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Abstract. A procedure for the numerical approximation of high-dimensional Hamilton-Jacobi-
Bellman (HJB) equations associated to optimal feedback control problems for semilinear para-
bolic equations is proposed. Its main ingredients are a pseudospectral collocation approximation
of the PDE dynamics, and an iterative method for the nonlinear HJB equation associated to the
feedback synthesis. The latter is known as the Successive Galerkin Approximation. It can also
be interpreted as Newton iteration for the HJB equation. At every step, the associated linear
Generalized HJB equation is approximated via a separable polynomial approximation ansatz.
Stabilizing feedback controls are obtained from solutions to the HJB equations for systems of
dimension up to fourteen.

1. Introduction

Optimal feedback controls for evolutionary control systems are of significant practical im-
portance. Differently from open-loop optimal controls, they do not rely on knowledge of the
initial condition and they can achieve design objectives, as for instance stabilisation, also in
the presence of perturbations. Furthermore, the online synthesis of feedback control can be
implemented in a real-time setting. It is well-known that their construction relies on special
Hamilton-Jacobi-Bellman (HJB) equations, see for instance [4, 17]. The solution of the HJB
equation is the value function associated to the optimal control problem, and its gradient is used
to construct the optimal feedback control. In the very special, but important case of a linear
control system with quadratic cost without constraints on the control or the state variables,
the HJB equation reduces to a Riccati equation which has received a tremendous amount of
attention, both for the cases when the control system is related to ordinary or to partial differ-
ential equations. Otherwise one has to deal with the HJB equation which is a partial differential
equation whose spatial dimension is that of the control system. Thus optimal feedback control
for partial differential equations leads to HJB equations in infinite dimensions [16]. After semi-
discretization in space of the controlled partial differential equation (PDE), the HJB equation
is posed in a space of dimension corresponding to the spatial discretization of the PDE [18]. For
standard finite element or finite difference discretizations this leads to high-dimensional HJB
equations. This is one of the instances which is referred to as the curse of dimensionality [9].

Many attempts to tackle the difficulties posed for numerically solving the HJB equations
arising in optimal control have been made in the past or are currently being investigated. We
refer, for instance, to [17], which mainly focuses on semi-Lagrangian schemes, and further ref-
erences given there. A related approach to numerical optimal feedback control of PDEs is to
semi-discretize the dynamics and to add a model order reduction step, either with Balanced
Truncation or Proper Orthogonal Decomposition, in order to reduce the dimension of the dy-
namics to a number that is tractable for grid-based, semi-Lagrangian schemes. This approach
has been successfully explored, for instance, in [1, 26, 29] and references therein. It strongly
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2 D. KALISE AND K. KUNISCH

relies on a trustworthy representation of the dynamics via low-dimensional manifolds. Such
a low-dimensional representation may deteriorate when nonlinear and/or advection effects are
relevant. Thus, it is important to strive for techniques, or combinations of techniques, which
allow to solve higher dimensional problems.

Another direction of research evolves around generalizing the Riccati-based approach to allow
for nonlinearities in the state equation. One such technique is termed state-dependent Riccati
equation [15]. Here the coefficients in the ’ordinary’ Riccati equation are functions of the state
rather than constants as in the case of linear state equations. Another approach realizes the fact
that the Riccati equation can be interpreted as the equation satisfied by the first term arising
in the power series expansion of the value function, and attempts to improve by realizing also
higher order terms in the expansion. These methods are succinctly explained in [7].

Yet another technique which has received a considerable amount of attention is termed Suc-
cessive Galerkin Approximation. Roughly speaking, the nonlinear HJB equation associated to
the continuous-time optimal control problem is solved by means of a Newton method. At each
iteration, the control law is fixed. This leads to a Generalized Hamilton-Jacobi equation (GHJB)
which is linear. The iteration is closed by an update of the control law based on the gradient
of the value function. This method was intensively investigated in [5, 6], see also [7], and the
references given in these citations. It is worth to mention that the discrete-time counterpart of
this method corresponds to the well-known policy iteration or Howards’ algorithm [25, 11, 2].

The numerical examples in [5, 6, 7] do not go beyond dimension five, and most, if not all,
of the published numerical results for nonlinear HJB equations do not exceed dimension eight
[10, 20, 22]. An alternative sparse grid approach for high-dimensional approximation of HJB
equations based on open-loop optimal control has been presented in [27], with tests up to
dimension six. Numerical methods relying on tensor calculus have been shown to perform well
in high-dimensional settings where the associated HJB equation is a linear PDE [34].

In the present paper, to solve optimal control problems for certain classes of semilinear par-
abolic equations we shall proceed as follows. To accommodate the curse of dimensionality, the
discretization of the PDE is based on a pseudospectral collocation method, allowing a higher
degree of accuracy with relatively few collocation points. To solve the resulting HJB we utilize
a Newton method based on the GHJB equation as described above. Next, the discretization of
the GHJB equation is addressed through a Galerkin approximation with polynomial, globally
supported, ansatz functions. While this mitigates the curse of dimensionality in terms of remov-
ing the mesh structure, it leads to high-dimensional integrals. We therefore resort to separable
representations for the system dynamics and for the basis set of the polynomial approxima-
tion. The separability assumption reduces the computation of the Galerkin residual equation
to products of one-dimensional integrals. The combination of these procedures allowed us to
solve HJB equations related to nonlinear control systems up to dimension fourteen by means
of basic parallelization tools. The successful use of the Newton procedure requires to provide
a feasibly initialization, i.e. a sub-optimal, stabilizing control. Since we do not consider con-
straints, this is not restrictive for finite horizon problem, but can be challenging for infinite
horizon problems, and specifically for the stabilization problems which are considered in the
present paper. In this respect we developed a continuation procedure based on the use of a
discount factor. Specifically, we consider a nested iterative procedure: within the outer loop
the value of a positive discount factor is driven to zero, within the inner loop the HJB equation
is solved approximately for a fixed discount factor. With this approach, which, is summarized
in Algorithms 1 and 2 below, we managed to solve optimal feedback stabilization problems for
semilinear parabolic equations with different stability behavior of the desired steady state.
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Let us give a brief outline of the paper. Section 2 sets the stage and provides the discussion of
a special case to facilitate the understanding of the following material. In Section 3 the solution
process of the HJB equation is detailed. In Section 4 we provide the formulas which are needed
to numerically realize the discretized HJB equation after a separable basis has been chosen.
Numerical experiments are documented in Section 5. There we can also find comparisons to
suboptimal feedback strategies based on Riccati and asymptotic expansion techniques.

