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Abstract. Feedback control for the monodomain equations is studied. The dynamics of interest
are governed by a coupled PDE-ODE reaction diffusion system with non-monotone nonlinearity of
FitzHugh-Nagumo type. A localized distributed control is used to locally stabilize the nonlinear
system. This is achieved by a Riccati-based feedback law, determined by the linearized system.
It is shown that the Riccati equation corresponding to the PDE variable suffices for exponential
stabilization of the linearized PDE-ODE system. The theoretical findings are underlined by several
numerical examples.
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1. Introduction. Optimal control of reaction-diffusion type partial differential
equations (PDEs) arising in cardiac electrophysiology has received considerable inter-
est within the last few years, see, e.g., [9, 10, 12, 16, 17, 19]. The so-called bidomain
equations are a well accepted model representing defibrillation processes of the hu-
man heart (see [33]). However, due to the complexity of the equations a reasonable
alternative is to consider a simplification known as the monodomain equations ([25]).
Here, the dynamics are governed by a parabolic reaction-diffusion system coupled
with a linear ordinary differential equation modeling the ionic current. As has been
discussed in, e.g., [17], under certain initial conditions, reentry phenomena and spiral
waves can occur. From a medical point of view, these situations can be interpreted as
fibrillation processes of the heart that should be terminated by an external control,
e.g., by applying an external stimulus to the heart tissue (see [23]). With this in mind,
the goal of this paper is to discuss the applicability of linear feedback laws for the
following equations:

∂v

∂t
= ∆v − Iion(v, w) + fv +Bu, in Ω× (0,∞),

∂w

∂t
= γv − δw + fw, in Ω× (0,∞),

∂v

∂ν
= 0, on Γ× (0,∞),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(1.1)

where Ω ⊂ Rn, n ∈ {2, 3}, denotes a bounded open set with smooth boundary Γ = ∂Ω.
Here, v = v(x, t) describes the transmembrane electrical potential, w = w(x, t) is a so-
called gating variable and u = u(x, t) ∈ L2(0,∞;L2(ω)), where ω ⊂ Ω, is a nonempty
open subset, denotes the control. We further assume that γ, δ > 0 and denote by ν the
outer unit normal to Γ. For fixed t, we define the linear operator B ∈ L(L2(ω), L2(Ω))
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as

(Bu)(x) =

{
u(x), x ∈ ω,
0, x ∈ Ω\ω.

Its adjoint B∗ is the restriction operator from Ω to ω. With slight abuse of notation,
we also use B as operator from L2(0,∞;L2(ω)) → L2(0,∞;L2(Ω)) with (Bu)(t) =
(Bu(t)) and analogously for B∗. In the above setting, the model for the ionic current
Iion is given by a cubic nonlinearity and f is assumed to be an external force.

Our goal now is the following. Given a stationary solution

0 = ∆v̄ − Iion(v̄, w̄) + fv(x),

0 = γv̄ − δw̄ + fw(x),
(1.2)

we want to specify a linear feedback law of the form u = k(v, w) such that (yv, yw) :=
(v−v̄, w−w̄) is exponentially stable. In this paper, we follow a Riccati-based approach
that recently has been studied for, e.g., the semilinear heat equation (see [3, 4]),
the Navier-Stokes equations ([1, 2, 30, 31]), the Burgers equation (see [32]) or the
Boussinesq system ([8, 15, 24]. While the open loop optimal control of reaction-
diffusion type systems of the form (1.1) has been studied in [6, 9, 18, 19], less is
known for feedback-based controls. In fact, by the authors knowledge, there do not
exist any results on (local) feedback stabilizability of (1.1). In [6], an approximate
controllability problem is discussed but the exact null controllability still seems to
be an open question. On the other hand, for semilinear parabolic equations that
are not coupled to a gating variable, controllability results are well-known, see, e.g.,
[3, 4]. Based on these results, we propose to construct a feedback law by solving the
algebraic Riccati equation associated with the decoupled system that is obtained for
w(x, t) ≡ 0.

The structure of the paper now is as follows. In Section 2, we briefly recapitulate
well-posedness as well as existence results for the monodomain equations (1.1). In
Section 3, we derive the linearized system and show that the solution of the Riccati
equation of the decoupled system suffices for exponential stabilization of the coupled
system. We prove the local exponential stabilization of the full nonlinear system in
Section 4 and underline the suggested approach by means of some numerical examples
in Section 5.

In the remainder of this paper, we use the following notation. For p ≥ 1 and s ≥ 0,
by Lp(Ω) and Hs(Ω) we denote the usual Lebesgue and Sobolev spaces. Additionally,

we defineHs
ν(Ω) :=

{
y ∈ D(Ω)

∣∣∣ ∂y∂ν = 0 on Γ
}
, where the closure is taken with respect

to ‖y‖Hs(Ω), s ≥ 0. For s > 3
2 , we have Hs

ν =
{
y ∈ Hs(Ω)

∣∣∣ ∂y∂ν = 0 on Γ
}

and for s ∈
[0, 3

2 ), we have Hs
ν(Ω) = Hs(Ω). Given a Hilbert space X, we denote with L2(0,∞;X)

(Bochner) square integrable functions on (0,∞) with values inX. ForQ∞ = Ω×(0,∞)
and r ≥ 0, s ≥ 0, we will need the spaces

Hr,s(Q∞) = L2(0,∞;Hr(Ω)) ∩Hs(0,∞;L2(Ω)),

which are Hilbert spaces with the norm

‖u‖r,s =

(∫ ∞
0

‖u(t)‖2Hr(Ω)dt+ ‖u‖2Hs(0,∞;L2(Ω))

) 1
2

.
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The space of bounded linear operators between two Hilbert spaces X and Y will be
denoted by L(X,Y ). For a closed densely defined operator A : D(A) ⊂ X → X, the
resolvent set and the spectrum of A are denoted by ρ(A) and σ(A), respectively. The
adjoint of A is denoted by A∗.

2. Monodomain equations and the Schlögl model. Depending on the com-
munity and the considered model Iion(v, w) for the ionic current, equation (1.1) is
referred to under different names such as the Schlögl or Nagumo system as well as the
FitzHugh-Nagumo system. In this section, we briefly review known results concerning
existence and uniqueness of solutions as well as optimal control problems related to
(1.1).

The existence of solutions to the FitzHugh-Nagumo system have been studied
for several years now. Early results are given in, e.g., [28, 29] where the authors
discuss the existence as well as the qualitative behavior of solutions to the FitzHugh-
Nagumo equations. In [16], existence and regularity of solutions for irregular data are
investigated.

