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1. Introduction. Let Ω ⊂ Rn, n ∈ {2, 3}, denote a bounded domain with
smooth boundary Γ = ∂Ω. Consider the following controlled coupled reaction-diffusion
system

∂v

∂t
= ∆v − Iion(v, w) + f +Bu, in Ω× (0,∞),

∂w

∂t
= γv − δw, in Ω× (0,∞),

∂v

∂ν
= 0, on Γ× (0,∞),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(1.1)

where f = f(x, t) is an external forcing term, Iion(v, w) is a non-monotone nonlinear
function, u = u(t) ∈ L2((0,+∞);Rm) denotes a finite dimensional control and ν is
the unit outward normal vector to Γ. In electrophysiology, system (1.1) is known as
the monodomain equations, see e.g. [10, Section 12.3.3]. In this context, the variable
v = v(x, t) models the transmembrane electric potential of the human heart and
w = w(x, t) is a so-called gating variable. Some typical models for the ionic current
include the FitzHugh-Nagumo model

IFNion (v, w) = av3 − bv2 + cv + dw, (1.2)

as well as the Rogers-McCulloch model

IRMion (v, w) = av3 − bv2 + cv + dvw, (1.3)

where a, b, c, d are positive real constants. Besides leading to different linearizations
(see below), distinct dynamical behaviors can be observed for these two models. In
particular, a typical solution waveform of the FHN system includes negative values
for the potential v, see [20]. This unphysiological undershoot does not appear for the
bilinear coupling used in the Rogers-McCulloch model.
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Our interest in studying (optimal) control problems for the monodomain equa-
tions has several reasons. The specific PDE-ODE structure of (1.1) poses a signifi-
cant mathematical challenge on its own right. To some extent, this is due to rather
unexpected phenomena such as reentry waves, where wave phenomena are usually
attributed to hyperbolic equations. A further notable property concerns the lin-
earized version of (1.1). As shown in [4], in contrast to other parabolic equations,
the spectrum is no longer discrete and, as a consequence, the system is not exactly
null controllable. Also from a practical point of view, the monodomain equations are
of interest since (1.1) allows to model fibrillation processes of the human heart. The
control u(t) here can be interpreted as an external stimulus resembling a defibrillation
process, see [13,17].

With this in mind, assume that a desired heart rhythm is given as the solution
of the uncontrolled system

∂v̄

∂t
= ∆v̄ − Iion(v̄, w̄) + f, in Ω× (0,∞),

∂w̄

∂t
= γv̄ − δw̄, in Ω× (0,∞),

∂v̄

∂ν
= 0, on Γ× (0,∞),

v̄(x, 0) = v̄0(x) and w̄(x, 0) = w̄0(x), in Ω.

(1.4)

The goal of this paper is to design a feedback control law of the form u = k(v−v̄, w−w̄)
such that the solution (v, w) of (1.1) converges exponentially to the solution (v̄, w̄) of
(1.4) provided that ‖(v0, w0) − (v̄0, w̄0)‖ is small enough. For this, we consider the
difference of (1.1) and (1.4) as an infinite dimensional time varying control system of
the form

~̇z(t) = A(t)~z(t) + F(~z) + Bu(t), ~z(0) = ~z0, (1.5)

where

~z := (zv, zw) = (v − v̄, w − w̄).

For the sake of illustration, let us consider the Rogers-McCulloch model (1.3). We
obtain

∂zv
∂t

= ∆zv − czv − a(v3 − v̄3) + b(v2 − v̄2)− d(vw − v̄w̄) +Bu,

∂zw
∂t

= γzv − δzw,
(1.6)

which, using that

vw − v̄w̄ = (zv + v̄)(zw + w̄)− v̄w̄ = zvzw + v̄zw + w̄zv,

v3 − v̄3 = (yv + v̄)3 − v̄3 = z3
v + 3v̄z2

v + 3v̄2zv,

v2 − v̄2 = (zv + v̄)2 − v̄2 = z2
v + 2v̄zv,

leads to the time-varying control system

~̇z(t) = ARM(t)~z(t) + FRM(t, ~z) + Bu(t), ~z(0) = ~z0,
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where the operators ARM and FRM are given as

ARM(t)~z =

(
∆− (3av̄2 − 2bv̄ + c+ dw̄) −dv̄

γ −δ

)(
zv
zw

)
,

FRM(t, ~z) =

(
−az3

v − (−b+ 3av̄)z2
v − dzvzw

0

)
, Bu =

(
Bu
0

)
.

(1.7)

Analogously, for the FitzHugh-Nagumo model we obtain

AFN(t)~z =

(
∆− (3av̄2 − 2bv̄ + c) −d

γ −δ

)(
zv
zw

)
,

FFN(t, ~z) =

(
−az3

v − (−b+ 3av̄)z2
v

0

)
, Bu =

(
Bu
0

)
.

(1.8)

The feedback stabilization approach to (1.5) will mainly consist in two nested
subproblems. In the first one, similar to the approach taken in [2, 3, 12], we focus on
the linearized system, arising from (1.5), which is given by

~̇z(t) = A(t)~z(t) + Bu(t), ~z(0) = ~z0. (1.9)

In the second, the inner, subproblem, we decouple the PDE part of the system, i.e. we
consider the (1, 1) block of (1.9), for which we study a stabilization problem together
with an associated differential Riccati equation. In this way, we can compensate for
the lack of null controllability of the coupled linear system (1.9), see [4, Section 2.2]
and [8, Theorem 1.2 and Remark 1.3].

The feedback law we will be based on an infinite-horizon optimal control problem
associated with (1.9), for which we shall use the cost functional

J (u) =
1

2

(∫ ∞
0

|M~z|2 + |R 1
2u| dt

)
, (1.10)

where the particular structure of the pair (M,R) will be specified subsequently.
The structure of the paper is as follows. In Section 2 we investigate stabilization

to zero for a system of the form

∂z

∂t
+ (−∆ + 1)z + ρz + σ · ∇z +Bu = 0, (1.11a)

∂z

∂ν
= 0, z(0) = z0. (1.11b)

which can be seen to contain the linearizations of the Rogers-McCulloch and the
FitzHugh-Nagumo nonlinearities as special cases. These results will provide the sta-
bilization of the decoupled (1, 1) block of (1.9) described above. In Section 3 it will be
shown that under suitable assumptions on the system parameters, the obtained feed-
back formula is shown to stabilize the linearized PDE-ODE system, resulting from the
Rogers-McCulloch and the FitzHugh-Nagumo nonlinearities. In Section 4, we show
the local exponential stabilization of the full nonlinear system. The theoretical results
are illustrated by means of different numerical examples in Section 5.

Notation. We write R and N for the sets of real numbers and nonnegative integers,
respectively, and we define Ra := (a, +∞) for all a ∈ R, and N0 := N \ {0}. We
denote by Ω ⊂ Rn, n ∈ N0, a bounded domain with a smooth boundary Γ = ∂Ω.
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Given a function v : (t, x1, x2, . . . , xn) 7→ v(t, x1, x2, . . . , xn) ∈ R, defined in an open
subset of R×Ω, its partial time derivative ∂v

∂t will be denoted by ∂tv, and its normal

derivative ∂v
∂ν at the boundary will be denoted ∂νv|Γ.

We use the standard notation for Bochner spaces Lp(I, X) where I ⊆ R, and X is
a Banach space. The Lebesgue spaces Lp(Ω)m will be denoted by simply Lp whenever
there is no ambiguity concerning the superscript m ∈ N0.

Given an open interval I ⊆ R, and Banach spaces X and Y , then we write
W (I, X, Y ) := {f ∈ L2(I, X) | ∂tf ∈ L2(I, Y )}, where the derivative ∂tf is taken in
the sense of distributions. This space is endowed with the natural norm |f |W (I,X, Y ) :=(
|f |2L2(I,X) + |∂tf |2L2(I, Y )

)1/2
. The space of continuous linear mappings from X into

Y will be denoted by L(X,Y ). In case X = Y we write L(X) := L(X,X) instead. If

the inclusion X ⊆ Y is continuous, we write X ↪−→ Y ; we write X
d
↪−→ Y , respectively

X
c
↪−→ Y , if the inclusion is also dense, respectively compact. The kernel and range

of a linear mapping A : Z → W , between vector spaces Z and W , will be denoted
KerA := {x ∈ Z | Ax = 0} and RanA := {Ax ∈ x ∈ Z}, respectively.

C [a1,...,ak] denotes a function of nonnegative variables aj that increases in each of
its arguments, and C, Ci, i = 1, 2, . . . , stand for positive constants.

2. Stabilization for parabolic equations with homogeneous Neumann
boundary conditions. The section is devoted to the stabilization to zero for sys-
tems of the form (1.11). We can take advantage of the results obtained in [2, 12] for
Oseen–Burgers and Oseen–Stokes equations under homogeneous Dirichlet boundary
conditions. Here we deal with homogeneous Neumann boundary conditions. More-
over in exploiting the relation between null controllability of (1.11) and observability
of its adjoint we also follow a different procedure. While the one in [2,12] is based on
optimal control theoretic tools here we follow a functional analytic approach. Finally
in Lemma 2.6 we give a property of global solutions of (1.11) which will allow us to
take cost functionals different from those in [2, 12], with respect to the state.

2.1. Some regularity results. We start by deriving some regularity results for

∂tz + (−∆ + 1)z + ρz + σ · ∇z + f = 0, (2.1a)

∂νz |Γ = 0, z(0) = z0. (2.1b)

in the form which will be required further below.
For simplicity we denote H = L2, and V = H1(Ω). We consider H as the pivot

space and define the operator A : V → V ′ by 〈−Au, v〉V ′, V := (u, v)V . We have that,

V
d, c
↪−−→ H

d, c
↪−−→ V ′, and if (f, v) ∈ H × V we have 〈f, v〉V ′, V = (f, v)H .

By the Lax-Milgram lemma (cf. [23, Section II.2.1, Theorem 2.1]), A : V → V ′ is
a bijective isometry. The domain D(A) of A is defined as D(A) := {z ∈ H | Az ∈ H}.

Lemma 2.1. We have that D(A) = {z ∈ H | (−∆ + 1)z ∈ H and ∂νz |Γ = 0} =
{z ∈ H2(Ω) | ∂νz |Γ = 0} and the norms z 7→ |z|H2(Ω) and z 7→ |Az|H = |(−∆ + 1)z|H
are equivalent in D(A).

Proof. We can derive the above identities by following the arguments in [23,
Section II.2.2, Example 2.5]. In order to check the equivalence of the norms, let us fix
z ∈ D(A). Clearly |(−∆ + 1)z|H ≤ C |z|H2(Ω). From [21, Chapter 5, Proposition 7.2]

we also have |z|2H2(Ω) ≤ C(|∆z|2H + |z|2V ) = C(|−∆z + z|2H − 2 |∇z|2L2 −|z|2H + |z|2V ) =

C(|−∆z + z|2H − |∇z|
2
L2), which implies |z|2H2(Ω) ≤ C |(−∆ + 1)z|2H .

For m ∈ N0, in order to simplify the writing we denote
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WJ,m := L∞(J, L∞(Ω, Rm)) = L∞(J × Ω, Rm),
Wm := L∞(R0 × Ω, Rm),

(2.2)

where J ⊆ (0, +∞) is an open interval. In the case m = 1, we will omit the super-
script ‘m’.