2. Infinite horizon optimal feedback control

We consider the following undiscounted infinite horizon optimal control problem:

min
u(·)∈U

J (u(·), x0) :=

∞∫
0

`(x(t)) + γ|u(t)|2 dt

subject to the nonlinear dynamical constraint

ẋ(t) = f(x(t)) + g(x)u(t) , x(0) = x0,

where we denote the state x(t) = (x1(t), . . . , xd(t))
t ∈ Rd, the control u(·) ∈ U , with U =

{u(t) : R+ → U ⊂ Rm}, the state running cost `(x) > 0, and the control penalization γ > 0.
Furthermore, we assume the running cost and the system dynamics f(x) : Rd → Rd and
g(x) : Rd → Rd to be C1(Rd). Throughout it is assumed that f(0) = 0 and `(0) = 0. Our focus
is therefore asymptotic stabilization to the origin.

It is well-known that the optimal value function

V (x0) = inf
u(·)∈U

J(u(·), x0)

characterizing the solution of this infinite horizon control problem is the unique viscosity solution
of the Hamilton-Jacobi-Bellman equation

(1) min
u∈U
{DV (x)t(f(x) + g(x)u) + `(x) + γ|u|2} = 0 , V (0) = 0 ,

with DV (x) = (∂x1V, . . . , ∂xdV )t. Here we follow the convention of dropping the subscript of x0.
We study this equation in the unconstrained case, i.e., U ≡ Rm, where the explicit minimizer
u∗ of (1) is given by

(2) u∗(x) = argmin
u∈U

{DV (x)t(f(x) + gu) + `(x) + γ|u|2} = − 1

2γ
g(x)tDV (x) .

note that by inserting this expression for the optimal control in (1), we obtain the equivalent
HJB equation

(3) DV (x)tf(x)− 1

4γ
DV (x)tg(x)g(x)tDV (x) + `(x) = 0 ,

which under further assumptions can be simplified to the Riccati equation associated to linear-
quadratic infinite horizon optimal feedback control.

The methodology we present in this work is applicable to systems fitting the aforedescribed
setting, although for the sake of simplicity we restrict the presentation by the following choices:

(i) the control u(t) is a scalar variable, i.e. m = 1.
(ii) the running cost `(x) is quadratic, i.e. xTQx, with Q positive-definite,

(iii) the control term g(x) ≡ g is a constant vector in Rd.
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At this point, our setting differs from the linear-quadratic case as it allows nonlinear dynam-
ics, and nonquadratic state costs. For the numerical scheme that we develop, the following
assumption is crucial:

Assumption 1. The free dynamics f(x) : Rd → Rd, f(x) := (f1(x), . . . , fd(x))t are separable
in every coordinate fi(x)

fi(x) =

nf∑
j=1

d∏
k=1

F(i,j,k)(xk) ,

where F(x) : Rd → Rd×nf×d is a tensor-valued function. In the case g = g(x), then we shall
also assume a similar separable structure for g(x).

2.1. Towards optimal feedback control of semilinear parabolic equations. In the fol-
lowing, we illustrate how the presented framework sets the grounds for a computational approach
for approximate optimal feedback controllers for nonlinear PDEs. We consider the following
optimal stabilization problem:

(4) min
u(·)∈L2([0;+∞))

J (u(·, X0) :=

∞∫
0

‖X(·, t)‖2L2(I) + |u(t)|2 dt

subject to the semilinear parabolic equation

∂tX(ξ, t) = ∂ξξX(ξ, t)−X(ξ, t)3 + χω(ξ)u(t) , ξ ∈ I = [−1, 1] , t ∈ R+,(5)

∂ξX(−1, t) = ∂ξX(1, t) = 0 , X(ξ, 0) = X0 .

In this case, the scalar control acts through the indicator function χω(ξ), with ω ⊂ I. At
the abstract level, this corresponds to an infinite-dimensional optimal control problem. A
first step towards the application of the proposed framework is the space discretization of
the system dynamics, leading to finite-dimensional state space representation. The use of the
pseudospectral collocation methods for parabolic equations has been studied in [31, 33], and
leads to a state space representation of the form

Ẋ(t) = AX(t)−X(t)3 +Bu(t) ,

where the discrete state X(t) = (X1(t), . . . , Xd(t))
t ∈ Rd corresponds to the approximation

of X(ξ, t) at d collocation points ξi = −cos(πi/d), i = 1, . . . , d, and X3 is the coordinatewise
power. The matrices A ∈ Md×d and B ∈ Rd are finite-dimensional approximations of the
Laplacian and control operators, respectively. Such a discretization of the dynamics directly
fulfills the separability required in Assumption 1, as the i-th equation of the dynamics reads

Ẋi(t) = Ai,1X1(t) + . . .+Ai,dXd(t)−Xi(t)
3 +Biu(t) ,

with a separability degree nf = d + 1. It is very important to note that semidiscretization
in space of a wide class of time-dependent PDEs will lead to finite-dimensional state space
representations of this type, thus the applicability of the presented framework is only limited by
the dimensionality of the associated HJB equation. This motivates the choice of a pseudospectral
collocation method for the discretization, as it is possible to obtain a meaningful representation
of the dynamics with considerably fewer degrees of freedom than classical low-order schemes.
However, if pseudospectral collocation is not a suitable discretization method for the dynamics,
model reduction procedures such as balanced truncation, proper orthogonal decomposition, or
reduced basis techniques shall also lead to separable state-space representations. Once the



POLYNOMIAL APPROXIMATION OF HIGH-DIMENSIONAL HJB EQUATIONS 5

finite-dimensional state state space representation is obtained, we proceed to approximate the
solution of the associated HJB equation (1), leading to the optimal feedback controller (2).

We now present a preview of the numerical results of the proposed approach. Further details
of the numerical scheme will be developed in the forthcoming sections. The system dynamics in
(5), are approximated in 12 collocation points (14 with b.c.s’), and therefore our approximation
scheme seeks for a solution of a 12-dimensional HJB equation, which allows the computation
of online optimal feedback controllers. We compare our HJB-based controller (HJB) to the
linear-quadratic controller (LQR) obtained by linearization of the system dynamics, and to
an approximation method for the HJB equation based on power series expansion (PSE) [21,
35]. In Figure 1 we observe the basic features of the dynamics and the control schemes. The
uncontrolled system dynamics (diffusion+dissipative source term) are stable, but stabilization
is extremely slow. The control algorithms considerably reduce the transient phase. However,
the control signals are different, and the HJB-based controller generates a feedback control with
reduced overall cost (4). Observe that at the beginning of the time horizon even the signs of
the LQR-, PSE-, and HJB-based controls differ.
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Figure 1. A first preview of the stabilization of the semilinear parabolic equa-
tion (5). Initial condition: X0(ξ) = 4(ξ − 1)2(ξ + 1)2. Dynamics are stable but
slow. Total closed-loop costs J (u,X0): i) Uncontrolled: 13.45, ii) LQR: 7.39,
iii) PSE: 9.43, iv) HJB: 6.56 .
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3. Approximate iterative solution of HJB equations

