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Abstract: A control strategy which allows to speed up the convergence of a bilinear system
governed by the Fokker-Planck equation to its stationary distribution is developed. After
linearization of the state equation, a linear feedback control is computed by solving the Riccati
equation associated with the linearized problem. A reduction method for approximating this
feedback is proposed. From a numerical point of view, this method avoids the resolution of a
high-dimensional Riccati equation. Numerical results are provided for a double-well potential
and the efficiency of the reduction method is demonstrated.
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1. INTRODUCTION

A controlled version of the Fokker-Planck equation is
considered in this paper. Consider a very large set of
dragged particles and assume, following (Risken, 1996,
Chapter 1), that the position of each particle is described
by the following stochastic differential equation (SDE),
called Smoluchowski equation:

dx(t) = −∇V (x(t), t)dt+
√

2ν dBt,

where (Bt)t≥0 is a Brownian motion. The following par-
tial differential equation, called Fokker-Planck equation,
describes the evolution of the probability density function
ρ of the particles:

∂ρ

∂t
= ∇ · J(x, t), where: J(x, t) = ν∇ρ+ ρ∇V.

The variable J is called probability current. See (Risken,
1996, Section 10.4) and (Gardiner, 2004, Section 4.3.4)
for details on the connection between SDEs and the
Fokker-Planck equation. In this article, the Fokker-Planck
equation is considered with reflective boundary conditions:

∂ρ

∂t
= ν∆ρ+∇ · (ρ∇V ) in Ω× (0,∞),

0 = (ν∇ρ+ ρ∇V ) · n on Γ× (0,∞),

ρ(x, 0) = ρ0(x) in Ω,

(1)

where Ω ⊂ Rn denotes a bounded domain with smooth
boundary Γ = ∂Ω, and where ρ0 denotes an initial
probability density function with

∫
Ω
ρ0(x)dx = 1. The

used boundary conditions model the fact that particles are
reflected at Γ. They ensure that the total mass is conserved
over time: ∫

Ω

ρ(x, t)dx = 1, for a. e. t ≥ 0.

As in Hartmann et al. (2013), let us assume that we can
interact with the particles by means of an optical tweezer
(see Jones et al. (2015)). From a mathematical point of
view, we assume that the potential V is controlled at time
t through a real number u(t) in the following way:

V (x, t) = W (x) + α(x)u(t), (2)

where W and α are fixed functions in W 2,max(2,n+ε)(Ω)
(with ε > 0). The function α is called control shape
function. We assume that

∇α · n = 0 on Γ. (3)

The following function is refered to as stationary distribu-
tion:

ρ∞(x) =
exp(−W (x)/ν)∫

Ω
exp(−W (z)/ν)dz

. (4)

The goal of this article is to design a linear feedback
controller of the form:

u(t) = K(ρ(t)− ρ∞),

for (approximately) solving:

inf
u∈L2(0,∞)

J (y, u) :=

∫ ∞
0

e2δt
(
〈y(t),My(t)〉+ u(t)2

)
dt

subject to: y(t) = ρ(t)− ρ∞, (1) and (2),
(5)

where M is a self-adjoint positive definite operator and
where δ > 0 is given. In this way, we speed up the
convergence of the system to ρ∞. We follow and extend
the approach developed in a recent article by the same
authors, Breiten et al. (2016). In this reference, problem
(5) is approximated by a linear-quadratic optimal control
problem, obtained by linearizing the state equation for y
close to 0 (i. e. ρ close to ρ∞) and by projecting it on the set
of functions with a space-integral equal to 1. A solution in
feedback form can be found by solving the corresponding



Riccati equation. The method of approximating an opti-
mal control problem with a linear-quadratic one, in the
context of distributed parameter systems has been used in
e. g. Barbu et al. (2006); Raymond and Thevenet (2010);
Raymond (2006).