In contrast to the previous works, [6] is one of the first references for optimal
control problems related to the FitzHugh-Nagumo system. Based on the ionic model

Iion(v, w) = (v + ϕ1(x, t))(v + ϕ2(x, t))(v + ϕ3(x, t))− w,

with functions ϕi(x, t) being space and time dependent, the authors address quadratic
optimal control problems. Using the Dubovitski-Milyoutin formalism, the optimality
system is derived and associated controllability questions are discussed. In [7], the
decoupled system, also known as the Schlögl equation, is studied and the optimal
control problem is numerically solved by using a model reduction technique (POD).
In [19], the authors focus on a time optimal control problem for a linearized version of
the FitzHugh-Nagumo system, i.e., the ionic model is given by Iion(v, w) = ϕ(x)v+w
and the control function is subject to pointwise control constraints. For general ionic
models of the form

Iion(v, w) = k(v − ϕ1)(v − ϕ2)(v − ϕ3) + αw,

in [9], the authors discuss the effect of controls acting only in a small part of the
domain Ω. Due to a resulting L1 norm term, here the corresponding sparse optimal
control problem yields a non-differentiable objective function. Finally, we mention
[18], where a modified version of the FitzHugh-Nagumo model, known as the Rogers-
McCulloch model is studied. In that case, the ionic model is given as

Iion(v, w) =
η0

vthvpk
v3 − η0

(
1

vth
+

1

vpk

)
v2 + η0v + η1vw, (2.1)

where the parameters η0, η1, η2 > 0 are assumed to be real constants and vpk > vth > 0
denote peak and threshold potential. Further numerical studies and error estimates
are discussed in, e.g., [10, 12, 17]. In this paper, we consider the FitzHugh-Nagumo
model in the form

Iion(v, w) = av3 + bv2 + cv + dw, (2.2)

where a, b, c, d ∈ R are constant parameters. We point out that none of the above men-
tioned articles deals with feedback based control functions u(x, t) = k(v(x, t), w(x, t)).
In particular, control theoretic approaches given by the solution of Riccati equations
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have not been investigated up to now. A difficulty for the latter method clearly is the
lack of controllability and stabilizability results for reaction-diffusion type systems of
the form (1.1). While [6] gives an approximate controllability result, the question of
stabilizability for the FitzHugh-Nagumo system has not been answered yet. In the
subsequent sections, we follow the methodology from [31], where the local exponential
stabilization of the Burgers equation is addressed.

3. Stabilizability of the linearized system. Since we want to apply a Riccati-
based feedback control law, we are going to rewrite the system as an abstract Cauchy
problem of the form

~y ′(t) = A~y(t) + F(~y(t)) + Bu(t), (3.1)

where A is the infinitesimal generator of a strongly continuous semigroup on a Hilbert
space Y, F is a nonlinear operator and B : U → Y is the control operator mapping
from the control space U to the state space Y. Our goal is to apply a control of the
form u(t) = −B∗Π~y(t) with Π = Π∗ � 0 denoting the solution to the algebraic Riccati
equation

A∗Π + ΠA−ΠBB∗Π + I = 0. (3.2)

In what follows, for the stationary solution to (1.2), we assume that (v̄, w̄) ∈ H n
2 +s(Ω)×

L∞(Ω), s > 0. In order to obtain the structure in (3.1), we define the difference
(yv, yw) := (v − v̄, w − w̄) and obtain

∂yv
∂t

= ∆yv − a(v3 − v̄3)− b(v2 − v̄2)− cyv − dyw +Bu,

∂yw
∂t

= γyv − δyw,
(3.3)

Using the identities

v3 − v̄3 = (yv + v̄)3 − v̄3 = y3
v + 3v̄y2

v + 3v̄2yv,

v2 − v̄2 = (yv + v̄)2 − v̄2 = y2
v + 2v̄yv,

we can cast (3.3) into the form of (3.1). For this, we denote ~y := (yv, yw) and the
operators

A~y =

(
∆yv − (3av̄2 + 2bv̄ + c)yv − dyw

γyv − δyw

)
,

F(~y) =

(
−ay3

v − (b+ 3av̄)y2
v

0

)
, Bu =

(
Bu
0

)
.

(3.4)

Our first result now shows that the operator A generates an analytic semigroup on
L2(Ω) × L2(Ω). This is essential for the rest of the paper since we can make use of
some beneficial properties of analytic semigroups that we mention later on.

Lemma 3.1. The operator

A : D(A) ⊂ L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω),

D(A) =

{
~y ∈ H2(Ω)× L2(Ω)

∣∣∣∣∂yv∂ν = 0 on Γ

}
4



is the infinitesimal generator of an analytic semigroup on L2(Ω)× L2(Ω).
Proof. The proof follows the lines of the proof [19, Lemma 2.2]. Assume that

λ0 > 0. First, from [5, Theorem 2.12], we know that the operator

∆− λ0I, D(∆− λ0I) =

{
y ∈ H2(Ω)

∣∣∣∣∂y∂ν = 0

}
generates an analytic semigroup S(t) on L2(Ω). Also, it holds that S(t) is differentiable
and, since 0 ∈ ρ(∆ − λ0I), using [26, Theorem 6.13, Chapter 2] we conclude the
existence of a constant C such that for all t > 0 and y ∈ L2(Ω), we have

‖(∆− λ0I)S(t)y‖L2(Ω) ≤
C

t
‖y‖L2(Ω).

Following [19], for t ≥ 0, we define the operator S̃(t) from L2(Ω)×L2(Ω) via S̃(t)~y =(
S(t)yv

0

)
and note that S̃(t) is a C0 semigroup on L2(Ω)× L2(Ω) with infinitesimal

generator

A0~y =

(
∆yv − λ0yv

0

)
, D(A0) = D(∆− λ0I)× L2(Ω).

Using the previous estimate for S(t), we also have that

‖A0S̃(t)~y‖L2(Ω)×L2(Ω) ≤
C

t
‖~y‖L2(Ω)×L2(Ω).

According to [26, Theorem 5.2, Chapter 2] this implies that S̃(t) is an analytic semi-
group on L2(Ω)× L2(Ω). Now, we use the splitting A = A0 +A1, where

A~y = A0~y +A1~y =

(
∆yv − λ0yv

0

)
+

(
λ0yv − (3av̄2 + 2bv̄ + c)yv − dyw

γyv − δyw

)
and D(A1) = L2(Ω) × L2(Ω). Since v̄ ∈ L∞(Ω), the operator A1 is bounded from
L2(Ω)× L2(Ω) to itself and the assertion follows from [26].

As we already mentioned, the analyticity of the semigroup is essential for our
purposes since we can make use of the spectrum determined growth assumption ([26,
Corollary 2.2]). This means that supλ∈σ(A) λ coincides with the growth bound of
the generated semigroup. The question of stabilizability for the linearized system
associated with A, however, is still not answered. We address this problem by using
existing results for the decoupled system

∂yv
∂t

= ∆yv − (3av̄2 + 2bv̄ + c)yv +Bu, in Ω× (0,∞),

∂yv
∂ν

= 0, on Γ× (0,∞).

