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Abstract

An optimal control approach to a simplified reaction diffusion system describing car-
diac defibrillation is proposed that allows for joint optimization of shape and duration of
defibrillation pulses. Within the framework, optimized multiphasic pulses with low energy,
short duration and/or low amplitude can be designed according to specific needs. The
approach is based on a novel time optimal control formulation for the monodomain model,
which takes into consideration the dynamical system properties of the uncontrolled equa-
tion. The highly complex dynamics requires a consistent discretization of first and second
order information to guarantee effective optimization schemes leading to successful defib-
rillation. Numerical examples underline the efficiency of the proposed method.

1 Introduction and problem formulation

Over the last decades significant progress was made in the numerical treatment of open loop
optimal control problems governed by distributed parameter systems. The techniques that
were developed were adapted for a wide range of important equations, including wave and
diffusion equations, the equations of fluid mechanics and fluid-structure interaction models. In
contrast very little attention was paid to reaction diffusion systems, whose dynamical systems
behavior is significantly different from those of the systems mentioned before. In this paper we
continue our efforts on one particular reaction diffusion system, which describes the electrical
activity of the heart. Compared to our earlier work we propose a new choice of cost functionals,
which allows a much wider class of optimized trajectories. This is only possible by using well
conceived numerical optimal control techniques. Due to the rich dynamical systems behavior
for the problems under consideration, ad hoc techniques will simply fail, especially for second
order methods.
Let us briefly describe the physiological background for the problem to be investigated. The
heart supplies all organs with blood by rhythmic contractions that are triggered electrically.
Disturbances in the formation and/or propagation of electrical impulses may induce reentrant
activation patterns which lead to a noticeable increase in the hearts activation rate. Such
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fast rhythms may lead to fibrillation. To restore a healthy rhythm the delivery of electrical
shocks, referred to as defibrillation, is a reliable therapy. It can be administered by means
of implantable cardioverters defibrillators (ICDs), which monitor the heart rate and deliver a
discharge, which acts as a control, to restore a normal rhythm.
The bidomain model is a well-accepted continuous and macroscopic description of the electrical
activity of cardiac muscle cells. The model consists of two coupled reaction-diffusion equations
together with an ODE describing the ionic currents associated with the reaction terms, see e.g.
[14]. Assuming the intracellular and extracellular conductivity tensors to be linearly dependent,
the model can be simplified to the monodomain model, which results in a substantial reduction
of the computational effort [20, 24]. Once a model for the physiological phenomena and their
dependence on a control input are fixed, an optimal control approach can be utilized to decide
on the optimal shock delivery.
Due to severe physiological constraints, involving time scales, geometry and multi-physics as-
pects, the current optimal control techniques certainly fall short of addressing all relevant
aspects. But the medical technology itself is still changing rapidly, so that certain assump-
tions, as for instance the availability of observations or actuator support which is not too small
relative to the overall tissue size, may become reality. Current technological advances include,
for instance, the development of a new type of ICDs, see e.g. [21]. They consist of flexible
arrays of leads which act as sensors, gathering information on the electrical state of the heart,
and as actuator-electrodes, delivering a defibrillation shock when arrhythmias are detected. In
case of a defibrillation therapy, each lead is provided with an defibrillation pulse that has to
be designed appropriately, based on the measured data.
Within the optimal control approach to cardiac defibrillation defibrillation, pulses are designed
by solving an optimal control problem constrained by a reaction diffusion system. The aims of
effective defibrillation and minimal detrimental side effects to the patient are modeled within
the control objective. By adapting the objective and its parameters, a wide range of goals
can be achieved, which makes the optimal control approach a powerful and flexible tool for
defibrillation pulse design. The design of the objective is of paramount importance and, to-
gether with an efficient numerical realization, are the main innovation of this paper. For the
choice of the control objective, several conflicting interests need to be taken into consideration.
They include the behavior of the unforced dynamical system, which for the simplified ODE-
FitzHugh Nagumo model states that once the state is sufficiently excited it must necessarily
reach a plateau value before it can return to the stable equilibrium, see e.g. [17, pg 241f]. For
the infinite dimensional system (1) this behaviour can occur at different times at any point in
the spatial domain. This suggests to use a control objective (defibrillation) which only involves
the terminal time of the control horizon. This leads to a highly ill-conditioned optimal control
problem, making exact computation of gradient and Hessian information indispensable.
The topic of numerical simulation of the electrical activity of the heart has inspired much
research, so that we can only quote selected references [9, 27]. The optimal control approach to
cardiac defibrillation was previously investigated in [18, 10] for the monodomain model, and in
[19] for the bidomain model. Differently from the present paper, these papers consider the case
where the shock length is fixed. Moreover the cost functional for the optimal control formulation
involves a reference trajectory. As a consequence the number of phases of the optimal pulse
is determined a-priori. - The optimal control of reaction diffusion systems involving wave
phenomena was also the focus of the research in [3, 6].
The article is organized as follows: the monodomain model is described in Section 2. Section
3 is devoted to the formulation of the optimal control problem. The necessary conditions are
obtained in Section 4. In Section 5 the optimization method is presented, which is based
on a bilevel formulation together with a trust region semismooth Newton method. Section
6 introduces the numerical framework which is chosen in such a manner that discretization
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before or after deriving the necessary optimality conditions commute, and lead to a Galerkin
discretization with the exact discrete derivatives, see Section 6. The proposed techniques are
tested by numerical experiments on termination of reentry waves in Section 7. One of the
examples also addresses robustness of the computed controls.