The novelty of this article is the use of a reduction method
for constructing the feedback law. The method first con-
sists in splitting the state space into an unstable and a
stable part. We then project the state variable on the
unstable part of the state space. The projected state vari-
able satisfies a reduced state equation, which we stabilize
by solving a (reduced) Riccati equation. The obtained
feedback eventually enables us to stabilize the whole state
variable. This idea goes back to (at least) Triggiani (1975).
In the context of the present article, the unstable and the
stable subspaces are orthogonal, moreover, the unstable
subspace is finite-dimensional, which allows an efficient im-
plementation of this method. In particular, the resolution
of a high-dimensional Riccati equation is avoided.

In section 2, we provide results for the well-posedness of
the Fokker-Planck equation. We also formulate the state
equation as an abstract Cauchy problem and project it
on an appropriate hyperspace. Section 3 is dedicated to
the design of a Riccati-based feedback law. In section 4,
we introduce the reduction method. We finally provide nu-
merical results in section 5, for a two-dimensional problem.
The two feedback laws are compared.

2. ABSTRACT FORMULATION AND PROJECTION
OF THE SYSTEM

2.1 Well-posedness

For arbitrary T > 0 and for u ∈ L2(0, T ), we shall refer to
ρ as (variational) solution of (1)-(2) on (0, T ) if ρ lies in
the space

W (0, T ) := L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗),
if ρ(0) = ρ0 and if for a. e. t ∈ (0, T ), for all v ∈ H1(Ω),

〈ρt(t), v〉+ 〈ν∇ρ(t) + ρ(t)∇W,∇v〉
+ u(t)〈ρ(t)∇α,∇v〉 = 0.

Let us recall that W (0, T ) ⊂ C([0, T ], L2(Ω)), so that ρ(0)
is well-defined.

Theorem 1. For all u ∈ L2(0, T ) and ρ0 ∈ L2(Ω), there
exists a unique solution ρ to (1)-(2). If ρ0 ∈ H1(Ω) and
∆α ∈ L∞(Ω), then:

• ρt ∈ L2(0, T ;L2(Ω)),
• ρ ∈ C([0, T ];H1(Ω)),
• ∇ · (ν∆ρ+ ρ∇W ) ∈ L2(0, T ;L2(Ω))
• (ν∇ρ+ ρ∇W ) · n = 0 in L2(0, T ;H−1/2(Γ)).

Moreover, for all t ∈ [0, T ],
∫

Ω
ρ(x, t) dx = 1. Finally, if

ρ0 ≥ 0 a. e. on Ω, then ρ(x, t) ≥ 0 for all t > 0 and a. e.
x ∈ Ω.

This result is proved in (Breiten et al., 2016, Section 2).

2.2 Formulation as a Cauchy problem

We formulate now the controlled system (1)-(2) as an
abstract bilinear system, so that the linearized system can
be studied by means of semigroup methods:

ρ̇(t) = Aρ(t) +Nρ(t)u(t), ρ(0) = ρ0, (6)

where the operators A and N are defined by

A : ρ ∈ D(A) 7→ ν∆ρ+∇ · (ρ∇W ) ∈ L2(Ω),

N : ρ ∈ H1(Ω) 7→ ∇ · (ρ∇α) ∈ L2(Ω),
(7)

where:

D(A) =
{
ρ ∈ H2(Ω) | (ν∇ρ+ ρ∇W ) · n = 0 on Γ

}
.

Observe that im(A) ⊆ 1
⊥ and im(N ) ⊆ 1

⊥, where 1 is
the constant function (with value 1) and

1
⊥ =

{
ρ ∈ L2(Ω) | 〈1, ρ〉L2(Ω) = 0

}
.

Let us recall (see Adams (1975)) that we have the following
embeddings:

W 2,2(Ω) ↪→


C(Ω) if n = 1, 2, 3,

Lq(Ω), q ∈ [1,∞) if n = 4,

L
2n

n−4 (Ω) if n ≥ 5.