In this section, we construct a numerical scheme for the approximation of the HJB equation

(6) min
u∈U
{DV (x)t(f(x) + gu) + `(x) + γ|u|2} = 0 , V (0) = 0 ,

where U ≡ R. We recall two additional features in this equation which render the application
of classical approximation techniques difficult: the absence of a variational formulation, and
the minimization with respect to the control variable u, which makes the HJB equation fully
nonlinear. The simplest numerical approach to these problems is the use of monotone, grid-
based discretizations (finite differences, semi-Lagrangian), in conjunction with a fixed point
iteration for the value function V, which typically depends on the use of a discount factor.
The so-called “value iteration” procedure was first presented by Bellman in [8], and although
it has become a standard solution method for low-dimensional HJB equations, it suffers from
three major drawbacks. First, the grid-based character of the scheme makes it inapplicable
for high-dimensional dynamics, as the total number of degrees of freedom scales exponentially
with respect to the dimension of the dynamical system. This corresponds to the most classical
statement of the so-called curse of dimensionality. Second, the contractive mapping includes
a minimization procedure which needs to be solved for every grid point at every iteration.
Third, the Lipschitz constant of the contractive mapping goes to 1 when the discretization
parameter goes to 0, becoming extremely slow for fine-mesh solutions. In order to circumvent
these limitations, we develop a numerical scheme combining an iteration on the control variable
rather than the value function, together with a polynomial expansion for the value function to
mitigate the computational burden associated to mesh-based schemes.

3.1. Successive approximation of HJB equations. In the following, we revisit the method
presented in [5, 6], which is referred as Successive Approximation Algorithm. We begin by
defining the set of admissible controls.

Definition 1 (Admissible control). We say that a feedback mapping u := u(x) is admissible on
Ω ⊂ Rd, denoted as u ∈ A(Ω), if u(x) ∈ C(Ω), u(0) = 0, and J (u(x(·)), x0) <∞ for all x0 ∈ Ω.

Starting from an admissible initial guess u0(x), the Successive Approximation Algorithm
(Algorithm 1 below) generates the pair (V ∗, u∗) which solves equation (6). Algorithm 1 corre-

Algorithm 1 Successive Approximation Algorithm

Given u0(x) ∈ A(Ω) and tol > 0
while error > tol do

Solve

(7) DV i(x)t(f(x) + gui) + `(x) + γ|ui|2 = 0 , V i(0) = 0 .

Update

ui+1(x) = − 1

2γ
gtDV i(x) ,

error = ‖V i − V i−1‖
end while
return (V ∗, u∗)

sponds to a Newton method for solving equation (6), and in the linear-quadratic setting it is
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equivalent to the Newton-Kleinmann iteration for solving the Riccati equation. It can be also
directly identified with the policy iteration algorithm for HJB equations (see [2] and references
therein), although in this context the usual setting includes a discount factor which relaxes
the admissibility assumption, as well as discrete-time dynamics. Consequently, it is applied
to a Bellman equation with no continuous gradient. In both cases, the core ingredient of the
algorithm is to generate a decreasing sequence of values V i by solving an associated sequence
of linear problems. In our case this translates into solving, for a given u(x) at each iteration,
the Generalized Hamilton-Jacobi-Bellman (GHJB) equation

G(DV ;u) =0 , V (0) = 0 ,(8)

G(p, u) :=pt(f(x) + gu) + `(x) + γ|u|2 .

The following result from [5] summarizes relevant properties of the GHJB equation.

Proposition 1. If Ω is a compact subset of Rd, f(x) is Lipschitz continuous on Ω and f(0) = 0,
l(x) ≥ 0 is strictly increasing in Ω, γ > 0, and u ∈ A(Ω), then:

(1) There exists a unique V (x) ∈ C1(Ω) satisfying (8).
(2) V (x) is a Lyapunov function of the controlled system.
(3) V (x) = J (u, x), for all x ∈ Ω.
(4) The update u+(x) := − 1

2γ g
tDV (x) satisfies u+ ∈ A(Ω).

(5) If V + satisfies G(DV +;u+) = 0, then V + ≤ V for all x ∈ Ω.

3.2. A continuation procedure. A critical aspect of the Successive Approximation Algorithm
1 is its initialization, which requires the existence of an admissible control u0(x) which in view
of (4) means that it asymptotically stabilizes all the initial conditions in Ω. For asymptotically
stable dynamics, this is trivially satisfied by u0(x) = 0. For more general cases, the computation
of stabilizing feedback controllers is a challenging task. A partial answer is to consider the
stabilizing feedback associated to the linearized system dynamics. However, this feedback is
only locally stabilizing, and therefore the identification of a suitable domain Ω where this control
law is admissible becomes relevant. For low dimensional dynamics, this has been studied in the
context of Zubov’s method in [14]. An alternative solution that we propose is to consider a
discounted infinite horizon control problem

min
u(·)∈U

J (u(·), x0) :=

∞∫
0

e−λt (`(x(t)) + γ|u(t)|2) dt , λ > 0 ,

where the inclusion of the discount factor λ relaxes the admissibility condition. Recently, in
[19, 32], the link between discounted optimal control and asymptotic stabilization has been
discussed, and under certain conditions, the discounted control problem can generate optimal
controls that are also admissible for the undiscounted problem. We recall that the associated
HJB equation for the infinite horizon optimal control problem is given by

(9) λV (x) +min
u∈U
{DV (x)t(f(x) + gu) + `(x) + γ|u|2} = 0 , V (0) = 0 ,

and the associated GHJB reads

Gλ(V,DV ;u) =0 , V (0) = 0 ,(10)

Gλ(q, p, u) :=λq + pt(f(x) + gu) + `(x) + γ|u|2 .
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We consequently modify the Successive Approximation Algorithm in order to embed it within
a path-following iteration with respect to the discount factor:

Algorithm 2 A Discounted Path-Following Approximation Algorithm

Given λ > 0, ε > 0, and β ∈ (0, 1),
while λ > ε do

Solve for (V, u)

(11) λV (x) +min
u∈U
{DV (x)t(f(x) + gu) + `(x) + γ|u|2} = 0 ,

with Algorithm 1 and initial guess u0.
Update

u0 = u ,

λ = βλ .

end while
return (V ∗, u∗)

For a sufficiently large λ, this algorithm can be initialized with u0
λ = 0. Continued reduction

of the discount factor using hotstart every time when (11) is called with a reduced λ-value,
leads to an approximate solution of equation (6).

3.3. Spectral element approximation of the GHJB equation. So far we have discussed
the iterative aspects of a computational method for solving HJB equations. We now address
the numerical approximation of the GHJB equation.