The notation for the interval I = (s0, s1) with 0 ≤ s0 < s1 is fixed throughout
the paper, and its length is denoted by |I|. We also fix ρ and σ, which may depend
on time and space, and a constant CW ≥ 0, satisfying

|ρ|W + |σ|Wn ≤ CW . (2.3)

Lemma 2.2. Given f ∈ L2(I, V ′) and z0 ∈ H, there is a weak (variational)
solution z ∈ W (I, V, V ′) for (2.1). Moreover z is unique and depends continuously
on the data:

|z|2W (I, V, V ′) ≤ C [|I|, CW ]

(
|z(s0)|2H + |f |2L2(I, V ′)

)
.

Proof. While this result can be found in the literature we will provide a proof
since the explicit estimates will be used later on.

Weak solutions for system (2.1) are understood in the variational sense. We
restrict ourselves to the derivation of some a priori (like) estimates. In fact those
estimates will also hold for Galerkin approximations of the system, for example using
a basis of eigenfunctions of the operator A = ∆ − 1, thus the estimates can be used
to precisely derive the existence of weak solutions. For more details on the procedure
we refer to [15, Chapter 1, Section 6], [22, Chapter 1, Section 3], and [24, Chapter 3,
Sections 1.3, 1.4, and 3.2].

By standard arguments, multiplying (2.1a) by 2z, formally we find that

d

dt
|z|2H + 2 |z|2V ≤ 2 |ρ|L∞ |z|

2
H + 2 |σ · ∇z|H |z|H + 2 |f |V ′ |z|V ,

and since |σ · ∇z|2H ≤ 3 |σ|2L∞ |∇z|
2
L2 , we find

d

dt
|z|2H + |z|2V ≤ 2 |ρ|L∞ |z|

2
H + 6 |σ|2L∞ |z|

2
H + 2 |f |2V ′ . (2.4)

By the Gronwall inequality it follows that for all s ∈ I,

|z(s)|2H ≤ e(2|ρ|WI+6|σ|2WI, n )(s−s0)
(
|z(s0)|2H + 2 |f |2L2(I, V ′)

)
(2.5)

and, integrating (2.4),

|z(s)|2H + |z|2L2((s0, s), V ) ≤ |z(s0)|2H + (2 |ρ|WI + 6 |σ|2WI, n) |z|2L2(I,H) + 2 |f |2L2(I, V ′) .

(2.6)
From (2.1a) and H ↪→ V ′, with |·|V ′ ≤ |·|H , we also have

|∂tz|L2(I, V ′) ≤ |z|L2(I, V ) + |ρz + σ · ∇z|L2(I,H) + |f |L2(I, V ′)

from which, using (2.5) and (2.6) we can conclude that

|z|2W (I, V, V ′) ≤ C[s1−s0, |ρ|WI , |σ|WI, n ]

(
|z(s0)|2H + |f |2L2(I, V ′)

)
.
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Finally the uniqueness of z, follows from the fact that if z̃ is another weak solution,
then δz = z− z̃, solves (2.1) with δz(s0) = 0 and f = 0. From (2.5) it will follow that
|δz(s)|H = 0 for all s ∈ I.

Lemma 2.3. Given f ∈ L2(I, H) and z0 ∈ V , there is a strong solution z ∈
W (I, D(A), H) for system (2.1), which depends continuously on the data:

|z|2W (I,D(A), H) ≤ C [|I|, CW ]

(
|z(s0)|2V + |f |2L2(I,H)

)
.

Proof. Multiplying (2.1a) by 2(−∆ + 1)z, formally we find that

d

dt
|z|2V + 2 |z|2D(A) ≤ 2 |ρ|L∞ |z|H |z|D(A) + 2 |σ · ∇z|H |z|D(A) + 2 |f |H |z|D(A) ,

which implies

d

dt
|z|2V + |z|2D(A) ≤ 3 |ρ|2L∞ |z|

2
H + 9 |σ|2WI, n |z|2V + 3 |f |2H . (2.7)

Thus, for all s ∈ I,

|z(s)|2H ≤ e9|σ|2WI, n (s−s0)
(
|z(s0)|2V + 3(s− s0) |ρ|2WI + 3 |f |2L2(I,H)

)
; (2.8)

|z(s)|2V + |z|2L2((s0, s),D(A)) ≤ |z(s0)|2V + 3 |ρ|2WI |z|2L2((s0, s), H)

+ 9 |σ|2WI, n |z|2L2((s0, s), V ) + 3 |f |2L2(I,H) . (2.9)

From (2.1a) we also have

|∂tz|L2(I,H) ≤ |z|L2(I,D(A)) + |ρz + σ · ∇z|L2(I,H) + |f |L2(I,H)

and we can conclude that

|z|2W (I,D(A), H) ≤ C[s1−s0, |ρ|WI , |σ|WI, n ]

(
|z(s0)|2V + |f |2L2(I,H)

)
,

which ends the proof.
The next lemma shows a certain smoothing property of system (2.1).
Lemma 2.4. Given f ∈ L2(I, H) and z0 ∈ H, let z be the weak solution for

system (2.1). Then y(t) := (t−s0)z(t) is in W (I, D(A), H) and satisfies the estimates

|y|2W (I,D(A), H) ≤ C [|I|, CW ]

(
(s1 − s0)2 |f |2L2(I,H) + |z|2L2(I,H)

)
≤ C [|I|, CW ]

(
|z(s0)|2H + |f |2L2(I,H)

)
.

Proof. Notice that y(t) = (t− s0)z(t) solves (2.1a) with g = g(t) = (t− s0)f(t) +
z(t) in place of f , and y(s0) = 0. Hence by Lemma 2.3,

|y|2W (I,D(A), H) ≤ C [|I|, CW ] |g|2L2(I,H) ,

and using (2.5),

|z|2L2(I,H) ≤ C [|I|, CW ](s1 − s0)
(
|z(s0)|2H + |f |2L2(I, V ′)

)
,
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which implies that |y|2W (I,D(A), H) ≤ C [|I|, CW ]

(
|z(s0)|2H + |f |2L2(I,H)

)
.

Definition 2.5. For f ∈ L2
loc(Rs0 , H) and y0 ∈ H the function z defined in

Rs0 × Ω by the property that z |(s0, τ) coincides with the weak solution of (2.1) in

(s0, τ), for all τ > s0 is well defined. It is called the global weak solution of (2.1) in
Rs0 × Ω.

We have the following property for the solutions of (2.1) on the infinite time
interval Rs0 = (s0, +∞), s0 ≥ 0.

Lemma 2.6. For f ∈ L2(Rs0 , V ′) and z0 ∈ H, let z be the global weak solution
of (2.1) in Rs0 , with z(s0) = z0. If z ∈ L2(Rs0 , H), then z ∈W (Rs0 , V, V ′), and

|z|W (Rs0 , V, V ′)
≤ C [CW ]

(
|z(s0)|2H + |f |2L2(Rs0 , V ′)

+ |z|2L2(Rs0 , H)

)
. (2.10)

Proof. Integrating (2.4) over (s0, τ), we find

|z(τ)|2H + |z|2L2((s0, τ), V ) ≤ |z(s0)|2H + C [CW ] |z|2L2((s0, τ), H) + 2 |f |2L2((s0, τ), V ′) ,

which leads us to

|z|2L2(Rs0 , V ) ≤ |z(s0)|2H + C [CW ] |z|2L2(Rs0 , H) + 2 |f |2L2(Rs0 , V ′)
. (2.11)

Finally, from (2.1a) is follows also that

|∂tz|2L2(Rs0 , V ′)
≤ C [CW ]

(
|z(s0)|2H + |z|2L2(Rs0 , V ) + |f |2L2(Rs0 , V ′)

)
,

which, together with (2.11), gives us (2.10).

2.2. Null controllability. Here we recall the relation between null controllabil-
ity of system (2.1) and a suitable observability inequality for the adjoint system.

Consider, in the bounded cylinder I × Ω, the controlled system

∂tz + (−∆ + 1)z + ρz + σ · ∇z +Bu = 0, (2.12a)

∂νz |Γ = 0, z(s0) = z0, (2.12b)

where u ∈ L2(I, H) and B ∈ L(H), with adjoint denoted by B∗. Let us also consider
in I × Ω the adjoint system

− ∂tq + (−∆ + 1)q + ρq −∇ · (qσ) = 0, (2.13a)

(qσ +∇q) · ν |Γ = 0, q(s1) = q1 ∈ H, (2.13b)

and let z(z0, u)(t) := z(t) and q(q1)(t) := q(t) denote the solutions of (2.12) and (2.13),
for given data (z0, u) and q1, respectively.

Weak solutions q ∈ W (I, V, V ′) for system (2.13) are understood again in the
variational sense as in [7]. In [7, Section 2] weak solutions are asked to be in L2(I, V )∩
C([s0, s1], H), but from ρ ∈ L2(I, H) and σq ∈ L2(I, Hn) we can obtain that the
variational solution is indeed in the space W (I, V, V ′).

Let z(·) = z(z0, u)(·) and q(·) = q(q1)(·) solve (2.12) and (2.13), respectively.
Definition 2.7. (i) We say that (2.12) is null controllable in I if there exists a

family {u(z0) | z0 ∈ H} ⊂ L2(I, H) such that z(z0, u(z0))(s1) = 0, for z0 ∈ H.
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(ii) We say that (2.13) is observable in I if there exists a constant C2 > 0 such that
for all q1 ∈ H we have that the corresponding weak solution q satisfies the inequality

|q(q1)(s0)|H ≤ C2 |B∗q(q1)|L2(I,H) . (2.14)

The constant C2 in (2.14) depends, in general, on Ω, ω, I, B, and on the coefficients
ρ and σ.

Lemma 2.8. System (2.13) is observable in I if, and only if, system (2.12) is
null controllable in I and the family of controls {u(z0) | z0 ∈ H} is a bounded linear
function of z0:

|u(z0)|L2(I,H) ≤ C2 |z0|H , where C2 is as in (2.14).

Proof. From [24, Chapter 3, Section 1.4, Lemma 1.2], we can write d
dt (z, q)H =

1
2

(
|z + q|2H − |z|

2
H − |q|

2
H

)
= 〈∂t(z + q), z + q〉V ′, V − 〈∂tz, z〉V ′, V − 〈∂tq, q〉V ′, V , for

a.e. t ∈ I, and therefore

d

dt
(z, q)H = 〈∂tz, q〉V ′, V + 〈z, ∂tq〉V, V ′ = (−Bu, q)H , (2.15)

(z(s1), q1)H − (z0, q(s0))H = −
∫ s1

s0

(u(s), B∗q(s))H ds. (2.16)

Thus if there is a family u = u(z0) ∈ L2(I, H) with |u(z0)|L2(I,H) ≤ C2 |z0|H such

that z(z0, u)(s1) = 0, then we find

(z0, q(q1)(s0))H ≤ C2 |z0|H |B∗q(q1)|L2(I,H) , for all z0 ∈ H,

that is, |q(q1)(s0)|H ≤ C2 |B∗q|L2(I,H).

On the other hand if there is C2 > 0 such that |q(q1)(s0)|H ≤ C2 |B∗q(q1)|L2(I,H),

then null controllability in I of (2.12) can be proven by the following arguments
(see, e.g., [5, Chapter 2]). We note that the literature typically considers the case of
autonomous systems but this does not change the proof (cf. [1, Section 2]). Let us
define the mappings

F : L2(I, H) → H
u 7→ z(0, u)(s1)

and
G : H → H

z0 7→ z(z0, 0)(s1).

From (2.16), we have

(Fu, q1)H = −(u, B∗q(q1))L2(I,H),

(Gz0, q1)H = (z0, q(q1)(s0))H ,

which show that the adjoints of F and G are given, respectively, by

F∗ : H → L2(I, H)
q1 7→ −B∗q(q1)

and
G∗ : H → H

q1 7→ q(q1)(s0)
.