2 The controlled state equation

We investigate a sample of heart tissue described by the domain Ω. The electrophysiology is
modeled by the monodomain equation using the cell model of Rogers-McCulloch [22], which is
a modified FitzHugh-Nagumo model. For simplicity we do not consider a conductive bath and
therefore model the heart tissue to stay electrically isolated leading to homogeneous Neumann
boundary conditions. Thus, the dynamical system is given by

vt + I(v, w)−∇ · (σ̄i∇v) = Ie a. e. in Q := (0, tf)× Ω , (1a)

wt +G(v, w) = 0 a. e. in Q , (1b)

ν · σ̄i∇v = 0 on Σ := (0, tf)× ∂Ω , (1c)

v(x, 0) = v0(x) , w(x, 0) = w0(x) a. e. in Ω . (1d)

The independent variables are x ∈ Ω ⊂ Rd, d = 2, and time t ∈ (0, tf) with the terminal time
tf > 0. Ω is a bounded domain with Lipschitz continuous boundary ∂Ω and unit outer normal
ν. The functions v(t, x), w(t, x) denote the transmembrane electric potential and the gating
or recovery variable. The intercellular conductivity tensor σ̄i ∈ L∞(Ω,Rd×d) is assumed to
be symmetric and uniformly elliptic. The extracellular stimulation current Ie depends on the
defibrillation pulse, which has to be controlled. The ionic current I(v, w) and G(v, w) are given
as

I(v, w) = η0 v

(
1− v

vth

)(
1− v

vpk

)
+ η1 v w , (2a)

G(v, w) = η2

(
η3w −

v

vpk

)
, (2b)

with η0, η1, η2, η3 ∈ R+. A cell is excited, if the transmembrane potential exceeds the threshold
potential vth > 0. Further vpk > vth is the peak potential. The initial conditions v0(x) ∈ L2(Ω),
w0(x) ∈ L4(Ω) describe a fibrillatory situation.
The geometric setting represents a layer of heart muscle tissue modeled as a 2D domain Ω.
On top of it, a finite number of electrode plates Ωcon,k, k = 1, . . . , Ne are pasted. In the
common setting this would just be a pair, alternatively it can be an array of plates in case of
a flexible sensor array. For the monodomain model, each electrode is assigned an independent
defibrillation pulse uk(t) whereas a compatibility condition would be needed for bidomain
modeling. The extracellular stimulation current Ie is modeled as

Ie(t, x) =

Ne∑
k=1

uk(t)χΩcon,k
(x) , (3)

where χΩcon,k
(x) denotes the characteristic function of electrode plate k, uk(t) the corresponding

pulse and u(t) = (u1(t), . . . , uNe(t)) the control vector.

3 The optimal control problem

Here defibrillation will be posed as an optimal control problem. The aim consists in influencing
the extracellular stimulation current Ie(t, x) in such a way, that the tissue changes to a state
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where fibrillatory propagation is hindered. Additionally, side effects on the tissue should be
kept small. While this description is clear, its particular modeling is involved. We first discuss
the choice of the time horizons and then define the optimal control problem.

3.1 Modeling the time horizon

After a defibrillation shock has been applied successfully, the heart muscle tissue needs a cer-
tain amount of time to reach a non fibrillatory state, especially in the presence of complicated
patterns of reentry waves. Therefore, a successful defibrillation can only be confirmed at a time
tf with tf � T , where T is the end time of the defibrillation shock. There are several ways how
one might incorporate this fact into the optimal control problem.

Nagaiah et al. propose in [19] a formulation with a short fixed time horizon [0, T ] and enforce
the defibrillation on the basis of a tracking functional using a desired trajectory given by an
a-priori known defibrillation pulse, which brings the tissue to a non-excited state at tf � T .
Post-optimally, the simulation on (T, tf) is continued to confirm successful defibrillation.
Here we propose a formulation which is different in several ways. First, we do not rely on
a desired trajectory, secondly the shock duration itself is optimized. Thirdly, defibrillation is
quantified in the cost by demanding that at some final time of simulation tf the electric potential
is small throughout Ω. Thus, the optimization problem is posed on some fixed horizon [0, tf ]
at the end of which defibrillation must be achieved. The defibrillation pulse is applied on
the first part [0, T ], with T being part of the optimization. Compared to [19] this gives an
increased flexibility in the way, how the defibrillation is achieved. In particular the number
of phase changes is part of the optimization and is not aligned with some desired trajectory.
In addition, for successful defibrillation the system is monitored throughout the time interval
[0, tf ], rather than only on [0, T ].
From the point of view of numerical optimization this problem is significantly more challenging,
since the elimination of the use of a desired trajectory leads to a drastically reduced coercivity
of the optimal control formulation. Our approach will lead to different optimal controls, that
deliver less energy to the tissue, since the optimal control formulation is more flexible in choosing
the pulses.

3.2 Defibrillation as optimal control problem

For effective defibrillation at time tf we aim at bringing as much tissue to the resting state as
possible. Then, the next natural activation given by the sinoatrial node or by a pacemaker
should be able to reestablish the normal heart rhythm. How to model this terminal condition?
The goal is realized by a terminal penalty term.

To model negative side effects of the applied shock Ie three different quantities are considered:
the duration, the energy and the amplitude of the pulse. Since the exposure of the patient is
related to the duration of the electrical shock, we aim at minimizing the duration T . Moreover,
the energy of the pulses ‖u‖22 has to be minimized. Additionally, we restrict the amplitudes by
imposing inequality constraints umin ≤ uk(t) ≤ umax, since too large amplitudes would result
in a local damage to the tissue adjacent to the electrodes.
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These considerations suggest the following optimal control problem

min
0≤T≤tf , u(t)∈Uad

J(v, u, T ) := T +
µ

2
‖v(·, tf)‖2L2(Ω) +

α

2

Ne∑
k=1

‖uk‖2L2(0,T ) , (4a)

subject to (1) with Ie =

Ne∑
k=1

uk(t)χΩcon,k
(x)χ(0,T )(t) , (4b)

with weighting parameters µ > 0, α > 0. The amplitude of the controls are bounded via the
set of admissible controls

Uad := {u ∈ U : umin(t) ≤ |uk(t)| ≤ umax(t) for a. a. t ∈ (0, tf) , k = 1, . . . , Ne} , (4c)

where umin, umax ∈ L∞(0, tf) and U := L2(0, tf ;RNe). Eq. (4) constitutes a time optimal control
problem with a nonlinear ODE-PDE system as constraints. The objective (4a) is a scalarized
multi-objective formulation favoring successful defibrillation for large µ, small energy inputs
for large α and short pulses for small α and µ.

3.3 Existence

At first, we recall the existence and regularity results for the solutions of the monodomain
equations, which are defined next. We introduce Q = (0, tf) × Ω and the Sobolev space
V := H1(Ω) with its dual V ∗. The duality pairing between V and V ∗ is denoted by 〈·, ·〉V ∗,V .

