
A Gautschi Time-stepping Approach to Optimal
Control of the Wave EquationI

Karl Kunischa, Stefan Reiterera

aInstitute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse
36, A-8010 Graz, Austria

Key Words— Gautschi time-stepping, optimal control, wave equation,
cosine operators, finite element and

1. Introduction

This work is devoted to developing a Gautschi time stepping approach for
optimal control problems associated with second order equations, including in
particular the wave equation. Solving optimal control problems numerically
necessitates to frequently solve the state equation and its adjoint, and hence an
efficient method for the latter is indispensable. Compared to optimal control
of diffusion systems, the numerical treatment of optimal control of the wave
equation has received relatively little attention so far. We refer to [10, 9] where
the dual weighted residual method for space-time discretization was developed,
including as particular case the Crank-Nicolson discretization in time and first
order finite element discretization in space. This approach has the desirable
property that first discretizing the infinite dimensional optimal control problem
and subsequently solving the necessary optimality conditions commutes with
first setting up the necessary optimality conditions for the infinite dimensional
problem and subsequently discretizing them.

In the present work the focus is put on using a Gautschi scheme for tem-
poral discretization. It will be combined with different spatial discretizations
including finite element and spectral techniques. Gautschi integrators have re-
ceived a considerable amount of attention due to their desirable property that
their step sizes are not restricted by the spectral properties of the underlying
dynamical system. This is of particular interest for systems which allow highly
oscillatory solutions. Gautschi type methods are constructed on the basis that
they integrate linear systems with constant inhomogeneities exactly. We refer
to [5, 4, 6, 8] and the references given there for further properties of Gautschi
techniques. For Gautschi-methods, we can also show that discretizing before or
after carrying out the optimization step, we obtain the same finite dimensional
systems, for the class of spatial discretizations which we shall consider.

The paper is organized as follows. Section 2 contains the problem statement,
first order optimality conditions and a brief recollection of cosine operators. The
Gautschi time-stepping scheme in an infinite dimensional setting is presented
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in Section 3. Section 4 contains it analysis for the optimal control problem,
with emphasis on the inexact conjugate gradient method for its numerical re-
alization. Numerical results, highlighting convergence rates and comparisons
between different spatial discretizations are given in Section 5.

spectral methods.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

Let V ⊂ H ⊂ V ′ be a Gelfand triple of real separable Hilbert spaces and
let T > 0. Further let A : V → V ′ be a V elliptic operator, and consider for
vectors y0 ∈ V , y1 ∈ H and f ∈ L2(0, T ;H) the abstract wave equation

∂2y

∂t2
(t) = Ay(t) + f(t) for t ∈ (0, T ),

y(0) = y0,

∂y

∂t
= y1.

(W)

Definition 2.1 (Weak solution). We say that y ∈ L2(0, T ;V ) is a weak solution
of (W) iff yt ∈ L2(0, T ;H), ytt ∈ L2(0, T ;V ′),〈
∂2y

∂t2
(t), ϕ

〉
V,V ′

= 〈Ay(t), ϕ〉V,V ′ + 〈f(t), ϕ〉V,V ′ for all ϕ ∈ V, and t ∈ (0, T ),

and y(0) = y0, yt(0) = y1.

Existence and uniqueness of a weak solution to (W) are well understood (see
e.g. [19][Chapter 29, p.436]). The solution operator SW : L2(0, T ;H)×V ×H →
L2(0, T ;H) of the wave equation, which maps (f, y0, y1) to the solution y of (W),
is continuous (see [19, p.437]).

For β ∈ L(L2(0, T ;H)), z̃ ∈ (L2(0, T );H) and α > 0 we consider the optimal
control problem

min
y,u∈L2((0,T );H)

1

2
‖y − z‖2L2((0,T );H) +

α

2
‖u‖2L2((0,T );H) ,

s. t.
∂2y

∂t2
= Ay + βu,

y(0, x) = y0(x),
∂y

∂t
= y1(x).