Since by assumption, α and W ∈ W 2,max(2,n+ε)(Ω), a
short computation involving the Hölder inequality shows
that A and N are well-defined. Their L2(Ω)-adjoints are
given by

A∗ : ϕ ∈ D(A∗) 7→ ν∆ϕ−∇W · ∇ϕ ∈ L2(Ω),

N ∗ : ϕ ∈ H1(Ω) 7→ −∇ϕ · ∇α ∈ L2(Ω),
(8)

where

D(A∗) =
{
ϕ ∈ H2(Ω) | (ν∇ϕ) · n = 0 on Γ

}
.

Note that due to (3), a solution ρ ∈ D(A) of (6) automat-
ically satisfies the reflective boundary conditions of (1).

Setting y = ρ − ρ∞, the bilinear system (6) is equivalent
to:

ẏ(t) = Ay(t) +N y(t)u(t) + Bu(t), y0 = ρ0 − ρ∞, (9)

where:

B : u ∈ R 7→ Nρ∞ ∈ L2(Ω)

B∗ : ρ ∈ L2(Ω) 7→ 〈ρ,Nρ∞〉L2(Ω).

2.3 Change of variables

Let us set

Φ(x) = log ν +
W (x)

ν
.

Following (Risken, 1996, Section 6.3), we define

As : ρ ∈ D(As) 7→ eΦ/2Ae−Φ/2 ∈ L2(Ω), (10)

where:

D(As) =
{
ρ ∈ H2(Ω)

∣∣ (ν∇ρ+
1

2
ρ∇W ) · n = 0 on Γ

}
.

A short computation shows that

A(e−Φ/2ρ) = νe−Φ/2
(

∆ρ+
1

2
ρ∆Φ− 1

4
ρ∇Φ · ∇Φ

)
.

Using the previously mentioned embeddings and Hölder
inequality, it can be shown that the image of As is indeed
included into L2(Ω) for ρ ∈ H2(Ω).

Lemma 2. The operator As is self-adjoint. The spectrum
σ(As) of As is a pure point spectrum, contained in
R−, with only accumulation point −∞. The eigenfunc-
tions {Ψi}∞i=0 form a complete orthogonal set. Moreover,
As generates an analytic semigroup of contractions on
L2(Ω) and consequently, A generates a semigroup of class
G(M, 0) on L2(Ω).



This lemma is proved in (Breiten et al., 2016, Section 3.1).
The following lemma follows from the symmetry of As.
Lemma 3. The operators As and A have the same spec-
trum. Moreover, for all (ψ, λ) ∈ (D(A)× R),

Aψ = λψ ⇐⇒ Asϕ = λϕ, ϕ = eΦ/2ψ

Aψ = λψ ⇐⇒ A∗ϕ = λϕ, ϕ = eΦψ.

Note that in particular, 0 is an eigenvalue of A, A∗, and
As with the eigenvectors ρ∞, 1, and e−Φ/2, respectively.

We now define:

X = {e−Φ/2}⊥ =
{
ρ ∈ L2(Ω) | 〈e−Φ/2, ρ〉L2(Ω) = 0

}
.

Since As is a self-adjoint operator and since e−Φ/2 ∈
Ker(As), the range of As is included in X . For u ∈
L2(0,∞), let us introduce the shifted variable z, defined
by

z(t) = eΦ/2(ρ(t)− ρ∞) ∈ X , (11)

where ρ is a solution to (6). Note that z ∈ X , since by
Theorem 1, 〈1, ρ(t)〉 = 〈1, ρ0〉 for all t ≥ 0. The shifted
variable is the solution to the following Cauchy problem:

ż(t) = Ãsz(t) + Ñ z(t)u(t) + B̃u, (12)

where Ãs is the restriction of As to D(As)∩X and where

the operators Ñ and B̃ are defined by:

Ñ : ρ ∈ H1(Ω) ∩ X 7→ eΦ/2N (e−Φ/2ρ) ∈ X
B̃ : u ∈ R 7→

(
eΦ/2Nρ∞

)
u ∈ X .

Note that Ãs is a self-adjoint operator and that the images

of Ñ and B̃ are included in X since the image of N , as
already mentioned, is itself included into 1

⊥. Note also

that the adjoint of B̃ is given by:

B̃∗ : ρ ∈ X 7→
〈
ρ, eΦ/2Nρ∞

〉
L2(Ω)

∈ R.