(3.5)

From [11], we know that the system is null controllable with localized distributed
controls. Hence, if we define

Av : D(Av) ⊂ L2(Ω)→ L2(Ω),

D(Av) =

{
y ∈ H2(Ω)

∣∣∣∣∂yv∂ν = 0 on Γ

}
5



via

Avyv = ∆yv − (3av̄2 + 2bv̄ + c)yv, (3.6)

from [27, 34] we know that (3.5) is exponentially stabilizable. Since the results from
[11] apply also to the shifted operator Av + αI for every α > 0, with, e.g., [34], it
follows that there exists a unique positive solution Π = Π∗ ∈ L(L2(Ω)) to

(Av + αI)∗Π + Π(Av + αI)−ΠBB∗Π + I = 0. (3.7)

Also, the semigroup generated by Av + αI − BB∗Π is exponentially stable, i.e., its
growth bound is negative. Equivalently, this implies that the semigroup generated by
Av−BB∗Π has a growth bound that is smaller than −α. We now use the exponential
stabilizability of the decoupled system for the stabilization of the coupled system. We
have the following result.

Lemma 3.2. Let Π be the solution to (3.7) with α = ε+ γ |d|δ−ε , 0 < ε < δ. Define
the operator (AΠ,D(AΠ)) as follows

AΠ~y =

(
Avyv − dyw −BB∗Πyv

γyv − δyw

)
, (3.8)

D(AΠ) =
{
~y ∈ L2(Ω)× L2(Ω) | yv ∈ D(Av)

}
=

{
~y ∈ H2(Ω)× L2(Ω)

∣∣∣∣∂yv∂ν = 0 on Γ

}
. (3.9)

Then AΠ is the infinitesimal generator of an exponentially stable analytic semigroup
on L2(Ω)× L2(Ω). In particular, for its growth bound ω it holds that ω ≤ −ε.

Proof. From [5, Proposition 2.3] we know that for λ ∈ C with Re(λ) ≥ −ε−γ |d|δ−ε
the resolvent (λI−(Av−BB∗Πv))

−1 exists. Assume now that s ∈ C with Re(s) ≥ −ε
and define z := s+ d

s+δγ. The real part of z then is given as

Re(z) = Re(s) +
dγ(Re(s) + δ)

(Re(s) + δ)2 + Im(s)2
.

Since Re(s) ≥ −ε, this implies

Re(z) ≥ −ε− |d|γ
Re(s) + δ

≥ −ε− γ |d|
δ − ε

,

and we conclude that (zI − (Av −BB∗Π))
−1

=
(
sI + d

s+δγI − (Av −BB∗Π)
)−1

ex-

ists for Re(s) ≥ −ε. Next, let a partitioning be given as follows

(sI −AΠ) :=

(
Ã B̃

C̃ D̃

)
=

(
sI −Av +BB∗Π dI

−γI (s+ δ)I

)
.

According to the preceding arguments and the fact that δ > ε, we know that Ã−1, D̃−1

and the Schur complement (Ã − B̃D̃−1C̃)−1 exist for Re(s) ≥ −ε. This particularly
shows the existence of (sI − AΠ)−1 for Re(s) ≥ −ε. Since A is the infinitesimal
generator of an analytic semigroup and BB∗Π is bounded, AΠ also generates an
analytic semigroup. This means the spectrum determined growth assumption holds
and we can conclude that the semigroup generated by AΠ is exponentially stable with
growth bound ω ≤ −ε.
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4. Local stabilization of the nonlinear system.

4.1. Properties of the nonlinear function F . In order to show the local
stabilization of the nonlinear system (3.1), we first need some properties of the non-
linear operator F . Following the approach in [30, 31], we investigate local Lipschitz
continuity. With this in mind, we start with a result concerning the norm of the space
Hr,s(Q∞). For the remainder of this paper, C denotes a generic constant that might
change its value depending on the specific estimate.

Lemma 4.1. Let f, g, h ∈ Hλ+2µ,λ+2µ
2 (Q∞). If

(i) λ+ 3µ ≥ n+2
2 ,

(ii) 2λ+ 4µ ≥ 0, µ ≥ 0,
and (i) is strict if equality holds in one of the inequalities in (ii), then

‖f · g‖λ,λ2 ≤ C · ‖f‖λ+2µ,λ+2µ
2
· ‖g‖λ+2µ,λ+2µ

2
,

‖f · g · h‖λ,λ2 ≤ C · ‖f‖λ+2µ,λ+2µ
2
· ‖g‖λ+2µ,λ+2µ

2
· ‖h‖λ+2µ,λ+2µ

2
.

Note that for λ, µ ≥ 0, the definition of Hλ,µ(Q∞) from [14] coincides with our
definition of Hr,s(Q∞).

Proof. We know that λ+2µ+2µ ≥ n+2
2 . Moreover, since 2µ ≥ 0 and 2λ+2µ+2µ ≥

0, the first assertions follows from [14, Theorem B.3]. Analogously, it holds that

‖g · h‖λ+µ,λ+µ2
≤ C · ‖g‖λ+2µ,λ+2µ

2
· ‖h‖λ+2µ,λ+2µ

2
(4.1)

since for µ ≥ 0, we have (λ+µ) +µ+µ ≥ n+2
2 and 2(λ+µ) +µ+µ ≥ 0. Finally, due

to (i) and (ii), again with [14] we get

‖f · g · h‖λ,λ2 ≤ C · ‖f‖λ+2µ,λ+2µ
2
· ‖g · h‖λ+µ,λ+µ2

which, combined with (4.1), shows the second assertion.
First we consider the two-dimensional case and give a useful estimate for the

difference of quadratic and cubic terms as they appear for F .
Lemma 4.2. Let Ω ⊂ R2 and assume that ε ∈ [ 1

3 , 1]. Then for yv, zv ∈ H1+ε, 1+ε2 (Q∞),
it holds that∥∥y2

v − z2
v

∥∥
L2(0,∞;Hε−1(Ω))

≤ C · ‖yv − zv‖1+ε, 1+ε2

(
‖yv‖1+ε, 1+ε2

+ ‖zv‖1+ε, 1+ε2

)
,∥∥y3

v − z3
v

∥∥
L2(0,∞;Hε−1(Ω))

≤ C · ‖yv − zv‖1+ε, 1+ε2

(
‖yv‖21+ε, 1+ε2

+ ‖zv‖21+ε, 1+ε2

)
.