Definition 3.1 For Ie ∈ L2(0, tf , V
∗) and (v0, w0) ∈ L2(Ω) × L2(Ω), a pair (v, w) is called

weak solution to (1), if (v, w) ∈ L2(0, tf ;V ) ∩ C([0, tf ];L
2(Ω)) ∩ L4(Q) × C1([0, tf ];L

2(Ω)),

vt ∈ L2(0, tf ;V
∗) + L

4
3 (Q), and for a.a. t ∈ (0, tf) and all ϕ ∈ V

d

dt

∫
Ω
v(t)ϕdx+

∫
Ω
σ̄i∇v(t)∇ϕ dx+

∫
Ω
I(v(t), w(t))ϕ dx = 〈Ie(t), ϕ〉V ∗,V ,

wt(t) +G(v(t), w(t)) = 0 a.e. in Ω ,

where the time derivative is to be understood in the distributional sense.
Existence and uniqueness results for the bidomain equation are considered in e.g. [4, 18]. Since
we restrict ourselves to the monodomain equation here and since we use a simple form for G,
only minor modifications in the proof of these results imply the following proposition, which
holds in dimensions 2 and 3, see also [16] for the monodomain equation.

Proposition 3.1 Let Ie ∈ L2(0, tf , V
∗) and (v0, w0) ∈ L2(Ω) × L2(Ω),. Then System (1)

admits a weak solution. Furthermore, there exists a constant C, such that

‖v‖2C([0,tf ];L2) + ‖v‖2L2(0,tf ;V ) + ‖v‖4L4(Q) + ‖vt‖
4
3

L
4
3 (0,tf ;V ∗)

+ ‖w‖2C1([0,tf ];L2)

≤ C(1 + ‖v0‖2L2(Ω) + ‖w0‖2L2(Ω) + ‖Ie‖2L2(V ∗)).

If additionally Ie ∈ L∞(0, tf ;V
∗) and w0 ∈ L4(Ω) holds, then the weak solution is unique.

This proposition applies in particular to the choice of Ie made in (4b).
In the following, we prove the existence of a global minimizer of the time optimal control
problem (4).
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Proposition 3.2 Problem (4) admits a solution (v∗, w∗, u∗, T ∗).

Proof. Let {(un, Tn)}∞n=1 denote a minimizing sequence. This sequence is bounded and hence
there exists a subsequence, denoted by the same symbols, and (u∗, T ∗) such that (un, Tn) ⇀
(u∗, T ∗) weakly in L2(0, tf ;RNe)× R with u∗ ∈ Uad.
Let (vn, wn) = (v(un), w(un)) denote the associated states of the monodomain equation. By

Proposition 3.1 they are bounded in X := L2(0, tf ;V ) ∩ W 1, 4
3 (0, tf ;V

∗) × W 1,2(0, tf ;L
2(Ω)).

In particular, there exists a weakly convergent subsequence of {(vn, wn)} in X on which we
can pass to the limit in the state equations so that (v(u∗), w(u∗)) satisfy (1). Since {vn} is

bounded in L2(0, tf ;V ) and {vnt } is bounded in L
4
3 (V ∗) it follows that, possibly on a further

subsequence, vn(tf) → v∗(tf) strongly in V ∗, see e.g. [7], pg. 71. Since {vn(tf)} is bounded
in L2(Ω) we also have that vn(tf) ⇀ v∗(tf) weakly in L2(Ω). Now we can pass to the limes
inferior in

inf
0≤T≤tf ,u∈Uad

J(v, u, T ) = lim
n→∞

(Tn +
µ

2
‖v(·;un, tf)‖2L2(Ω) +

α

2

Ne∑
k=1

‖unk‖2L2(0,Tn))

≥ T ∗ +
µ

2
‖v(·;u∗, tf)‖2L2(Ω) +

α

2

Ne∑
k=1

lim
n→∞

‖unk‖2L2(0,Tn)).

To treat the last term we define

ũnk =

{
unk on (0, Tn)

0 on (Tn, tf)
, ũ∗k =

{
u∗k on (0, T ∗)

0 on (T ∗, tf).

It is simple to verify that ũnk ⇀ u∗k weakly in L2(0, tf). Therefore,

lim
n→∞

∫ Tn

0
|unk |2 = lim

n→∞

∫ tf

0
|ũnk |2 ≥

∫ tf

0
|ũ∗k|2 =

∫ T ∗

0
|u∗k|2,

consequently
inf

0≤T≤tf ,u∈Uad

J(v, u, T ) ≥ J(v∗, u∗, T ∗),

and thus, (u∗, T ∗) is a solution to (4).

4 Necessary conditions

The numerical realization of (4) is based on first order necessary optimality conditions that
an optimal solution (ū, v̄, w̄, T̄ ) has to fulfil. Applying a formal Lagrangian approach with
p(t, x) and q(t, x) as the Lagrange multipliers associated to the parabolic PDE and the ODE,
one can proceed in a by now standard manner to obtain the first order necessary system, see
e.g. [25, 16], for problems with fixed time horizon and [13] for time optimal control problems.
The first order necessary system consists of the state equations (1), the adjoint equations (5),
the optimality conditions (6), and a transversality condition (7) for the optimal free time T̄ .

−pt −∇ · (σ̄i∇p) + Iv(v̄, w̄) p+Gv q = 0 in Q , (5a)

−qt + Iw(v̄, w̄) · p+Gw · q = 0 in Q , (5b)

ν · σ̄i∇p = 0 on Σ , (5c)

p(tf) = µ v̄(tf) , q(tf) = 0 in Ω . (5d)
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(α ū(t) +B∗p(t)) · (u(t)− ū(t)) ≥ 0 a.a. t ∈ (0, T̄ ) , ∀u ∈ Uad . (6)

0 =
1

T̄

∫ T̄

0

(
1 +

α

2
‖ū‖22 + 〈Ie(ū) +∇ · (σ̄i∇v)− I, p〉 − 〈G, q〉

)
dt

− 1

tf − T̄

∫ tf

T̄

(
〈∇ · (σ̄i∇v)− I, p〉 − 〈G, q〉

)
dt . (7)

Here Iv, Iw, Gv, Gw denote the partial derivatives of the model functions (2) and B∗ : L2(Q)→
U , B∗p := (χ(0,T̄ )(t)