The linearization of (12) around 0 reads:

ż(t) = Ãsz(t) + B̃u(t). (13)

The change of variables (11) has a twofold interest: first,
the reduction of the state space to X enables us to
investigate the stabilizability of (13) with the Hautus
criterion. Moreover, the fact that A is replaced by a

self-adjoint operator, Ãs, enables us to implement the
reduction method described in section 4.

3. A FIRST LINEAR FEEDBACK CONTROLLER

We design a linear feedback controller by linearizing the
controlled system (9) for ρ close to ρ∞. We therefore aim
at solving:

inf
u∈L2(0,∞)

J (y, u), subject to:

ẏ(t) = Ay(t) + Bv(t), y0 = ρ0 − ρ∞.
(14)

Using the change of variables z(t) = eΦ/2y(t) (introduced
in section 2) and ẑ(t) = eδtz(t), we obtain the following
equivalent formulation of problem (14):

inf
v∈L2(0,∞)

Ĵ (ẑ, v) :=

∫ ∞
0

(
〈ẑ,M̃ẑ〉L2(Ω) + v(t)2

)
dt, (15)

subject to:

˙̂z(t) = (Ãs + δI)ẑ(t) + B̃v(t), (16)

where M̃ : X → X is the unique self-adjoint operator
satisfying: for all ρ1 and ρ2 ∈ X ,

〈ρ1,M̃ρ2〉L2(Ω) = 〈e−Φ/2ρ1,Me−Φ/2ρ2〉L2(Ω).

Problem (14) and problem (15)-(16) are equivalent, in so
far as for all v ∈ L2(0,∞), v is solution to (15)-(16) if and
only if e−δtv is a solution to (14).

The Hautus criterion for the stabilizability of infinite-
dimensional linear systems provides a sufficient condition

for the δ-stabilizability of the pair (Ãs, B̃), see (Curtain
and Zwart, 2005, Definition 5.2.1). The criterion writes:

∀λ ≥ −δ, Ker(λI − Ãs) ∩Ker(B̃∗) = {0}. (17)

Note that this formulation of the Hautus criterion takes
into account the fact that Ãs is self-adjoint and that
therefore, its spectrum is included in R. By Lemma 3,
the Hautus criterion (17) is equivalent to the following
condition:

∀λ ≥ −δ, Ker(λI −A∗) ∩Ker(B∗) ⊆ Span(ρ∞).

Consider the following Riccati equation: ∀ρ1, ρ2 ∈ D(Ãs),〈
ρ1,
[
(Ãs+δI)Π+Π(Ãs+δI)−ΠB̃B̃∗Π+M̃

]
ρ2

〉
= 0, (18)

where the unknown variable Π ∈ L(X ) is a self-adjoint
operator.

Lemma 4. Assume that the Hautus criterion (17) is satis-
fied. Then, the Riccati equation (18) has a unique solution

Π and the pair (Ãs, B̃) is δ-stabilizable, with the following
feedback control:

v = −B̃∗Πẑ. (19)

Since we assumed M to be positive definite, the pair
(A,M) is trivially detectable and this lemma follows from
(Curtain and Zwart, 2005, Theorem 5.2.11). Note that the
corresponding feedback for problem (14), denoted by K0,
is given by:

u = −B∗eΦ/2ΠeΦ/2y =: K0y. (20)

As shown in (Breiten et al., 2016, Theorem 4.7), we have
the following local stabilization result if the above feedback
is applied to the bilinear system (6).

Theorem 5. There exist two constants C1 > 0 and C2 > 0
such that for ‖ρ0 − ρ∞‖L2(Ω) ≤ C1, the system

ρ̇(t) = Aρ(t)−Nρ(t)
(
K0(ρ(t)− ρ∞)

)
, ρ(0) = ρ0,

admits a unique solution ρ ∈W (0,∞) which satisfies∥∥eδ·(ρ(·)− ρ∞)
∥∥
W (0,∞)

≤ C2.