Now we can write the observability inequality (2.14) as

|G∗q1|H ≤ C2 |F∗q1|L2(I,H) , (2.17)
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and from z(0, u(z0))(s1) = Fu(z0) + Gz0 we can conclude that null controllability of
system (2.12) holds if, and only if,

RanG ⊆ RanF (2.18)

and by Lemma 2.48 in [5, Section 2.3.2] (cf. Theorem 2.2 in [25, Chapter 2]), we have
that (2.18) is equivalent to (2.17).

It remains to prove that the family {u(z0) | z0 ∈ H} can be chosen as a linear and
continuous mapping of z0, with |u(z0)|L2(I,H) ≤ C2 |z0|H . This fact follows also from

Lemma 2.48 in [5, Section 2.3.2], which states the existence of a mapping F• ∈ L(H →
L2(I, H)) such that G = FF• and |F•|L(H→L2(I,H)) ≤ C2 with C2 as in (2.17). The

family {u(z0) | z0 ∈ H} is constructed by setting u ∈ L(H → L2(I, H)):

u(z0) := −F•z0.

Notice that z(z0, u(z0))(s1) = z(z0, 0)(s1) + z(0, u(z0))(s1) = Gz0 −FF•z0 = 0, and
thus this choice of control (also) provides the desired null controllability, and we have
the announced inequality |u(z0)|L2(I,H) ≤ C2 |z0|H .

Controls supported in a subset. From now on, we will deal with controls
supported in any given open subset ω ⊆ Ω. From [7] we know that in the case we
take B = 1ω ∈ L(H) with

1ωu(x) :=

{
u(x), if x ∈ ω
0, if x ∈ Ω \ ω ,

we have that (2.13) is observable and (2.12) is null controllable. More precisely we
know (cf. [7, Theorem 2]) that the following theorem holds true

Theorem 2.9. Let B = 1ω and let I = (s0, s1) be arbitrary, then, there exists
a family {u(z0) | z0 ∈ H} ⊆ L2(I, H) such that the solutions z(z0, u(z0)) to (2.12)

satisfy z(z0, u(z0))(s1) = 0 and, for a constant Ĉ = C(ω, Ω), we have that

|u(z0)|L2(I,H) ≤ eĈΘ |z0|H with Θ = Θ(s1 − s0, |ρ|WI , |σ|WI, n)

given by

Θ(θ1, θ2, θ3) = 1 + θ
2
3
2 + θ2

3 +
1

θ1
+ θ1

(
θ2 + θ2

3

)
. (2.19)

Notice that Theorem 2.9 and Lemma 2.8 imply that (2.14) holds with C2 = eĈΘ and
B = 1ω. Proceeding as in [2, Section A.2] we can conclude that (2.14) also holds with

C2 = CχeĈχΘ ≤ eD̂Θ and B∗q := χ1ωq = 1ωχ1ωq, where D̂ = log(Cχ) + Ĉχ and χ ∈
C∞(Ω) is any given smooth function with ∅ 6= ω ∩ suppχ. Here D̂ = D̂(χ, ω, Ω) > 0
depends only on (χ, ω, Ω).

Corollary 2.10. Theorem 2.9 holds in the more general case B = 1ωχ1ω,
with D̂ in the place of Ĉ.

Remark 2.11. We point out that the observability constants C2 = eĈΘ and C2 =

eD̂Θ, in Theorem 2.9 and Corollary 2.10, do depend on the triple (I, ρ, σ), but that
dependence is in terms of the triple (|I|, |ρ|WI , |σ|WI, n) only. This particular depen-
dence on I is of crucial importance in this section. This dependence holds for the
control operators B = 1ωχ1ω, but we do not know what happens for a general B.
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2.3. Stabilization to zero by finite dimensional controls. Here we analyze
the case when stabilization can be achieved by finite dimensional control action. Ear-
lier related results are contained in [11, 12]. Let C = {Ψi ∈ H | i ∈ {1, 2, . . . , M}}
and denote by PM the orthogonal projection in H onto SC := span C. Henceforth we
also fix a positive constant λ > 0 and an open subset ω ⊆ Ω.

Let us consider, in Rs0 × Ω, the system:

∂tz + (−∆ + 1)z + ρz + σ · ∇z + 1ωχPM1ωu = 0, (2.20a)

∂νz |Γ = 0, z(s0) = z0. (2.20b)

Definition 2.12. We say that (2.20) is exponentially stabilizable to zero, with
rate λ

2 , if there are a constant C > 0 and a family {u = u(z0) | z0 ∈ H} ⊆ L2(Rs0 , H)
such that the corresponding global solution z(t) = z(z0, u(z0))(t) satisfies

|z(t)|2H ≤ C e−λ(t−s0)|z0|2H , for all t ≥ s0. (2.21)

The stabilizing control ζ takes its values in the finite dimensional space
span {1ωχΨi ∈ H | i ∈ {1, 2, . . . , M}}, for all t ∈ Rs0 . Henceforth we use the control
operator

BM = 1ωχPM1ω. (2.22)

Further θ and D̂ are the constants of Theorem 2.9 and Corollary 2.10.
Let us consider the function Φ: (0, +∞)→ (0, +∞) defined by

Φ: (0, +∞)→ (0, +∞), Φ(τ) := 2e(2|ρ−λ2 |W+6|σ|2Wn )τe2D̂Θ(τ, |ρ−λ2 |W , |σ|Wn ),

which we can extend to a function Φ: [0, +∞]→ (0, +∞] setting

Φe(τ) :=

{
Φ(τ), if τ ∈ (0, +∞),
lim
t→τ

Φ(t), if τ ∈ {0, +∞}.

The minimum and minimizer of Φe are denoted by Υ and T∗, respectively. From

dΦ

dτ

∣∣∣∣
τ=t

=
(

2
∣∣ρ− λ

2

∣∣
W + 6 |σ|2Wn + 2D̂

(
−t−2 +

∣∣ρ− λ
2

∣∣
W + |σ|2Wn

))
Φ(t)

we can conclude that T∗ > 0 can be defined by

T 2
∗ =

2D̂

2
∣∣ρ− λ

2

∣∣
W + 6 |σ|2Wn + 2D̂

(∣∣ρ− λ
2

∣∣
W + |σ|2Wn

) .
Further T∗ = +∞ if, and only if, both

∣∣ρ− λ
2

∣∣
W and |σ|Wn vanish.

The following result gives us a sufficient condition on the family C for the existence
of a stabilizing control.

Theorem 2.13. Let us be given χ ∈ C∞(Ω) satisfying ∅ 6= ω ∩ suppχ. If

T∗ ∈ R0 and |1ωχ(1− PM )1ω|L(H,V ′) ≤ Υ−1, (2.23)
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then system (2.20) is stabilizable to zero with rate λ
2 . Moreover, we can set the stabi-

lizing control function u = u(z0) such that

|z(t)|2H ≤
(

Υ0 + Υ |BM |2L(H,V ′)

)
e−λ(t−s0) |z0|2H , for t ≥ s0,∣∣e λ̂2 ·u(z0)

∣∣2
L2(Rs0 ,H)

≤ 1

1−e(λ̂−λ)T∗
e2D̂Θ∗ |z0|2H , for λ̂ < λ,

with Υ0 := e(2|ρ−λ2 |W+6|σ|2Wn )T∗ and Θ∗ := Θ(T∗,
∣∣ρ− λ

2

∣∣
W , |σ|Wn).

If T∗ = +∞, then setting u = u(z0) = 0 the solution z of system (2.20) satisfies

|z(t)|2H ≤ e−λ(t−s0) |z0|2H , for t ≥ s0.
Proof. We consider separately the two cases T∗ ∈ R0 and T∗ = +∞.

(a) The case T∗ ∈ R0. Let I0 := (s0, s0 + T∗) and let z solve

∂tz + (−∆ + 1)z + (ρ− λ
2 )z + σ · ∇z + 1ωχu = 0, (2.24a)

∂νz |Γ = 0, z(s0) = z0, (2.24b)

in I0×Ω, with u = u(z0) given by Corollary 2.10, sending the solution of (2.24) to zero
at time t = s0 +T∗ (notice that Corollary 2.10 holds true with ρ− λ

2 in the place of ρ),
and let zM be the solution of (2.24) with u = PM1ωu(z0) in the place of u(z0). Then,
the difference d := z − zM satisfies (2.24) with d(s0) = 0 and u = (1 − PM )1ωu(z0).
The analogues to (2.5) for zM and d read: for all s ∈ I0,

|zM (s)|2H ≤ Υ0

(
|z0|2H + 2 |BMu(z0)|2L2(I0, V ′)

)
|d(s)|2H ≤ Υ02 |1ωχ(1− PM )1ωu(z0)|2L2(I0, V ′)

.

From Corollary 2.10 it follows that

|zM (s)|2H ≤ (Υ0 + Υ |BM |2L(H,V ′)) |z0|2H ; (2.25)

|d(s)|2H ≤ Υ |1ωχ(1− PM )1ω|2L(H,V ′) |z0|2H . (2.26)

Then, from (2.23) we obtain

|zM (s0 + T∗)|2H = |d(s0 + T∗)|2H ≤ |z0|2H . (2.27)

Repeating the argument in the time intervals Ii := (s0 +iT∗, s0 +(i+1)T∗) with initial
state zi0 := z(s0+iT∗) = zM (s0+iT∗) in (2.24b), finding ui = PM1ωu(zi0) ∈ L2(Ii, H),
leads to the analogues to (2.25), (2.26), and (2.27): for all s ∈ Ii,

|zM (s)|2H ≤ (Υ0 + Υ |BM |2L(H,V ′))
∣∣zi0∣∣2H

|d(s)|2H ≤ Υ |1ωχ(1− PM )1ω|2L(H,V ′)

∣∣zi0∣∣2H ;

|zM (s0 + (i+ 1)T∗)|2H ≤
∣∣zi0∣∣2H .

Concatenating these controls we can see that the corresponding solution zM will
remain bounded: |zM |2L∞(Rs0 , H) ≤ (Υ0 + Υ |BM |2L(H,V ′)) |z0|2H .

Next, we notice that ẑ(t) := e−
λ
2 (t−s0)zM (t) solves (2.20) in Rs0 × Ω, with the

concatenated control u = û defined by û|Ii := e−
λ
2 (·−s0)u(zi0). Moreover, we have the

estimates

|ẑ(t)|2H ≤ e−λ(t−s0) |zM (t)|2H ≤ (Υ0 + Υ |BM |2L(H,V ′))e
−λ(t−s0) |z0|2H
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and, using Corollary 2.10 and
∣∣zi0∣∣H ≤ |z0|H , for all i ∈ N0,

∣∣∣e λ̂2 (·−s0)û
∣∣∣2
L2(Rs0 , H)

= lim
j→+∞

j∑
i=0

∫
Ii

e(λ̂−λ)(s−s0)
∣∣u(zi0)(s)

∣∣2
H

ds

≤ lim
j→+∞

j∑
i=0

e(λ̂−λ)iT∗

∫
Ii

∣∣u(zi0)(s)
∣∣2
H

ds

≤ e2D̂Θ∗
∣∣zi0∣∣2H lim

j→+∞

j∑
i=0

e(λ̂−λ)iT∗ ≤ 1

1−e(λ̂−λ)T∗
e2D̂Θ∗ |z0|2H

which ends the proof in the case T∗ ∈ R0.
(b) The case T∗ = +∞. In this case the solution of system (2.24) remains bounded

with zero control u = 0. Indeed the analogue to (2.5) reads |z(s)|2H ≤ e0 |z(s0)|2H , for
all s ≥ s0.