Proof. For ε ∈ [ 1
3 , 1), we choose λ = 3ε− 1, µ = 1− ε. Then, µ ∈ (0, 2

3 ], λ+ 2µ =
1 + ε > 0 and λ+ 3µ = 2 and Lemma 4.1 implies

‖y2
v − z2

v‖3ε−1, 3ε−1
2

= ‖(yv − zv)(yv + zv)‖3ε−1, 3ε−1
2

≤ C‖yv − zv‖1+ε, 1+ε2

(
‖yv‖1+ε, 1+ε2

+ ‖zv‖1+ε, 1+ε2

)
.

Analogously, due to Lemma 4.1 and Young’s inequality, it holds

‖y3
v − z3

v‖3ε−1, 3ε−1
2

= ‖(yv − zv)(y2
v + yvzv + z2

v)‖3ε−1, 3ε−1
2

≤ C‖yv − zv‖1+ε, 1+ε2

(
‖yv‖21+ε, 1+ε2

+ ‖zv‖21+ε, 1+ε2

)
.

7



Finally, boundedness of Ω implies H3ε−1(Ω) ⊂ Hε−1(Ω) which shows the assertion
for ε < 1. For ε = 1, we choose λ = 0 and µ = 1. Then the above splitting together
with Lemma 4.1 yields the assertion.

Additionally, for the three-dimensional setting we have a similar result.
Lemma 4.3. Let Ω ⊂ R3. For yv, zv ∈ H2,1(Q∞), it holds∥∥y2

v − z2
v

∥∥
L2(Q∞)

≤ C · ‖yv − zv‖2,1 (‖yv‖2,1 + ‖zv‖2,1) ,∥∥y3
v − z3

v

∥∥
L2(Q∞)

≤ C · ‖yv − zv‖2,1
(
‖yv‖22,1 + ‖zv‖22,1

)
.

Proof. Due to the triangle inequality, we have

‖y2
v − z2

v‖L2(Q∞) = ‖(yv − zv)(yv + zv)‖L2(Q∞)

≤ C(‖(yv − zv)yv‖L2(Q∞) + ‖(yv − zv)zv‖L2(Q∞))

as well as

‖y3
v − z3

v‖L2(Q∞) =
∥∥(yv − zv)(y2

v + yvzv + z2
v)
∥∥
L2(Q∞)

≤ C
(
‖(yv − zv)y2

v‖L2(Q∞)

+‖(yv − zv)yvzv‖L2(Q∞) + ‖(yv − zv)z2
v‖L2(Q∞)

)
We now choose λ = 0 and µ = 1. Then λ + 3µ > 5

2 . Again Lemma 4.1 and Young’s
inequality applied to the second term implies the claim.

With the previous results, we can show that F is locally Lipschitz continuous.
Lemma 4.4. Let Ω ⊂ R2. Assume that ε ∈ [ 1

3 , 1]. If

~y, ~z ∈ H1+ε, 1+ε2 (Q∞)×
(
C([0,∞];H1+ε(Ω)) ∩H1(0,∞;H1+ε(Ω))

)
,

then F is locally Lipschitz continuous from

H1+ε, 1+ε2 (Q∞)× C([0,∞];H1+ε(Ω)) ∩H1(0,∞;H1+ε(Ω))

to L2(0,∞;Hε−1(Ω))× L2(Q∞). More precisely, it holds that

‖F(~y)−F(~z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

≤ C1 ·
(
‖yv‖1+ε, 1+ε2

+ ‖zv‖1+ε, 1+ε2
+ ‖yv‖21+ε, 1+ε2

+ ‖zv‖21+ε, 1+ε2

)
‖yv − zv‖1+ε, 1+ε2

.

Proof. Due to the structure of F , it holds

‖F(~y)−F(~z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

=
∥∥−(b+ 3av̄)(y2

v − z2
v)− a(y3

v − z3
v)
∥∥
L2(0,∞;Hε−1(Ω))

≤ C1

∥∥(b+ 3av̄)(y2
v − z2

v)
∥∥
L2(0,∞;Hε−1(Ω))

+
∥∥a(y3

v − z3
v)
∥∥
L2(0,∞;Hε−1(Ω))

Since v̄ ∈ H1+s(Ω), s > 0, with [14, Proposition B.1], we further conclude that

≤ C2

(
‖y2
v − z2

v‖L2(0,∞;Hε−1(Ω)) + ‖y3
v − z3

v‖L2(0,∞;Hε−1(Ω))

)
Lemma 4.2 immediately shows the assertion.
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For the sake of completeness, we state the result for the three-dimensional case.
Lemma 4.5. Let Ω ⊂ R3. If

~y, ~z ∈ H2,1(Q∞)× C([0,∞];H2(Ω)) ∩H1(0,∞;H2(Ω)),

then F is locally Lipschitz continuous from

H2,1(Q∞)× C([0,∞];H2(Ω)) ∩H1(0,∞;H2(Ω))

to L2(Q∞)× L2(Q∞). More precisely, it holds

‖F(~y)−F(~z)‖L2(Q∞)×L2(Q∞)

≤ C̃1 ·
(
‖yv‖2,1 + ‖zv‖2,1 + ‖yv‖22,1 + ‖zv‖22,1

)
‖yv − zv‖2,1.

As we have seen, for both the two-dimensional and the three-dimensional case,
F is a locally Lipschitz continuous function. Together with results below, this will
guarantee the locally exponential stabilizability of the system.

4.2. Nonhomogeneous equations. Before we can show local stabilization of
the nonlinear system, we need some regularity results for the nonhomogeneous equa-
tion

~y ′ = AΠ~y + ~f, ~y(0) = ~y0. (4.2)

The first main result of this section is Theorem 4.7 which extends [31, Theorem 4.1] to
ε ∈ ( 1

2 , 1]. Note that this is essential for our purposes since the three-dimensional case
indeed requires ε = 1. For the proof, we recall a result from [5, Chapter 3, Theorem
2.2], stated here for an infinite time interval.

Theorem 4.6. Let Y be a Hilbert space and suppose that A is the infinitesimal
generator of an analytic semigroup of negative type on Y. Then, for all 0 ≤ α ≤ 1,
the mapping

y 7→ (y′ −Ay, y(0))

L2(0,∞; [D(A),Y]α) ∩H1(0,∞; [D(A∗),Y]∗1−α)

→ L2(0,∞; [D(A∗),Y]∗1−α)× [[D(A),Y]α, [D(A∗),Y]∗1−α] 1
2

is an isomorphism.
For the solution to (4.2), we now get the following result.

Theorem 4.7. Let ε ∈ ( 1
2 , 1]. If ~f ∈ L2(0,∞;Hε−1(Ω))×L2(Q∞), ~y0 ∈ Hε(Ω)×

H1+ε(Ω), then (4.2) has a unique solution

~y ∈ H1+ε, 1+ε2 (Q∞)×
(
C([0,∞];H1+ε(Ω)) ∩H1(0,∞;H1+ε(Ω))

)
satisfying

‖~y‖
H

1+ε, 1+ε
2 (Q∞)×H1(0,∞;H1+ε(Ω))

≤ C2

(
‖~y0‖Hε(Ω)×H1+ε(Ω) + ‖~f‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

)
.

