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Abstract

The aim of this paper is to prove the existence of almost global weak solutions for the unsteady nonlinear
elastodynamics system in dimension d = 2 or 3, for a range of strain energy density functions satisfying
some given assumptions. These assumptions are satisfied by the main strain energies generally considered.
The domain is assumed to be bounded, and mixed boundary conditions are considered. Our approach is
based on a nonlinear parabolic regularization technique, involving the p-Laplace operator. First we prove
the existence of a local-in-time solution for the regularized system, by a fixed point technique. Next, using
an energy estimate, we show that if the data are small enough, the maximal time of existence does not
depend on the parabolic regularization parameter. The solution is thus obtained by passing this parameter
to zero. The key point of our proof is due to the recent nonlinear Korn’s inequality proven by Ciarlet &
Mardare in W1,p spaces, for p > 2.
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1 Introduction

1.1 The model

The elastodynamics system we consider in this paper is a hyperbolic partial differential equation combined
with boundary conditions – when the domain has a boundary – and initial conditions, whose unknown is the
displacement inside a deformable body. We denote by u(·, t) the displacement field at time t with respect to the
reference configuration represented by a bounded domain Ω of Rd (d = 2 or 3). It is assumed to obey the laws
of elasticity (see [Cia88] for instance). The density of the body in the reference configuration is denoted by ρ.
It is positive, and for a sake of simplicity, we assume it to be constant. We further assume that the boundary of
the domain is split into two parts denoted by ΓD and ΓN . For mathematical convenience, we will consider that
the displacement is null on ΓD, and that the Lebesgue measure of this boundary is not equal to zero, namely:
|ΓD| > 0.

Mixed boundary conditions are considered on ∂Ω = ΓD∪ΓN . A homogeneous Dirichlet condition is imposed
on ΓD, and a non-homogeneous Neumann-type boundary condition is considered on ΓN . For 0 < T ≤ ∞, the
system governing the evolution of the displacement u is the following:

ρü− div((I +∇u)Σ(u)) = f in Ω× (0, T ),
u = 0, on ΓD × (0, T ),

(I +∇u)Σ(u)n = g on ΓN × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u1 in Ω.

(1)

In this system, the symbol I denotes the identity matrix of Rd×d, and Σ denotes the so-called second Piola-
Kirchhoff stress tensor, namely the derivative of the strain energy density function W with respect to the
Green–St-Venant strain tensor E:

Σ(u) =
∂W
∂E

(E(u)), E(u) =
1

2

(
(I +∇u)T (I +∇u)− I

)
.

For the choice of the strain energy, we can consider, for instance, the example of the St-Venant–Kirchhoff model

W(E) = µLtr(E2) +
λL
2

tr(E)2,

where µL and λL denote the classical Lamé coefficients. The functions u0, u1, f and g are data of the problem.

1.2 Main result

The question of local-in-time existence for the elastodynamics system has been first addressed in [HKM76], for
data reduced to initial conditions, and then in [ST88] for small Neumann data, both in the framework of strong
solutions. A negative answer about the question of global existence has been given in [KP79], and blow-up of
strong solutions has been proven in [GK08], under particular assumptions on the strain energy density function.
The global existence of large rigid displacements (but in the context of linearized elasticity) has been obtained
in [GMM02] for small data, and in [GMM07] for small strains. Almost global existence, that is to say finite time
of existence with large bounds on the data, has been obtained in [JT08] for the St-Venant–Kirchhoff model, and
in [LSZ15] in the context of incompressible materials. For incompressible materials, the literature for global
existence is abundant. Let us mention, for instance, the works of [Ebi93, Ebi96, Tho03, ST05, ST07], in the
case of small data, and more recently the result of [Yin16] for an elastodynamics system written in Eulerian
formulation. Finally, we mention the paper of [ZY09] where a locally distributed dissipation is added to the
model, in order to stabilize the system.

As far as we know, no result concerning the global-in-time existence of solutions for the elastodynamics
system, in the case of general strain energy, has been obtained until now. Besides the complexity due to the
nonlinearity of this system, the main difficulty lies in the control, by the total strain energy, of the gradient of
the displacement. This difficulty can be now addressed thanks to the recent nonlinear Korn’s inequalities proved
in [CM15], and also in [Mus16]. More specifically, if det(I + ∇u) > 0 almost everywhere in Ω, the inequality
given in the part (b) of Theorem 3 of [CM15] yields in particular that

‖u‖p
[W1,p(Ω)]d

≤ C‖E(u)‖p/2
[Lp/2(Ω)]d×d

,
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where p > 2, and where the constant C > 0 does not depend on u ∈
[
W1,p(Ω)

]d
. In the example of the

St-Venant–Kirchhoff model, the total strain energy on Ω controls the L2-norm of the tensor E, and thus for
this case the exponent p = 4 is well-chosen. This Korn’s inequality is the key point leading to the main result
of our work, namely:

Theorem 1. Let Ω be a bounded domain of Rd with d = 2 or 3. Assume that its boundary ∂Ω = ΓD t ΓN is
Lipschitz, and that ΓD is non-empty and relatively open in ∂Ω. Let be p > 2, p ≥ d, and define p′ = p/(p− 1).
Assume that there exists C > 0 such that, for all E ∈ [Lp/2(Ω)]d×d, the total strain energy satisfies∫

Ω

W(E) dΩ ≥ C‖E‖p/2
[Lp/2(Ω)]d×d

.

Assume further that W is of class C1 on
[
Lp/2(Ω)

]d×d
. Denoting by Σ̌ its differential and by E the Green–St-

Venant tensor, we assume that the tensor field Σ̌ ◦E is symmetric and locally α-Hölderian on Lp
(
0, T ; [W1,p]d

)
for all T > 0, with α = min(1, (p− 2)/2). Assume that u0 ∈ [W1,p(Ω)]d, u0|ΓD ≡ 0 and that det(I +∇u0) > 0
almost everywhere in Ω. Let be T > 0. Then there exists a constant C(T ) > 0 such that, if∫

Ω

W(E(u0)) dΩ + ‖u1‖[L2(Ω)]d + ‖f‖L2(0,T ;[L2(Ω)]d + ‖g‖L2(0,T ;[H1/2(ΓN )′]d) ≤ C(T ),

then system (1) admits a solution u such that

u ∈ L∞(0, T ; [W1,p(Ω)]d), u̇ ∈ L∞(0, T ; [L2(Ω)]d), ü ∈ Lp
′
(0, T ; [W1,p(Ω)′]d).

The assumption p ≥ d is made only for giving a sense in a time continuous space, namely C([0,∞); L1(Ω)), to
the quantity det(I+∇u), whose the positivity required for the Korn’s inequality aforementioned. The smallness
assumption on the data is also made in order to take into account this criteria. The assumptions made on the
strain energy in this theorem are actually satisfied by three important families of strain energies, namely the
St-Venant–Kirchhoff model, the Fung’s model (at least a polynomial approximation of this model), and the
Ogden’s model in some cases. See section 2.3 for more details.