Now we give 2 examples of families C which satisfy (2.23). For simplicity we
suppose that ω := Πn

j=1(lj, 1, lj, 2) ⊂ Ω is an open nonempty rectangle.
Example 2.14. Eigenfunctions of the Laplacian operator. Here we choose

0 6= χ ∈ C∞(Ω) such that suppχ ⊆ ω and we let {ΨR, i | i ∈ N0} be a complete system
of eigenfunctions of the negative Laplacian in ω with homogeneous Dirichlet boundary
conditions, which are ordered according to the increasing sequence of the (repeated)
eigenvalues: 0 < λi ≤ λi+1, limi→∞ =∞. We define

Ψi(x) :=

{
ΨR, i(x), if x ∈ ω
0, if x ∈ Ω \ ω,

and set C = {Ψi | i ∈ {1, 2, . . . , M}}. Let PM : H → SC be the orthogonal projection
in H onto SC = span C. We observe that 1ω(1 − PM )χ1ωv and (1 − PRM )(χv)|ω
coincide in ω. Here PRM : L2(ω) → SCMR is the orthogonal projection in L2(ω) onto

SCMR := span {ΨR, i | i ∈ {1, 2, . . . , M}}. Thus we obtain

(1ωχ(1− PM )1ωz, v)V ′, V = (z |ω , (1− PRM )(χv)|ω)L2(ω)

≤ |z|H
∣∣1− PRM ∣∣L(H1(ω),L2(ω))

|χv|H1(ω)

and, since by assumption χ|∂ω = 0, we arrive at

|1ωχ(1− PM )1ω|L(H,V ′) ≤
∣∣1− PRM ∣∣L(H1

0 (ω),L2(ω))
|χ·|L(V,H1

0 (ω))

≤ 2 |χ|C1(Ω) (λM + 1)−
1
2 .

Consequently condition (2.23) is satisfied provided that λM + 1 ≥ (2 |χ|C1(Ω) Υ)2.

Furthermore, from the asymptotic behavior λM ≥ C0M
2
n (cf. [14, Corollary 1]) we

can also arrive at the sufficient condition M ≥ C−
n
2

0 (2 |χ|C1(Ω) Υ)n, which gives us an
upper bound on the number M of controls which are needed to stabilize the system.

Example 2.15. Piecewise constant controls.
Here we consider a uniform partition of ω where each interval (lj, 1, lj, 2) is divided

into pi intervals: Ij, k = (lj, 1 +kj
lj
pj
, lj, 1 +(kj+1)

lj
pj

), with kj ∈ {0, 1, . . . , pj−1} and

lj := lj, 2 − lj, 1. In this way, our rectangle is divided into M = Πn
j=1pj sub-rectangles

{Ri | i ∈ {1, 2, . . . , M}} = {Πn
j=1Ij, kj | kj ∈ {0, 1, . . . , pj − 1}}.
12



Let us set C =

{
Ψi = 1

|1Ri |H
1Ri | i ∈ {1, 2, . . . , M

}
∈ H, and χ = 1. For given

v ∈ V and z ∈ H we find that

(1ω(1− PM )1ωz, v)V ′, V = (z, 1ω(1− PM )1ωv)H

=
(
z |ω , v|ω −

M∑
i=1

(v, Ψi)HΨi |ω
)
L2(ω)

=

M∑
i=1

(
z |Ri , ϕi

)
L2(Ri)

,

where ϕi := v|Ri − (v|Ri , Ψi |Ri)L2(Ri)Ψi |Ri = v|Ri −
1

|1|2
L2(Ri)

(v|Ri , 1)L2(Ri) has zero

average in Ri. This allows to conclude that |∇ϕi|2L2(Ri)n
≥ βi |ϕi|2L2(Ri)

where βi is
the smallest positive eigenvalue of the Laplace–Neumann problem in the rectangle Ri:

−∆φ = βiφ in Ri, ∂νφ = 0 on ∂Ri. Since βi = π2µM where µM := min
{p2

j

l
2
j

| j ∈
{1, 2, . . . , M}

}
, we find for z ∈ H and v ∈ V with |z|H = 1, |v|V = 1 the estimates

(1ω(1− PM )1ωz, v)V ′, V ≤
M∑
i=1

(µMπ
2)−

1
2

∣∣z |Ri ∣∣L2(Ri)

∣∣∇v|Ri∣∣L2(Ri)
≤ (µMπ

2)−
1
2 .

Since µM → ∞ as the meshsize tends to 0, we conclude that condition (2.23) is

satisfied provided that µM ≥ Υ2

π2 . Furthermore, in the case we take pj = p ∈ N0, we

arrive at the sufficient condition M
1
n = p ≥ Υ

π l with l := max{lj | j ∈ {1, 2, . . . , M}},
which gives us an upper bound on the number M of controls we need to stabilize the
system: M ≥

(
Υ
π l
)n

. For the treatment in dimension 1 we refer to [11, Section IV.A].

2.4. Feedback stabilizing rule and Riccati equation. From Theorem 2.13
we know that system (2.20) is stabilizable. Here we show that the control can be
taken in feedback form, i.e.

u = K(t)z = B∗MΠ(t)z,

with BM given in (2.22). To specify the structure of the feedback operator K a
suitably defined optimal control problem together with the dynamical programming
principle will be used. It will turn out that Π satisfies a differential Riccati equation.

We we shall require the spaces Xs0 := W (Rs0 , V, V ′)× L2(Rs0 , H), and

X λs0 := {(z, u) ∈ Xs0 | e
λ
2 ·(z, u) ∈ Xs0},

and the cost functionals

J (λ)
s0 (z, u) :=

1

2

(
|eλ2 ·Mz|2L2(Rs0 , H) + |eλ2 ·R 1

2u|2L2(Rs0 , H)

)
,

where λ ≥ 0 and we set Js0 := J (0)
s0 . For each z0 ∈ H and s0 ≥ 0, we consider

Minimize J (λ)
s0 (z, u), over (z, u) ∈ X λs0 satisfying (2.20). (2.28, s0)

Notice that (z, u) solves (2.20) if, and only if, (y, v) = e
λ
2 (·−s0)(z, u) solves

∂ty + (−∆ + 1)y + (ρ− λ
2 )y + σ·∇y +BMv = 0, (2.29a)

∂νy|Γ = 0, y(s0) = z0. (2.29b)
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Consequently (z̄, ū) is a minimizer for (2.28) if, and only if, (ȳ, v̄) = e
λ
2 (·−s0)(z̄, ū)

is a minimizer for:

Minimize Js0(y, v), over (y, u) ∈ Xs0 satisfying (2.29). (2.30, s0)

From now on we focus on problem (2.30). First of all, notice that from Theorem 2.13
both problems (2.28) and (2.30) are well-defined with (M,R) = (1, 1) (for example,

taking (λ, 2λ) for (λ̂, λ)). Subsequently, from Lemma 2.6 it follows that they are also

well-defined for the choice (M,R) = ((−∆ + 1)
1
2 , 1).

Let us denote

X̂ := {(z, u) ∈ Xs0 | (z, u) satisfy (2.29)}

and observe that, from Theorem 2.13 the mapping A1 ∈ L(X̂ , H), A1(y, v) := y(s0)
is surjective. Moreover, for given (z0, c) ∈ H × R0 it follows that the set S =

{(y, v) ∈ A−1
1 ({z0}) | J(y, v) ≤ c} is bounded in X̂ , if (M, R) = (1, 1) or (M, R) =

((−∆+1)
1
2 , 1). Hence, from [19, Lemma A.14 and Remark A.15], we know that Prob-

lem (2.30, s0) has a unique minimizer which we denote by (y∗s0 , v
∗
s0) = (y∗s0 , v

∗
s0)(z0).

Furthermore, the mapping z0 7→ (y∗s0 , v
∗
s0)(z0) is linear. From Theorem 2.13 and from

the fact that (y, v) 7→ Js0(y, v) is quadratic we can conclude that there exists an
operator Πs0 ∈ L(H) such that

Js0(y∗s0 , v
∗
s0) =

1

2
(Πs0z0, z0)H , with |Πs0 |L(H) ≤ C[CW , λ, 1

λ ], (2.31, s0)

with C[CW , λ, 1
λ ] independent of s0, and where CW is as in (2.3).

Motivated by the dynamical programming principle we define

XI := W (I, V, V ′)× L2(I, H)

II(y, v) :=
1

2

(
|My|2L2(I,H) + |R 1

2 v|2L2(I,H) + (Πs1y(s1), y(s1))H

)
.

For arbitrary z0 ∈ H, we consider the finite horizon problem:

Minimize II(y, v), over (y, v) ∈ XI , satisfying (2.29). (2.32, s0, s1)

Proceeding as above we can prove that Problem 2.32 has a unique minimizer we
denote (y•I , v

•
I ) = (y•I , v

•
I )(z0), with z0 7→ (y•I , v

•
I )(z0) linear.

The next Lemma is the dynamical programming principle for problem (2.30, s0).
Since the result is standard we omit the proof (cf. Lemma 3.10 in [2].)

Lemma 2.16. The minimizers of Problems (2.30, s0) and (2.32, s0, s1) have the
following properties:

(y∗s0 , v
∗
s0)(z0)|I = (y•I , v

•
I )(z0) and (y∗s0 , v

∗
s0)(z0)|Rs1 = (y∗s1 , v

∗
s1)(y∗s0(s1)).

Next we describe how the optimal control Bv∗s0 can be expressed in feedback form.
For this purpose we define

X̃ :=

{
(y, v) ∈ XI

∣∣∣∣ (y, v) satisfies (2.29), with
y(s0) = y0 for some y0 ∈ H

}
.
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We observe that

F : X̃ → Y := H × L2(I, V ′),

(y, v) 7→ (y(s0)− z0, ∂ty +Ay + (ρ− λ
2 )y + σ · ∇y +BMv)

is a differentiable mapping and dF |(y•I , v•I ) : (z, u) 7→ F (z, u)+(z0, 0) is surjective. By

the Karush–Kuhn–Tucker Theorem (e.g., see [2, Theorem A.1]) there is a Lagrange
multiplier (µI , qI) ∈ H × L2((s0, s1), V ) such that

dII |(y•I , v•I ) + (µI , qI) ◦ dF |(y•I , v•I ) = 0.