∫
Ωcon,k

p(t, x) dx)k=1,...,Ne . For the derivation of the transversality condition

by a time transformation we refer to [15].
To apply the semismooth Newton method later on, we first reformulate (6) using the projection
operator Pad : L2(0, tf ;RNe)→ L2(0, tf ;RNe), Pad(y) = min(umax,max(umin, y)) resulting in

ū(t) = Pad

(
− 1

α
B∗p

)
a.a. t ∈ (0, T̄ ) . (8)

Secondly, we introduce artificial optimization variables

z ∈ U , z := (zk) = − 1

α
B∗p

and parametrize the controls as u = Pad(z). Hence, we shift the non-smooth projection operator
to the state equation and the objective. Thus, the first order necessary conditions are equivalent
to (1), (5), (7) with eliminated control u = Pad(z) and

0 = F (z) := αz +B∗p a.a. t ∈ (0, T̄ ) . (9)

5 Methods

Time optimal control problems are challenging numerically. To partially appreciate this fact
we note that by means of a time transformation, time optimal problems can be transformed
to a fixed time interval, at the expense of an additional nonlinearity in the dynamical system.
We want to avoid such a new nonlinearity since already (1) is known to be rich in structure,
allowing wave-like- and reentry phenomena, for example.
Therefore we propose a bilevel approach for solving (4), separating T and the controls u by
treating T as parameter in the lower level problem:

min
0<T≤tf

 min
u∈Uad

s.t. (4b)

J(v, u;T )

 . (10)

Obviously, this problem has the same solution as the time optimal control problem (4). For each
fixed T the lower level problem (LLP) constitutes a terminal tracking problem for a coupled
ODE-PDE system with controls acting on a fixed part of the time interval. An alternative
all-at-once approach will be developed in [15].
The bilevel problem will be solved by an iterative method, where the LLP is solved by a
semismooth Newton method (TR-SN). It consists of a combination of the reduced Newton
method of [11] with a globalization based on Steihaug-CG [23]. The extension to semismooth
Newton methods to allow for the control constraints u(t) ∈ Uad will be explained in the next
section. The method is matrix-free i.e. the Hessians are not set up explicitly, but we compute
only the action of the Hessians and resort to Krylov methods. All forward and backward
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systems are solved efficiently with time-stepping methods, see Sect. 6. A globally convergent
(derivative-free) direct search method is used for the upper level minimization problem avoiding
the transversality condition (7), which is checked a-posteriori.
Before we describe the TR-SN, we note that with the technique of the proof of Proposition 3.2
it is simple to argue the following result.

Lemma 5.1 (Existence of an optimal solution of the LLP)
The lower level problem has an optimal solution for every T > 0.

The optimality conditions for the LLP consist of (1), (5), and (8) with a fixed current guess
for T̄ , and follow from the results in [16].

5.1 Trust region semismooth Newton method for solving the LLP

In the following, we describe the solution of the LLP with a matrix-free semismooth Newton
method. Therefore we treat all state and adjoint variables as functions of z (as solutions of (1)
and (5)), and we define the reduced objective w.r.t. u as j(u) = J(v(u), u;T ). Consequently,
the reduced optimality condition is 0 = F (z) with F from (9). Here F is non-smooth, but
it allows for the application of a semismooth Newton method according to [15]. Using the
semismoothness calculus in Banach spaces from e.g. [12, 26], we introduce the generalized
differential of the projection operator Pad(y)

DPad(z)(h) = χIh , (11)

where χIh := (χIkhk)k and χIk denotes the indicator function of the inactive set Ik = {t ∈
(0, T ) |umin(t) < zk(t) < umax(t)} of component uk. The generalized derivative of F at point
zn in the direction δz is then given by

H(zn)(δz) = αδz +B∗δp(δz) . (12)

To compute δp(δz), first the tangent equation depending on δz and incorporating χIk is solved
for δv, δw, and then the second adjoint equation is solved for δp, δq, see the end of appendix A.
Together we can formulate the semismooth Newton iteration

H(zn)(δz) = −F (zn) , zn+1 = zn + δz . (13)

While the Hessian H is in general non symmetric, it is symmetric with respect to the L2-inner
product of the inactive set (a, b)I :=

∑Ne
k=1

∫ T
0 χIkakbk dt. Therefore we compute d by solving

(13) with the CG method using (·, ·)I as inner product. By this we obtain a solution of (13) on
the inactive set i.e. χI(Hd+F ) = 0. Afterwards, a solution of the full system (13) is obtained
by updating the components on the active set according to

δz = d− 1

α
(F (zn) +H(zn)d) . (14)

We note that for Uad = U the semismooth Newton method coincides with the well-known
matrix-free Newton method of [11].

Since Newton methods are generally only locally convergent, we embed the method into a trust
region framework following the lines of [23], which in the unconstrained case is proven to be
globally convergent. Therefore we note that the CG method with (·, ·)I computes a particular
solution of the quadratic problem

min
h∈U

ϕzn(h) := (h, F (zn))I +
1

2
(h,H(zn)h)I .
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We replace this problem by the trust region problem

min
h∈U

ϕzn(h) s.t. ‖h‖I ≤ ∆n ,

with trust region radius ∆n > 0 and ‖h‖I =
√

(h, h)I . It is solved with Steihaug-CG [23,
Sect. 2] using the inner product (·, ·)I . The update (14) is done only for a fully converged CG
method, hence not for the cases when negative curvature or a large step is encountered. For
practical realization the update (14) should be replaced by minimizing the residual in direction
of r = −F −Hd according to

δz = d+ θr with θ ∈ R , θ = arg min(‖H(d+ θr) + F‖L2(0,T ;RNe )) , (15)

in order to make the procedure more robust w.r.t. rounding errors.
The update of the trust region radius ∆n and the decision of accepting or rejecting a step are
done analogously to [23], see the full algorithm in Appendix A. Additionally, we modify the
trust region method to be monotone, i.e. accepted steps will always yield a decrease in the
objective.