(OC)

Define the solution operator S : L2(0, T ;H) → L2(0, T ;H) associated to the
wave equation by Su := SW (βu, y0, y1) = y, with y is solution to (W). We
arrive at the reduced problem

min
u∈L2(0,T ;H)

1

2
‖Su− z̃‖2L2(0,T ;H) +

α

2
‖u‖2L2(0,T ;H) . (1)

It is well known that (1) has a unique solution, see e.g. [18, p.40]. From
now on we may assume without loss of generality that y0, y1 = 0, since we
can express y by y = Su = SW (βu, 0, 0) + SW (0, y0, y1) =: yI + yH . Hence
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y − z̃ = yI − (z̃ − yH). Now we can replace z̃ in the original cost-functional by
z = z̃ − yH and simultaneously replace S : L2((0, T );H) → L2((0, T );H). by
SW (βu, 0, 0) arriving at

J(u) :=
1

2
‖Su− z‖2L2((0,T );H) +

α

2
‖u‖2L2((0,T );H) . (2)

The Gateaux derivative J ′(u) is given by

J ′(u) = (S∗S + αI)u− S∗z,

where I is the identity operator. Thus the first order necessary and sufficient
optimality condition is given by the operator equation

Hu := (S∗S + αI)u = S∗z. (3)

Solving it efficiently will be in the focus of the further considerations.

2.2. Sine and Cosine Operators and the Second Order Abstract Cauchy Problem

In this subsection we briefly recall the notion of cosine and sine operators,
see e.g. [1], which allow to express the solution to (W), in a manner analo-
gous to continuous semigroups giving solutions to first order Cauchy problems.
Throughout this subsection all integrals are Bochner integrals.

Definition 2.2 (Cosine functions). A strongly continuous function
Cos : R+ → L(H) is called cosine function if

Cos(0) = I

and
2 Cos(t) Cos(s) = Cos(t+ s) + Cos(t− s) for all t ≥ s ≥ 0.

Like the well known operator semigroups, cosine operators also have in-
finitesimal generators.

Proposition 2.3 (Characterization of cosine functions with Laplace trans-
forms). Let Cos : R+ → L(H) be strongly continuous, and set abs(Cos) :=
inf{Reλ :

∫∞
0
e−λt Cos(t)dt} (the abscissa of convergence). Then the following

assertions are equivalent:

(i) Cos is a cosine function.

(ii) One has abs(Cos) < ∞, and there exists ω > max{abs(Cos), 0} and a
linear operator A : D(A)→ H such that (ω2,∞) ⊂ ρ(A) and

λR(λ2, A) =

∞∫
0

e−λt Cos(t)dt for λ > ω. (4)

Proof. See [1, p.208].

Definition 2.4. Let Cos be a cosine function. A linear operator A : D(A)→ H
is called infinitesimal generator of the cosine function Cos, iff relation (4) is
satisfied.
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It is natural to extend Cos to the real line by the setting Cos(t) := Cos(−t)
for t < 0. We next introduce the sine operator as an integral of the cosine
function.

Definition 2.5 (Sine functions). Let Cos : R → L(H) be a cosine function.
The sine function Sin associated with Cos is defined by

Sin(t) :=

t∫
0

Cos(s)ds,

where the integral is a Bochner integral.

We can deduce some properties which are analogous to the well known
trigonometric identities

Proposition 2.6 (Trigonometric Identities). Let Cos : R→ L(H) be a cosine
function and Sin its associated sine function. Then the following relations hold:

(i) Sin(−t) = −Sin(t) for t ∈ R

(ii) 2 Sin(t) Sin(s) =
t+s∫
t−s

Sin(r)dr

(iii) Sin(t+ s) = Cos(s) Sin(t) + Sin(s) Cos(t) for all s, t ∈ R.

Proof. See [1, p.209f].