That is, for all (z, ξ) ∈ X , we have

0 = (Πs1y
•
I (s1), z(s1))H + (µI , z(s0))H +

∫ s1

s0

(M∗My•I , z)H(t) dt

+

∫ s1

s0

〈∂tz + (−∆ + 1)z + (ρ− λ
2 )z + σ · ∇z, qI〉V ′,V (t) dt, (2.33)

0 =

∫ s1

s0

(Rv•I , ξ)H(t) dt+

∫ s1

s0

〈BMξ, qI〉V ′,V (t) dt. (2.34)

Relation (2.33) implies that q = qI solves

− ∂tq + (−∆ + 1)q + ρq −∇ · (qσ) +M∗My•I = 0, (2.35a)

(qσ +∇q) · ν |Γ = 0, q(s1) = −Πs1y
•
I (s1). (2.35b)

On the other hand (2.34) implies that Rv•I = −B∗MqI . Using Lemma 2.16, we find
v∗s0(s1) = −R−1B∗Mq

I(s1) = R−1B∗MΠs1y
∗
s0(s1). That is, the optimal control ζ =

BMv
∗
s0 is given in feedback form

ζ(s) = BMK(s)y∗s0(s), with K(s) := R−1B∗MΠs, s > s0 (2.36)

In particular, we observe that K(s) does not depend on the past t < s.
Let us now consider the closed-loop system

∂ty + (−∆ + 1)y + (ρ− λ
2 )y + σ · ∇y +BMKy = 0, (2.37a)

∂νy|Γ = 0, y(s0) = z0. (2.37b)

Theorem 2.17. Let χ and PM satisfy the conditions in Theorem 2.13, let
(M, R) = (1, 1) or (M, R) = ((−∆ + 1)

1
2 , 1), and let z0 ∈ H. Then the solution y

for (2.37) is defined for all t ≥ s0, and it satisfies

|y|2W (Rs0 , V, V ′)
≤ C[CW , λ, 1

λ ] |z0|2H , and (2.38a)

|y|2C([s0,+∞), V ) + sup
τ≥s0

|y|2L2((τ, τ+1),D(A)) ≤ C[CW , λ, 1
λ ] |z0|2V , (2.38b)

if in addition z0 ∈ V .
Proof. We know that y∗s0(s) solves (2.37). From (2.31) we have the uniform

boundedness of |K(s)|L(H), in s ≥ 0. Thus, proceeding as in the proof of Lemma 2.2

we can arrive to the estimate (cf. (2.5))

|y(s)|2H ≤ e
C

[CW , λ, 1
λ ]

(s−s0)
|y(s0)|2H ,
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from which we can, in particular, conclude the uniqueness of the solution y∗s0(s). Esti-

mate (2.38a) follows from Js0(y∗s0 , BMKy
∗
s0)(z0) = 1

2 (Πs0z0, z0)H ≤ C[CW , λ, 1
λ ] |z0|2H

(cf. Lemma 2.6 and (2.31)). On the other hand, from Lemma 2.4, (2.31), and (2.38a),
we can derive that∣∣y∗s0∣∣2W ((τ, τ+1),D(A), H)

≤ C[CW , λ, 1
λ ]

(∣∣y∗s0(τ)
∣∣2
H

+
∣∣BMKy∗s0∣∣2L2((τ, τ+1), H)

)
≤ C[CW , λ, 1

λ ]

(∣∣y∗s0(τ)
∣∣2
H

+
∣∣y∗s0(s0)

∣∣2
H

)
≤ C[CW , λ, 1

λ ] |z0|2H , for all t ≥ s0.

Finally, from W ((τ, τ + 1), D(A), H) ↪→ C([τ, τ + 1], V ) uniformly with respect to

τ ≥ 0, we obtain the inequality |y|2C([s0,+∞), V ) ≤ C supτ≥s0 |y|
2
L2((τ, τ+1),D(A)) ≤

C[CW , λ, 1
λ ] |z0|2V .

The next Lemma can be derived following the arguments in [2, Remark 3.11(b)
and proof of Lemma 3.8] and in [12, Section 3.4].

Lemma 2.18. The function Π: s 7→ Π(s) := Πs, s ≥ 0, belongs to

P :=

P ∈ L∞(R0, L(H))

∣∣∣∣∣∣
P (t) is self-adjoint positive definite for all t ≥ 0,
the family {P (t) | t ≥ 0} is continuous in the
weak operator topology


and satisfies the differential Riccati equation

Π̇ + ΠA + A∗Π−ΠBMR−1B∗MΠ + λΠ +M∗M = 0, (2.39)

with Ay := (∆− 1)y− (ρ− λ
2 )y−σ ·∇y. Moreover, Π is the unique solution of (2.39)

in the class P.
Recall that y solves (2.37) if, and only if, z = e−(·−s0)λ2 y(t) solves

∂tz + (−∆ + 1)z + ρz + σ · ∇z +BMR−1B∗MΠz = 0, (2.40a)

∂νz |Γ = 0, z(s0) = z0. (2.40b)

Therefore we can conclude the next result.
Corollary 2.19. Under the assumptions of Theorem 2.17 let Π ∈ P be the

unique solution of (2.39). Then for any z0 ∈ H, the solution z of (2.40) is defined
globally and satisfies, for all t ≥ s0,

e(t−s0)λ |z(t)|2H +

∫ t

s0

e(τ−s0)λ(|z(τ)|2V + |∂tz(τ)|2V ′) dτ ≤ C[CW , λ, 1
λ ] |z0|2H , (2.41a)

and

|z(t)|2V + |z|2L2((t, t+1),D(A)) ≤ C[CW , λ, 1
λ ]e
−(t−s0)λ |z0|2V , (2.41b)

if z0 ∈ V .
Remark 2.20. We have shown that Theorem 2.17 holds for the two choices

(M, R) = (1, 1) and (M, R) = ((−∆ + 1)
1
2 , 1), for BM = 1ωχPM1ω. It may be of

interest to investigate alternative triples (M, R, BM ) for which Theorem 2.17 holds.
One such example is the following: suppose ρ is constant and σ = 0. Then we can
restrict ourselves to the subspaces Hav ⊂ H and Vav ⊂ V containing the functions
with zero mean in Ω, and in that case we can takeM = (−∆)

1
2 , since the norms |·|V

and |∇·|L2 are equivalent in Vav.
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3. Stabilization of the coupled system. Here we address the stabilization of
the coupled linear system (1.9) where A is either ARM or AFN .

3.1. Conditional stabilization of the coupled system. Let Π(t) = Πα(t) be
the solution of (2.39) with λ = 2α > 0 and let Uv(t, s) denote the evolution operator
generated by Av(t)−BR−1B∗MΠα(t). Then, from (2.41a), we have that

‖Uαv ‖ := sup
t≥s0≥0

|eα(t−s0)Uv(t, s0)|L(H) ≤ C[CW , λ, 1
λ ] (3.1)

Recall the parameters d, γ, δ, and the reference trajectory ~̄z :=

(
v̄
w̄

)
in sys-

tems (1.7) and (1.8). To deal with these systems simultaneously we set the model
indicator

ım :=

{
v̄ for system (1.7),
1 for system (1.8),

and ‖ı‖ := |ım|L∞(R×Ω) .

Though it will play no role hereafter, notice that systems (1.7) and (1.8) take the
form (2.40) with σ = 0, therefore we have that CW = C [|ρ|W ] = C[|v̄|W ,|w̄|W ], see (2.3).

Theorem 3.1. Let us be given 0 < ε < min{α, δ}. If

‖Uαv ‖‖ı‖γd < (α− ε)(δ − ε), (3.2)

then for the evolution operator U(t, s0) generated by A(t)−BMR−1B∗MΠα(t) it holds

that |eε(t−s0)U(t, s0)|L(H×H) ≤ C̃1 for all t ≥ s0 ≥ 0. For a constant C̃1 depending on
the bound CW and on the parameters in (3.2).

Proof. Notice that eε(t−s0)U(t, s0) is the evolution operator generated by A(t)−
BMR−1B∗MΠα(t) + ε. Therefore we want to show that, for all ~zε, 0 =

(
zε,v,0
zε,w,0

)
∈

H ×H, the global solution ~zε(t) =

(
zε,v
zε,w

)
of the system

~̇zε(t) = A(t)~zε(t) + ε~zε(t)− BMR−1B∗MΠα(t)~zε(t), ~zε(s0) = ~zε,0,

is bounded. Using Duhamel (variation of constants) formula we integrate the equation
żε,w = −δzε,w + γzε,v + εzε,w and obtain, for t ≥ s0,

zε,w(t) = e(ε−δ)(t−s0)zε,w,0 + γ

∫ t

s0

e(ε−δ)(t−s)zε,v(s) ds, (3.3a)

żε,v(t) = Lεzε,v − dımzε,w(t), zε,v(s0) = zε,v,0, (3.3b)

where for simplicity we have denoted Lε := Av(t) − BMR
−1B∗MΠα(t) + ε. Notice

that for the evolution operator Uv,ε(t, s) = eε(t−s)Uv(t, s) generated by Lε it holds
|Uv,ε(t, s)|L(H) ≤ ‖Uαv ‖e(ε−α)(t−s).

Therefore, with t ≥ s0, we arrive to

|zε,v(t)|H

≤ ‖Uαv ‖e(ε−α)(t−s0) |zε,v,0|H + ‖Uαv ‖‖ı‖d
∫ t

s0

e(ε−α)(t−s)|zε,w(s)|H ds (3.4)

≤ ‖Uαv ‖e(ε−α)(t−s0) |zε,v,0|H + ‖Uαv ‖‖ı‖d
∫ t

s0

e(ε−α)(t−s)e(ε−δ)(s−s0) |zε,w,0|H ds

+ ‖Uαv ‖‖ı‖γd
∫ t

s0

e(ε−α)(t−s)
∫ s

s0

e(ε−δ)(s−τ) |zε,v(τ)|H dτ ds.
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That is,

|zε,v(t)|H

≤ ‖Uαv ‖e(ε−α)(t−s0) |zε,v,0|H + ‖Uαv ‖‖ı‖de(δ−ε)s0
∫ t

s0

e(ε−α)te(α−δ)s |zε,w,0|H ds

+ ‖Uαv ‖‖ı‖γd
∫ t

s0

e(ε−α)te(δ−ε)τ |zε,v(τ)|H dτ

∫ t

τ

e(α−δ)s ds,

= ‖Uαv ‖e(ε−α)(t−s0) |zε,v,0|H + ‖Uαv ‖‖ı‖de(δ−ε)s0
∫ t

s0

e(ε−α)te(α−δ)s |zε,w,0|H ds

+ ‖Uαv ‖‖ı‖γd
1

α− δ

∫ t

s0

(
e(ε−δ)te(δ−ε)τ − e(ε−α)te(α−ε)τ

)
|zε,v(τ)|H dτ,

which implies

|zε,v|L1(Rs0 , H)

≤ ‖U
α
v ‖

α− ε |zε,v,0|H + ‖Uαv ‖‖ı‖de(δ−ε)s0 |zε,w,0|H
∫ +∞

s0

e(α−δ)s ds

∫ +∞

s

e(ε−α)t dt

+
‖Uαv ‖‖ı‖dγ
α− δ

∫ +∞

s0

|zε,v(τ)|H dτ

∫ +∞

τ

(
e(ε−δ)(t−τ) − e(ε−α)(t−τ)

)
dt.

For the last single integral we have∫ +∞

τ

(
e(ε−δ)(t−τ) − e(ε−α)(t−τ)

)
dt =

1

δ − ε −
1

α− ε =
α− δ

(δ − ε)(α− ε)

which leads us to

|zε,v|L1(Rs0 , H) ≤
‖Uαv ‖
α− ε |zε,v,0|H +

‖Uαv ‖‖ı‖d
(α− ε)(δ − ε) |zε,w,0|H

+
‖Uαv ‖‖ı‖dγ

(δ − ε)(α− ε) |zε,v|L1(Rs0 , H) ,

and from (3.2) it follows that, with ξ :=
‖Uαv ‖‖ı‖dγ
(δ−ε)(α−ε) < 1,

|zε,v|L1(Rs0 , H) ≤
1

1− ξ

(‖Uαv ‖
α− ε |zε,v,0|H +

‖Uαv ‖‖ı‖d
(α− ε)(δ − ε) |zε,w,0|H

)
.

Therefore, from (3.3a), it follows that |zε,v|L∞(Rs0 , H) ≤ C1(|zε,v,0|H + |zε,w,0|H),

and consequently from (3.4), it follows that |zε,w|L∞(Rs0 , H) ≤ C2(|zε,v,0|H+|zε,w,0|H),

for suitable constants C1 and C2.
Corollary 3.2. If 0 < ε < min{α, δ}, ~z0 ∈ H × H and (3.2) holds true,

then the solution of the system ~̇z = A(t)~z − BMR−1B∗MΠα(t)~z, ~z(s0) = ~z0 satisfies

|~z(t)|H×H ≤ C̃1e−ε(t−s0)|~z0|H×H , for all t ≥ s0 ≥ 0.