5.2 Direct search method for the upper level problem

The upper level problem is solved with a globally convergent derivative-free optimization
method based on bisection. It is assumed that the optimal values G(T ) of the LLP are con-
tinuous w.r.t T . We start from a triple L < M < R with G(M) < G(L) and G(M) < G(R),
i.e. we assume that a minimizer is contained in [L,R]. Then both intervals are bisected by
P := (L+M)/2 and Q := (M+R)/2 and G(P ), G(Q) are computed. Next we chose M as min-
imizer in {M,P,Q}, tighten both intervals and iterate. Additionally, we skip the computation
of G(Q) if G(P ) < G(M) holds.

6 Discretization

We give a brief description of the discretization of the LLP. To combine the advantages of First-
Discretize-Then-Optimize methods (FDTO) and First-Optimize-Then-Discretize (FOTD) meth-
ods, we choose a FE-Galerkin method in space together with a Petrov-Galerkin method in time,
which allows for exact discrete derivatives and a natural translation of the optimality condi-
tions from the continuous to the discrete level, see [2]. Hence, FDTO and FOTD commute and
coincide within our framework, which is very important for trust region Newton methods.
In particular, we choose Lagrange Q1 elements on a quadrilaterally structured grid for spa-
tial and the Crank-Nicolson method in the cG(1)-scheme for temporal discretization, for the
latter see e.g. [8, 2]. Since the spatial discretization is straightforward, we defer it to Ap-
pendix B. However, the time discretization is important to gain exact discrete derivatives and
decoupling. Therefore the essential parts are presented in the following, concentrating on the
semidiscretization in time.
We aim for an efficient decoupling method to solve the ODE and PDE variables independently
per time step. Therefore we utilize a decoupling of the ODE from the PDE by taking the
gating variable explicitly in the PDE. By working thoroughly through the Lagrangian calculus,
we reestablish the exact discrete derivatives respecting the decoupling.
A time grid t0 < · · · < tN with stepsizes τm := tm − tm−1 is chosen. The state variables are
semidiscretized in time as continuous piecewise linear functions with values V m(x) = v(tm, x),
m = 0, . . . , N and analogously for w, see Fig. 1. The adjoint and control variables are piecewise
constant in time with values Pm(x). Hence we have p(t, x) =

∑N
m=1 P

m(x)χ(tm−1,tm](t), and

analogously for q(t, x) and uk(t) =
∑N

m=1 u
m
k χ(tm−1,tm](t).
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t

v(x0, t)

uk(t)

t0 t1 t2 t3

Figure 1: Ansatz space in time for state (black), control and adjoint variables (blue).

Therefore, the semidiscrete Lagrangian L can be expressed as

L(. . . ) := T +
µ

2

∫
Ω

(V N )
2

dx+
α

2

Ne∑
k=1

N∑
m=1

τm(umk )2 −
N∑
m=1

∫
Ω

τm
2
∇Pm · σ̄i∇(V m + V m−1)

+ Pm
[
V m − V m−1 − τm

Ne∑
k=1

χΩcon,k
umk +

τm
2
I(V m,Wm−1) +

τm
2
I(V m−1,Wm−1)

]
dx

(16)

−
N∑
m=1

∫
Ω
Qm

[
Wm −Wm−1 +

τm
2
G
(
V m + V m−1,Wm +Wm−1

)]
dx ,

where we leave the inequality constraints as explicit constraints. We again emphasize the
decoupling of w at I(V m,Wm−1), which later results also in an adapted decoupling in the
adjoint and tangent equations. Therefore, the ODE can generally be solved efficiently in a
matrix-free manner.
Next, the well-known Lagrange formalism yields a consistent semidiscretization of tangent,
adjoint and second adjoint equation. A subsequent spatial discretization with FE is straight-
forward and results in the equations in Appendix B.
The FE calculations are done with deal.II [1]. The nonlinear systems in each time step of
the state equation are solved with Newton’s method, and the linear systems are solved directly
with UMFPACK.

7 Numerical experiments

In the following, the proposed formulation and method are tested on several examples. The
choice of parameters is inspired by [9], where one can also find the aforegoing nondimensional-
ization. The following parameters are fixed throughout all examples:

η0 η1 η2 η3 vth vpk σ̄i

1.5 4.4 0.012 1.0 13 100 diag(3 · 10−3, 3.1525 · 10−4)

The geometry is set to be a rectangle Ω = (0, 2) × (0, 0.8) of size 2cm × 0.8cm, which is dis-
cretized into 128×64 cells. All computations were done with an equidistant time discretization
with step size τ = 0.04 (msec). The stopping criteria are set to ‖Fn‖ < min(10−5, 10−5‖F0‖)
for the (trust region) Newton method – where the gradient Fn is the discretization of (9) – and
‖rk‖ < 10−5‖r0‖1.3 for the residual of the Steihaug-CG method.
The initial condition (v0, w0) describes a reentry wave of the type “figure of eight“. It is con-
structed by the usual S1-S2-protocol as follows. Starting by exciting the lower edge v(x, 0) =

10
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Figure 2: Time domain, geometry and initial condition of the 1st example.

101 if x2 ≤ 1/160 and 0 otherwise, w(x, 0) = 0, we integrate the uncontrolled solution until
t = 130 using a fixed step size τ = 0.1. The solution describes a planar wave front travelling
from the bottom up. As soon as the center gets excitable again, a second stimulus is based on
a circle around the midpoint with radius 0.3 for 2 ms, i.e. Ie = 200χΩS2

(x)χ[130,132](t) with
ΩS2 = B0.3(1, 0.4). We carry on the simulation without any further stimulus up to t = 217
and save both states v(x, 217), w(x, 217) as future initial conditions for the optimization. The
timing and radius of the second stimulus are crucial. For different domains or parameters, one
has to adapt it by trial and error, otherwise a reentry wave will not evolve.

In the examples which follow, we address the different demands for optimized pulses, looking
for: a short pulse with restricted amplitude in Example 1, a low norm ‖u‖ in Example 2, and
a robust optimized pulse w.r.t. the tensor data in Example 3.