1.3 Strategy

The weak solution whose existence is proven in this paper is obtained by a parabolic regularization technique.
The parabolic term we add to the elastodynamics system is the p-Laplace operator, in order to obtain the
regularity of the time-derivative of the displacement in [W1,p(Ω)]d. The study of an evolutionary p-Laplace
system enables us to define a mapping whose a fixed point is a weak solution of the so regularized elastodynamics
system. For T small enough, and under assumptions on the differential of the strain energy density function, by
the Schauder’s theorem we prove that this mapping admits a fixed point, and thus the existence of a local-in-time
solution follows for the regularized elastodynamics system. Next, an estimate on the energy of the regularized
system is obtained. Assuming that the total strain energy can control the norm of the Green–St-Venant tensor
in [Lp/2(Ω)]d×d, we can thus control the gradient of the displacement in [Lp(Ω)]d, thanks to the aforementioned
nonlinear Korn’s inequality. Furthermore, the energy estimate then shows that the maximal time of existence
of the weak solution of the regularized system does not depend on the regularization coefficient, provided that
the data are small enough. We can thus allow this parameter to tend to zero, and extract a solution by weak-*
convergence. The solution obtained by this particular means is unique for the original hyperbolic system, but not
unique in general. The general uniqueness could perhaps be proven in some particular cases, like for the model
of St-Venant–Kirchhoff, under some additional regularity property on the displacement (see the coerciveness
result in [CM15], part (b) of Theorem 3). The question of uniqueness remains open in the general case.

The paper is organized as follows. The functional framework and notation are introduced in section 2. In
particular, assumptions are made on the type of strain energies we can consider in this paper, underlined by
the study of classical examples. A preliminary result lies in the study of an evolutionary p-Laplace system in
section 3. Section 4 is devoted to the proof of the existence of a local-in-time weak solution for the regularized
elastodynamics system by a fixed point method. The question of global existence for system (1) is addressed in
section 5.
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2 Preliminaries

In the whole paper, we denote by Ω a bounded domain with Lipschitz boundary of Rd, d = 2 or 3. We denote
by ΓD a non-empty relatively open subset of ∂Ω, and we define ΓN := ∂Ω \ ΓD. The first and second time-
derivatives of a vector field v will be denoted by v̇ and v̈, respectively. For all q > 1, we denote by q′ = q/(q−1)
its conjugate number.

2.1 Functional settings

Throughout the paper, we will use the Hölder’s inequality: Denoting by S a measure space, for 1 ≤ p, q ≤ ∞,
and 1/r = 1/p+ 1/q, if f ∈ Lp(S) and g ∈ Lq(S), then

‖fg‖Lr(S) ≤ ‖f‖Lp(S)‖g‖Lq(S).

In particular, when the domain Ω is bounded, the embeddings Lr(Ω) ↪→ Ls(Ω) are continuous for 1 ≤ s ≤ r ≤ ∞.
For q > 1, we consider multi-dimensional Sobolev spaces, by using the notation

Lq(Ω) = [Lq(Ω)]
d
, Lq(Ω) = [Lq(Ω)]

d×d
,

Wq(Ω) = [Wq(Ω)]
d
, Wq(Ω) = [Wq(Ω)]

d×d
.

The classical inner product for tensors in Rd×d is denoted by A : B = tr(ATB), and the associated norm is
given by |A|2 = tr(ATA). Recall that it satisfies |AB| ≤ |A||B| for all A, B ∈ Rd. For p > 1, we define

W1,p
0,D(Ω) :=

{
v ∈W1,p(Ω), v|ΓD = 0

}
.

In order to define a specific norm for W1,p
0,D(Ω), we first write

‖v‖W1,p(Ω) = ‖v‖Lp(Ω) + ‖∇v‖Lp(Ω),

for v ∈ W1,p(Ω). From the Rellich-Kondrachov theorem, the embedding W1,p(Ω) ↪→ Lp(Ω) is compact,
and since the operator v 7→ ∇v is injective from W1,p

0,D(Ω) to Lp(Ω), the Petree-Tartar lemma (see [EG04],

Lemma A.38 page 469) enables us to endow the space W1,p
0,D(Ω) with the norm

‖v‖W1,p
0,D(Ω) := ‖∇v‖Lp(Ω),

for all v ∈W1,p
0,D(Ω). Finally, for the boundary ΓN we recall the trace inequality

‖v‖W1−1/p,p(ΓN ) ≤ Cp,N‖v‖W1,p(Ω), (2)

where the constant Cp,N > 0 does not depend on v. For the sake of brevity, we will use the notation

Vp(Ω) = W1,p
0,D(Ω), Vp(ΓN ) = W1−1/p,p(ΓN ).

Coerciveness of the Green - St-Venant strain tensor The Green – St-Venant strain tensor is defined by

E(v) =
1

2

(
(I +∇v)T (I +∇v)− I

)
=

1

2

(
∇v +∇vT +∇vT∇v

)
. (3)

Part (b) of Theorem 3 of [CM15] is a Korn type inequality for this nonlinear tensor. It provides coerciveness
for this tensor in the space Lp(Ω), with respect to Vp(Ω). In particular, given p > 2, there exists a positive
constant CK > 0 such that, for all v ∈ Vp(Ω) satisfying det(I +∇v) > 0 almost everywhere in Ω, the following
inequality holds

‖v‖2Vp(Ω) ≤ ‖v‖
2
W1,p(Ω) ≤ CK‖E(v)‖Lp/2(Ω). (4)

On the other hand, for v1, v2 ∈W1,p(Ω), with the Cauchy-Schwarz inequality it is easy to get the estimate

‖E(v)‖Lp/2(Ω) ≤ C
(
1 + ‖∇v‖Lp(Ω)

)
‖∇v‖Lp(Ω). (5)

Here, as in the rest of the paper, the notation C will define a generic positive constant, independent of T , the
unknowns and the data of the problem, except u0. But it may depend on Ω, ΓD, ΓN , ‖u0‖Vp(Ω),

∫
Ω
W(E(u0)) dΩ

and ∂W
∂E (0).
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2.2 Assumptions on the strain energy density function

Let p > 2. The strain energy

W : Lp/2(Ω) → L1(Ω)

is a positive function of the Green – St-Venant strain tensor E. When this mapping is Gâteaux-differentiable,
the derivative of W ◦ E with respect to the displacement u in the direction v can be expressed as

∂(W ◦ E)

∂u
.v =

∂W
∂E

(E(u)) : (E′(u).v)

with E′(u).v = 1
2 ((I +∇u)T∇v +∇vT (I +∇u)T ). If furthermore the mapping ∂W

∂E (E(u)) defines a symmetric
tensor, then this expression reduces to

∂(W ◦ E)

∂u
.v = (I +∇u)

∂W
∂E

(E(u)) : ∇v.