Proof. Step 1: First of all, since (v̄, w̄) ∈ L∞(Ω)× L∞(Ω), we can choose λ0 > 0
such that

((λ0I −A)~y, ~y)L2(Ω)×L2(Ω) ≥ 0, for all ~y ∈ D(A),

((λ0I −A∗)~y, ~y)L2(Ω)×L2(Ω) ≥ 0, for all ~y ∈ D(A∗).
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Since ε ∈
(

1
2 , 1
]
, we have 1−ε

2 ∈
[
0, 1

4

)
. Thus, with [21, Theorem 3A.1], for the

fractional powers of (λ0I −A∗), it holds that

D((λ0I −A∗)
1−ε
2 ) = [D(λ0I −A∗), L2(Ω)× L2(Ω)] 1+ε

2
= H1−ε(Ω)× L2(Ω). (4.3)

Note that 1 − ε ∈
[
0, 1

2

)
and, therefore, with [22, Theorem 11.1], we conclude that

H1−ε(Ω)× L2(Ω) = H1−ε
0 (Ω)× L2(Ω). In particular, we also get(

D((λ0I −A∗)
1−ε
2 )
)∗

=
(
H1−ε(Ω)× L2(Ω)

)∗
= Hε−1(Ω)× L2(Ω). (4.4)

Next, we use that 1+ε
2 ∈

(
3
4 , 1
]
. Following once more [21, Theorem 3A.1], this implies

that

D((λ0I −A)
1+ε
2 ) = [D(λ0I −A), L2(Ω)× L2(Ω)] 1−ε

2

= H1+ε
ν (Ω)× L2(Ω) :=

{
y ∈ H1+ε(Ω)× L2(Ω)

∣∣∣∣∂yv∂ν = 0 on Γ

}
.

(4.5)
Finally, from e.g. [20, Appendix B], we deduce

[D(λ0I −A∗), L2(Ω)× L2(Ω)] 1
2

= H1(Ω)× L2(Ω). (4.6)

Step 2: The semigroup generated by AΠ is analytic and exponentially stable on
L2(Ω)× L2(Ω). Moreover, we know that

~y0 ∈ Hε(Ω)×H1+ε(Ω) ⊂ L2(Ω)× L2(Ω) ⊂ (H1(Ω))∗ × L2(Ω),

~f ∈ L2(0,∞;Hε−1(Ω))× L2(Q∞) ⊂ L2(0,∞; (D(A∗Π))∗).

Hence, we can use [32, Lemma 4.2] and (4.6) to show that the mapping

~y 7→ (~y ′ −AΠ~y, ~y(0))

(L2(Q∞)× L2(Q∞)) ∩H1(0,∞; (D(A∗Π))∗)→ L2(0,∞; (D(A∗Π))∗)× [D(A∗Π), L2(Ω)× L2(Ω)]∗1
2
.

is an isomorphism. In particular, there exists a solution ~y ∈ L2(Q∞) × L2(Q∞)
satisfying

‖~y‖L2(Q∞)×L2(Q∞) ≤ C
(
‖y0‖Hε(Ω)×H1+ε(Ω) + ‖~f‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

)
. (4.7)

Step 3: Consider now the splitting ~y = ~y1 + ~y2, where

~y1
′ = (A− λ0I)~y1 + ~f + λ0~y, ~y1(0) = ~y0,

~y2
′ = (A− λ0I)~y2 −

(
BB∗Π~yv

0

)
, ~y2(0) = 0,

(4.8)

with ~f and ~y0 as above. From (4.7), we know that ~y ∈ L2(Q∞) × L2(Q∞). Using
(4.3) and (4.4), we get

λ0~y ∈ L2(Q∞)× L2(Q∞) ⊂ L2(0,∞;Hε−1(Ω))× L2(Q∞),

~f ∈ L2(0,∞;Hε−1(Ω))× L2(Q∞) = [D(λ0I −A∗), L2(Ω)× L2(Ω)]∗1+ε
2

× L2(Q∞).
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Following [13, p. 171], for A0 = λ0I−A ∈ L(D(A0), L2(Ω)×L2(Ω)), A1 = λ0I−A∗ ∈
L(L2(Ω)× L2(Ω), (D(A0))∗), E0 = L2(Ω)× L2(Ω) and E1 = (D(λ0I − A))∗, it holds
that [

[D(A0), E0] 1−ε
2
, [D(A1), E1] 1−ε

2

]
1
2

=
[
[D(A0),D(A1)] 1

2
, [E0, E1] 1

2

]
1−ε
2

.

Hence, with [22, Theorem 12.4] this implies

[H1+ε
ν (Ω)× L2(Ω), Hε−1(Ω)× L2(Ω)] 1

2

=
[
[D(λ0I −A), L2(Ω)× L2(Ω)] 1−ε

2
, [D(λ0I −A∗), L2(Ω)× L2(Ω)]∗1+ε

2

]
1
2

=
[
[D(λ0I −A), L2(Ω)× L2(Ω)] 1

2
, [L2(Ω)× L2(Ω), (D(λ0I −A∗))∗] 1

2

]
1−ε
2

= [H1(Ω), (H1(Ω))∗] 1−ε
2

= Hε(Ω).

Combining the previous statement with

~y1(0) = ~y0 ∈ Hε(Ω)×H1+ε(Ω) ⊂ Hε(Ω)× L2(Ω),

we can apply Theorem 4.6 with α = 1−ε
2 to (4.8) in order to show the existence of a

unique solution

~y1 ∈ L2(0,∞;H1+ε
ν (Ω)× L2(Ω)) ∩H1(0,∞;Hε−1(Ω)× L2(Ω))

to (4.8) satisfying

‖~y1‖L2(0,∞;H1+ε
ν (Ω)×L2(Ω))∩H1(0,∞;Hε−1(Ω)×L2(Ω))

≤ C
(
‖y0‖Hε(Ω)×L2(Ω) + ‖~f‖L2(0,∞;Hε−1(Ω))×L2(Q∞) + ‖~y‖L2(Q∞)×L2(Q∞)

)
.

Let us next focus on ~y2. It clearly holds that BB∗Π~yv ∈ L2(Q∞). Hence, by [5,
Proposition 3.7] the second equation in (4.8) has a unique solution

~y2 ∈ L2(0,∞;D(λ0I −A)) ∩H1(0,∞;L2(Ω)× L2(Ω)).

For ε ∈
(

1
2 , 1
]

this in particular leads to

~y2 ∈ L2(0,∞;H1+ε
ν (Ω)× L2(Ω)) ∩H1(0,∞;Hε−1(Ω)× L2(Ω)).