It is important to note that for y0, y1 ∈ H the generator A of Cos has to
be bounded (see [1, p.213f]). Moreover, it is possible to find a suitable ”phase
space” V ×H for the initial values.

Theorem 2.7. Let H be a Banach space, and A an operator in H. Define the
operator A in H ×H by

A :=

(
0 I
A 0

)
,

and the the norm on H×H by ‖(x, y)‖H×H := ‖x‖H +‖y‖H Then the following
assertions are equivalent:

(i) The operator A generates a cosine function.

(ii) There exists a Banach space V such that D(A) ↪→ V ↪→ H and such that
the part B of A in V ×H generates a strongly continuous semigroup.

The Banach space V is uniquely determined by (ii). We call V ×H the phase
space associated with A. Moreover, one has Sin(·)y ∈ C(R, V ) for all y ∈ H,
Cos(·)x ∈ C1(R, H) ∩ C(R, V ) for all x ∈ V , Sin(·)x ∈ C(R, D(A)) for all
x ∈ V , and B generates a strongly continuous semigroup S on V ×H given by

S =

(
Cos(t) Sin(t)
Cos′(t) Cos(t)

)
=

(
Cos(t) Sin(t)
ASin(t) Cos(t)

)
for t ∈ R,

and Cos′(t)x = ASin(t)x for x ∈ V .
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Proof. See [1, p.212].

There are several other important relations between sine and cosine func-
tions, and their generator:

• Let Cos a cosine function, Sin its associated sine function and A their
generator. If x ∈ D(A), then Cos(t)x, Sin(t)x ∈ D(A) and ACos(t)x =
Cos(t) Ax, A Sin(t)x = Sin(t) Ax, for all t ≥ 0. I.e. the sine and cosine
functions commute with their generator. (See [1, p.210f].)

• Let A be the generator of the cosine function Cos(·) and the sine function
Sin(·). If A is self adjoint, then Cos(t) and Sin(t) are also self adjoint for
all t ≥ 0.

With the help of the sine and cosine operators we can give an explicit repre-
sentation of the solution y of (W) using the well known variation of constants
formula

y(t) := Cos(t)y0 + Sin(t)y1 +

t∫
0

Sin(t− s)f(s) ds for t ≥ 0. (5)

In particular, the solution operator S is given by

(Sf)(t) =

∫ t

0

Sin(t− s)f(s) ds.

A simple computation shows that the adjoint operator S∗ : L2(0, T ;H) →
L2(0, T ;H), is given by

(S∗g)(t) =

T∫
t

Sin((t− s))g(s)ds, (6)

provided that A is self adjoint. The operator S∗ is the solution operator of the
equation

∂2p

∂t2
+Ap = g,

p(T ) = 0,

pt(T ) = 0,

(AW)

Remark 2.8. Further note that p and y are related by p(t) = y(T − t), where
y is the solution of (W) with right hand side f(t) = g(T − t), and y0 = y1 = 0.

This means that solving of the adjoint problem is equivalent to ”revert” the
time interval [0, T ] then solve the wave equation and ”revert” the interval back.
To be more precisely: For a given function f we denote by f− the reverted
function f−(t) = f(T − t). Then S∗ could be alternatively written by

S∗g = (Sg−)−. (7)

3. Gautschi Time-stepping

In this section we discuss the time integration of the wave equation (W) with
the help of the Gautschi time stepping scheme.

Throughout we denote by L ∈ N the number of timesteps and by τ := T
L

the stepsize.
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3.1. Signals and structural properties of the Gautschi time-stepping scheme

Before we start with the definition of the Gautschi time-stepping scheme we
introduce the notion of vector valued signals, to provide a proper distinction
between the discrete and the continuous setting.