(12) Gλ(V,DV ;u) = 0 , V (0) = 0 .

For this purpose, we consider an expansion Vn(x) of the form

Vn(x) =
n∑
j=1

cjφj(x) ≡ Φnc ,

where Φn := (φ1(x), . . . , φn(x)), with φj ∈ C∞(Ω,R) belonging to a complete set of basis
functions in L2(Ω,R), and c = (c1, . . . , cn)t. In particular, we shall often generate Φn from a
multidimensional monomial basis as illustrated in Figure 2, which directly satisfies the boundary
condition Vn(0) = 0. The coefficients cj are obtained by imposing the Galerkin residual equation

(13) 〈Gλ(Vn, DVn;u), φi〉L2(Ω) = 0 , ∀φi ∈ Φn .

Remark 1. The convergence of Vn has been studied thoroughly in [5]. It follows a power series
argument, and requires conditions for uniform convergence of pointwise convergent series, in
order to guarantee that un := −1

2γ
−1gtDVn(x) ∈ A(Ω) for n sufficiently large. In our partic-

ular case, we further assume that the dynamics (f, g) are polynomial (as illustrated in Section
2.1). Therefore, under the assumptions of Theorem 26 in [5], by choosing a multidimensional
monomial basis (of degree ≥ 2) and an admissible control u0 ∈ A(Ω), it can be established that,
∀ε > 0, ∃K such that for n > K, ‖V − Vn‖L2(Ω) < ε, and un(x) ∈ A(Ω).

We now focus on the different terms involved in the approximation of the GHJB equation.
Since this equation is meant to be solved within the iterative loop described in the previous
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section, we assume that u(x) can be expressed in the form

(14) u(x) = −1

2
γ−1gtDV 0

n (x) ,

where V 0(x) corresponds to the value function of the previous iteration, approximated with the
expansion

V 0
n (x) =

n∑
j=1

c0
jφj(x).

Below we shall write c0 for (c0
1, . . . , c

0
n)t. We proceed by expanding case by case the different

terms of the Galerkin residual equation

(15) 〈λVn +DV t
n(f(x) + gu) + `(x) + γ|u|2, φi〉L2(Ω) = 0 , ∀φi ∈ Φn .

1) 〈λVn, φi〉L2(Ω)〈λVn, φi〉L2(Ω)〈λVn, φi〉L2(Ω): it is directly verifiable that

〈λVn, φi〉L2(Ω) = M(i,•)c , M ∈ Rn×n , M(i,j) = λ〈φi, φj〉L2(Ω) .

2) 〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω): by inserting the expansion we obtain

DV t
nf =

n∑
j=1

cjDφ
t
jf ,

and therefore

〈DV t
nf, φi〉L2(Ω) = F(i,•)c , F ∈ Rn×n , F(i,j) := 〈Dφtjf, φi〉L2(Ω) .

3) 〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω): the relation (14) leads to

DV t
ngu = DV t

n

(
−1

2
γ−1ggtDV 0

n

)
= −1

2
γ−1

n∑
j=1

cjDφ
t
j

(
ggt

n∑
k=1

c0
kDφk

)t
,

such that

〈DV t
ngu, φi〉L2(Ω) = G(i,•)c , G ∈ Rn×n ,

G(i,j) = −1

2
γ−1

n∑
k=1

c0
k〈gtDφkDφtjg, φi〉L2(Ω) .

4) 〈l(x), φi〉L2(Ω)〈l(x), φi〉L2(Ω)〈l(x), φi〉L2(Ω): we further assume that

〈l(x), φi〉L2(Ω) = 〈xtQx, φi〉L2(Ω) , Q > 0 ∈ Rd×d .

5) 〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω) : note that

γ|u|2 =
1

4
γ−1(gtDV 0

n )2 =
1

4
γ−1

 n∑
j=1

c0
jg
tDφj

2

,

leading to

〈γ|u|2, φi〉L2(Ω) = (c0)tU(i,•)c
0 ,

U ∈ Rn×n×n is given by

U(i,j,k) = 〈(gtDφj)(gtDφk), φi〉L2(Ω) .
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After discretization, the GHJB (13) reduces to a parameter-dependent linear system for c(
M + F + G(c0)

)
c = b(U, c0) ,

where b is given by the expansion of l(x) + γ|u|2 ( terms 4) and 5) in the list above).

4. Computation of integrals via separable expansions

Under Assumption 1 concerning the separability of the free dynamics f , and with the con-
struction of a separable set of basis functions by taking the tensor product of one-dimensional
basis functions as shown in Figure 2, the calculation of the d-dimensional inner products of the
Galerkin residual equation of the previous section is reduced to the product of one-dimensional
integrals. In the following, we provide further details of this procedure.

Figure 2. Two dimensional monomial basis. The first three basis functions cor-
respond to the terms of the Riccati ansatz for the linear-quadratic control prob-
lems, where the value function is known to be a quadratic form xtΠx. Adding
terms of higher order allows a more accurate solution for nonlinear control prob-
lems. We construct the high-order terms by limiting the degree of the monomials.
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4.1. Generation of a multi-dimensional basis. The multi-dimensional basis functions
Φn := (φ1(x), . . . , φn(x)) for the expansion of Vn are generated as follows. We start by choosing
a polynomial degree M ∈ N, and a one-dimensional polynomial basis ϕM : R → RM . For the
sake of simplicity, we consider the monomial basis ϕM = (1, x, . . . , xM )T , but the same ideas
apply for other basis, such as orthogonal polynomials. The multidimensional basis is generated
as a subset of the d-dimensional tensor product of one-dimensional basis, such that

Φn ≡

{
φ ∈

d⊗
i=1

ϕM (xi) , and deg(φ) ≤M

}
i.e., we construct a full multidimensional tensorial basis and then we remove elements according
to the approximation degree M . The elimination step is fundamental and is twofold. If no
elimination is performed, the cardinality of Φn would be Md, and again one would face the curse
of dimensionality that also affects grid-based schemes. By reducing the set to multdimensional
monomials of degree at most M , the cardinality n of the set Φn is given by

(16) n =
M∑
m=1

(
d+m− 1

m

)
,

which replaces the exponential dependence on d by a combinatorial one. This formula is eval-
uated in Table 1 for different values of interest for M and d. By considering globally defined
polynomial basis functions, the dependence on the dimension is replaced by the combinatorial
expression (16). The dimensional reduction of the basis is particularly significant for low or-
der polynomial approximation (up to degree 6). A second justification for the way in which
we generate the basis set has a control-theoretical inspiration. A well-known result in optimal
feedback control is that if the dynamics are linear, and the running cost is quadratic, the value
function associated to the infinite horizon control problem (in the unconstrained case and other
technical assumptions) is a quadratic form, i.e. is of the form V (x) = xtΠx, which fits precisely
the elements generated for Φn with a monomial basis when M = 2 and linear elements are
eliminated. Therefore, our basis can be interpreted as a controlled increment, accounting for
the nonlinear dynamics, of the basis required to recover the solution of the control problem
associated to the linearized dynamics around the equilibrium point.