We assume the following set of hypotheses on the strain energy:

A1 There exists C > 0 such that for all E ∈ Lp/2(Ω) we have

C‖E‖p/2Lp/2(Ω)
≤

∫
Ω

W(E) dΩ. (6)

A2 The strain energy W is of class C1 on Lp/2(Ω). We denote

Σ̌(E) =
∂W
∂E

(E) ∈ L
(
Lp/2(Ω); L1(Ω)

)
' L(p/2)′(Ω) = Lp/(p−2)(Ω).

We assume that, for each symmetric tensor E, the tensor Σ̌(E) is symmetric. When the tensor E is
expressed as function of a vector field v, through the expressions (3), we will denote Σ(v) := Σ̌(E(v)).

A3 The mapping W is of class C1 on Lp/2(0, T ;Lp/2(Ω)). Moreover, the mapping Σ = ∂W
∂E ◦ E is locally

α-sublinear with α = min(1, (p − 2)/2). More precisely, for T > 0 and R(T ) > 0, there exists a positive
constant CR(T ) > 0 such that

‖v‖Lp(0,T ;Vp(Ω)) ≤ R(T ) ⇒ ‖Σ(v)‖L(p/2)′ (0,T ;L(p/2)′ (Ω)) ≤ C + CR(T )‖v‖αLp(0,T ;Vp(Ω)). (7)

Here R and CR are assumed to be non-decreasing with respect to T and R, respectively.

Inequalities (4) and (5) imply that

‖v‖2Lp(0,T ;Vp(Ω)) ≤ CK‖E(v)‖Lp/2(0,T ;Lp/2(Ω)),

‖E(v)‖Lp/2(0,T ;Vp/2(Ω)) ≤ C
(
T 1/p + ‖v‖Lp(0,T ;Vp(Ω))

)
‖v‖Lp(0,T ;Vp(Ω)),

for v, v1, v2 ∈ Lp(0, T ; Vp(Ω)). Therefore, for T ≤ 1 for instance (this assumption will be used only for proving
the local-in-time result), assumption A3 is implied by the following one.

A3’ The mappingW is of class C1 on Lp/2(Ω). Moreover, its derivative Σ̌ is locally α-sublinear on Vp(Ω), with
α = min(1, (p − 2)/2). Namely, for R > 0, there exists a positive constant ČR > 0, non-decreasing with
respect to R such that

‖E‖Lp/2(Ω) ≤ R ⇒ ‖Σ̌(E)‖L(p/2)′ (Ω) ≤ C + ČR‖E‖αLp/2(Ω). (8)

Finally, we sum up the hypotheses we make on the other data:

A4 We assume that u0 ∈ Vp(Ω) satisfies det(I +∇u0) > 0 almost everywhere in Ω, and that∫
Ω

W(E(u0)) dΩ <∞, u1 ∈ L2(Ω), f ∈ L2
loc(0,∞; L2(Ω)), g ∈ L2

loc(0,∞; V2(ΓN )′).
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Assumptions A1 and A2 are used in an essential manner in section 5 for energy estimates, as well as
assumption A4. Assumption A3 is mainly used in section 4, in the proof of the fixed point method.

Remark 1. The regularity on Σ postulated in assumption A3 is made in particular in order to have (I+∇v)Σ(v)
in Lp

′
(0, T ;Lp′(Ω)) for v ∈ Vp(Ω) (see Lemma 2). The nonlinear Korn’s inequality given in [CM04] in the case

p = 2 would enable us only to consider Σ(v) in the space L∞(Ω), which is not appropriate in view of the standard
examples of strain energies, and leads to difficulties due to lack of reflexivity.

Remark 2. In the assumptions A3 and A3′, we distinguish two cases. For the sake of simplicity, let us
focus our comments on assumption A3′. First, when p ≤ 4, that is to say α = (p − 2)/2, inequality (8) of
assumption A3’ is implied by

‖Σ̌(E)− Σ̌(0)‖p/(p−2)

Lp/(p−2)(Ω)
≤ ČR‖E(v)‖p/2Lp/2(Ω)

,

and even more so it is satisfied when Σ̌ is assumed to be locally (p − 2)/2-Hölderian. Here we use that
(p/2)/(p/2)′ = α. Secondly, when p ≥ 4, and when the mapping Σ̌ is of class C1, with

∂Σ̌

∂E
(E) ∈ L

(
Lp/2(Ω);L(p/2)′(Ω)

)
' Lp/(p−4)(Ω),

from the mean value theorem the mapping Σ̌ is locally Lipschitz, and thus this assumption is automatically
satisfied:

‖Σ̌(E)‖L(p/2)′ (Ω) ≤ ‖Σ̌(0)‖Lp/2)′ (Ω) + sup
‖E‖Lp/2(Ω)

≤R

(∥∥∥∥∂Σ̌

∂E
(E)

∥∥∥∥
Lp/(p−4)(Ω)

)
‖E‖Lp/2(Ω).

2.3 Examples of strain energy density functions

Let us mention some models of strain energy, and see if the assumptions A1 – A3 are satisfied for these
examples. We refer to [Cia88] (section 4.10, page 183) or [FFP79] for more comments on the models addressed
below. Implicitly, in the expressions below we assume that the tensor E is symmetric.

The St-Venant – Kirchhoff. It corresponds to the following strain energy

W1(E) = µLtr
(
E2
)

+
λL
2

tr(E)2,

where µL > 0 and λL ≥ 0 are the so-called Lamé coefficients. Here, the exponent p = 4 is well-fitted, because
in this case p/2 = p/(p− 2) = 2, and we can estimate easily∫

Ω

W1(E) dΩ ≥ C‖E‖2L2(Ω),

Σ̌1(E) :=
∂W1

∂E
(E) = 2µLE + λLtr(E)I,

‖Σ̌1(E)‖L2(Ω) ≤ C‖E‖L2(Ω).

Thus the assumptions A1 – A3 (and even A3′) are verified for this example.

The Fung’s model. It corresponds to the following strain energy

W2(E) = W2(0) + β
(
exp

(
γ tr(E2)

)
− 1
)
,

where W2(0) ≥ 0, β > 0 and γ > 0 are given coefficients. We only know that the space Ws,q(Ω) is invariant
under composition of the exponential function if s ≥ 1, for certain values of q (see [BB74], Lemma A.2. page
359). Therefore, in our context where E is considered only in Lp/2(Ω), we need to simplify this model. We
approximate this energy by the following one

WN
2 (E) = W2(0) + β

N∑
k=1

γktr(E2)k

k!
,

6



where 2 ≤ N ∈ N is the degree of approximation of the power series defining the exponential function. Choosing
p = 4N , we have (p− 2)/2 ≥ 1, p/(p− 4) = N/(N − 1) and the following estimate holds:∫

Ω

WN
2 (E) dΩ ≥ C‖E‖2NL2N (Ω).

From the identities

Σ̌N2 (E) :=
∂WN

2

∂E
(E) = 2βγ

(
N−1∑
k=0

γktr(E2)k

k!

)
E,

∂Σ̌N2
∂E

(E) = 2βγ

(
N−1∑
k=0

γktr(E2)k

k!

)
I + 4βγ2

(
N−2∑
k=0

γktr(E2)k

k!

