
a slight reduction for the superposition pulse, see Tab. 5. Keeping the non-constant Gs from
PINS initialization �xed allows for nearly the same reduction of the pulse power as with the
joint control. Accordingly, joint control is always bene�cial, but the gain varys with the speci�c
examples.

Five di�erent initializations were compared for an intermediate MB factor of 5 with a uniform
pulse duration and comparable error properties. The pulse power was heavily reduced in all
cases while the maximal in-slice errors εin remained the same. An increase in the out-of-slice
errors εout and phase errors εph was observed, but it remained below the prescribed error bounds
of 2% and 0.01 radians, respectively. A superposition pulse with VERSE yielded S ≈ 0.56 and

15



distance in mm

-4 0 4

a
.u

.

MB3

distance in mm

-4 0 4

a
.u

.

MB5

distance in mm

-16 -12 -8

a
.u

.

MB10

Figure 7: Simulated refocusing pro�le (solid line) and experimental phantom data (crosses) of
the phantom measurements shown in Figure 6 for MB3 (zoom to one slice).

in
-v

iv
o

Figure 8: Reconstructed experimental data for in-vivo measurements using the optimized MB3
pulse.

therefore outperformed the same pulse without VERSE (S ≈ 0.77). However, much better power
values of S ≈ 0.41 were observed for optimized PINS, PINS with VERSE and MultiPINS pulses.
Therefore, it seems that the optimal control method performs best with PINS based initializations,
especially for large MB factors.

These improvements in the pulse power were possible by allowing a controlled deviation of 3%
and 5% for the slice pro�le accuracy along with 2% and 4% for the out-of-slice region compared
to an ideal rectangular refocusing with a transition zone excluded from the optimization. For
two of the examples (SUP MB3 and PINS MB10) this formulation results in a slightly steeper
refocusing pro�le for the optimized refocusing compared to the initial. Figures 1-5 show that the
controlled deviation is not exceeded anywhere in the observation domain. In other words, the
pro�le constraints are ful�lled exactly, which is an achievement of the presented penalization
technique.

Two second-order methods of numerical optimal control were introduced, that both use adjoint-
based exact discrete derivatives, also for the second derivative. The precise derivative information
allows for better progress when approaching the minimizer. For robustness of the optimization
method w.r.t. the initialization and the problem parameters we embedded the Newton-type
method into a trust-region framework using the Steihaug-CG method. Additionally, Steihaug-
CG reduces the computational e�ort of Newton-type methods, since it saves many Hessian
evaluations in the �rst phase of the optimization. In the second phase of the optimization both
methods pro�t from an increased convergence order compared to �rst-order methods. To save
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computational e�ort, both methods were applied as a Newton-Krylov method with a matrix-free
evaluation of the Hessian. By semismooth Newton techniques the inequality constraints on the
control variables were included into the optimization without increasing the numerical e�ort.
The parameters of the optimization method were adapted automatically, or calibrated in the
numerical experiments shown above. With these parameters the semismooth quasi-Newton
method yields good results in short computational time. In contrast, the semismooth Newton
method which uses increased computation time gives the best results.

Two examples for turbo spin echo sequences included explicit phase constraints, whereas the
two other examples, intended for double refocused di�usion sequences, did not constrain the
phase of the refocusing pro�le. The in�uence of the phase constraints on the optimal solutions
is less severe than expected and the optimized cases lead to similar power reductions in the
range of 50% for the standard constraints (Tab. 4).