3.2. Remarks on the conditional result. Lack of null controllability of
the coupled system. Let us consider the system

ż = Zz, z(0) ∈ R2, with Z =

[
−(α− ε) d

γ −(δ − ε)

]
, t ≥ 0.

18



This system is stable if, and only if, the eigenvalues of Z have a nonpositive real
part. Since those eigenvalues are the solutions of (α − ε + λ)(δ − ε + λ) − γd =
0, then the stability holds if, and only if, the real part of each of the two val-
ues −(α+ δ)±

√
(α+ δ)2 + 4γd− 4(α− ε)(δ − ε) is nonpositive, which is equivalent

to the inequality γd− (α− ε)(δ − ε) ≤ 0.
We see that, for given γ, d, δ, and ε, we can choose α big enough such that the

condition γd − (α − ε)(δ − ε) < 0 holds true. This condition may look like (3.2)
where α is also at our disposal. However the transient bound ‖Uαv ‖ does depend on α.
From [12, Theorem 3.4 and Figure 10(a)] we can also guess that this dependence could

be like C1eC2α
2
3 with suitable constants C1 and C2, for big α. See also [9].

In other words we expect to have inf
α>0

‖Uαv ‖‖ı‖
α > 0. In that case (3.2) is truly

conditional on the parameters γ, d, δ, and ε. In particular, the necessity of the con-
dition (3.2), in Theorem 3.1, would mean that the parameters γ, d, δ in systems (1.7)
and (1.8) cannot be taken arbitrarily. However, we do not know whether (3.2) is
necessary, we have only proven its sufficiency.

We would also like to remark that though null controllability holds for the un-
coupled linearized system, it does not hold for the coupled one (cf. [4, Section 2.2]).

4. Local stabilization of the nonlinear system. Here we show that the
feedback rule −BMR−1B∗MΠα(t) constructed to stabilize exponentially the linear sys-
tem (1.9) to zero, with rate α = λ

2 , also stabilizes the nonlinear system (1.5) to zero,
with the same rate, provided ~z0 is small enough.

Again in order to deal with the FitzHugh–Nagumo and Rogers–McCulloch models
simultaneously we define another model indicator:

m :=

{
1 for system (1.7),
0 for system (1.8).

System (1.5), under the feedback control becomes the closed loop system

~̇z = AΠα~z + F(~z), ~z(0) = ~z0, (4.1)

with the operator AΠα :=

(
∆− (3av̄2 − 2bv̄ + c+ mdw̄) −dım

γ −δ

)
− BMR−1B∗MΠα

and the nonlinear function F(~z) =

(
−az3

v − (−b+ 3av̄)z2
v − mdzvzw

0

)
.

4.1. Local stabilization for strong regularity. To derive the result for the
nonlinear system we will need more regularity for the solutions. Thus we will ask
more regularity for the initial conditions. Here we consider initial conditions in V ×H,
instead of in H ×H as in Corollary 3.2.

Theorem 4.1. If 0 < ε < min{α, δ} and (3.2) holds true, then there is ε > 0 with
the following property: if |~z0|V×H ≤ ε, then there exists a solution for the system (4.1),
in R0×Ω, which belongs to L2

loc(R0, D(A)×H)∩C([0, +∞), V ×H), is unique, and
satisfies

|~z(t)|V×H ≤ Ce−ε(t−s0)|~z0|V×H , for all t ≥ 0, (4.2)

for a suitable constant C independent of (ε, ~z0).
To prove Theorem 4.1 we will use a fixed point argument, following the procedure

in [2, Section 4]. We start with a more regular version of Corollary 3.2.
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Corollary 4.2. If 0 < ε < min{α, δ}, ~z0 ∈ V ×H, and (3.2) holds true, then

for a suitable constant C̃2, independent of ~z0, the solution of the system

~̇z = AΠα~z, ~z(s0) = ~z0

satisfies sup
t≥s0

∣∣eε(·−s0)~z(·)∣∣2W ((t, t+1),D(A), H)×H1((t, t+1), H)
≤ C̃2 |~z0|2V×H .

Proof. As in the proof of Theorem 3.1 we denote

(
zε,v
zε,w

)
:= eε(·−s0)~z(·).

For t = s0 we have, from Lemma 2.3,

|zε,v|2W ((s0, s0+1),D(A), H) ≤ C [CW ]

(
|zε,v(s0)|2V +

∣∣∣f̂ ∣∣∣2
L2((s0, s0+1), H)

)
with f = f̂ := BMR

−1B∗MΠαzε,v − εzε,v + dımzε,w and C [CW ] = C [|v̄|W , |w̄|W ]. Thus,
from Corollary 3.2

|zε,v|2W ((s0, s0+1),D(A), H) ≤ C1

(
|zε,v(s0)|2V + |~z0|2H×H

)
≤ C2 |~z0|2V×H . (4.3)

On the other hand, from Lemma 2.4 it follows that for all t ≥ s0

|zε,v(t+ 1)|2V ≤ C [CW ]

(
|zε,v(t)|2H +

∣∣∣f̂ ∣∣∣2
L2((t, t+1), H)

)
and, again by using Corollary 3.2,

|zε,v(t+ 1)|2V ≤ C3 |~z0|2H×H . (4.4)

Finally, (4.3), (4.4), Lemma 2.3, and Corollary 3.2, give us

|zε,v|2W ((t, t+1),D(A), H) ≤ C [CW ]

(
|zε,v(t)|2V +

∣∣∣f̂ ∣∣∣2
L2((t, t+1), H)

)
≤ C4

(
|~z0|2V×H + |~z0|2H×H

)
≤ 2C4 |~z0|2V×H , for all t ≥ s0.

Further from żε,w = −δzε,w + γzε,v + εzε,w and Corollary 3.2 we also have

|zε,w|2H1((t, t+1), H) ≤ C5 |~z0|2H×H .

Notice that C4 and C5 can be taken independent of t. The proof is complete.
Inspired from Corollary 4.2, taking s0 = 0, we define the Banach space

Zε :=
{
~z ∈ L2

loc (R0, H ×H)
∣∣∣ |~z|Zε <∞}

endowed with the norm |~z|Zε := supr≥0

∣∣eε·~z∣∣
W ((r, r+1),D(A)×H,H×H)

. We also set

Zεloc :=
{
~z ∈ L2

loc (R0, H ×H))
∣∣∣ ∣∣eε·~z∣∣W ((r, r+1),D(A)×H,H×H)

<∞, for all r ≥ 0
}
.

For a given constant % > 0 and ~z0 ∈ V ×H we define the subset

Zε% :=
{
~z ∈ Zε | |~z|2Zε ≤ %|~z0|2V×H

}
,

and the mapping Ψ: Zε% → Zεloc, ~̄z 7→ ~z, taking a given vector ~̄z to the solution ~z of

~̇z = AΠα~z + F(~̄z), ~z(0) = ~z0. (4.5)
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Lemma 4.3. Under the hypotheses of Theorem 4.1, there exists % > 0 such that
the following property holds: for any γ ∈ (0, 1) one can find a constant ε = εγ > 0
such that, for any ~z0 satisfying and |~z0|V×H ≤ ε, the mapping Ψ takes the set Zε% into
itself and satisfies the inequality

|Ψ(~̄z1)−Ψ(~̄z2)|Zε ≤ γ|~̄z1 − ~̄z2|Zε for all ~̄z1, ~̄z2 ∈ Zε% . (4.6)

Proof. We divide the proof into 3 main steps:

s© Step 1: a preliminary estimate. Consider the system

~̇z = AΠα~z + f, ~z(0) = ~z0, (4.7)

where f ∈ L2
loc(R0, H). If ~z is the solution of system (4.7) with f = 0, by Corol-

lary 4.2,

sup
r≥0
|eε·~z(·)|2W ((r, r+1),D(A)×H,H×H) ≤ C̃2|~z(0)|2V×H . (4.8)

We are going to derive a version of this estimate for suitable nonzero f =

(
f1

0

)
.

We denote by Sf0, t~z0 the solution ~z of (4.7). In the case f = 0, the operator S0
0, t is

linear; by the Duhamel formula we can write

~z(t) = Sf0, t~z0 = S0
0, t~z0 +

∫ t

0

S0
s, tf(s) ds (4.9)

where Sfs, tw denotes the solution of the system (4.7), with the initial time moved to

t = s, and the initial condition Sfs, sw = w. Further, from Corollary 3.2, it follows in

particular that |eε(t−s)S0
s, tw|2H×H ≤ C̃2

1 |w|2H×H ; then

|~z(t)|2H×H ≤ 2
∣∣S0

0, t~z0

∣∣2
H×H + 2

∣∣∣∣∫ t

0

S0
s, tf(s) ds

∣∣∣∣2
H×H

(4.10)

≤ 2C̃2
1e−2εt

(
|~z0|2H×H +

(∫ t

0

eεs |f(s)|H×H ds

)2 )
Now we can find, denoting by btc ∈ N the integer satisfying btc ≤ t < btc+ 1,∫ t

0

eεs|f(s)|H×H ds ≤
btc∑
k=0

∫ k+1

k

e−εse2εs|f(s)|H×H ds

≤
btc∑
k=0

(∫ k+1

k

e−2εs ds

) 1
2
(∫ k+1

k

e4εs|f(s)|2H×H ds

) 1
2

≤ sup
j∈N
0≤j≤btc

(∫ j+1

j

e4εs|f(s)|2H×H ds

) 1
2 btc∑
k=0

(∫ k+1

k

e−2εs ds

) 1
2

.

For the sum of the series, a direct computation gives us
∑btc
k=0

(∫ k+1

k
e−2εs ds

) 1
2 ≤∑∞

k=0

(∫ k+1

k
e−2εs ds

) 1
2

=
(
− 1

2ε (e−2ε − 1)
) 1

2
∑∞
k=0 e−εk = (1−e−2ε)

1
2

(2ε)
1
2 (1−e−ε)

= C[ 1
ε ]
.
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So,
∫ t

0
eεs|f(s)|H×H ds ≤ C[ 1

ε ]
sup

j∈N
0≤j≤btc

(∫ j+1

j
e4εs|f(s)|2H×H ds

) 1
2

and, using (4.10),

e2εt|~z(t)|2H×H ≤ C1

|~z0|2H×H + sup
j∈N
0≤j≤btc

∫ j+1

j

e4εs|f(s)|2H×H ds

 (4.11)

for all t ≥ 0.

Next, denoting

(
zv
zw

)
:= ~z and using Lemma 2.4, we can obtain for all r ≥ 0

|zv(r + 1)|2V ≤ C [CW ]

(
|zv(r)|2H +

∣∣∣f̂ ∣∣∣2
L2((r, r+1), H)

)

with f̂ := −BMR−1B∗MΠαzv + dızw + f1, which implies, using (2.31),

|zv(r + 1)|2V ≤ C2

(
sup

t∈(r, r+1)

|~z(t)|2H×H + |f1|2L2((r, r+1), H)

)

and, from (4.11),

|zv(r + 1)|2V ≤ C3e−2εr

|~z0|2H×H + sup
k∈N
0≤k≤br+1c

∫ k+1

k

e4εs|f(s)|2H×H ds

 (4.12)

since we have |f1|2L2((r, r+1), H) = |f |2L2((r, r+1), H×H) ≤ e−2εr
∫ r+1

r
e2εs|f(s)|2H×H ds ≤

e−2εr
∫ br+1c+1

brc e4εs|f(s)|2H×H ds ≤ 2e−2εr supk∈N
0≤k≤br+1c

∫ k+1

k
e4εs|f(s)|2H×H ds.