Full monomial basis Even-degree monomials
d\M 2 4 6 8 2 4 6 8

6 27 209 923 3002 21 147 609 1896
8 44 494 3002 12869 36 366 2082 8517
10 65 1000 8007 43757 55 770 5775 30085
12 90 1819 18563 125969 78 1443 13819 89401
14 119 3059 38759 319769 105 2485 29617 233107

Table 1. Number of elements n in the basis, as a function of the dimension
d and the total polynomial degree M . The global polynomial approximation
partially circumvents the curse of dimensionality, as the dimension of the basis
no longer depends exponentially on the dimension, but rather combinatorially.
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Remark 2. Theorem 7.1 in [6] states parity conditions to reduce the polynomial basis Φn.
Under the assumptions l(x) = xtQx, and g ∈ Rd, if

i) Ω is a symmetric rectangle around the origin, i.e., Ω = [−l1, l1]× . . .× [−ld, ld] ,
ii) the free dynamics are odd-symmetric on Ω, i.e. f(−x) = −f(x), for all x ∈ Ω ,

then Vn(x) is an even-symmetric function, i.e., Vn(−x) = Vn(x), and therefore odd-degree
monomials are excluded from the basis. A direct corollary is that in the linear quadratic case,
where the linear dynamics are trivially odd-symmetric, V (x) is a quadratic form.

Finally, for the calculation presented in the following, it is important to note that due to the
construction procedure, the basis elements directly admit a separable representation

(17) φi(x) =
d∏
j=1

φji (xj) =
d∏
j=1

x
νj
j , with

∑
j

νj ≤M ,

where each component φji (x) ∈ ϕM .

4.2. High-dimensional integration. We begin by recalling that

(18) fi(x) =

nf∑
j=1

d∏
k=1

F(i,j,k)(xk) ,

where F(x) : Rd → Rd×nf×d is a tensor-valued function, and that g ∈ Rd.
As in the previous section, we proceed term by term, to obtain the summands in (15). The

integration is carried over the hyperrectangle Ω = Ω1 × . . .× Ωd.

1) 〈λVn, φi〉L2(Ω)〈λVn, φi〉L2(Ω)〈λVn, φi〉L2(Ω): this term is directly assembled from the calculation of

〈φi, φj〉L2(Ω) =
d∏

k=1

∫
Ωk

φki (xk)φ
k
j (xk) dxk

2) 〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω)〈DV t
nf, φi〉L2(Ω): This term involves the calculation of

〈Dφtjf, φi〉L2(Ω) =
d∑
p=1

〈fp∂xpφj , φi〉L2(Ω) .

which is expanded by using the separable structure of the free dynamics

〈fp∂xpφj , φi〉L2(Ω) =

nf∑
l=1

〈

(
d∏

m=1

F(p, l,m)

)
∂xpφj , φi〉L2(Ω) ,

where

〈

(
d∏

m=1

F(p, l,m)

)
∂xpφj , φi〉L2(Ω)

=

 d∏
m=1
m 6=p

∫
Ωm

F(p, l,m)φmi φ
m
j (xm) dxm


∫

Ωp

F(p, l, p)φpi ∂xpφ
p
j (xp) dxp
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3) 〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω)〈DV t
ngu, φi〉L2(Ω): In this case, we need to work on the expression

〈gtDφkDφtjg, φi〉L2(Ω) =
d∑

l,m=1

glgm〈∂xlφk∂xmφj , φi〉L2(Ω),

which is obtained directly from the computations for 〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω) in 5) below.

4) 〈l(x), φi〉L2(Ω)〈l(x), φi〉L2(Ω)〈l(x), φi〉L2(Ω):

〈l(x), φi〉L2(Ω) = 〈xtQx, φi〉L2(Ω) =
d∑

j,k=1

Q(j,k)〈xjxk, φi〉L2(Ω) ,

where with a similar argument as in the previous term we expand

〈xjxk, φi〉L2(Ω) =


d∏

p=1
p 6=j
p 6=k

∫
Ωp

φpi (xp) dxp


∫

Ωj

φji (xj)xj dxj


∫

Ωk

φki (xk)xk dxk

 .

5) 〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω)〈γ|u|2, φi〉L2(Ω) : This term requires the computation of the inner product

〈(gtDφj)(gtDφk), φi〉L2(Ω) = gtŨ(I,•)g , I = (i, j, k) ,

with Ũ ∈ Rn×n×n×d×d given by

Ũ(I,l,m) := 〈∂xlφj∂xmφk, φi〉L2(Ω) .

By using the separable representation of the basis functions

∂xlφj =

 d∏
p=1
p 6=l

φpj (xp)∂xl

φlj(xl)

we expand the inner product

(19) Ũ(I,l,m) =


d∏

p=1
p 6=l
p 6=m

∫
Ωp

φpiφ
p
jφ

p
k(xp) dxp


∫

Ωl

φliφ
l
k∂xlφ

l
j(xl) dxl


∫

Ωm

φmi φ
m
j ∂xmφ

m
k (xm) dxm

 .

Initialization. The first iteration, with a stabilizing initial guess u0, requires special attention.
If it is obtained via a Riccati-type argument, then initialization follows directly from (14).
Otherwise we shall relax this requirement, and only assume that the initial stabilizing controller
is given in separable form

u0(x) =

nu∑
j=1

d∏
k=1

U0
(j,k)(xk) ,

In this case, we must recompute the term:
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• 〈γ|u0|2, φi〉L2(Ω)〈γ|u0|2, φi〉L2(Ω)〈γ|u0|2, φi〉L2(Ω)

〈γ|u0|2, φi〉L2(Ω) = γ〈(
nu∑
j=1

d∏
k=1

U0
(j,k)(xk))

2, φi〉

= γ

nu∑
j,l=1

〈

(
d∏

k=1

U0(j, k)

)(
d∏

k=1

U0(l, k)

)
, φi〉 ,

= γ

nu∑
j,l=1

d∏
k=1

∫
Ωk

U0(j, k)U0(l, k)φki (xk) dxk .

As for the term 〈DV t
ngu

0, φi〉L2(Ω), which needs to be computed differently in the first

iteration, we can proceed in the same way as for 〈DV t
nf, φi〉L2(Ω), since both gu0 and f

have the same separable structure, it just takes to assign fi = giu
0.