4. STABILIZATION BY REDUCTION OF THE
STATE VARIABLE

We introduce in this section the reduction method for
computing a linear feedback controller, K1, which is an
approximation the feedback K0, given by (19). In this
manner, the resolution of a Riccati equation of large
dimension is avoided, at almost no loss of performance.
This method could be also used for future developments
aiming at controlling the Fokker-Planck equation in higher
dimensions. The technique is detailed in (Triggiani, 1975,
Sections 4 and 6). It is also discussed in Raymond and
Thevenet (2010) and the references therein.



4.1 Reduction of the state space

Consider again the shifted linearized system

ż = Ãsz + B̃u.
Let us denote by {Ψi}+∞i=0 the eigenfunctions of As and
by {λi}+∞i=0 the corresponding eigenvalues. They form a
complete orthogonal set. We assume that: λ0 ≥ λ1 ≥ λ2....
We have: λ0 = 0 and Ψ0 = e−Φ/2. The eigenfunctions

{Ψi}+∞i=1 are all eigenfunctions of Ãs and form a complete
orthogonal set of X .

Let ` be a sufficiently large index so that λ`+1 < −δ. Con-
sider the finite-dimensional space X1 = Span(Ψ1, ...,Ψ`)
and its orthogonal complement in X , denoted X2. Observe
that X2 is the closure of Span(Ψ`+1,Ψ`+2, ...). Denote
by P1 and P2 the orthogonal projections on X1 and X2

respectively. Set z1(t) = P1z(t), and z2(t) = P2z(t). We
have z(t) = z1(t) + z2(t), moreover,

ż1(t) = Ãs,1z1(t) + P1B̃u(t), (21)

ż2(t) = Ãs,2z2(t) + P2B̃u(t), (22)

where Ãs,1 and Ãs,2 are obtained by splitting the self-

adjoint operator Ãs according to the orthogonal decom-

position X = X1 ⊕ X2. The operators Ãs,1 and Ãs,2 are
self-adjoint operators, with eigenfunctions {Ψi}`i=1 and
{Ψi}+∞i=`+1, respectively.

The method consists now in stabilizing only the com-
ponent z1 (described by (21)). The Hautus criterion for
system (21) reads:

∀λ ≥ −δ, Ker(λI − Ãs,1) ∩Ker
(
(P1B̃)∗

)
= {0}. (23)

It is easy to check that (P1B̃)∗ is the restriction of B̃∗ to
X1. As a direct consequence, if the Hautus criterion (17)
(for the original system) is satisfied, then (23) holds. The

pair (Ãs,1,P1B̃) is therefore δ-stabilizable with a feedback
law u = Kz1.

Lemma 6. The system:(
ż1(t)
ż2(t)

)
=

(
Ãs,1 + P1B̃K 0

P2B̃K Ãs,2

)(
z1(t)
z2(t)

)
is δ-exponentially stable.

Proof. This is a direct application of (Triggiani, 1975,
Theorem 6.1). The assumptions of the theorem can be
easily checked. The spectrum decomposition assumption

is satisfied, since Ãs has a pure point spectrum. Moreover,

for all ρ ∈ D(Ãs,2) = D(As) ∩ X2,

〈ρ, Ãs,2ρ〉 ≤ −δ‖ρ‖L2(Ω),

thus, by (Bensoussan et al., 2007, Proposition 2.11), Ãs,2
generates an analytic semigroup and then by (Triggiani,

1975, Page 387), Ãs,2 satisfies the spectrum determined
growth assumption.

It follows from the above lemma that the following system:

ż(t) = (Ãs + B̃KP1)z(t)

is δ-exponentially stable.

4.2 Reduced Riccati equation

It remains to design a feedback law on the finite dimen-
sional space X1. This can be done with the following cost

functional:

J1(z1, u) =

∫ ∞
0

e2δt
(
〈z1(t), M̃1y1(t)〉L2(Ω) + u(t)2

)
dt,

where M̃1 ∈ L(X1) is the unique self-adjoint operator
satisfying: for all ρ1 and ρ2 ∈ X1,

〈ρ1,M̃1ρ2〉L2(Ω) = 〈ρ1,Mρ2〉L2(Ω).