As a consequence, we conclude for ~y = ~y1 + ~y2, that

~y ∈ L2(0,∞;H1+ε
ν (Ω)× L2(Ω)) ∩H1(0,∞;Hε−1(Ω)× L2(Ω)).

Step 4: Up to now, we only know that yw ∈ H1(0,∞;L2(Ω)). We still have to show
that moreover yw ∈ C([0,∞];H1+ε(Ω)) ∩ H1(0,∞;H1+ε(Ω)) holds. From (3.8), we
have

y′w = γyv − δyw, yw(0) ∈ H1+ε(Ω). (4.9)

Hence, we get the explicit representation

yw(t) = e−δtyw(0) + γ

∫ t

0

e−δ(t−τ)yv(τ)dτ.
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In particular, yw(t) is continuous with values in H1+ε(Ω). Moreover, we get

‖yw‖L2(0,∞;H1+ε(Ω)) ≤ ‖yw(0)‖H1+ε(Ω)

(∫ ∞
0

e−2δtdt

) 1
2

+ γ
∥∥e−δ ∗ ‖yv‖H1+ε(Ω)

∥∥
L2[0,∞]

.

The first term clearly exists. Since e−t ∈ L1[0,∞] and yv ∈ L2(0,∞;H1+ε(Ω)), for the
second term, Young’s inequality for convolutions gives e−δ ∗ ‖yv‖H1+ε(Ω) ∈ L2[0,∞].
Since yv ∈ L2(0,∞;H1+ε(Ω)) as well as yw ∈ L2(0,∞;H1+ε(Ω)), this implies yw ∈
H1(0,∞;H1+ε(Ω)) by (4.9).

Step 5: Finally, we show that yv ∈ H1+ε, 1+ε2 (Q∞). For ε = 1, this is clear. Moreover,
from [22, p. 47], for two Hilbert spaces X and Y and scalars s1, s2 ∈ R, θ ∈ (0, 1), we
have

[Hs1(0,∞;X), Hs2(0,∞;Y )]θ = H(1−θ)s1+θs2(0,∞; [X,Y ]θ).

Since yv ∈ L2(0,∞;H1+ε
ν (Ω)) ∩ H1(0,∞;Hε−1(Ω)), we can choose θ = 1+ε

2 , s1 =

0, s2 = 1, X = H1+ε(Ω) and Y = Hε−1(Ω), and conclude that yv ∈ H
1+ε
2 (0,∞;L2(Ω)).

The second main result is the local stabilization of the nonlinear closed-loop
system.

Theorem 4.8. Let Ω ⊂ R2 and ε ∈
(

1
2 , 1
]
. Then there exist µ0 > 0 and a nonde-

creasing function η from R+ into itself, such that if µ ∈ (0, µ0) and ‖~y0‖Hε(Ω)×H1+ε(Ω) ≤
η(µ), then

~y′ = A~y + F(~y), ~y(0) = ~y0, (4.10)

admits a unique solution in the set

Dµ =
{
~y ∈ H1+ε, 1+ε2 (Q∞)×

(
C([0,∞];H1+ε(Ω)) ∩H1(0,∞;H1+ε(Ω))

)
,

‖~y‖
H1+ε, 1+ε

2 (Q∞)×H1(0,∞;H1+ε(Ω))
≤ µ

}
.

Proof. With the results established so far, we can now utilize a fixed point ar-
gument as in [31, Theorem 5.1]. We show that the mapping M : ~z 7→ ~yz defined
by

~y ′ = AΠ~y + F(z), ~y(0) = ~y0, (4.11)

is a contraction in Dµ. For this, we set

µ0 =
1

2

(√
1 +

1

C1C2
− 1

)
and η(µ) =

3

4C1
µ,

with C1 and C2 as in, respectively, Lemma 4.4 and Theorem 4.7.
Step 1: For ~z ∈ Dµ, from Lemma 4.4 we get

‖F(~z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞) ≤ C1(µ+ µ2)µ.

Moreover, with Theorem 4.7 it follows that

‖~yz‖
H1+ε, 1+ε

2 (Ω)×H1(0,∞;H1+ε(Ω))

≤ C2

(
‖y0‖Hε(Ω)×H1+ε(Ω) + ‖F(~z)‖L2(0,∞;Hε−1(Ω))×L2(Q∞)

)
≤ 3

4
µ+ C1C2(µ+ µ2)µ.
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Now since µ ≤ µ0 = 1
2

(√
1 + 1

C1C2
− 1
)
, it also holds µ+ µ2 ≤ 1

4C1C2
and thus

‖~yz‖
H1+ε, 1+ε

2 (Ω)×H1(0,∞;H1+ε(Ω))
≤ µ,

particularly showing that M is mapping Dµ to itself.
Step 2: For ~z1, ~z2 ∈ Dµ we further have

~y1
′ − ~y2

′ = AΠ(~y1 − ~y2) + F(~z1)−F(~z2), ~y1(0)− ~y2(0) = 0.

Hence, Theorem 4.7 implies that

‖~y1 − ~y2‖
H1+ε, 1+ε

2 (Ω)×H1(0,∞;H1+ε(Ω))
≤ C2‖F(~z1)−F(~z2)‖L2(0,∞;Hε−1(Ω))×L2(Q∞).

Using Lemma 4.4, this yields

‖~y1 − ~y2‖
H1+ε, 1+ε

2 (Ω)×H1(0,∞;H1+ε(Ω))
≤ C12(µ+ µ2)‖z1,v − z2,v‖1+ε, 1+ε2

≤ 1

2
‖z1,v − z2,v‖1+ε, 1+ε2

.

In other words, the mapping M is a contraction in Dµ and the proof is complete.

If ε = 1, we have an analogous result for the three-dimensional case. Since the
proof uses exactly the same arguments as above, we only state the final result.

Theorem 4.9. Let Ω ⊂ R3. Then there exist µ0 > 0 and a nondecreasing function
η from R+ into itself, such that if µ ∈ (0, µ0) and ‖~y0‖H1(Ω)×H2(Ω) ≤ η(µ), then

~y ′ = A~y + F(~y), ~y(0) = ~y0, (4.12)

admits a unique solution in the set

Dµ =
{
~y ∈ H2,1(Q∞)× [C([0,∞];H2(Ω)) ∩H1(0,∞;H2(Ω))]

‖~y‖H2,1(Q∞)×H1(0,∞;H2(Ω)) ≤ µ
}
.