4.3. Computational complexity and implementation. Among the expressions developed
in the previous subsection, the overall computational burden is governed by the approximation
of

〈γ|u|2, φi〉L2(Ω) ,

which requires the assembly of the 5-dimensional tensor Ũ ∈ Rn×n×n×d×d. Each entry of this
tensor is a d-dimensional inner product, which under the aforementioned separability assump-
tions is computed as the product of d, one-dimensional integrals. Thus, the total amount of
one-dimensional integrals required for the proposed implementation is O(n3d3). A positive

aspect of our approach is that the assembly of tensors like Ũ falls within the category of embar-
rassingly parallelizable computations, so the CPU time scales down almost directly with respect
to the number of available cores. Furthermore, Ũ can be entirely computed in an offline phase,
before entering the iterative loops in Algorithms 1 and 2. However, for values of interest of n
and d, such as d > 10 and n = 4, Table 1 indicates that n3d3 is indeed a very large number. A
rough estimate of the CPU time required for the assembly of Ũ is given by

CPU(Ũ) =
t1d × n3 × d3

#cores
,

where t1d corresponds to the time required for the computation of a one-dimensional integral.
Therefore, it is fundamental for an efficient implementation to reduce t1d to a bare minimum.
From closer inspection of the expression (19), we observe that all the terms can be identified as
elements of the tensors M,K ∈ RM×M×M

M(i,j,k) :=

xu∫
xl

ϕi(x)ϕj(x)ϕk(x) dx , K(i,j,k) :=

xu∫
xl

ϕi(x)ϕj(x)∂xϕk(x) dx .

Both M and K can be computed exactly with a Computer Algebra System, or approximated
under suitable quadrature rules. We follow this latter approach, implementing an 8-point Gauss-
Legendre quadrature rule. After having computedM and K, the assembly of (19) reduces to d
calls to properly indexed elements of these tensors. This approach requires a careful bookkeeping
of the separable components of each multidimensional basis function φi. In this way, an entry of
Ũ takes of the order of 1E-7 seconds and the overall CPU time is kept within hours for problems
of dimension up to 12.
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5. Computational implementation and numerical tests

5.1. Convergence of the polynomial approximation. We assess the convergence of the
polynomial approximation in a 1D test, with

f(x) = 0 , g = 1 , l(x) =
1

4R

(
x2 ex + 2x ex + 4x3

)2
, Ω = (−1, 1) ,

such that the exact solution of equation (3) is given by

V (x) = x4 + x2ex .

We implement the path-following version (Algorithm 2), starting with u0 = 0, λ = 1 and a
threshold value ε = 1E − 6, a parameter β = 0.5, and an internal tolerance tol = 1E − 8. The
relative error for Table 2 is defined as

error :=
‖Vn(x)− V (x)‖L2(Ω)

‖V (x)‖L2(Ω)

and number of iterations for different polynomial degree approximations are shown in Table 2
and Figure 3.

Monomial basis Legendre basis

n(degree) error iterations error iterations

2 1.1539 53 1.4127 52
4 0.2541 49 0.3643 58
6 0.015 52 0.0206 52
8 5.01E-4 55 6.41E-4 53
10 8.33E-6 55 1.072E-5 55

Table 2. 1D polynomial approximation of the infinite horizon control problem
with nonquadratic running cost. The number n denotes the total number of
basis functions.

5.2. Optimal feedback control of semilinear parabolic equations. Similarly as in Section
2.1, we consider the following optimal control problem

(20) min
u(·)∈L2([0;+∞))

J (u(·), X0) :=

∫ ∞
0
‖X(ξ, t)‖2L2(I) + γu(t)2 dt ,

subject to the semilinear dynamics

∂tX(ξ, t) = L(X,Xξξ) +N (X, ∂ξX) + χω(ξ)u(t) , in I × R+ ,

X(ξ, 0) = X0(ξ) , ξ ∈ I ,
where the linear operator L is of the form L := σ∂ξξX(ξ, t) + rX(ξ, t) with r ∈ R, and N
is a nonlinear operator such that N (0, 0) = 0. The scalar control acts through the indicator
function χω(ξ), with ω ⊂ I The The system is closed under suitable boundary conditions. We
choose I = (−1, 1), ω = (−0.5,−0.2), σ = 0.2, and γ = 0.1. The nonlinearity covers both
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Figure 3. 1D polynomial approximation of the infinite horizon control problem
with nonquadratic running cost. Approximation with monomial basis. The
number n denotes the total number of basis functions.

advective, Burgers’-type, and polynomial source terms. In order to generate a low-dimensional
state space representation of the dynamics, we resort to a pseudospectral collocation method
with Chebyshev polynomials as in [31] (for further details we also refer to [33, p. 107]. By
considering d collocation points ξi = −cos(πi/d) , i = 1, . . . , d, the continuous state X(ξ, t) is
discretized into X(t) = (X1(t), . . . , Xd(t))

t ∈ Rd, where Xi(t) = X(ξi, t). The semilinar PDE
dynamics are thus approximated by the d−dimensional nonlinear ODE system

(21) Ẋ(t) = AX(t) +N(X(t)) +Bu(t) ,

where the operators (A,N,B) correspond to the finite-dimensional realization of (L,N , χω(ξ))
through the Chebyshev pseudospectral method. Therefore, the number of collocation points
governs the dimension of the resulting nonlinear ODE system (21), and consequently determines
the dimension of the domain Ω where the associated HJB equation is solved. In the following,
Tests 1-3 are computed in 14 collocation points, which after including boundary conditions lead
to a 12 dimensional domain Ω for the HJB equation. Test 4 is solved in 14 dimensions. The
high-dimensional solver was implemented in MATLAB, parallelizing the tensors assembly, and
tests were run on a muti-core architecture 8x Intel Xeon E7-4870 with 2,4Ghz, 1 TB of RAM.
The MATLAB pseudoparallelization distributes the tasks among 20 workers. Representative
performance details are shown in Table 3. The assembly of high-dimensional tensor that enter
the iterative algorithm accounts for over 80% of the total CPU time. This percentage increases
when Algorithm 1 is implemented for asymptotically stable dynamics, as it requires a much
lower number of iterations. Note that much of the work done during the assembly phase is
independent of the dynamics (see for instance (19)), and therefore can be re-used in latter
problems, mitigating the overall computational burden.