)
E2,

and from from Remark 2, for R > 0 large enough we can estimate∥∥∥∥∂Σ̌N2
∂E

∥∥∥∥
LN/(N−1)(0,T ;LN/(N−1)(Ω))

≤ C

N−1∑
k=0

‖E‖2kL2N (0,T ;L2N (Ω)) ≤ C
N−1∑
k=0

R2k ≤ CR2N−2,

‖Σ̌N2 (E)‖L2N/(2N−1)(Ω) ≤ ‖Σ̌N2 (0)‖L2N/(2N−1)(Ω) + CR2N−2‖E‖L2N (Ω).

Assumptions A1 – A3′ are thus verified for this approximation of the Fung’s model.

The Ogden’s model. The family of strain energies corresponding to this model are linear combinations of
energies of the following form

W3(E) = tr ((2E + I)γ − I) ,

where γ ∈ R. Since the tensor 2E+I is real and symmetric, the expression (2E+I)β makes sense for all number
β ∈ R, and the energy W3(E) can be expressed in terms of the eigenvalues of 2E + I. This general form of
the strain energy includes the cases of the Neo-Hookean and Mooney-Rivlin models (γ = 1 and γ ∈ {−1,+1}
respectively). But here we only evoke the case γ > 1. First, since 2E(u) + I = (I +∇u)T (I +∇u), if (λi)1≤i≤d
denote the singular values of I +∇u, and (µi)1≤i≤d denote those of E(u), we have

tr ((2E + I)γ − I) =

d∑
i=1

(
λ2γ
i − 1

)
=

d∑
i=1

((1 + 2µi)
γ − 1) ≥

d∑
i=1

(2µi)
γ ≥ C

(
d∑
i=1

µ2
i

)γ/2
= C |E|γ ,

because of the equivalence of norms in Rd. Thus, by choosing p = 2γ > 2, we have∫
Ω

W3(E) dΩ = ‖2E + I‖p/2Lp/2(Ω)
− d|Ω| ≥ C‖E‖p/2Lp/2(Ω)

,

that is to say A1 holds, and A2 can be easily checked. For the assumptions A3 and A3′, since the derivative
of W3 is given by Σ̌3(E) = 2γ(2E + I)γ−1, the case γ ≥ 2 can be treated as previously. Turning to 1 < γ < 2,
we have that (p − 2)/2 = γ − 1 ∈ (0, 1). Since the derivative of W3 writes Σ̌3(E) = 2γ(2E + I)γ−1. Since the
function x 7→ xγ−1 is (γ− 1)-Hölderian on [0, 1], we deduce that for E small enough in Lγ(0, T ;Lγ(Ω)), namely
R(T ) small enough, the following estimate holds

‖Σ̌3(E)‖Lγ/(γ−1)(0,T ;Lγ/(γ−1)(Ω) ≤ T 1−1/γ‖Σ̌3(0)‖Lγ/(γ−1)(0,T ;Lγ/(γ−1)(Ω) + CR(T )‖E‖γ−1
Lγ(0,T ;Lγ(Ω)).

We will see in section 4 (more precisely Lemma 1) that the constant R(T ) of assumption A3 can be chosen
small enough, provided that T is chosen small enough. Thus, for the Ogden’s model with a coefficient γ > 1,
assumptions A1–A3 are satisfied.
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3 A nonlinear parabolic system

In this section, we are interested in the following nonlinear parabolic system
ρẇ − κdiv(|∇w|p−2∇w) = f in Ω× (0, T ),

w = 0 on ΓD × (0, T ),
κ|∇w|p−2∇wn = g on ΓN × (0, T ),

w(·, 0) = u1 in Ω,

(9)

where κ > 0, p ≥ 2, and T > 0 is fixed and arbitrary. System (9) is an evolutionary p-Laplace equation with
mixed boundary conditions. Throughout it is assumed that

u1 ∈ L2(Ω), f ∈ Lp
′
(0, T ; Vp(Ω)′), g ∈ Lp

′
(0, T ; Vp(ΓN )′).

Definition 1. We say that w is a weak solution of system (9) if w ∈ Lp(0, T ; Vp(Ω)), ẇ ∈ Lp
′
(0, T ; Vp(Ω)′),

w(0) = u1, and for all ϕ ∈ Lp(0, T ; Vp(Ω)) we have

ρ〈ẇ;ϕ〉Vp(Ω)′;Vp(Ω) + κ

∫
Ω

|∇w|p−2∇w : ∇ϕdΩ = 〈f ;ϕ〉Vp(Ω)′;Vp(Ω) + 〈g;ϕ〉Vp(ΓN )′;Vp(ΓN ),

almost everywhere in (0, T ).

Remark 3. By definition, a weak solution of system (9) lies in the space W (0, T ; W1,p(Ω)) defined by

w ∈W (0, T ; Vp(Ω)) ⇔
{
w ∈ Lp(0, T ; Vp(Ω))

ẇ ∈ Lp
′
(0, T ; Vp(Ω)′)

,

corresponding to the Gelfand triplet V ↪→ H ≡ H ′ ↪→ V ′, with H = L2(Ω), V = Vp(Ω), and dense embeddings.
So it is well-known that such a solution lies also in C([0, T ]; L2(Ω)), and thus the space L2(Ω) in which the
initial condition is considered makes sense.

Proposition 1. System (9) admits a unique weak solution w, in the sense of definition 1. Moreover, it satisfies
the estimate

‖ẇ‖p
′

Lp′ (0,T ;Vp(Ω)′)
+ ‖w‖pLp(0,T ;Vp(Ω)) ≤ C

(
‖u1‖2L2(Ω)+

+ ‖f‖p
′

Lp′ (0,T ;Vp(Ω)′)
+ ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

)
, (10)

where the constant C depends only on ρ, κ and Ω.

Proof. System (9) is a p-Laplace evolution problem. Existence and uniqueness of a weak solution for this system
have been proven in [BB69] for instance (see the example 1, p. 391-392, consequence of Theorem V.3. p. 387).
Uniqueness is due to the convexity of the function v 7→ |v|p. Let us prove the announced estimate, which will be
obtained with standard arguments. Taking the inner product of the first equation of (9) by w and integrating
on Ω yields, with the Green formula

ρ

2

d

dt

(
‖w‖2L2(Ω)

)
+ κ‖∇w‖pLp(Ω) = 〈f ;w〉Vp(Ω)′;Vp(Ω) + 〈g;w〉Vp(ΓN )′;Vp(ΓN ),

≤ ‖f‖Vp(Ω)′‖w‖Vp(Ω) + ‖g‖Vp(ΓN )′‖w‖Vp(ΓN ).