Definition 3.1. A mapping

s : {0, . . . , L} → H

is called a (vector valued, finite) time discrete signal. We denote with

SignaL(H) := {s| s : {0, . . . , L} → H}

the space of signals over {0, . . . , L} in H. In this section let L be fixed.
Further we define the discrete scalar product over SignaL(H) via the trape-

zoidal rule by

〈f, g〉D(L) := τ

L∑
`=0

〈f [`], g[`]〉H −
τ

2
(〈f [0], g[0]〉H + 〈f [L], g[L]〉H) (8)

To distinguish between functions (defined on a continuous domain of defini-
tion) and signals (defined on a discrete set) we use the following notation:

Notation 3.2. We write s[`] for the `-th value of the signal s in analogy to the
notation which is used in signal processing.

For a function f : [0, T ]→ H we define the signal f ∈ SignaL(H) by

f [`] := f(`τ) for ` ∈ {0, . . . , L} and τ =
T

L
.

For given f the Gautschi time-stepping scheme recursively defines the signal
y ∈ SignaL(H) by

y[`+ 1] = 2y[`]− y[`− 1] + 2τ2 Cos(τ)− I
τ2A

(−Ay[`] + f [`]) for ` ≥ 1, (9)

with initial values
y[0] := y0, (10)

and

y[1] := Cos(τ)y0 + Sin(τ)y1 +
I − Cos(τ)

A
f [0]. (11)

Note that in case y[`] 6∈ D(A) we can use the operator (Cos(τ)−I)y[`] instead of
Cos(τ)−I

A Ay[`]. Then the recursion is well defined for all signals on SignaL(H).
For more information about the Gautschi time-stepping scheme we refer to [11]
and [8]. The signal y is a pointwise approximation in time of the actual solution
of the wave equation (W), i.e. y[`] ≈ y(`τ) for 0 ≤ l ≤ L. This suggests the
following definition:

Definition 3.3 (Discrete solution operator). Define the (time-)discrete solu-
tion operator SL : SignaL(H) → SignaL(H) recursively by the Gautschi time-
stepping scheme with homogeneous initial values, i.e.

SL(f)[`] := y[`],

where y is defined recursively by (9)-(11), with y0 = y1 = 0.

6



Definition 3.4 (Discrete Adjoint Solution Operator). The discrete adjoint op-
erator S∗L : SignaL(H)→ SignaL(H) is defined by the relation

〈S∗L(g), f〉D(L) = 〈g, SL(f)〉D(L) for all f ∈ SignaL(H).

We can expect that the discrete adjoint solution operator S∗L will also be a
backward solution of the time-stepping scheme. For this purpose we introduce
the notion of reverse signals.

Definition 3.5 (Reverse signals). For a signal f ∈ SignaL(H) we define the
reverse signal f− ∈ SignaL(H) by the relation

f−[`] := f [L− `].

Thus the notation of a reverted signal is the continuous equivalent of the nota-
tion of a reverted function introduced in Remark 2.8.

The following result proves our conjecture concerning S∗L. It is non trivial,
since this is not true in general for other scalar products. It is also worth while to
note that the proof only uses algebraic properties of the Gautschi time-stepping
scheme and not approximation properties.

Theorem 3.6 (Relation between the discrete adjoint and the continuous adjoint
operators). The discrete adjoint S∗L operator with respect to the discrete scalar
product 〈·, ·〉D(L) is exactly the solution of the backward Gautschi time stepping
scheme, i.e.

(S∗L(g))[n] = x[n] = (SL(g−))−[n], (12)

and x[L+ 1] = 0. Thus the relation (7) between the continuous operators carry
over to the discrete operators, if we use the trapezodial rule as integration for-
mula.

Proof. See Appendix A.

Remark 3.7. Theorem 3.6 shows that the adjoint relationship of the discrete
operators with respect to the discrete scalar products is an algebraic property.
It does not rely on approximation properties of the Gautschi scheme or the
trapezidoal rule. This is very important for the convergence of the Conjugate
Gradient (CG) algorithm, which will be used below.