For t ∈ (0, 1), from Lemma 2.3 and (4.11), we can also obtain

sup
t∈[0, 1]

|zv(t)|2V ≤ C [CW ]

(
|zv(0)|2V + |f̂ |2L2((0, 1), H)

)
(4.13)

≤ C4

(
|zv(0)|2V + sup

t∈[0, 1]

|~z(t)|2H×H + |f1|2L2((0, 1), H)

)
≤ C5

(
|~z0|2V×H + |f |2L2((0, 1), H×H)

)
.

Equations (4.12) and (4.13) allow us to conclude that

|zv(t)|2V ≤ C6e−2εt

|~z0|2V×H + sup
k∈N
0≤k≤btc

∫ k+1

k

e4εs|f(s)|2H×H ds

 , for all t ≥ 0.
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Using again Lemma 2.3 and proceeding as above, we can now derive

|zv|2W ((r, r+1),D(A), H) ≤ C [CW ]

(
|zv(r)|2V + |f̂ |2L2((r, r+1), H)

)
≤ C7

(
|zv(r)|2V + sup

t∈(r, r+1)

|~z(t)|2H×H + |f1|2L2((r, r+1), H)

)

≤ C8e−2εr

|~z0|2V×H + sup
k∈N
0≤k≤brc

∫ k+1

k

e4εs|f(s)|2H×H ds

 ;

which implies, since ∂t(e
ε·zv(·)) = εeε·zv(·) + eε·∂tzv(·), that

sup
r≥0
|eε·zv(·)|2W ((r, r+1),D(A), H) ≤ C9

(
|~z0|2V×H + sup

k∈N

∫ k+1

k

e4εs|f(s)|2H×H ds

)
.

(4.14)

Finally, for

(
zε,v
zε,w

)
:= eε·

(
zv(·)
zw(·)

)
= eε·~z(·) we have żε,w = −δzε,w + γzε,v + εzε,w

and, after integration, zε,w(t) = e(ε−δ)tzε,w(0) + γ
∫ t

0
e(ε−δ)(t−s)zε,v(s) ds. Therefore,

using (4.14), we arrive to

|zε,w(t)|2H ≤ 2 |zε,w(0)|2H + 2γ2

(
sup
r≥0
|zε,v(r)|H

∫ t

0

e(ε−δ)(t−s) ds

)2

≤ C10

(
|~z0|2V×H + sup

k∈N

∫ k+1

k

e4εs|f(s)|2H×H ds

)
. (4.15)

Then, from żε,w = −δzε,w + γzε,v + εzε,w, (4.14), and (4.15), we obtain

|żε,w(t)|2H ≤ C11

(
|~z0|2V×H + sup

k∈N

∫ k+1

k

e4εs|f(s)|2H×H ds

)
. (4.16)

Finally (4.14), (4.15), and (4.16), imply that

sup
r≥0
|eε·~z(·)|2W ((r, r+1),D(A)×H,H×H) ≤ C12

(
|~z0|2V×H + sup

k∈N

∫ k+1

k

e4εs|f(s)|2H×H ds

)
,

(4.17)

as desired.

s© Step 2: Ψ maps Zε% into itself, if |~z0|V×H is small. Denoting

(
~̄zv
~̄zw

)
:= ~̄z, we will

replace f by F(~̄z) =

(
−a~̄z3

v − (−b+ 3av̄)~̄z2
v − md~̄zv~̄zw

0

)
in (4.17). First we derive

suitable estimates for the nonlinear term. We focus on the 3D case, that is Ω ⊂ R3,
however, the estimates also hold for the 2D case. We recall the inequalities

|u|L∞(Ω) ≤ C|u|
1
2

H1(Ω)|u|
1
2

H2(Ω) and |u|L6(Ω) ≤ C|u|H1(Ω)

which are given by the Agmon inequality and the Sobolev embedding theorem (see [23,
Chapter II, Section 1.4]) and [18, Chapter 2, Theorem 3.6]).
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Now, we observe that

|F(~̄z)(s)|2H×H ≤ C13

(
|~̄zv(s)|6L6(Ω) + |~̄zv(s)|4L4(Ω) + |~̄zv(s)|2L∞(Ω)|~̄zw(s)|2L2(Ω)

)
≤ C14

(
|~̄zv(s)|6H1(Ω) + |~̄zv(s)|4H1(Ω) + |z̄v(s)|2H2(Ω)|~̄zw(s)|2L2(Ω)

)
which implies,

sup
k∈N

∫ k+1

k

e4εs|F(~̄z)(s)|2H×H ds ≤ sup
k∈N

sup
s∈[k, k+1]

C14

(
|eεs~̄zv(s)|6V + |eεs~̄zv(s)|4V

)
+ sup
k∈N

sup
s∈[k, k+1]

C15|eεs~̄zw(s)|2H
∫ k+1

k

|eεs~̄zv(s)|2D(A) ds

≤ C16

(
|~̄z|6Zε + |~̄z|4Zε

)
.

Thus, inequality (4.17) with f = F(~̄z) gives us

|Ψ(~̄z)|2Zε ≤ C17

(
|~z0|2V×H + |~̄z|6Zε + |~̄z|4Zε

)
. (4.18)

If ~̄z ∈ Zε% , then

|Ψ(~̄z)|2Zε ≤ C17(1 + %3|~z0|4V×H + %2|~z0|2V×H)|~z0|2V×H (4.19)

and if we set % = 3C17 and ε < min
{

1, 1
%

}
, then we obtain C17(1 + %3ε4 + %2ε2) ≤ %

if |~z0|V×H ≤ ε, which means that Ψ(~̄z) ∈ Zε% .

s© Step 3: Ψ is a contraction, if |~z0|V×H is smaller. It remains to prove (4.6). Let us
take two functions ~̄z1, ~̄z2 ∈ Zε% and let Ψ(~̄z1) and Ψ(~̄z2) be the corresponding solutions

for (4.5). Set e = ~̄z1−~̄z2 and dΨ = Ψ(~̄z1)−Ψ(~̄z2). Then dΨ solves (4.7) with dΨ(0) = 0
and f = F(~̄z1)−F(~̄z2). Therefore, by inequality (4.17), we have

|Ψ(~̄z1)−Ψ(~̄z2)|2Zε ≤ C12 sup
t≥0

∫ t+1

t

e4εs|F(~̄z1)(s)−F(~̄z2)(s)|2H×Hds. (4.20)

Denoting(
z̄1v

z̄1w

)
:= ~̄z1,

(
z̄2v

z̄2w

)
:= ~̄z2, and

(
ev
ew

)
:= e =

(
z̄1v − z̄2v

z̄1w − z̄2w

)
,

we find that

z̄3
1v − z̄3

2v = ev(z̄
2
1v + z̄1v z̄2v + z̄2

2v), z̄2
1v − z̄2

2v = ev(z̄1v + z̄2v),

z̄1v z̄1w − z̄2v z̄2w = ev z̄1w + z̄2vew.
(4.21)

from which we can obtain

|F(~̄z1)(s)−F(~̄z2)(s)|2H×H
≤ C18|ev|2H

(
|z̄1v|4L∞(Ω) + |z̄2v|4L∞(Ω) + |z̄1v|2L∞(Ω) + |z̄2v|2L∞(Ω)

)
+ C18

(
|ev|2L∞(Ω)|z̄1w|2L2(Ω) + |z̄2v|2L∞(Ω)|ew|2L2(Ω)

)
≤ C19|ev|2H

(
|z̄1v|2D(A) + |z̄2v|2D(A)

) (
|z̄1v|2V + |z̄2v|2V + 1

)
+ C19

(
|ev|2D(A)|z̄1w|2L2(Ω) + |z̄2v|2D(A)|ew|2L2(Ω)

)
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and

e4εs|F(~̄z1)(s)−F(~̄z2)(s)|2H×H
≤ C19|eεsev|2H

(
|eεsz̄1v|2D(A) + |eεsz̄2v|2D(A)

) (
|eεsz̄1v|2V + |eεsz̄2v|2V + 1

)
+ C19

(
|eεsev|2D(A)|eεsz̄1w|2L2(Ω) + |eεsz̄2v|2D(A)|eεsew|2L2(Ω)

)
≤ C19|e|2Zε

(
|~̄z1|2Zε + |~̄z2|2Zε + 1

) (
|eεsz̄1v|2D(A) + |eεsz̄2v|2D(A)

)
+ C19

(
|~̄z1|2Zε |eεsev|2D(A) + |e|2Zε |eεsz̄2v|2D(A)

)
Therefore, from (4.20), it follows

|Ψ(~̄z1)−Ψ(~̄z2)|2Zε ≤ C20|e|2Zε
(
|~̄z1|2Zε + |~̄z2|2Zε + 1

) (
|~̄z1|2Zε + |~̄z2|2Zε

)
,

and since ~̄z1 and ~̄z2 are both in Zε% , we arrive to

|Ψ(~̄z1)−Ψ(~̄z2)|2Zε ≤ C20

(
2%|~z0|2V×H + 1

)
2%|~z0|2V×H |~̄z1 − ~̄z2|2Zε (4.22)

Choosing ε > 0 as in Step 2, that is ε < min
{

1, 1
%

}
, we find 2%|~z0|2V×H + 1 < 3. So

choosing ε > 0 still smaller so that ε < min
{

1, 1
% ,

γ√
6C20%

}
, we see that (4.6) holds,

provided |~z0|2V×H ≤ ε.
The proof of Lemma 4.3 is complete.

Proof of Theorem 4.1. From Lemma 4.3 and the contraction mapping principle it
follows that if ~z0 ∈ V ×H is sufficiently small, |~z0|V×H < ε, then there exists a unique
fixed point ~z = Ψ(~̄z) = ~̄z ∈ Zε% for Ψ. It follows from the definitions of Ψ and Zε%
that ~z solves the system (4.5), with ~̄z = ~z. We can conclude that ~z solves (1.5) with
the feedback control Bu = −BMR−1B∗MΠα~z.

Further inequality (4.2) can be concluded from (4.19).
Finally, it remains to prove the uniqueness of the solution for (4.1) in the space

Z := L2
loc(R0, D(A)×H)∩C([0, +∞), V ×H) ⊃ Zε%. Let ~z1 and ~z2 be two solutions,

in Z, for (4.1) and denote(
z1v

z1w

)
:= ~z1,

(
z2v

z2w

)
:= ~z2, and

(
ev
ew

)
:= e :=

(
z1v − z2v

z1w − z2w

)
.

It turns out that e solves (4.7) with f = F(~z1)−F(~z2), that is,

ė = (A− BMR−1B∗MΠα)e+ F(~z1)−F(~z2)

with A :=

(
∆− 1 + 1− (3av̄2 − 2bv̄ + c+ mdw̄) −dım

γ −δ

)
. Using (2.31) and (4.21),

we can obtain

〈Ae, e〉V ′×H,V×H ≤ − |ev|2V + C[|(v̄, w̄)|L∞(Ω, R2)]
|e|2H×H ,

〈BMR−1B∗MΠαe, e〉V ′×H,V×H ≤ C[|(v̄, w̄)|L∞(Ω, R2), α,
1
α ] |ev|

2
H ,

〈F(~z1)−F(~z2), e〉V ′×H,V×H ≤ C1(|z1v|2L∞(Ω) + |z2v|2L∞(Ω) + 1) |ev|2H
+
∣∣e2
vz1w + z2vewev

∣∣
L1(Ω)

,∣∣e2
vz1w + z2vewev

∣∣
L1(Ω)

≤ |ev|2L4(Ω) |z1w|L2(Ω) + |z2v|L∞(Ω) |e|
2
H×H .
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Now, from the continuity of the inclusion H
3
4 (Ω) ⊂ L4(Ω) (cf. [6, Chapter 4, Sec-

tion 4.4, Corollary 4.53]) and the fact H
3
4 (Ω) can be seen as an interpolation space

H
3
4 (Ω) = [H1(Ω), L2(Ω)] 1

4
(cf. [16, Chapter 1, Theorem 9.6 and Remark 9.1]), we

can arrive to

|ev|2L4(Ω) |z1w|L2(Ω) ≤ C2 |ev|
1
2

H |ev|
3
2

V |z1w|H ≤ C3 |ev|2H |z1w|4H + |ev|2V .