The prescribed amplitude constraints on the optimized RF pulse, the gradient and its slew
rate ensure practical applicability on MR scanners. Due to the semismooth Newton method as
well as the penalization technique, all these constraints are never exceeded in the optimum.
More closely, the results show that the maximum values for the B1 amplitude and gradient
strength were not attained in the optimal solution. This is due to the fact, that the reduction
of the pulse power and the boundary conditions for the gradient already pull the maximum
value downwards. However, both these constraints become active for examples with smaller
maximum values, di�erent boundary conditions, and especially for smaller pulse durations. In
contrast, we observe that the slew rate constraint is active in any of the investigated scenarios,
which can e.g. be seen in Fig. 3. A nonnegative minimum gradient value is also in e�ect for
large pulse durations, as can be seen in Fig. 4. If the minimum gradient value gets too large, the
possible reduction of the pulse power is decreased signi�cantly, as can be seen for дmin = 2.31
in Tab. 4.

The pulses were designed based on the spin-domain description neglecting the relaxation e�ects.
To justify this simpli�cation we performed full Bloch simulations [14] for the optimized pulses
and compared the simulations to the spin-domain results. The relaxation times were set to those
of the cylindric phantom (T1 = 102 ms,T2 = 81 ms) used in the experiment. In all simulations, the
refocusing pro�les of the optimized examples do not degenerate signi�cantly in the presence
of relaxation. We see a simple scaling of the refocusing pro�les, similar to conventional RF
pulses for short T2 values. The e�ects of T1 is an increase of the refocusing error outside of the
slices, which is compensated by the T2 relaxation and remains below the allowed deviation for
each example. Since the T1 relaxation times of typical in-vivo tissue are even higher and their
in�uence on the refocusing pro�les are negligible. These �ndings have been veri�ed by the
experimental phantom measurements.

The experimental validation was done on a 3T scanner exchanging the excitation and refocusing
pulse of a standard crushed spin echo sequence for a cylindrical phantom (MB3, MB5 and MB10)
and in-vivo (MB3). Changing the readout gradient to the slice direction allows for a direct
measurement of the simultaneous excited and refocused slices. The small inter slice ripples of
the optimized refocusing pulses can be neglected for a real measurement as standard excitation
pulses produce no marked transversal magnetization at these inter slice positions and the
refocused magnetization would be weighted by a factor of sin(θ/2)2 with a spatially dependent
but low inter slice refocusing �ip angle θ . Due to the adequate choice and implementation of
the slew rate constraint, the �uctuating Gs shapes were implementable, and the measured slice
pro�les �t very well to the Bloch simulations for all measurements. The measured whole body
SAR includes the non optimized excitation pulse and is therefore lower than the calculated
power reduction of the optimized MB3 refocusing pulse. The good accordance of the simulations
and the measurements shows the practical applicability of the optimized pulses on a standard
clinical scanner. Using the speci�c hardware constraints of the desired MR system simpli�es
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the application of optimized pulses since no further modi�cations or transformations have to
be done, that moreover could reduce the optimality.

In simulations we compared the robustness of the optimized pulses w.r.t. inhomogeneities in B0
and B1 to the one of the initial pulses. The initial pulse and gradient pairs have a constant k-space
excitation velocity and constant B0 inhomogeneities lead to a constant spatial shift. Despite the
time varying slice-selective gradient of the optimized examples, which is known to be prone to
o�-resonance e�ects, the pro�le �delity remains almost unchanged in the range of ±500 Hz and
the impact of the chemical shift (400 Hz at 3 T) is negligible. For applications with larger B0
inhomogeneities, the minimal amplitude constraint of the slice selective gradient can be increased
or Gs can be �xed to enhance o�-resonance robustness at the cost of a decreased power reduction.
To investigate the in�uences of a temporal mismatch between the RF and slice selective gradient
and eddy currents on the refocusing pro�les, Bloch simulations were performed using a temporal
shift of the slice selective gradient shape with respect to the RF pulse (up to 10 µs) and a �rst order
low pass �ltering (normalized numerator and denominator of 0.5) of the slice selective gradient
shape. Both e�ects led to a symmetric decrease of the refocusing e�ciency in dependence of
the distance to the isocenter. Compared to the used initials with constant or repetitive gradient
functions, the fast changes in the optimized slice selective gradient are more prone to these
e�ects. However, such a behavior is not observable in the experimental phantom measurements
and leads to the conclusion that the optimized examples can be successfully implemented on
the used MR scanner without special compensation techniques. To decrease the sensitivity of
gradient imperfections of the optimized results, it should be possible to incorporate this directly
in the optimization by enforcing a smoothness constraint on the slice selective gradient or to
directly include the gradient impulse response [35]. In the context of B1 inhomogeneities all
optimized examples behave similar as the initial pulses and lead to a smooth transition of higher
and lower �ip angles for a static B1 increase or reduction, respectively. Furthermore, we do
not expect an additional proneness to small in-plane and through-plane motion compared to
conventional RF pulses. The same holds for movements between the excitation and the read-out.
However, to reduce the in�uences of motion artifacts it should be considered to reduce the
overall refocusing time.