The cost function J1 can be seen as a “reduced” version
of the original cost function. The corresponding (finite-
dimensional) Riccati equation is the following:

(Ãs,1+δI)∗Π1+Π1(Ãs,1+δI)−Π1P1B̃B∗PP∗1 Π1+M̃1 = 0,

where the unknown variable Π1 ∈ L(X1) is a finite-
dimensional self-adjoint operator. The feedback law reads
as:

u = −B∗(P∗1 Π1P1)z.
and transforming back to the state variable y,

u = −B∗eΦ/2(P∗1 Π1P1)eΦ/2y =: K1y. (24)

Remark 7. From a theoretical point of view, the reduction
method also works in the absence of orthogonality prop-
erty for the eigenvectors of As. However, the computation
of the projection P1 is then much more involved, since it
is not anymore orthogonal.

Remark 8. Theorem 5 still holds when the feedback law
K1 is used (instead of K0). The proof can be easily

adapted, observing that Ãs+ B̃K1P1 + δI is exponentially
stable.

As an alternative way for reducing the complexity we also
mention specific model reduction approaches, such as the
ones investigated in Hartmann (2011); Hartmann et al.
(2013).

5. NUMERICAL RESULTS

We present numerical results taken from Breiten et al.
(2016) and compare the linear feedback K0, given in (20)
with its approximation, K1, given in (24).

5.1 Setting

We consider a two-dimension system, with

Ω = (−1.5, 1.5)× (−1, 1) ⊂ R2,

with ν = 1, and with a two-dimensional double-well
potential of the form

W (x) = 3(x2
1 − 1)2 + 6x2

2.

We assume that the particles are initially all located in the
center of the right potential well, that is to say, the initial
distribution is a Dirac centered at x1 = 1, x2 = 0.

Figure 1 shows the double well potential W as well as the
corresponding stationary distribution.

Two control shape functions, α1 and α2, are considered.
Their graphs are shown in figure 2. The control shape
function α1 is constructed in such a way that the Hautus
criterion is satisfied, see (Breiten et al., 2016, Subsection
4.2) for details. The second control shape function is
obtained after rotation of the first control shape function
of an angle equal to 90◦.

The operator M is equal to the identity operator and the
value of δ has been set to:

δ = 12, 26.
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5.2 Discretization

For the spatial semidiscretization, a finite difference
scheme with k = nx1 · nx2 = 96 · 64 = 6144 degrees of
freedom was implemented. The discretization A ∈ Rk×k
of the operator A defined as in (7) was obtained by first
discretizing the operator A∗ as given by (8) and by then
taking the transpose of the resulting matrix. The reason
for this indirect approach was that the discretization of A∗
only required the incorporation of “standard” Neumann
boundary conditions rather than the mixed boundary con-
ditions arising for A. Due to the convective terms included
in A and A∗, a first order upwind scheme was utilized. Let
us emphasize that even for the value ν = 1, this turned out
to be essential for the accuracy of the discretization. We
also mention the possibility of using more advanced dis-
cretization schemes that have been proposed in the context
of the Fokker-Planck equation, see, e. g. Annunziato and
Borz̀ı (2013); Chang and Cooper (1970).

For our numerical tests, the (discrete) stationary distribu-
tion ρk∞ is computed as the unique vector of norm 1 of
the kernel of A (we do not use the formula (4)). Note that
numerically, ρk∞ is positive and that the kernel of AT is
the set of vector with identical coordinates. Observe that
up to a multiplicative constant, ρ∞ and e−Φ are equal.
The operator ρ 7→ e−Φ/2ρ is discretized with the diagonal
matrix D whose diagonal terms are equal to square roots
of the coordinates of ρk∞. The operator ρ 7→ eΦ/2 is
discretized with the matrix D−1. Finally, the operator As
is obtained by computing As = D−1AD. Numerically, it is
almost symmetric and is diagonalizable with non-positive
eigenvalues.