7.1 1. Example: symmetric reentry wave

We start with an axially symmetric problem, where it is possible to defibrillate with just one
control pulse, i.e. Ne = 1. The geometry of the control domain is Ωcon,1 = [0, 0.25]×[0.3, 0.55]∪
[1.75, 2]× [0.3, 0.55], see Fig. 2. The bilevel method was started on the interval [L,R] = [30, 40]
and convergence was reported for |R− L| < 4 · 10−2. The parameters were tf = 64, α = 10−3,
µ = 1000 and umax = −umin = 100. The initial control is set to u1

0 = u0 = −50 for the first
LLP with T 1 = 40. All other LLP for k ≥ 2 were warm-started with the optimal control of
the former LLP ūk−1 restricted to the current interval [0, T k] resp. expanded with zero, e.g.
uk0(t) = ūk−1(t)χ[0,min(Tk,Tk−1)](t). An alternative procedure to obtain the new initial control

uk0(t) is to linearly map ūk−1 from [0, T k−1] to [0, T k] by uk0(t) = ūk−1(t T
k−1

Tk ).
The direct search method in the upper level needs 16 function evaluations to converge at
T̄ = 34.12 with J̄ = 238.786, i.e. 16 LLP were solved in total. We note, that this is not the
shortest pulse that effectively defibrillates, since we are facing a multi-objective formulation
with 3 goals. It is an optimal compromise between short duration and low energy. The total
number of state, gradient and Hessian evaluations throughout the bilevel run are 78, 71, and
658, respectively. 7 of the 62 TR-Newton steps are rejected. The total number of 559 CG steps
yields ≈ 9 CG steps per Newton step; excluding the globalization steps, we observe ≈ 14 CG
steps per fully converged CG call.
Typically, the most CPU work is required for the first LLP with T = R = 40 , since it
is not warm-started (see the left part of Tab. 1). The TR-SN method needs 22 steps to
converge, reducing the objective from j(u0) = 38118 to j(u22) = 244 and reducing the first
order optimality ‖F (un)‖ significantly. The last column shows the number of CG iterations.
All subsequent LLP solves show a fast convergence of the TR-SN method, see e.g. the second
LLP solve with T = L = 30 on the right of Table 1. Due to the warm-start, only a few
globalization steps are needed, where Steihaug-CG is stopped due to too large steps (flag 1)
or negative curvatures (flag 2). Afterwards, the CG is fully solved (flag 0) and the number of
inactive time points |I| converges. Superlinear convergence of the objective j is observed from

sn := j(un+1)−j(un)
j(un)−j(un−1) in the last column.
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n j(un) ‖F (un)‖ #CG |I|

0 38118 8.3 · 101 1000
5 538 6.9 · 100 2 555

10 327 1.8 · 100 1 738
15 262 6.5 · 10−1 2 837
20 244 1.6 · 10−2 13 915
21 244 1.9 · 10−3 13 915
22 244 1.3 · 10−4 14 915

n j(un) ‖F (un)‖ #CG flag |I| sn

0 255.744 6.2 · 10−1 0 665
1 254.084 4.3 · 10−1 2 1 663
2 254.084 4.3 · 10−1 8 2 663
3 253.574 4.7 · 10−2 7 1 577 0.31
4 253.533 2.0 · 10−3 14 0 570 0.08
5 253.533 1.9 · 10−5 14 0 569 0.00
6 253.533 7.3 · 10−11 15 0 569 0.00

Table 1: TR-SN method for the 1st LLP with T = 40 (left) and the 2nd LLP with T = 30
(right).

0 20 40
−100

0

100

t

ū
(t

)

umax =∞
umax = 100
umax = 40

0 20 40
−100

0

100

t

ū
(t

)

α = 10−2

α = 10−3

α = 10−4

Figure 3: Time optimal controls for different umax = −umin with α = 10−3 (left) and different
α with umax = 100 (right).

The time optimal control ū(t) is depicted in green in both graphs of Fig. 3. Additional curves
show the time optimal controls for different control bounds umax (left) and different cost pa-
rameters α (right). Apparently, all time optimal controls differ to a large extent from the initial
control u0(t) = −50χ[0,40](t), in particular the shape, the duration and the switching structure.
Consequently, the corresponding trajectories behave qualitatively different. While the initial
control only counteracts the wave propagation due to u0 ≤ 0, we observe a speed up of the wave
propagation at certain points for the time optimal control, since it features positive values, too.
According to the left plot and Tab. 2, a lower bound umax leads to an increase in the optimal
pulse length T̄ and the optimal value J̄ , since the effectivity of the control decreases. On
the other hand, reducing the cost parameter α results in a smaller optimal value, a slightly
increased pulse length and a larger energy of the optimal pulse.

umax J̄ T̄ ‖ū(t)‖L2(0,T̄ )

∞ 130 31 329
100 239 34 334
40 2167 39 217

α J̄ T̄ ‖ū(t)‖L2(0,T̄ )

10−2 501 33.9 206
10−3 239 34.1 334
10−4 173 35.1 436

Table 2: Optimal value, pulse length and norm of the time optimal pulse for different umax

with α = 10−3 (left) and for different α with umax = 100 (right).

For a verification we compute the transversality condition (7) both for the initial guess (u1
0, T

1)
and the optimal pair (ū, T̄ ), which yields −1660 and −0.1, respectively. The comparison shows
a relative decrease of 6 · 10−5 in this optimality condition, which underlines the optimality of
the computed time optimal control.
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7.2 2. Example: asymmetric reentry wave

The 2nd example considers two independent electrode plates with Ie = χ[0,T ](t)
(
u1(t)χΩcon,1(x)

+u2(t) χΩcon,2(x)
)

in an asymmetric setting Ωcon,1 = [0, 0.25] × [0.4, 0.55], Ωcon,2 = [1.75, 2] ×
[0.35, 0.4], see Fig. 4. The parameters are tf = 65, α = 1 · 10−5, µ = 100 and Uad = U i.e. the
LLP method coincides with a trust region Newton method.

t
tf fixed0 T

tracking

JĴ

control

2 cm

0
.8

c
m

Ω

Ωcon,1
�

Ωcon,2
��*

Ωcon,1

?

Ωcon,2

?

Figure 4: Time domain, geometry and initial condition of the 2nd example.