If the pulse power is not the primary restriction, then the pulse duration can be decreased instead
while keeping the pulse power. The reduction of the refocusing time is of high importance in
SMS imaging and was chosen to be the topic of the 2015 ISMRM Challenge [13]. In this direction
the next step is to minimize the pulse duration by time-optimal control [27] in order to �nd the
shortest possible pulses that ful�ll the given inequality constraints.

6. Conclusions

The modeling of the pro�le accuracy with inequality constraints together with a customized
solution method allows for the computation of optimal RF pulses and slice-selective gradients,
that outperform other approaches in the performance index. Moreover, the usage of constrained
optimization guarantees for practical applicability and a direct implementation in clinical MR
sequences.
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A. Lagrange calculus in the spin domain

The adjoint based derivative is set up using a real-valued Lagrangian together with the Wirtinger
calculus. Therefore we introduce the complex RF pulseUm = um + ivm = rmeiϑm . The Lagrange
multipliers for the discrete Bloch equation (1) are called pm ,qm ∈ C for m = 1, . . . ,Nt . The
control constraints (5) are kept explicitely. The Lagrangian of the penalized problem is de�ned
in the usual way depending on the control variables rm ,ϑm ,дm , the state variables am ,bm and
the Lagrange multipliers pm ,qm as

L = τ2
Nt∑

m=1
r 2
m + ζϑ

2
m + ζд

2
m +

δµout
2p

∑

zj ∈Ωout

( |bNt |2
e

)p
+
δµin
2p

∑

zj ∈Ωin

( |bNt |2 − 1
e

)p

+
δµp

p

L∑

l=1

∑

zj ∈Sl

(
φ − φ̄l
ep

)p
+
τ µд

p

Nt∑

m=2

(
дm − дm−1
τsmax

)p

−
∑

zj ∈Ω
<

{
Nt∑

m=1

(
am − αmam−1 + β

∗
mbm−1

)
p∗m +

(
bm − βmam−1 − α∗mbm−1

)
q∗m

}

.

A compact form of the �rst-order necessary conditions can be derived e�ciently using the
Wirtinger calculus. In particular, for a Lagrangian of the form L = <(LC) with a complex-
valued expression LC the derivatives w.r.t the real and imaginary part Z1,Z2 of a complex
variable Z = Z1 + iZ2 can be combined to

∂L
∂Z1
+ i
∂L
∂Z2
=
∂LC

∂Z ∗
+

(
∂LC

∂Z

)∗

using the Wirtinger derivatives [11] of a function f : C→ C,Z = Z1 + iZ2 7→ f (Z )

∂ f

∂Z
=

1
2

(
∂ f

∂Z1
− i ∂ f
∂Z2

)
,

∂ f

∂Z ∗
=

1
2

(
∂ f

∂Z1
+ i
∂ f

∂Z2

)
.