Remark 3.8. The discrete operators are singular, since if f [j] = 0 for j =
0, . . . , L and f [L + 1] 6= 0, then SL(f) = 0, due to the construction of the
Gautschi time-stepping scheme.

3.2. Time Discretization Error of the Gautschi Time Stepping Scheme

3.2.1. Local time error

In this section we analyze the error of a single timestep of the Gautschi
time-stepping scheme. Later we will use this result to provide a global error
bound. In order to provide space discretization independent error bounds, we
first show that in RN for a symmetric and positive definite matrix A the error
of the time discretization does not depend on the dimension N .

We state a lemma which is proven in the thesis of Lintner [11]: Define
Mi := maxt∈[0,T ]

∥∥f (i)(t)
∥∥, where ‖·‖ denotes the Euclidean norm, and let ` ∈

{0, . . . , L}.
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Lemma 3.9. Let A be a self adjoint and symmetric matrix. Then the pointwise
error ej := y(tj)− y[j] is given by the recursion

e`+1 = W`e1 −
∑̀
j+1

W`−jdj ,

where
d` = y(t`+1)− 2y(t`) + y(t`−1)− τ2G(−Ay(t`) + f(t`)),

is the truncation error and

Wn = sin((`− j + 1)τ
√
A)(sin(τ

√
(A)))−1.

Now we modify some results from [11] using less regularity assumptions on
the right hand side than in [11]. These are needed later for the global error
analysis of the Gautschi time-stepping scheme in infinite dimensional optimiza-
tion.

Lemma 3.10. For the trunctation error

d` = y(t`+1)− 2y(t`) + y(t`−1)− τ2G(−
√
Ay(t`) + f(t`)),

we have
‖d`‖ ≤ τ3CM1 if f ∈ C1(0, T ;RN ),

and
‖d`‖ ≤ τ4C(M1 +M2) if f ∈ C2(0, T ;RN ),

for a suitable constant C > 0 independent of N .

Proof. By (5) we have

d` =

∫ τ

0

(τ
√
A)−1 sin(τ

√
A)(f(t` + s)− 2f(t`) + f(t` − s))ds.

Further it holds that

‖d`‖ ≤ τ2

∫ 1

0

∥∥∥(τ
√
A)−1 sin((1− θ)τ

√
A)
∥∥∥ ‖f(t` − θτ)− 2f(t`) + f(t` − θτ)‖ dθ.

For the case f ∈ C1(0, T ;RN ) it we have

‖f(t` + s)− 2f(t`) + f(t` − s)‖ =

∥∥∥∥∫ t`+s

t`

f ′(r)dr −
∫ t`

t`−s
f ′(r)dr

∥∥∥∥
≤ 2s max

t∈[0,T ]
‖f ′(t)‖ ,

(13)

and for f ∈ C2(0, T ;RN )

‖f(t` + s)− 2f(t`) + f(t` − s)‖

=

∥∥∥∥∫ t`+s

t`

(t` + s− r)(f ′′(r)dr)−
∫ t`+s

t`

(t` + s− r)(f ′′(r)dr)
∥∥∥∥

≤ s2 max
t∈[0,T ]

‖f ′′(t)‖ .

(14)

The estimates (13) and (14) together with the fact that∥∥∥(τ
√
A)−1 sin((1− θ)τ

√
A)
∥∥∥ ≤ (1− θ), imply the claim.
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Proposition 3.11. For the pointwise error e` we get

‖e`‖ ≤ τC(t2`M1) if f ∈ C1(0, T ;RN ),

or
‖e`‖ ≤ τ2C(t`M1 + t2`M2) if f ∈ C2(0, T ;RN ).

The constant C does not depend on the space discretization, i.e. on the dimen-
sion N .

Proof. We proceed as in [11, Thm. 2.5., p.28f] except we additionally apply our
Lemma 3.10, to get a sharper error bound.

Remark 3.12. We see that the error bound does not depend on the dimension
N of the space discretization.