Keep in mind the identity ‖∇w‖Lp(Ω) = ‖w‖W1,p(Ω), and recall the trace inequality ‖w‖Vp(ΓN ) ≤ Cp,N‖w‖Vp(Ω),
where Cp,N > 0 depends only on ΓN , Ω and p. Next, integrating this inequality in time between 0 and T gives,
with the Young’s inequality involving some α > 0,

ρ

2
‖w(T )‖2L2(Ω) + κ

∫ T

0

‖∇w(t)‖pLp(Ω)dt+ ≤ ρ

2
‖u1‖2L2(Ω) +

α−p
′

p′

∫ T

0

‖f(t)‖p
′

Vp(Ω)′dt+
αp

p

∫ T

0

‖w(t)‖pVp(Ω)dt+

α−p
′

p′

∫ T

0

‖g(t)‖p
′

Vp(ΓN )′dt+
(αCp,N )p

p

∫ T

0

‖w(t)‖pVp(Ω)dt.
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Choose α > 0 small enough, such that (αp + (αCp,N )p)/p ≤ κ/2, and we obtain

κ

2
‖w‖pLp(0,T ;Vp(Ω)) ≤ ρ

2
‖w(0)‖2L2(Ω) + C

(
|f‖p

′

Lp′ (0,T ;Vp(Ω)′)
+ ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

)
.

For the estimate on the time-derivative, due to the equality ρẇ = f + κdiv
(
|∇w|p−2∇w

)
it is sufficient to

control the term div
(
|∇w|p−2∇w

)
in the space Lp

′
(0, T ; Vp(Ω)′). First, it is easy to verify that |∇w|p−2∇w

lies in Lp
′
(0, T ; Lp

′
(Ω)). More specifically, we have

‖|∇w|p−2∇w‖p
′

Lp′ (0,T ;Lp′ (Ω))
= ‖∇w‖pLp(0,T ;Lp(Ω)),

‖|∇w|p−2∇w‖Lp′ (0,T ;Lp′ (Ω)) = ‖w‖p−1
Lp(0,T ;Vp(Ω)).

Therefore, for all ϕ ∈ Vp(Ω), from Hölder’s inequality we have〈
div
(
|∇w|p−2∇w

)
;ϕ
〉
Vp(Ω)′;Vp(Ω)

= −
∫

Ω

|∇w|p−2∇w : ∇ϕdΩ + 〈g;ϕ〉Vp(ΓN )′;Vp(ΓN ),∣∣∣〈div
(
|∇w|p−2∇w

)
;ϕ
〉
Vp(Ω)′;Vp(Ω)

∣∣∣ ≤ ‖|∇w|p−2∇w‖Lp′ (Ω))‖∇ϕ‖Lp(Ω)) + Cp,N‖g‖Vp(ΓN )′‖ϕ‖Vp(Ω)

≤ C
(
‖w‖p−1

Vp(Ω) + ‖g‖Vp(ΓN )′

)
‖ϕ‖Vp(Ω),

and thus, by Young’s inequality∥∥div
(
|∇w|p−2∇w

)∥∥p′
Vp(Ω)′

≤ C
(
‖w‖p−1

Vp(Ω) + ‖g‖Vp(ΓN )′

)p′
≤ C

(
‖w‖pVp(Ω) + ‖g‖p

′

Vp(ΓN )′

)
,∥∥div

(
|∇w|p−2∇w

)∥∥p′
Lp′ (0,T ;Vp(Ω)′)

≤ C
(
‖w‖pLp(0,T ;Vp(Ω)) + ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

)
,

which concludes the proof.

We now consider system (9) with particular additional right-hand-sides, namely
ρẇ − κdiv(|∇w|p−2∇w) = f + divA in Ω× (0, T ),

w = 0 on ΓD × (0, T ),
κ|∇w|p−2∇wn = g −An on ΓN × (0, T ),

w(·, 0) = u1 in Ω,

(11)

where A is a given tensor field.

Definition 2. Let A ∈ Lp
′
(0, T ;Lp′(Ω)). We say that w is a weak solution of system (11) if w ∈ Lp(0, T ; Vp(Ω)),

ẇ ∈ Lp
′
(0, T ; Vp(Ω)′), w(0) = u1, and for all ϕ ∈ Lp(0, T ; Vp(Ω)) we have

ρ〈ẇ;ϕ〉Vp(Ω)′;Vp(Ω) + κ

∫
Ω

|∇w|p−2∇w : ∇ϕdΩ = 〈f ;ϕ〉Vp(Ω)′;Vp(Ω) + 〈g;ϕ〉Vp(ΓN )′;Vp(ΓN )

−
∫

Ω

A : ∇ϕdΩ,

almost everywhere in (0, T ).

From Proposition 1 we can deduce the following result.

Corollary 1. Let A ∈ Lp
′
(0, T ;Lp′(Ω)). Then system (11) admits a unique weak solution w, in the sense of

Definition 2. Moreover, it satisfies the following estimate

‖ẇ‖p
′

Lp′ (0,T ;Vp(Ω)′)
+ ‖w‖pLp(0,T ;Vp(Ω)) ≤ C

(
‖u1‖2L2(Ω) + ‖f‖p

′

Lp′ (0,T ;Vp(Ω)′)
+ ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

+‖A‖p
′

Lp′ (0,T ;Lp′ (Ω))

)
, (12)

where the constant C depends only on ρ, κ and Ω.
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Proof. In the variational formulation of system (11), the Green’s formula reduces the terms involving A to

〈divA;ϕ〉Vp(Ω)′;Vp(Ω) − 〈An;ϕ〉Vp(ΓN )′;Vp(ΓN ) =

∫
Ω

A : ∇ϕdΩ.

From the Hölder’s inequality, we have∣∣∣∣∫
Ω

A : ∇ϕdΩ

∣∣∣∣ ≤ ‖A‖Lp′ (Ω)‖ϕ‖Vp(Ω),

Therefore the result of Proposition 1 holds in this case. In particular, the steps of the proof of the announced
estimate are the same as those given in the proof of Proposition 1.

4 Local existence by parabolic regularization

We choose κ > 0, p > 2, f ∈ Lp
′
(0, T ; Vp(Ω)′), g ∈ Lp

′
(0, T ; Vp(ΓN )′), and consider the following system

ρü− κdiv
(
|∇u̇|p−2∇u̇

)
− div((I +∇u)Σ(u)) = f in Ω× (0, T ),

u = 0 on ΓD × (0, T ),

κ |∇u̇|p−2∇u̇ n+ (I +∇u)Σ(u)n = g on ΓN × (0, T ),
u(·, 0) = u0, u̇(·, 0) = u1 in Ω.

(13)

The definition of a weak solution for this system is inspired by Definition 2, with u̇ in the role of w, and
(I +∇u)Σ(u) in the role of the tensor field A.

Definition 3. We say that w is a weak solution of system (13) if w ∈ Lp(0, T ; Vp(Ω)), ẇ ∈ Lp
′
(0, T ; Vp(Ω)′),

w(0) = u1, and for all ϕ ∈ Lp(0, T ; Vp(Ω)) we have
u(·, t) := u0(·) +

∫ t

0

w(·, s)ds,

ρ〈ẇ;ϕ〉Vp(Ω)′;Vp(Ω) + κ

∫
Ω

|∇w|p−2∇w : ∇ϕdΩ +

∫
Ω

(I +∇u)Σ(u) : ∇ϕdΩ = 〈f ;ϕ〉Vp(Ω)′;Vp(Ω)

+〈g;ϕ〉Vp(ΓN )′;Vp(ΓN ),

almost everywhere in (0, T ).