We now turn to the specification of parameters for the solution of the HJB equation. We
set Ω = (−2, 2)d, and consider a monomial basis up to order 4 as described in Section 4.
Depending on the dynamics of every example, we will neglect odd-degree basis functions as in
Remark 2. All the integrals are approximated with an 8 point Gauss-Legendre quadrature rule.
Whenever system dynamics are stable at the origin, the value function is obtained from the
undiscounted Algorithm 1, initialized with u0 = 0. When the dynamics are unstable over Ω,
we implement Algorithm 2, with λ = 1, ε = 1E − 6, and β = 0.9. The initializing controller is
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Test Dimension CPU-assembly CPU-iterative (#)

1 10 2.061E3[s] 4.221E2[s](32)
1 12 1.945E4[s] 3.377E3[s](32)
4 14 1.557E5[s] 3.102E4[s](37)

Table 3. CPU times for different tests and dimensions. CPU-assembly corre-
sponds to the amount of time spent in offline assembly of the different terms of
the Galerkin residual equation (13). CPU-iterative refers to the amount of time
spent inside Algorithm 2.

given by the solution of the associated linear-quadratic optimal feedback, as described below.
For both implementations, the tolerance of the algorithm is set to tol = 1E−8. In the following
tests, we compare the HJB-based feedback control with respect to the uncontrolled dynamics
(u = 0), the linear-quadratic optimal feedback (LQR), and the power series expansion type of
controller (PSE). We briefly describe these controllers. The well-known LQR feedback controller
corresponds to the HJB synthesis applied over the linearized system around the origin

(22) Ẋ(t) = AX(t) +Bu(t) ,

and results in the optimal feedback control law given by

u∗ = −γ−1BtΠX ,

where Π ∈ Rd×d is the unique self-adjoint, positive-definite solution of the algebraic Riccati
equation

AtΠ + ΠA−ΠBγ−1BtΠ +Q = 0 ,

and XtQX corresponds to the finite-dimensional approximation of ‖X(ξ, t)‖L2(I). Once this
controller has been computed, the high-order PSE feedback is obtained as

u∗ = −γ−1Bt(ΠX − (At −ΠBγ−1Bt)ΠNl(X)) ,

where Nl(X) corresponds to the lowest order term of the nonlinearity N(X).Variations of such
feedback laws have been discussed in previous publications, see eg. [13] and references therein.
For the Burgers’ equation it was observed numerically in [35] that this suboptimal nonlinear
controller leads to an increased closed-loop stability region with respect to the LQR feedback
applied for the linearized dynamics.

Test 1: Viscous Burgers’-like equation. In this first test we address nonlinear optimal
stabilization of advective-reactive phenomena, by considering a 1D Burgers’-like model with
(ξ, t) ∈ I × R+ given by

∂tX(ξ, t) = σ∂ξξX(x, t) +X(ξ, t)∂ξX(ξ, t) + 1.5X(ξ, t)e−0.1X(ξ,t) + χω(ξ)a(t) ,

X(ξl, t) = X(ξr, t) = 0 , t ∈ R+,

X(ξ, 0) = −sign(ξ) , ξ ∈ I .

The feedback stabilization of Burgers’ equation (without the exponential source term) has been
thoroughly studied in different contexts, including the work of [13], and the recent work [28].
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Figure 4. Test 1: Viscous Burgers’-like equation. X(ξ, 0) = −sign(ξ). Total
costs J (u,X): i) Uncontrolled: +∞, ii) LQR: 7.55, iii) PSE: 6.87, iv) HJB:
6.25

Since our interest is the study of optimal stabilization, we consider an additional source term
1.5X(ξ, t)e−0.1X(ξ,t) such that the origin is not asymptotically stable. This can be appreciated
in the numerical results shown in Figure 4. For this model, we consider a reduced-order state
space representation of 12 states, solving a HJB equation over Ω = (−2, 2)12. The value function
is approximated with a monomial basis including both even and odd-degree polynomials up to
degree 4. In Figure 4 we can compare the uncontrolled solution to the LQR- and HJB-controlled
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solutions, where the LQR decay is significantly slower that the one of the HJB synthesis. The
HJB controller stabilizes at a higher speed, which is reflected both in the plots and in the
total costs. The HJB controller obtains a reduction of approximately 18% with respect to the
LQR cost. More importantly, the control signals differ in sign, magnitude, and speed. Such a
behavior illustrates the nonlinear character of both the control problem and the feedback law.

Test 2: Diffusion with unstable reaction term. We now turn our attention to a diffusion
equation with nonlinearity N (X) = X3 (the case with the reversed inequality sign in front of
the cubic term was already treated in Subsection 2.1),

∂tX(ξ, t) = σ∂ξξX(ξ, t) +X(ξ, t)3 + χω(ξ)a(t) , in I × R+ ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ ,

X(ξ, 0) = δ(ξ − 1)2(ξ + 1)2 , δ ∈ R+ , ξ ∈ I .

We close the system with Neumann boundary conditions. The origin X(ξ, t) ≡ 0 is an unstable
equilibrium of the uncontrolled dynamics. Any other initial condition is unstable with finite time
blow-up. In this case, feedback controls can only provide local stabilization, and the purpose
of this numerical test is to show that HJB-based synthesis leads to an increased closed-loop
asymptotic stability region when compared to LQR, and PSE controllers. For this purpose, we
compute feedback controls with the LQR, PSE and HJB approaches, for initial conditions of the
form X0(ξ) = δ(ξ − 1)2(ξ + 1)2, with δ ∈ R+. The HJB feedback is computed with, Algorithm
2, initialized with nonlinear feedback control law provided by the PSE approach. The test is
carried out over Ω = (−2, 2)12, and the value function is approximated with monomial basis
elements of degree 2 and 4. Numerical results are presented in Figure 5, for δ = 2 and for a
series of increased values of δ in Table 4. As the magnitude of the initial condition grows, the
locally stabilizing LQR and PSE controllers are not able to prevent the finite blow-up of the
dynamics. This eventually also happens for the HJB feedback, but at a much larger value of δ
(we report the last value δ = 4 until which the HJB control stabilizes the dynamics).

N (X) = X3, X(ξ, 0) = δ(ξ − 1)2(ξ + 1)2

Controller δ = 2 δ = 3 δ = 4

Uncontrolled +∞ +∞ +∞
LQR 4.14 +∞ +∞
PSE 4.09 14.09 +∞
HJB 4.06 13.98 50.36

Table 4. Cubic source term N (X) = X3 and increasing initial conditions. The
HJB feedback law is the one which exhibits the largest closed-loop stability
region.
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Figure 5. Test 2: Diffusion with unstable reaction term. Uncontrolled dynam-
ics leads to a finite-time blow up.