The bilevel method was started on the interval [L,R] = [27.5, 37.5] with u0 = −50 and con-
vergence was reported for |R − L| < 4 · 10−2. We observe again global convergence of the
bilevel method and locally superlinear convergence of each LLP. Fig. 5 depicts snapshots of
the time optimal transmembrane voltage v̄(t, x) for six different times t, both for the optimally
controlled (above the line) resp. for the uncontrolled case. At the very beginning of the time
horizon the positive part of the pulses heavily influence the excitable part of the tissue adjacent
to the wave front, bringing it to a non excitable state (parts in color red). Thus, the wave can
not progress upwards, falls apart and leaves the domain. At the terminal time, not a single
part of the tissue is excited, which confirms a successful defibrillation.

Figure 5: Above line: snapshots of the optimal state v̄(t, x) at t = 0, 0.12, 6 (upper row) and
t = 16, 48, 65 (lower row). Below line: analogous snapshots for the uncontrolled reentry wave
u ≡ 0.

For checking the gradient and Hessian consistency, we verify the derivatives given by the adjoint
calculus via a comparison with finite differences in Tab. 3 using the initial control u = −50
and d = −F (z). For the gradient, the absolute difference abs = C − (g, d) and the relative

difference rel = abs
C are computed using the central difference C = j(u+εd)−j(u−εd)

2ε . For the
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Hessian, the differences are abs = C − (d,Hd), rel = abs
C with C = j(u+εd)−2j(u)+j(u−εd)

ε2
.

All columns confirm a quadratic convergence of the finite differences to the adjoint-based values
of the first and second derivatives, as well as a very high precision of the gradient and Hessian
code. This is crucial for the success of the optimization since optimal control problems with
only terminal observation are known to be highly ill-conditioned.

Gradient Hessian

ε abs rel abs rel
1.0e+ 01 7.9e+ 03 1.0e+ 00 1.6e+ 03 1.0e+ 00
1.0e+ 00 5.4e− 01 1.7e− 02 2.0e− 01 2.9e− 02
1.0e− 01 5.2e− 03 1.6e− 04 1.9e− 03 2.8e− 04
1.0e− 02 5.2e− 05 1.6e− 06 1.9e− 05 2.8e− 06
1.0e− 03 5.8e− 07 1.8e− 08 8.8e− 06 1.3e− 06
1.0e− 04 1.2e− 07 3.6e− 09 1.4e− 03 2.1e− 04
1.0e− 05 4.6e− 07 1.4e− 08 1.3e− 01 2.0e− 02

Table 3: Verification of the gradient and Hessians against finite differences with Uad = U .

To find time optimal control pulses with consideration for small energy, we successively increase
α and depict the corresponding time optimal controls and their energy in Fig. 6. The required
energy decreases from 2195 to 121 while maintaining an effective defibrillation pulse. For
increasing α the optimal duration increases as well.

Figure 6: Time optimal controls ū1(t) (blue) and ū2(t) (green) for different α = 10−5, 10−3,
100 with corresponding norms ‖u‖U = 2195, 442, 121.

7.3 3. Example: a robust design

In the next example, we take into account some uncertainty in the conductivity tensor data,
reflecting the fact that they may vary heavily between different settings. As an example, we set
σ̄i = diag(σ · 10−3, 3.1525 · 10−4) and assume that σ ∈ R+ is a random variable. By extending
[5, Sect. 6.4] to optimal control problems, the expectation value of the tracking term enters
the objective. Thus we replace J by

JE = T +
µ

2
E
(
‖v(x, tf ;σ)‖2

)
+
α

2
‖u‖2U . (17)

Together with the constraints (1) and u ∈ Uad, this constitutes a stochastic robust control
problem, which in general is computationally demanding. Therefore we restrict ourselves to the
case where σ takes only a finite number of values {σ1, . . . , σr} with probabilities P1, . . . , Pr ≥ 0,
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∑r
k=1 Pk = 1. Consequently, the objective, the reduced gradient and Hessian change to

Jr = T +
µ

2

r∑
k=1

Pk‖v(x, tf ;σ
k)‖2 +

α

2
‖u‖2 =

r∑
k=1

PkJ(v, u, T ;σk) , (18a)

Fr =

r∑
k=1

P kF (z;σk) , Hr(z)δz =

r∑
k=1

P kH(z;σk)δz . (18b)

We see that each call to the objective, the gradient and the Hessian has to be split into r calls
to the existing solvers (with different σ̄i) followed by a weighted mean. This would allow a
parallelization of the code, which, however, is not pursued here.
To investigate the effect of the robustness approach, we compare an optimal control (for fixed
σ = 3) to a robust optimal control in the following. To facilate this comparison, we fix the
pulse length T = tf , i.e. we compute only one LLP for both settings. Thus we compute the
solution u1 of the LLP with fixed σ = 3 on the one hand, and the robust counterpart ur, that
minimizes the LLP incorporating the changes from (18), on the other hand.
We investigate the reentry setting with an electrode placement different from above: Ωcon,1 =
[0.05, 0.5] × [0.45, 0.55], Ωcon,2 = [1.8, 1.9] × [0, 0.45]. The parameters are set to α = 10−2,
µ = 1000 and tf = 84. As an example, we test a uniform distribution for σ ∈ {2, 4, 6, 8, 10},
i.e. pj = 1/r ∀j with r = 5.
The optimization yields a robust pulse at the expense of a higher norm: ‖ur‖ = 713 compared
to ‖u1‖ = 189. To inspect the robustness of the two pulses, we test them for different values
of σ = 1 + n/20, n = 0, . . . , 200. For each value of σ, the monodomain equation is solved and
successful defibrillation is confirmed at tf and a later time t = tf + 4, to exclude regeneration
of a reentry wave. Fig. 7 shows the norm ‖v(x, tf + 4)‖L2(Ω) over σ. The zero set of the curves
corresponds to a successful defibrillation. While ur defibrillates for all σ ∈ [1.6, 10], the pulse
u1 is found to be successful only for σ ∈ [2.4, 3], and by chance also for σ ∈ [9.8, 11], see Fig. 7.

Figure 7: ‖v(tf + 4, x)‖L2(Ω) for different values of σ, both for the optimal pulse u1 (blue) and
the robost optimal control ur (green, dotted).