Therefore, we obtain

d

dt
|e|2H×H = 2〈(A− BMR−1B∗MΠα)e+ F(~z1)−F(~z2), e〉V ′×H,V×H

≤ C4

(
C[|(v̄, w̄)|L∞(Ω, R2), α,

1
α ] + |z1v|2D(A) + |z2v|2D(A) + |z1w|4H + 1

)
|e|2H×H .

Observe that ψ := C3

(
C[|(v̄, w̄)|L∞(Ω, R2), α,

1
α ] + |z1v|2D(A) + |z2v|2D(A) + |z1w|4H + 1

)
is

a locally integrable function, because ~z1 and ~z2 are in Z. Thus, by the Gronwall
lemma we find

|e(t)|2H×H ≤ e
∫ t
0
ψ(s) ds |e(0)|2H×H = 0,

that is, ~z1 = ~z2.

4.2. Local stabilization to trajectories. As a straightforward consequence of
Theorem 4.1, we have our main result on stabilization to trajectories for system (1.1).

Corollary 4.4. If 0 < ε < min{α, δ} and (3.2) hold true, then there is ε > 0
with the following properties: if

ȳ = (v̄, w̄) ∈Wloc(R0, V ×H, V ′ ×H) ∩ L∞(R0, L
∞(Ω))2

is a solution for system (1.4), with ȳ0 = (v̄0, w̄0) ∈ H × H, and if y0 = (v0, w0) ∈
H ×H is such that

(v0 − v̄0, w0 − w̄0) ∈ V ×H and |(v0 − v̄0, w0 − w̄0)|V×H < ε,

then the solution y = (v, w) of the system (1.1) with the feedback control Bu =
−BMR−1B∗MΠα(v − v̄) goes exponentially to ȳ with rate ε, that is,

|y(t)− ȳ(t)|V×H ≤ Ce−ε(t−s0)|y0 − ȳ0|V×H , for all t ≥ 0,

for a suitable constant C independent of (ε, y0 − ȳ0), and the solution (v, w) is, and
is unique, in the affine space (v̄, w̄) + L2

loc(R0, D(A)×H) ∩ C([0, +∞), V ×H).

5. Numerical examples. We consider the following version of the monodomain
equations

∂tv = (κ∆− c1)v − dw − av3 + bv2 +Bu+ f1 + f2, in Ω× (0, T ),

∂tw = γv − δw, in Ω× (0, T ),

∂νv|Γ = 0, on Γ× (0, T ),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(5.1)

where Ω = (0, 1) × (0, 1), and the parameters are chosen as κ = 1.5 · 10−3, a =
1.2 · 10−3, b = 0.1304, c = 1.5, d = 215.6, γ = 1.2 · 10−4 and δ = 1.2 · 10−3. For the
control we take piecewise constants as described in Example 2.15. Figure 5.1 visualizes
the corresponding control domains.
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Fig. 5.1. Control domains with piecewise constants.

5.1. Termination of a reentry wave. As a test case we consider the termi-
nation of a reentry wave modeling cardiac arrhythmia. For this purpose we initialize
the system by stimulating the lower boundary of the domain. As a result, a traveling
wave is obtained. Placing an external stimulus f1 within a critical time window leads
to a reentry wave as shown in Figure 5.6 (top). Outside of this time window, the
stimulus only results in an excitation that immediately starts to collapse (see Fig-
ure 5.6 (bottom)). With this in mind, our setup is as follows. We assume that the
desired trajectory ~yd = (vd, wd) is obtained from a typical heart rhythm starting at
~yd(0) = ~yd,0, such that the external stimulus is applied before the critical time window
is reached. After the external stimulus has collapsed the natural heart rhythm restarts
and a second traveling wave is stimulated by means of f2, see also Figure 5.7 at time
t = 180. Considering now a perturbation of the initial condition ~y(0) = ~yd(0) + ξ
(postpone initial time), the external stimulus is shifted into the critical time window
and causes the excitation of a reentry wave. The desired effect of the feedback law
then is to stabilize the perturbed system around the natural heart beat.

5.2. Discretization and the differential Riccati equation. All simulations
are generated on an Intel R©Xeon(R) CPU E31270 @ 3.40 GHz x 8, 16 GB RAM,
Ubuntu Linux 14.04, MATLAB R© Version 8.0.0.783 (R2012b) 64-bit (glnxa64).

For the spatial discretization of (5.1) we use a finite difference scheme on a uniform
32× 32 grid. The resulting ODE system then reads

∂tvn = Anvn − d1nwn + Iion(vn) +Bnu+ f1 + f2, vn(0) = vd,n(0) + ξv,

∂twn = γ 1nvn − δ 1nwn, wn(0) = wd,n(0) + ξw,
(5.2)

where the nonlinearity is evaluated pointwise such that Iion(vn) = −av3
n + bv2

n. We
further have An, 1n ∈ Rn×n and Bn ∈ Rn×m, with n = 1024 and m = 16. The desired
trajectory (vd,n, wd,n) is computed as a solution to the uncontrolled system

∂tvd,n = Anvd,n − d 1nwd,n + Iion(vd,n) + f1 + f2,

∂twd,n = γ 1nvd,n − δ 1nwd,n.

The solutions of the ODE systems are always obtained by the MATLAB routine
ode45. The feedback control law u(t) = −R−1B∗nΠn(t)(vn(t)−vd,n(t)) is computed by
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Fig. 5.2. Linearized system. Comparison of L2(Ω) and H1(Ω) error for R = 1.

solving the matrix differential Riccati equation associated with the decoupled system,
i.e.,

Π̇n + (A(vd,n))∗Πn + ΠnA(vd,n)−ΠnBnR−1B∗nΠn + λΠn +M∗M = 0, (5.3)

where A(vd,n) = An − diag(3av2
d,n) + diag(2bvd,n). Following the suggested method-

ology in [12], we exploit the fact that the desired trajectory is approaching a sta-
tionary state (zero). Hence, we solve (5.3) backwards in time using the initialization
Πn(tf ) = Π̃n, where Π̃n solves the algebraic matrix Riccati equation

A∗nΠ̃n + Π̃nAn − Π̃nBnR−1B∗nΠ̃n + λΠ̃n +M∗M = 0.

The solution of the resulting initial value problem (5.3) is determined by the MAT-
LAB routine ode45 rather than the Crank-Nicolson inspired scheme proposed in [12].
In this way we only need to evaluate the Riccati operator rather than solving an alge-
braic Riccati equation in each time step. While the latter approach generally allows
for bigger time steps, in our case the performance of ode45 was better.

5.3. The linearized system. Let us consider the effect of the feedback law
when applied to the linearized system, i.e.,

∂tyn,v =
(
A(vd,n)−BnR−1B∗nΠn(t)

)
yn,v − d1nyn,w, yn,v(0) = ξv,

∂tyn,w = γ 1nyn,v − δ1nyn,w, yn,w(0) = ξw,

where yn,v = vn−vd,n yn,w = wn−wd,n. The shift λ for the desired exponential decay
rate of the decoupled system is chosen as λ = 1. Figure 5.2 shows the decay of the
closed loop system for t ∈ [0, 800] and two different choices of M. We also include a
comparison with the uncontrolled solution. In this context, we remark that the system
is asymptotically stable when linearized in the zero state. Since the desired trajectory
(vd,n, wd,n) approaches zero, this implies that the same holds true for the uncontrolled
solution. As is reflected in Figure 5.2 the controlled system performs better than the
uncontrolled system. We further obtain a better performance with respect to both the
L2(Ω)-norm as well as the H1(Ω)-norm in the caseM = 1. The characteristic “peaks”
within the error plots can be explained as follows. The first excitation f1 modeling
the undesired external stimulus happens at t = 9.52. At t = 176.39 the regular heart
rhythm restarts and causes a traveling wave (due to f2) evolving from the center of
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Fig. 5.3. Linearized system. Comparison of L2(Ω) and H1(Ω) error for R = 1 (zoom).
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Fig. 5.4. Nonlinear system. Comparison of L2(Ω) and H1(Ω) error for R = 1.

the domain, see again Figure 5.7 at t = 180. The third peak corresponds to the sudden
collapse of the traveling wave at t ≈ 305. Figure 5.3 shows the time span between the
excitation and the collapse of the traveling wave, respectively. Here, we additionally
include (green axis) the time interval in which at least one of the eigenvalues of the
system matrix An(vd,n) has a positive real part. While it is well-known that for
linear time-varying systems there is no one-to-one correspondence between spectral
abscissa and stability of the system, it is still worthwhile to mention that the most
significant differences to the uncontrolled system appear when A(vd,n) is unstable.
This also concerns the relation between the quality of the solutions for M = 1 and
M = (1−∆)

1
2 .

5.4. The nonlinear system. We now focus on the full nonlinear system (5.2).
Again, the results of the simulations for two different choices ofM are compared with
the uncontrolled solutions, see Figure 5.4. Note that the uncontrolled solution now
exhibits a periodic behavior and, in particular, does not decay at all. On the other
hand, both feedback control laws result in a successful termination of the reentry
wave. As already indicated by the results for the linearized system, the choiceM = 1
shows a better performance than M = (1 − ∆)

1
2 . We also include a comparison for

the weight matrix R = 1
51 rather than R = 1. Since this decreases the amount of the

control costs within the cost functional, we expect the control to have more influence.
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Fig. 5.5. Nonlinear system. Comparison of L2(Ω) and H1(Ω) error for R = 1
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Fig. 5.6. Evolution of v(x, t) for uncontrolled (top), desired (center) and controlled (bottom)
system with (M,R) = (1, 1).

Indeed, Figure 5.5 underlines this expectation. Here, the results corresponding to
M = (1−∆)

1
2 are better than those obtained forM = 1. In Figure 5.6 and Figure 5.7

the temporal evolution of vd,n(x) for the uncontrolled, desired and controlled system
is shown. While for t = 13, the difference between desired and controlled solution is
clearly visible, for larger time instances the controlled solution approaches the desired
solution. Finally, Figure 5.8 visualizes the action of the piecewise constant control
functions. The largest magnitude can be observed after the external stimulus has
been applied (see t = 13.) As expected, for increasing t, the feedback law approaches
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Fig. 5.7. Evolution of v(x, t) for uncontrolled (top), desired (center) and controlled (bottom)
system with (M,R) = (1, 1).

zero (see t = 500.)
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Dunod et Gauthier–Villars, Paris, 1969.
[16] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,

vol. I of Die Grundlehren Math. Wiss. Einzeldarstellungen, Springer-Verlag, 1972.
[17] C. Nagaiah, K. Kunisch, and G. Plank, Optimal control approach to termination of re-entry

waves in cardiac electrophysiology, J. .Math. Biol., 67 (2013).
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