All simulations were generated on an Intel R©Xeon(R)
CPU E31270 @ 3.40 GHz x 8,16 GB RAM, Ubuntu
Linux 14.04, MATLAB R© Version 8.0.0.783 (R2012b) 64-
bit (glnxa64). For solving the Riccati equations, we used
the MATLAB R© routine care. We used the MATLAB R©

routine eigs for computing the greatest eigenvalues. The
solutions of the ODE systems were always obtained by the
MATLAB R© routine ode23.

5.3 Comparison of the two linear feedbacks

The reduction method has been tested with a selection of
10 eigenvectors. The highest eigenvalue of As on the stable
subspace is equal to −35, 0. Let us denote by K0 and K1

the discretized feedback laws associated with K0 and K1,
respectively. The discretized feedbacks are row vectors of
dimension 96·64.

For the first control shape function, we have

2‖K1 −K0‖/(‖K0‖+ ‖K1‖) = 3, 72.10−8,

for the second control shape function,

2‖K1 −K0‖/(‖K0‖+ ‖K1‖) = 3, 77.10−5.

The discretized feedback laws K0 and K1 are therefore
very close, for the two different control shape functions.
As a result, the trajectories obtained for the two different
feedback laws are almost identical, for the two different
control shape functions.

The resolution of the full Riccati equation takes approxi-
mately one hour (the unknown variable is a matrix with
6144 rows and columns), whereas the computation of the
first 10 eigenvectors and the resolution of the correspond-
ing “reduced” Riccati equation takes less than 1 second.
The computation time is therefore significantly reduced,
and the method could allow the design of Riccati-based
feedback laws in higher dimension.

5.4 Stabilization results
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Fig. 3. Comparison of L2(Ω)-norm evolution

As is shown in Figure 3, the convergence rate of the uncon-
trolled system is undesirably slow. This mainly reflects the
fact that the particle has to overcome the “energy barrier”
between the potential wells. A rate of convergence equal to
δ is observed when a linear feedback is used (results are the
same for K0 and K1), for the two control shape functions.
Note however that in the case of the control shape function
α2, the feedback is almost ineffective at the beginning.

Observe that when the control shape function α1 is used,
a positive value of the control has the following effect:
The left-hand well is lowered and the right-hand well is
heightened, which speeds up the transfer from the right-
hand well to the left-hand well. The second control shape
function is almost constant with respect to the variable x1,



thus, the linear feedback cannot raise the right-hand well
above the left-hand one. The linear feedback acts therefore
in a rather different way, in this situation: It first attracts
the particles at the lower boundary from where it is slowly
moved to the center of the wells. This explains why the
convergence to ρ∞ is very slow, at the beginning. These
phenomena are illustrated by Figure 4 and Figure 5, which
show the temporal evolution of the state of the systems and
the temporal evolution of the potential V , respectively.
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(b) t = 0.5.
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Fig. 4. Temporal evolution of the state ρ.
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Fig. 5. Temporal evolution of the potential V (x).
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sional Systems. Birkhäuser Boston Basel Berlin. doi:
10.1007/978-0-8176-4581-6.

Breiten, T., Kunisch, K., and Pfeiffer, L. (2016). Control
strategies for the Fokker-Planck equation. SFB-Report,
2016-003.

Chang, J. and Cooper, G. (1970). A practical scheme
for Fokker–Planck equations. Journal of Computational
Physics, 6, 1–16.

Curtain, R. and Zwart, H. (2005). An Introduction to
Infinite-Dimensional Linear Systems Theory. Springer-
Verlag.

Gardiner, C.W. (2004). Handbook of Stochastic Methods
for Physics, Chemistry and the Natural Sciences, vol-
ume 13 of Springer Series in Synergetics. Springer-
Verlag, Berlin, third edition.

Hartmann, C. (2011). Balanced model reduction of
partially-observed Langevin equations: an averaging
principle. Mathematical and Computer Modelling of
Dynamical Systems, (17), 463–490.

Hartmann, C., Schäfer-Bund, B., and Thöns-Zueva, A.
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