We look for a weak solution of system (13) in the following set

BR(T ) =
{
w ∈ Lp(0, T ; Vp(Ω)), ‖w‖Lp(0,T ;Vp(Ω)) ≤ R

}
,

where R > 0 will be chosen large, and T > 0 small enough. This weak solution can be seen as a fixed point of
the following mapping

N : BR(T ) → Lp(0, T ; Lp(Ω))
w̃ 7→ w

where w̃ defines

ũ(x, t) := u0(x) +

∫ t

0

w̃(x, s)ds, x ∈ Ω,

and w is the solution – in the sense of Definition 2 – of the following system
ρẇ − κdiv(|∇w|p−2∇w) = f + div ((I +∇ũ)Σ(ũ)) in Ω× (0, T ),

w = 0 on ΓD × (0, T ),
κ|∇w|p−2∇wn = g − (I +∇ũ)Σ(ũ)n on ΓN × (0, T ),

w(·, 0) = u1 in Ω.

(14)

System (14) is of the same type as system (11). From Corollary 1, the solution of this system is well-
defined in W(0, T ; W1,p(Ω)), provided that the right-hand-sides lie in the corresponding spaces, in particular
(I +∇ũ)Σ(ũ) should lie in Lp

′
(0, T ;Lp′(Ω)). This point is verified in Lemma 2 below.
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4.1 Stability estimates

Lemma 1. Let be R > 0, 0 < T ≤ 1 and w ∈ BR(T ). Then the function defined by

v(·, t) = u0(·) +

∫ t

0

w(·, s)ds (15)

satisfies

‖v‖Lp(0,T ;Vp(Ω)) ≤ T 1/p(‖u0‖Vp(Ω) +R). (16)

Proof. From the triangle inequality leading to

‖v(t)‖Lp(0,T ;Vp(Ω)) ≤ T 1/p‖u0‖Vp(Ω) +

∥∥∥∥∫ t

0

w(s)ds

∥∥∥∥
Lp(0,T ;Vp(Ω))

,

we deduce with the Hölder’s inequality

‖v‖Lp(0,T ;V(Ω)) ≤ T 1/p‖u0‖Vp(Ω) +

(∫ T

0

tp/p
′
‖w‖pLp(0,t;Vp(Ω))dt

)1/p

≤ T 1/p‖u0‖Vp(Ω) + T‖w‖Lp(0,T ;Vp(Ω)),

and then for T ≤ 1 the result follows.

In the remainder of this section it is assumed that T ≤ 1. The following lemma shows that the mapping N
is well-defined. As before R(T ) and CR are non-decreasing with respect to T and R respectively.

Lemma 2. Assume that A3 is satisfied. Let be R > 0 and 0 < T ≤ 1. Then for all w ∈ BR(T ), the function v
defined by (15) satisfies

‖(I +∇v)Σ(v)‖Lp′ (0,T ;Lp′ (Ω)) ≤ C
(

1 + CR(T )T
α/p
)
, (17)

where α = min(1, (p− 2)/2).

Proof. By Hölder’s inequality, we have

‖(I +∇v)Σ(v)‖Lp′ (Ω) ≤ ‖(I +∇v)‖Lp(Ω)‖Σ(v)‖Lp/(p−2)(Ω),

‖(I +∇v)Σ(v)‖Lp′ (0,T ;Lp′ (Ω)) ≤ ‖(I +∇v)‖Lp(0,T ;Lp(Ω))‖Σ(v)‖L(p/2)′ (0,T ;L(p/2)′ (Ω)).

From Lemma 1, we have ‖v‖Lp(0,T ;Vp(Ω)) ≤ R(T ), where R(T ) = T 1/p(‖u0‖Vp(Ω) + R). Hence, inequality (7)
given in assumption A3 enables us to deduce

‖(I +∇v)Σ(v)‖Lp′ (0,T ;Lp′ (Ω)) ≤ ‖(I +∇v)‖Lp(0,T ;Lp(Ω))

(
C + CR(T )‖v‖αLp(0,T ;Vp(Ω))

)
≤ ‖(I +∇v)‖Lp(0,T ;Lp(Ω))

(
C + CR(T )T

α/p
(
‖u0‖Vp(Ω) +R

)α)
,

where α = min(1, (p− 2)/2). Moreover by (16) the same estimate holds for

‖(I +∇v)‖Lp(0,T ;Lp(Ω)) ≤ C + T 1/p
(
‖u0‖Vp(Ω) +R

)
,

so that we can conclude the proof by noticing that T ≤ 1 implies T (1+α)/p ≤ T 1/p ≤ Tα/p.

4.2 Invariance and relative compactness of N in BR(T )

Proposition 2. There exists T0 > 0 and R0 > 0 such that, for all T ≤ T0 and R ≥ R0, the set BR(T ) is
invariant under the mapping N . Moreover, the set N (BR(T )) is relatively compact in Lp(0, T ; L(Ω)).
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Proof. Let us begin by proving that BR(T ) is invariant under N . For w̃ ∈ BR(T ), if ũ denotes the function
defined by (15), and if w = N (w̃), then estimate (12) of Corollary 1 applied to system (14) gives the inequality

‖ẇ‖p
′

Lp′ (0,T ;Vp(Ω)′)
+ ‖w‖pLp(0,T ;Vp(Ω)) ≤ C

(
‖u1‖2L2(Ω) + ‖f‖p

′

Lp′ (0,T ;Vp(Ω)′)
+ ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

+‖(I +∇ũ)Σ(ũ)‖p
′

Lp′ (0,T ;Lp′ (Ω))

)
.

Furthermore, from the estimate (17) we have by the Young’s inequality

‖ẇ‖p
′

Lp′ (0,T ;Vp(Ω)′)
+ ‖w‖pLp(0,T ;Vp(Ω)) ≤ C

(
‖u1‖2L2(Ω) + ‖f‖p

′

Lp′ (0,T ;Vp(Ω)′)
+ ‖g‖p

′

Lp′ (0,T ;Vp(ΓN )′)

+1 + CR(T )T
α/(p−1)

)
. (18)

By choosing any R large enough, for instance

R = C
(
‖u1‖L2(Ω) + ‖f‖Lp′ (0,T ;Vp(Ω)′) + ‖g‖Lp′ (0,T ;Vp(ΓN )′) + 3/2

)
,

and then T small enough in order to have CR(T )T
α/(p−1) ≤ 1/2, we see that the function w lies in the set

BR(T ), and thus BR(T ) is invariant under N . Moreover, estimate (18) shows that if a w lies in N (BR(T )), then
w is bounded in Lp(0, T ; Vp(Ω), and ẇ is bounded in Lp

′
(0, T ; Vp(Ω)′). Since the embedding Vp(Ω) ↪→ Lp(Ω)

is compact, the hypotheses of Corollary 4 of [Sim87] (page 85) are satisfied, and then N (BR(T )) is relatively
compact in Lp(0, T ; Lp(Ω)).