4.3. Exponential stabilization. Following [30, 32] we can also achieve stabi-

lization with a prescribed exponential decay rate σ < δ. For this, we set ~̂y = eσt~y and
û = eσtu. Now, if ~y = (yv, yw) solves

∂yv
∂t

= ∆yv − (3av̄2 + 2bv̄ + c)yv − dyw − ay3
v − (b+ 3av̄)y2

v +Bu,

∂yw
∂t

= γyv − δyw, ~y(0) = ~y0,

(4.13)

then ~̂y = (ŷv, ŷw) solves

∂ŷv
∂t

= ∆ŷv + σŷv − (3av̄2 + 2bv̄ + c)ŷv − dŷw − ae−2σtŷ3
v − (b+ 3av̄)e−σtŷ2

v +Bû,

∂ŷw
∂t

= γŷv − δŷw + σŷw, ~̂y(0) = ~y0.

(4.14)
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In order to stabilize the linearized system, we then have to solve the shifted Riccati
equation

(A+ σI)∗Πσ + Πσ(A+ σI)−ΠσBB∗Πσ + I = 0. (4.15)

Alternatively to (4.15) we can again utilize the results from Lemma 3.2 for σ < δ and

solve the Riccati equation for the decoupled system with α = σ + γ |d|δ−σ . Since the
Lipschitz properties shown in Lemma 4.4 and 4.5 similarly hold true for

F̂(~̂y) =

(
−e−2σtaŷ3

v − e−σt(b+ 3av̄)ŷ2
v

0

)
,

with the same arguments as before, we can show the stabilization of (4.14) and, hence,
the exponential stabilization of (4.13). At this point, we refrain from a more detailed
discussion and instead refer to the original idea proposed in [30].

5. Numerical examples. For the numerical simulations, we consider a finite
difference discretization of the monodomain equations with the FitzHugh-Nagumo
model for the ionic current. The precise setup is the following

∂v

∂t
= σ∆v − η0v − η1w + f(v) + gv(x, y) +Bu, in Ω× (0, T ),

∂w

∂t
=

η2

vpk
v − η2η3w, in Ω× (0, T ),

∂v

∂ν
= 0, on Γ× (0, T ),

v(x, 0) = v0(x) and w(x, 0) = w0(x), in Ω,

(5.1)

where Ω = (0, 1) × (0, 1) and f(v) = η0

(
1
vth

+ 1
vpk

)
v2 − η0

vthvpk
v3. The parameters

are σ = 0.0015, η0 = 1.5, η1 = 215.6, η2 = 0.012, η3 = 1. The threshold and peak
potentials, respectively, are given as vth = 13 and vpk = 100. All values are inspired
by [17] where numerical experiments have been carried out for the Rogers-McCulloch
model. For all examples, we use second order central differences for the Laplacian as
well as for the homogeneous Neumann boundary conditions. The simulation domain
is approximated by a uniform grid of size hx = hy = 1

nx−1 with nx = ny = 64 grid
points. The resulting semi-discrete finite dimensional ODE system is denoted by

v̇n(t) = A11 vn(t) +A12 wn(t) + f(vn(t)) + gvn +Bn u(t),

ẇn(t) = A12 vn(t) +A22 wn(t),
(5.2)

where A11, A12, A21, A22 ∈ Rn×n, Bn ∈ Rn×m, gvn ∈ Rn and n = nx · ny = 4096.
All simulations are generated on an Intel R©CoreTMi5-2500 CPU, 8 GB RAM,

Ubuntu Linux 12.04, MATLAB R© Version 7.13.0.564 (R2011b) 64-bit (glnxa64). The
solutions of the ODE systems are always obtained by the MATLAB routine ode45.

5.1. A nonzero steady state. The first example we study is the stabilization
of a constant stationary solution to (5.1) without external force gv(x, y). For this, we
consider the underlying ODE system

0 = η0v + η1w − η0

(
1

vth
+

1

vpk

)
v2 +

η0

vthvpk
v3,

0 =
η2

vpk
v − η2η3w.

(5.3)
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and can compute three equilibria

v̄1 = 0, v̄2,3 =
vpk + vth

2
± 1

2

√
(vpk − vth)2 − 4

η1vth
η0η3

,

w̄1 = 0, w̄2,3 =
1

vpkη3
v̄2,3.

For the above chosen parameter values, one further obtains that the only unstable
equilibrium is given as

v̄ =
vpk + vth

2
− 1

2

√
(vpk − vth)2 − 4

η1vth
η0η3

≈ 51.63, w̄ ≈ 0.5163.

We now slightly perturb the constant state as follows

v̄0(x, y) = v̄ + 3 · sin(2πx) · sin(4πy), w̄0(x, y) = w̄ +
3

100
· sin(2πx) · sin(4πy).

The resulting initial state for our numerical tests is shown in Figure 5.1a. For the
control domain we choose (see also Figure 5.1b)

Ωcon = Ωcon,1 ∪ Ωcon,2 ∪ Ωcon,3 ∪ Ωcon,4,

Ωcon,1 =
{
x, y ∈ (0, 1) : (x− 0.25)2 + (y − 0.25)2 ≤ 0.04

}
,

Ωcon,2 =
{
x, y ∈ (0, 1) : (x− 0.25)2 + (y − 0.75)2 ≤ 0.04

}
,

Ωcon,3 =
{
x, y ∈ (0, 1) : (x− 0.75)2 + (y − 0.25)2 ≤ 0.04

}
,

Ωcon,4 =
{
x, y ∈ (0, 1) : (x− 0.75)2 + (y − 0.75)2 ≤ 0.04

}
.

The approximation of the control operator B thus is a restriction of the identity
matrix to the control domain. In particular, we obtain Bn ∈ R4096×1992. In order to
validate the results from Theorem 4.8, we solve the nonlinear closed-loop system

v̇n(t) = A11 vn(t) +A12 wn(t) + f(vn(t))−BnBTnPn(vn(t)− v̄), vn(0) = v̄0,

ẇn(t) = A12 vn(t) +A22 wn(t), wn(0) = w̄0,

where Pn is the solution to the algebraic matrix Riccati equation(
A11 +

∂f

∂vn
(v̄) + 10 · In

)T

Pn + Pn

(
A11 +

∂f

∂vn
(v̄) + 10 · In

)
− PnBnB

T
nPn + In = 0.

Some remarks are in order. We choose a shift of 10 · In in order to guarantee a
sufficient decay rate for the decoupled closed-loop system. We carried out analogous
computations for smaller shifts but in these cases, we had to decrease the norm of
the initial perturbation. From a numerical point of view, the massive number (1992)
of inputs of course might prevent from using approximate low rank techniques for
solving the Riccati equation. However, here we are rather interested in the general
concept than in the efficient numerical solution of the Riccati equation. Moreover,
already the matrix A11 + ∂f

∂vn
(v̄), representing the linearization of the constant steady

state has 41 eigenvalues in the right complex half-plane. The shifted matrix for which
we solve the Riccati equation has 339 unstable eigenvalues.