8 Conclusion and outlook

It was demonstrated that the choice of cost functional reflecting the system dynamics and
incorporating time-optimality for the joint optimization of the shape and the duration of de-
fibrillation pulses is effective for the optimal control of the monodomain equation. Certainly it
would be of interest to extended the proposed methods to the bidomain equations, to realistic
geometries and to more complex ionic models.
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A Optimization algorithm TR-SN

1. Initialize z0, maximal radius ∆max > 0, initial radius 0 < ∆0 ≤ ∆max and set n = 0.

2. Solve state and adjoint equations for zn , set up gradient F (zn) from (9) and determine
inactive sets Ik = {t ∈ (0, T ) |umin(t) < znk (t) < umax(t)}.

3. Compute d from (13) by Steihaug-CG using the L2-inner product on the inactive set
(·, ·)I .

4. If Steihaug-CG is fully converged (i.e. [23, (2.3)] is fulfilled), then compute δz according
to (14). Otherwise set δz = d.

5. Calculate j(Pad(zn + δz)) and %n := %act

%pred = j(Pad(zn))−j(Pad(zn+δz))
−ϕzn (δz) .

6. Update z:

zn+1 :=

{
zn + δz , if %n > α2 and %act > ε (accept) ,
zn , otherwise (reject).

7. update radius ∆n:

∆n+1 =


min(2‖δz‖I ,∆max) , if %n ∈ [0.7, 1.3] (model good)
0.25∆n , elseif %act ≤ ε (no decrease)
0.5‖δz‖I , elseif %n 6∈ [0.25, 1.75] (model bad)
∆n , else .

8. If stopping criteria are not fulfilled, set n = n+ 1 and goto 2.

Each Hessian evaluation in 3. is carried out by the following steps.

1. Solve the tangent equation with δz and corresponding states (vn, wn) for un = Pad(zn)

δvt −∇ · (σ̄i∇δv) + Iv(vn, wn) δv + Iw(vn) δw =

Ne∑
k=1

χΩcon,k
(x)χIk(t)δzk(t)χ(0,T )(t) in Q ,

δwt +G(δv, δw) = 0 in Q ,

ν · σ̄i∇δv = 0 on Σ ,

δv(x, 0) = 0 , δw(x, 0) = 0 in Ω .

2. Solve the second adjoint equation with pn the adjoint to (vn, wn)

−δpt −∇ · (σ̄i∇δp) + Iv(vn, wn) δp+Gv δq = −Ivv(vn) pn δv − Ivw pn δw in Q ,

−δqt + Iw(vn) δp+Gw δq = −Ivw pn δv in Q ,

ν · σ̄i∇δp = 0 on Σ ,

δp(x, tf) = µ δv , δq(x, tf) = 0 in Ω .

3. Evaluate (12) .
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B Discretization formulas for state, adjoint and second-order
solvers

The space is discretized with a FE-Galerkin method using Lagrange-Q1 elements {ϕi(x) , i =
1, . . . , Nx}. Hence, we search for FE-coordinates vm := (vim)i=1,...,Nx with v(tm, x) = V m(x) =∑Nx

i=1 v
i
mϕi(x) and analogously for w, δv, δw, p, q, δp, δq.

As matrices we define the mass matrix M := (
∫

Ω ϕiϕj dx)i,j , the negative stiffness matrix

∆σ := −(
∫

Ω∇ϕσ̄i∇ϕj dx)i,j and the Jacobian Jm,n =
(∫

Ω
∂I
∂v (vm(x), wn(x))ϕi(x)ϕj(x) dx

)
i,j

.

Further we define the vectors ~χk := (
∫

Ωcon,k
ϕj dx)j and Im,n := (

∫
Ω I(vm(x), wn(x))ϕj(x) dx)j .

v0, w0 are the FE coordinates of the initial states v0(x), w0(x). The index m passes through
1, . . . , N for primal and tangent equations, and through 1, . . . , N − 1 for adjoint and second
adjoint equation.

state: [M − τm
2

∆σ]vm +
τm
2
Im,m−1 = [M +

τm
2

∆σ]vm−1 −
τm
2
Im−1,m−1

+ τm

Ne∑
k=1

umk ~χkχ(0,T )(tm),

[1 +
τm
2
Gw]Mwm = [1− τm

2
Gw]Mwm−1 −

τm
2
GvM(vm + vm−1) ,

adj.: qN = 0 , [M − τN
2

∆σ +
τN
2
JN,N−1]pN = µMvN ,

[M − τm
2

∆σ +
τm
2
Jm,m−1]pm = [M +

τm+1

2
∆σ −

τm+1

2
Jm,m]pm+1

− Gv
2
M(τmqm + τm+1qm+1),

[1 +
τm
2
Gw]Mqm = [1− τm+1

2
Gw]Mqm+1 −

τm+1

2

∫
Ω
Iw(V m+1 + V m)Pm+1ϕj dx ,

tang.: δv0 = 0 , δw0 = 0 ,

[M − τm
2

∆σ +
τm
2
Jm,m−1]δvm = [M +

τm
2

∆σ −
τm
2
Jm−1,m−1]δvm−1

− τm
2

∫
Ω
Iw(V m + V m−1)δWm−1ϕj dx+ τm

Ne∑
k=1

χIk(tm)χ(0,T )(tm)δzmk ~χk ,

[1 +
τm
2
Gw]Mδwm = [1− τm

2
Gw]Mδwm−1 −

τm
2
GvM(δvm + δvm−1) ,

2nd adj.: δqN = 0 ,

[M − τN
2

∆σ +
τN
2
JN,N−1]δpN = −τN

2

∫
Ω
PN [Ivv(V

N )δV N + IvwδW
N−1]ϕj dx+MδvN ,

[M − τm
2

∆σ +
τm
2
Jm,m−1]δpm = [M +

τm+1

2
∆σ −

τm+1

2
Jm,m]δpm+1

− 1

2
GvM(τmδqm + τm+1δqm+1)− 1

2

∫
Ω

{
τmP

m[Ivv(V
m)δV m + IvwδW

m−1]

+ τm+1P
m+1[Ivv(V

m)δV m + IvwδW
m]
}
ϕj dx ,

[1 +
τm
2
Gw]Mδqm = [1− τm+1

2
Gw]Mδqm+1

− τm+1

2

∫
Ω

[
δPm+1Iw(V m+1+V m) + Pm+1(δV m+1+δV m)Ivw

]
ϕjdx.

All solves with a pure mass matrix are avoided by directly updating wm resp. δwm and by
storing Mqm resp. Mδqm.
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