Test 3: Newell-Whitehead equation. . The diffusion-reaction equation

∂tX(ξ, t) = σ∂ξξX(ξ, t) +X(ξ, t)(1−X(ξ, t)2) + χω(ξ)a(t) , in I × R+ ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ ,

X(ξ, 0) = X(ξ, 0) = cos(2πξ)cos(πξ) + δ) , δ ∈ R+, ξ ∈ I ,
corresponds to a particular case of the so-called Schlögl model, whose feedback stabilization has
been studied in [12, 23]. This is a special case of a bistable system with ±1 as stable and 0 as
unstable equilibria. Here we use in an essential manner that we consider Neumann boundary
conditions. For Dirichlet conditions the only equilibrium is the origin. Such systems arise
for instance in Rayleigh-Benard convection and describe excitable systems such as neurons
or axons. As in the previous example, the reduced state-space is chosen as Ω = (−2, 2)12,
and the basis elements for the HJB approach are even degree monomials of degree 2 and 4.
Numerical results for the different controllers are shown in Figure 6. While all the feedback
laws effectively stabilize the initial condition X0(ξ) = cos(2πξ)cos(πξ) + 2 to the origin, the
HJB feedback has the smallest overall cost J (u,X). As in Test 1, it can be observed that the
three feedback strategies have a considerably different transient behavior. Note that the LQR
controller, which neglects the effect of the nonlinearity N (X) = −X3, has an increased control
magnitude with respect to the nonlinear controllers which are able to account the dissipative
effect of the nonlinearity. For the sake of completeness, we also consider this test case with a
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Figure 6. Test 3: Newell-Whitehead equation. Initial condition X0(ξ) =
cos(2πξ)cos(πξ) + 2. Uncontrolled dynamics are attracted by the stable equi-
librium X = 1. Total costs J (u,X) i) Uncontrolled: ∞, ii) LQR: 10.17, iii)
PSE:9.69, iv) HJB: 8.85

switch of the sign of nonlinearity, i.e., N (X) = −X3. This case is more demanding than Test
2, as now the linear part is σ∂ξξX +X. However, the performance of the controllers is similar
as in Test 2, and the results are summarized in Table 5. Again, the HJB feedback law has an
increased closed-loop stability region compared to the LQR and PSE controllers.

Test 4: Degenerate Zeldovich equation. In this last test case, we consider the model given
by

∂tX(ξ, t) = σ∂ξξX(ξ, t) +X(ξ, t)2 −X(ξ, t)3 + χω(ξ)a(t) , in I × R+ ,

∂ξX(ξl, t) = ∂ξX(ξr, t) = 0 , t ∈ R+ ,

X(ξ, 0) = 4(ξ − 1)2(ξ + 1)2 , ξ ∈ I .

This equation, which arises for instance in combustion theory, has X ≡ 1 as stable and X ≡ 0
as unstable equilibria. For this case, we increase the dimension of the HJB domain to 14, i.e.,
Ω = (−2, 2)14, and the basis functions are monomials of odd and even degree up to 4. Numerical
results are shown in Figure 7, where it can be seen that the HJB controller yields the smaller
overall cost J (u,X). Note that the PSE controller for this case has a diminished performance as
compared even to the LQR controller. This can be explained by the fact that the PSE controller
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N (X) = X3, X(ξ, 0) = cos(2πξ)cos(πξ) + δ

Controller δ = 1 δ = 1.5 δ = 2

Uncontrolled +∞ +∞ +∞
LQR 5.09 +∞ +∞
PSE 4.92 20.02 +∞
HJB 4.89 17.35 31.02

Table 5. Test 3 with N (X) = X3, for increasing initial conditions. Different
local control strategies are not able to stabilize the dynamics for large initial
conditions. The HJB control law has an increased region of the state space
where it can stabilize.

only takes into account the lowest order nonlinearity, in this case Nl(X) = X2, neglecting the
cubic term. This is a well-known drawback of this controller, and therefore justifies the need
of more complex synthesis methods for nonlinear feedback design, such as the proposed HJB
approach.

Concluding remarks

A systematic technique for the computational approximation of HJB equations in optimal
control problems related to semilinear parabolic equations was presented. To partially circum-
vent the curse of dimensionality, the dynamics of the parabolic equation are approximated by a
pseudospectral collocation method, and the generalized HJB equation is approximated by sep-
arable multi-dimensional basis functions of a given order. The numerical results show that the
feedback controls obtained by the proposed methodology differ and improve upon applying Ric-
cati approaches to the linearized equations. The generalized HJB approach has been addressed
in earlier publications, reporting on numerical results with lower dimensions than here and in
part restrained enthusiasm about the numerical performance, possibly due to the lack of a sys-
tematic initialization procedure. For the class of problems considered in this paper the results
were consistently better than Riccati approaches. The use of the discount factor path-following
technique as proposed in Algorithm 2 is essential for stabilizing to unstable equilibria.
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tions, Birkhäuser Boston, 1997.



POLYNOMIAL APPROXIMATION OF HIGH-DIMENSIONAL HJB EQUATIONS 23

0 0.2 0.4 0.6 0.8 1
Time

-40

-30

-20

-10

0
Control signal, u(t)

Uncontrolled
LQR
PSE
HJB

0 0.2 0.4 0.6 0.8 1
Time

0

50

100

150

200
Running cost ‖X(ξ, t)‖2

L2(I) + γu(t)2

Uncontrolled
LQR
PSE
HJB

Figure 7. Test 4: Degenerate Zeldovich equation. Initial condition X0(ξ) =
4(ξ − 1)2(ξ + 1)2. Total costs J (u,X) i) Uncontrolled: ∞, ii) LQR: 9.45, iii)
PSE: 11.25, iv) HJB: 8.91

[5] R. W. Beard, G. N. Saridis, and J. T. Wen. Galerkin approximation of the Generalized Hamilton-Jacobi-
Bellman equation Automatica 33(12)(1997) 2159–2177.

[6] R. W. Beard, G. n. Saridis, and J. T. Wen. Approximate solutions to the Time-Invariant Hamilton-Jacobi-
Bellman equation, J. Optim. Theory Appl. 96(3)(1998) 589–626.

[7] S. C. Beeler, H. T. Tran, and H. T. Banks. Feedback control methodologies for nonlinear systems J. Optim.
Theory Appl. 107(1)(2000), 1–33.

[8] R. Bellman. A Markovian decision process, Indiana Univ. Math. J. 6(4)(1957), 679–684.
[9] R. Bellman. Adaptive control processes: a guided tour, Princeton University Press, 1961.

[10] O. Bokanowski, J. Garcke, M. Griebel, and I. Klompmaker. An Adaptive Sparse Grid Semi-Lagrangian
Scheme for First Order Hamilton-Jacobi Bellman Equations, J. Sci. Comput. 55(3)(2013), 575–605.

[11] O. Bokanowski, S. Maroso and H. Zidani. Some Properties of Howards’ Algorithm SIAM J. Numer. Anal.
47(4)(2009), 3001–3026.

[12] T. Breiten and K. Kunisch. Feedback stabilization of the Schlgl model by LQG-balanced truncation, Proc.
European Control Conference 2015, doi: 10.1109/ECC.2015.7330698.

[13] J.A. Burns and S. Kang. A control problem for Burgers’ equation with bounded input/output, Nonlinear
Dynamics 2(4)(1991), 235–262.
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