It is clear that the set BR(T ) is a closed convex subset of Lp(0, T ; Lp(Ω)). The consequence of Proposition 2
is the existence of a fixed point of N , by the Schauder’s theorem, which leads to the existence of a local-in-time
solution for system (13). We sum up this result as follows.

Theorem 2. Assume that assumption A3 is satisfied by the strain energy, and that u0 ∈ Vp(Ω), u1 ∈ L2(Ω),
f ∈ Lp

′
(0, T0; Vp(Ω)′) and g ∈ Lp

′
(0, T0; Vp(Γ)′) for some T0 > 0. Then, if T0 is small enough, system (13)

admits a weak solution w, in the sense of Definition 3 with T0 in place of T . It defines u(·, t) = u0 +
∫ t

0
w(·, s)ds

which satisfies

u ∈W1,p(0, T0; Vp(Ω)), ü ∈ Lp
′
(0, T0; Vp(Ω)′).

5 Global existence of a weak solution

Throughout this section, we assume that the assumptions A1–A4 are satisfied for the strain energy and the
data. Then, in particular, the hypotheses of Theorem 2 hold.

Lemma 3. For 0 < T < +∞, if v ∈W1,p(0, T ; Vp(Ω)) with p ≥ d, then the function χ : t 7→ det(I +∇v(·, t))
admits a (uniformly) continuous representative function on [0, T ], with values in L1(Ω). More precisely, for
t, t′ ∈ [0, T ], we have

‖χ(t)− χ(t′)‖L1(Ω) ≤ C|t− t′|1−1/p
(

1 + ‖∇uκ‖d−1
L∞(0,T0(κ);Lp(Ω))

)
‖∇u̇κ‖Lp(0,T0(κ);Lp(Ω)).

In particular, the limit lim
t7→T

det(I +∇v(·, t)) exists in L1(Ω).

Proof. Since p ≥ d, we have χ ∈ L∞(0, T0(κ); Lp/d(Ω)). Furthermore, if cof(A) denotes the cofactor matrix of
a matrix A, we have

χ̇ = cof(I +∇v) : ∇v̇,
‖χ̇‖Lp(0,T ;Lp/d(Ω)) ≤ ‖cof(I +∇v)‖L∞(0,T ;Lp/(d−1)(Ω))‖∇v̇‖Lp(0,T ;Lp(Ω))

≤ C (1 + ‖∇v‖)d−1
L∞(0,T ;Lp(Ω)) ‖∇v̇‖Lp(0,T ;Lp(Ω)).

For t, t′ ∈ [0, T0(κ)), since we have

‖χ(t)− χ(t′)‖L1(Ω) ≤ |t− t′|1−1/p‖χ̇‖Lp(0,T0(κ);L1(Ω)),

the result follows.
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Proposition 3. Let T0 > 0 be the time of existence provided by Theorem 2, of a local-in-time solution u̇ for
system (13) on (0, T0), in the sense of Definition 3. Assume that there exists η ∈ L1(Ω), such that for all
t ∈ [0, T0]

det(I +∇u(·, t)) ≥ η > 0, almost everywhere in Ω. (19)

Then, for all t ∈ [0, T0], the following energy estimate holds:

‖u̇(t)‖2L2(Ω) + ‖u(t)‖pVp(Ω) + κ

∫ t

0

‖u̇(s)‖pVp(Ω)ds

≤ C0 exp(C0t)

(∫
Ω

W(E(u0)) dΩ + ‖u1‖2L2(Ω) +

∫ t

0

‖f(s)‖2L2(Ω)ds+

∫ t

0

‖g(s)‖2V2(ΓN )′ds

)
, (20)

where in particular the constant C0 > 0 does not depend on κ.

Proof. Taking the inner product in L2(Ω) by u̇ of the first equation of system (13) leads to, after integration
by parts

ρ

2

d

dt

(
‖u̇‖2L2(Ω)

)
+ κ‖∇u̇‖pLp(Ω) +

∫
Ω

(I +∇u)Σ(u) : ∇u̇dΩ =

∫
Ω

f · u̇dΩ +∫
ΓN

〈g; u̇〉V2(ΓN )′;V2(ΓN ) dΓN . (21)

Recall from assumption A2 that the derivative Σ̌ of W with respect to E defines a symmetric tensor, and
satisfies Σ̌(E(u)) = Σ(u). Therefore∫

Ω

(I +∇u)Σ(u) : ∇u̇dΩ =

∫
Ω

Σ(u) :
1

2

(
(I +∇u)T∇u̇+∇u̇T (I +∇u)

)
dΩ

=

∫
Ω

Σ̌(E(u)) : (E′(u).u̇) dΩ =
d

dt

∫
Ω

W(E(u)) dΩ.

Then, integrating (21) on (0, t) yields

ρ

2
‖u̇(t)‖2L2(Ω) +

∫
Ω

W(E(u(t))) dΩ + κ

∫ t

0

‖u̇(s)‖pVp(Ω)ds

=
ρ

2
‖u1‖2L2(Ω) +

∫
Ω

W(E(u0)) dΩ +

∫ t

0

∫
Ω

f(s) · u̇(s) dΩds+

∫ t

0

∫
ΓN

〈g(s); u̇(s)〉V2(ΓN )′;V2(ΓN ) dΓNds,

≤ ρ

2
‖u1‖2L2(Ω) +

∫
Ω

W(E(u0)) dΩ +
1

2

∫ t

0

(
‖f(s)‖2L2(Ω) + ‖g(s)‖2V2(ΓN )′

)
dt+ C

∫ t

0

‖u̇(s)‖2L2(Ω)dt.

From inequality (6) of assumption A1, combined with (4) which holds in particular because of (19), we get

CCK‖u(t)‖pVp(Ω) ≤ C‖E(u(t))‖p/2Lp/2(Ω)
≤
∫

Ω

W(E(u(t))) dΩ,

where C0 ∈ R. The constant CK does not depend on time, because of (19). Combined with these inequalities,
the energy estimate above then becomes

‖u̇(t)‖2L2(Ω) + ‖u(t)‖pVp(Ω) + κ

∫ t

0

‖u̇(s)‖pVp(Ω)ds

≤ C

(
‖u1‖2L2(Ω) +

∫
Ω

W(E(u0)) dΩ +

∫ t

0

‖f(s)‖2L2(Ω)ds+

∫ t

0

‖g(s)‖2V2(ΓN )′dt

)
+ C

∫ t

0

‖u̇(s)‖2L2(Ω)ds.

The proof can be concluded with the Grönwall’s lemma.

A weak solution w = u̇ for system (1) can be defined as in Definition 3, with κ = 0. Without ambiguity, we
still call u a weak solution, determined by u̇ and u0 through

u(·, t) = u0 +

∫ t

0

u̇(·, s)ds.