We compare the evolution of the uncontrolled with the evolution of the closed-
loop nonlinear system. As can be seen from Figure 5.1c, the feedback stabilizes the
perturbed initial condition around the constant steady state (v̄, w̄). On the other
hand, without control, the system quickly converges to the (stable) zero steady state
explaining the almost constant L2-error.
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Fig. 5.1: A nonzero steady state.

5.2. Steady state with external force. Our second test case includes an
additional external force gv(x, y). The term gv is chosen such that

v̄(x, y) = 100

(
1

2
x2 − 1

3
x3

)
− 50

(
1

2
y2 − 1

3
y3

)
,

w̄(x, y) =
1

η3vpk
v̄(x, y),

(5.4)

is a steady state solution to (5.1). Of course, we can get an analytic expression for gv
by evaluating

gv = −σ∆v̄ + η0v̄ +
η1

vpkη3
v̄ − f(v̄).

The steady state again is chosen such that the system is unstable. We have three
unstable eigenvalues for the linearized system matrix A11 + ∂f

∂vn
(v̄) and 296 unstable

eigenvalues for A11 + ∂f
∂vn

(v̄) + 12 · In. The latter matrix is used for computing the
feedback gain via solving the associated matrix Riccati equation.
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Fig. 5.2: Steady state with external force.

It is worthwhile to mention that even when initialized with the exact initial con-
dition, the uncontrolled system will deviate from (v̄, w̄). This is simply due to the fact
that the discretization of the analytically computed external force does not match
with the external force for the discretized system, i.e.,

gv,n 6= −A11v̄ −A12w̄ − f(v̄).

For this reason, instead of gv,n we use the latter expression in order to guarantee steady
state behavior for the discretization of (5.4). The control domain now is chosen as in
the first example. Similarly, we perturb the initial state by a trigonometric term as
follows

v̄0(x, y) = v̄ + 5 · sin(2πx) · sin(4πy), w̄0(x, y) = w̄ +
5

100
· sin(2πx) · sin(4πy).

Figure 5.2 and Figure 5.2b now show the initial as well as the final state (t = 1000)
of the nonlinear closed-loop system. Again, we find that the linear feedback law
stabilizes the nonlinear system, see also Figure 5.2c. In contrast to the first example,
the uncontrolled system does not approach a constant (in time) L2-error but exhibits
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Fig. 5.3: Control domain and external stimulus.

a periodic behavior. Note that due to the external forcing term, the trivial solution
no longer is a steady state of the equation.

5.3. Termination of an excitation wave. The final two examples should be
understood as a phenomenological proof of concept for a possible increase of the
stability radius by solving the Riccati equation. With regard to this situation, our
goal is to control a given initial state to zero. From a practical point of view this
case is relevant since the monodomain equations model the electric potential of the
heart tissue. In this medical context it is usually desirable to reach the zero state. We
begin with the prototypical test case of an excitation wave, see, e.g., [17]. Here, the
initial condition describes a small part of the domain that gets excited by an external
stimulus. We model this by setting

v̄0(x, y) = 101, for (x, y) ∈ [0.475, 0.525]× [0.475, 0.525].

All other parts of the domain are at rest. For the external force it holds that gv = 0.
As a result, for the uncontrolled system an excitation wave appears and the entire
domain gets excited. After a certain period of time, the wave collapses and the
system approaches the zero state. In a real-life context, one clearly wants to avoid
this behavior and is interested in terminating the excitation wave as fast as possible.

In our example, the control domain is smaller than in the first two cases. However,
in order to terminate the wave sufficiently fast, the actuators have to be close to the
external stimulus. More precisely, we use (see Figure 5.3),

Ωcon = Ωcon,1 ∪ Ωcon,2,

Ωcon,1 = {x, y ∈ [0.38, 0.46]× [0.46, 0.54]} ,
Ωcon,2 = {x, y ∈ [0.54, 0.62]× [0.46, 0.54]} .

We obtain a discrete approximation of the control operator Bn ∈ R4096×72. The
gain matrix R−1BTnPn is obtained by the solution of the matrix Riccati equation

AT11Pn + PnA11 − PnBnR−1BTnPn + In = 0,
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(d) v(x, y) at t = 7.5.

Fig. 5.4: Uncontrolled excitation wave.

where we choose the weight matrix R = 10−2 ·In. In Figure 5.4 we show the evolution
of the uncontrolled system for different time steps. As we already mentioned, one
can see a quick excitation of the entire domain. On the other hand, the feedback
controller counteracts with the external stimulus and, as a consequence, terminates
the excitation wave after a very small period of time. We recall that this phenomenon
is not covered by our stabilization result from Theorem 4.8. Theoretically we could
have decreased the stability radius by solving the Riccati equation.

5.4. Termination of a reentry wave. Another important example is the ter-
mination of a so-called reentry wave that can be used as a model for fibrillation
processes of the human heart. In order to generate an initial state developing into
such a wave, we excite the transmembrane potential at the lower boundary of the
domain with an external stimulus S1,ext = 101. As a result, a traveling wave appears
and moves through the domain. After a certain period of time (when the wave has
disappeared; in our case t = 189.5), we use a second stimulus of the form

S2,ext = 200 in Ωext =
{
x, y ∈ (0, 1) : 4(x− 0.5)2 + (y − 0.5)2 ≤ 0.382

}
,

to excite the tissue for a small time interval (t = 2). Since reentry waves do not occur
for all parameter settings, the previous setup has been determined experimentally.
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(b) v(x, y) at t = 0.5.
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(c) v(x, y) at t = 1.
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(d) v(x, y) at t = 2.

Fig. 5.5: Termination of excitation wave.

In Figure 5.7a we show the initial condition for the uncontrolled as well as for the
closed-loop system. In this example, we stay close to a realistic setup where the
control usually is located at (or near) the boundary of the tissue. The control domain
is shown in Figure 5.6 and is given as

Ωcon = Ωcon,1 ∪ Ωcon,2 ∪ Ωcon,3 ∪ Ωcon,4,

Ωcon,1 = [0.015, 0.125]× [0.015, 0.495],

Ωcon,2 = [0.015, 0.125]× [0.505, 0.985],

Ωcon,3 = [0.875, 0.985]× [0.015, 0.495],

Ωcon,4 = [0.875, 0.985]× [0.505, 0.985].

In contrast to the other examples, we localize the control on each of the subdomains
such that for the approximate control operator we have Bn ∈ R4096×4. Again, the
gain matrix R−1BTnPn is obtained by solving

AT11Pn + PnA11 − PnBnR−1BTnPn + In = 0,

with weight matrix R = 10−2 · In.
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Fig. 5.6: Control domain for reentry wave.

As can be seen in Figure 5.7, the uncontrolled system describes the explained
reentry behavior and does never come to rest. On the other hand, the results in
Figure 5.8 indicate the positive effect of the feedback law, resulting in a termination
of the reentry wave.
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