In our case LC does not depend on pm ,qm ,a
∗
m ,b

∗
m . Therefore the state equations (1) are easily

recovered by di�erentiation w.r.t. p∗m ,q∗m . Analogously di�erentiating w.r.t. am and bm and
complex conjugation gives the adjoint Bloch equations

pm = α
∗
m+1pm+1 + β

∗
m+1qm+1,

qm = −βm+1pm+1 + αm+1qm+1,

for m = 1, . . . ,Nt − 1 and pointwise in each zj ∈ Ω. For the terminal condition in case of a
refocusing pulse both Wirtinger derivatives w.r.t. bNt and b∗Nt

have to be evaluated. Depending
on the location zj we �nd pNt = 0 and

qNt =
µoutδ

e
χΩout

( |bNt |2
e

)p−1
bNt

+
µinδ

e
χΩin

( |bNt |2 − 1
e

)p−1
bNt +


NMB∑

l=1
χSl

δµp

e


(
φ − φ̄l
ep

)p−1
− 1
Nl

∑

zk ∈Sl

(
φ (zk ) − φ̄l
ep (zk )

)p−1
2

ibNt

b∗Nt
bNt

.

19



The last fraction stems from the chain rule using the derivative of the arctan function in
φ = arg(b2

Nt
). Moreover, χSl is the characteristic function of the in-slice set Sl = {zl1, . . . , z

l
Nl

}
with Nl points and mean phase φ̄l =

∑Nl
k=1 φ (z

l
k )/Nl .

The gradient of the reduced objective j′ = Ex + F′(x) is given by the partial derivatives w.r.t the
control variables. Its components are given by chain rule for the polar coordinates

∂L
∂rm
= τrm +

∂L
∂um

cos(ϑm ) +
∂L
∂vm

sin(ϑm ),

∂L
∂ϑm

= ζτϑm − ∂L
∂um

rm sin(ϑm ) +
∂L
∂vm

rm cos(ϑm ),

form = 1, . . . ,Nt and by ∂L
∂дm

,m = 2, . . . ,Nt − 1, which is computed below. Each �rst term is
collected in Ex, and the other terms constitute F′(x). In these equations we need

∂L
∂um

= <
(
∂LC

∂Um
+
∂LC

∂U ∗m

)
,
∂L
∂vm

= =
(
∂LC

∂U ∗m
− ∂LC

∂Um

)
.

With ∂α ∗m
∂ϕm
=

(
∂αm
∂ϕm

)∗
and analogously for βm the result is

∂L
∂um

=γ 2τ 2umRm − γτ=(Qm ), m = 1, . . . ,Nt ,

∂L
∂vm

=γ 2τ 2
vmRm − γτ<(Qm ), m = 1, . . . ,Nt ,

with

Qm =
∑

zj ∈Ω
sin(ϕm/2)

1
ϕm

(
am−1q

∗
m − b∗m−1pm

)
,

Rm =
∑

zj ∈Ω

1
ϕm
<

{ (
am−1p

∗
m + b

∗
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) ∂αm
∂ϕm

+
(
am−1q

∗
m − b∗m−1pm

) ∂βm
∂ϕm

}

,

∂αm
∂ϕm

= i
γτzдm
ϕm

(
cos(ϕm/2)

2 − sin(ϕm/2)
ϕm

)
− sin(ϕm/2)

2 ,

∂βm
∂ϕm

= i
γτ (um + ivm )

ϕm

(
cos(ϕm/2)

2 − sin(ϕm/2)
ϕm

)
.

Di�erentiation w.r.t. дm gives �nally

∂L
∂дm

= ζτдm +
∑

zj ∈Ω
<

(am−1p
∗
m + b

∗
m−1qm )

∂αm
∂дm

+ (am−1q
∗
m − b∗m−1pm )

∂βm
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+
µд
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(
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τsmax
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− µд
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(
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,

form = 2, . . . ,Nt − 1 and with

∂αm
∂дm

=
γτz

ϕm

(
i sin(ϕm/2) + γτzдm

∂αm
∂ϕm

)
,

∂βm
∂дm

=
(γτz)2

ϕm
дm
∂βm
∂ϕm
.
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