The energy estimate of Proposition 3 enables us to prove the main result of the paper.
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Theorem 3. Let be p > 2, p ≥ d. Assume that the assumptions A1–A4 are satisfied. For all T > 0, there
exists a constant C > 0 such that, if∫

Ω

W(E(u0)) dΩ + ‖u1‖L2(Ω)) + ‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;V2(ΓN )′) ≤ C exp(−CT ), (22)

then system (1) admits a weak solution u̇ such that

u ∈ L∞(0, T ; Vp(Ω)), u̇ ∈ L∞(0, T ; L2(Ω)), ü ∈ Lp
′
(0, T ; Vp(Ω)′).

Proof. Let T > 0 be arbitrary. For κ > 0, we denote by u̇κ the solution provided on [0, T0] by Theorem 2.

Step 1. Consider η ∈ L1(Ω) such that 0 < η < det(I+∇u0) almost everywhere in Ω. For instance, we choose
η = 1

2det(I +∇u0). We define

Tmax(κ) = sup {T0 > 0, such that u̇κ satisfies (13) on [0, T0], in the sense of Definition 3, and

for all t ∈ [0, T0), det(I +∇uκ(·, t)) ≥ η almost everywhere in Ω} .

Since det(I + ∇u0) > 0, Lemma 3 paired with Theorem 2 shows that Tmax(κ) > 0. Assume that Tmax(κ) <
T . We will show that this leads to a contradiction, under the announced smallness assumption on the
data. Estimate (20) of Proposition 3 – used for t = Tmax(κ) – shows that the functions uκ(Tmax(κ)) and
u̇κ(Tmax(κ)) are in Vp(Ω) and L2(Ω), respectively. Hence, Theorem 2 enables us to extend uκ on the interval
[Tmax(κ), Tmax(κ) + τ(κ)) for some τ(κ) > 0. On the other hand, estimate (20) shows also that, for all ε > 0,
the data can be chosen small enough, namely∫

Ω

W(E(u0)) dΩ + ‖u1‖L2(Ω)) + ‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(0,T ;V2(ΓN )′) ≤ εd

C0
exp(−C0T )

in order to have ‖uκ(Tmax(κ)‖Vp(Ω) ≤ ε. Since there exists Ĉ > 0 independent of v ∈ Vp(Ω) such that

det(I +∇v) ≥ 1− Ĉ‖v‖dVp(Ω) and det(I +∇v) ≤ 1 + Ĉ‖v‖dVp(Ω),

we can choose ε > 0 small enough, and further decrease ‖u0‖Vp(Ω) if necessary in order to have

det(I +∇uκ(Tmax(κ)))− 2

3
det(I +∇u0) ≥ 1

3
− Ĉ

(
2

3
‖u0‖dVp(Ω) + εd

)
≥ 0,

det(I +∇uκ(Tmax(κ))) ≥ 2

3
det(I +∇u0).

Note that smallness for ‖u0‖Vp(Ω) is implied by
∫

Ω
W(E(u0)) dΩ small, due to assumption A1 and the Korn’s

inequality (4). Then, by continuity (see Lemma 3), we can choose τ(κ) > 0 small enough in order to have

det(I +∇uκ(t)) ≥ 1

2
det(I +∇u0), for all t ∈ [Tmax(κ), Tmax(κ) + τ(κ)).

This contradicts the definition of Tmax(κ) as an upper bound. Thus, under the hypothesis (22), one can assume
that Tmax(κ) ≥ T , for all κ > 0.

Step 2. In order to make κ tend to zero, estimate (20) gives us a κ-independent bound on uκ in L∞(0, T ; Vp(Ω)),
and on u̇κ in L∞(0, T ; L2(Ω)). We still need a bound on üκ in Lp

′
(0, T ; Vp(Ω)′). The variational formulation

of system (13) – given in Definition 3 – shows that we have

ρ‖üκ‖Vp(Ω)′ ≤ κ‖|∇u̇κ|p−1‖Lp′ (Ω) + ‖f‖Vp(Ω)′ + ‖g‖Vp(Γ)′ + ‖(I +∇uκ)Σ(uκ)‖Lp′ (Ω).

As in the proof of Lemma 2, we can estimate the last term of the right-hand-side with the use of the estimate (7)
of assumption A3, as follows

ρ‖üκ‖Vp(Ω)′ ≤ κ‖u̇κ‖p−1
Vp(Ω) + ‖f‖Vp(Ω)′ + ‖g‖Vp(Γ)′ + ‖(I +∇uκ)‖Lp(Ω)‖Σ(uκ)‖L(p/2)′ (Ω),

ρ‖üκ‖Lp′ (0,T ;Vp(Ω)′) ≤ κ‖u̇κ‖p−1
Lp(0,T ;Vp(Ω)) + ‖f‖Lp′ (0,T ;Vp(Ω)′) + ‖g‖Lp′ (0,T ;Vp(Γ)′)

+‖(I +∇uκ)‖Lp(0,T ;Lp(Ω))‖Σ(uκ)‖L(p/2)′ (0,T ;L(p/2)′ (Ω))

≤ κ‖u̇κ‖p−1
Lp(0,T ;Vp(Ω)) + ‖f‖Lp′ (0,T ;Vp(Ω)′) + ‖g‖Lp′ (0,T ;Vp(Γ)′)

+C(T )
(
1 + ‖uκ‖Lp(0,T ;Vp(Ω))

) (
1 + ‖uκ‖αLp(0,T ;Vp(Ω))

)
, (23)
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where α = min(1, (p− 2)/2, and where the constant C(T ) is non-decreasing with respect to T , depends only on
the bound of ‖uκ‖Lp(0,T ;Vp(Ω)), which is controlled by ‖uκ‖L∞(0,T ;Vp(Ω)) as follows

‖uκ‖Lp(0,T ;Vp(Ω)) ≤ T 1/p‖uκ‖L∞(0,T ;Vp(Ω)).

From (20), the sequence
{
‖uκ‖L∞(0,T ;Vp(Ω));κ > 0

}
is bounded independently of κ. Since we have

κ‖u̇κ‖p−1
Lp(0,T ;Vp(Ω)) = κ1/p

(
κ‖u̇κ‖pLp(0,T ;Vp(Ω))

)1−1/p

,

the sequence
{
κ‖u̇κ‖p−1

Lp(0,T ;Vp(Ω));κ ∈ (0, 1]
}

is bounded as well. Thus, from (23), the sequence{
‖üκ‖Lp′ (0,T ;Vp(Ω)′);κ ∈ (0, 1]

}
is also bounded. By the Banach-Alaoglu theorem (see for instance [Rud91],

section 3.17), up to extraction of a subsequence, when κ goes to zero the sequence {uκ;κ ∈ (0, 1]} converges
weakly-* to some u such that

u ∈ L∞(0, T ; Vp(Ω)), u̇ ∈ L∞(0, T ; L2(Ω)), ü ∈ Lp
′
(0, T ; Vp(Ω)′).

Step 3. By passing to the limit in the variational formulation of Definition 3, we see that u is a weak solution
of system (1).
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