After analyzing the Gautschi time-stepping scheme in RN , we lift the error
bounds into the infinite dimensional Hilbert space H.

Theorem 3.13. For the Gautschi time-stepping scheme (9)-(11) it is true that

‖y(t`)− y`‖H ≤ Cτt`M1 for f ∈ C1(0, T ;H),

or
‖y(t`)− y`‖H ≤ Cτ

2(t`M1 + t2`M
2) if f ∈ C2(0, T ;H),

where
Mi := max

t∈[0,T ]

∥∥∥f (i)(t)
∥∥∥
H
.

Proof. The proof uses a standard Galerkin approximation argument. For details
we refer to [15].

3.2.2. Global Time Error

Since a signal is only defined on a discrete set extra considerations are re-
quired for error analysis in sense of the L2-norm. For this purpose we have to
transform a signal to an interpolating function. A natural choice is the discrete
cosine transform of type 1 (DCT-I).

Definition 3.14 (Vector valued DCT and DFT, and Interpolating operator).
Let f ∈ SignaL(H) be a vector valued signal. The DCT of f is defined by the
mapping CL : SignaL(H)→ L2(0, T ;H) given by

CL(f)(t) =

L∑
k=0

X[k] cos

(
kπt

T

)
,

where the signal X is defined as

X[k] =
1

L

f [0] + (−1)kf [L]

2
+

L−1∑
j=1

f [k] cos

(
kjπ

L

) .

The DFT of degree L of the signal f is the mapping FL : SignaL(H) →
L2(−π, π;H) defined by

FL(f)(x) =

bL/2c∑
k=1−dL/2e

C[k]eikx,
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where the signal C is defined by

C[k] =
1

L

L−1∑
j=0

f

(
2jπ

L

)
e−ik

2πj
L .

Note that we do not distinguish above between H and it’s complexification. The
DFT/DCT maps a signal to its trigonometric/cosine interpolation polynomial
of degree L.

The interpolation operator on an equidistant grid IL : C0([0, T ];H) →
SignaL(H) is defined by

IL(f)[n] := f [n] := f

(
nT

L

)
.

The DCT of a vector valued function f : [0, π]→ X, respectively the DFT of
a function f : [−π, π]→ X is simply the DCT/DFT of the interpolating signal
of f on the equidistant grid. I.e. we will write for the sake of simplicity

CL(f) = CL(IL(f)),

and
FL(f) = FL(IL(f)),

for continuous f .
The DCT and DFT transformations can be defined for L2(0, T ;H) in anal-

ogous manner by a coordinate transform.

Remark 3.15. It is important to note that the interpolation operator IL is the
left inverse operator of the DCT operator CL, i.e. for all signals f ∈ SignaL(H)
the relation

IL(CL(f)) = f,

holds.

Remark 3.16. We will not distinguish between the operators SL : SignaL(H)→
SignaL(H) and CL ◦SL ◦ IL : C1([0, T ];H)→ L2(0, T ;H) and simply write SL
for CL ◦SL ◦ IL if it is clear from the context.

Further we will apply the following rule: If a signal is expected to be a
continuous function then the signal will be identified by its DCT, on the contrary
if it a signal should be a continuous function then we identify this function by
its interpolating signal.

Definition 3.17 (Vector valued F series). The formal vector valued F series of
a function f defined on [−π, π] is defined as

∞∑
k=−∞

C[k]eikt,

where the vector valued (infinite) signal C : N→ X is given by

C[k] =
1

2π

π∫
−π

f(t)e−iktdt.
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Alternatively one can also use its real valued representation, which is defined as
in the scalar case, namely

F (t) :=
A[0]

2
+

∞∑
k=0

A[k] cos(kt) +B[k] sin(kt),

with the vector valued signals

A[k] =
1

π

π∫
−π

f(t) cos(kt)dt, B[k] =
1

π

π∫
−π

f(t) sin(kt)dt.

Remark 3.18. The DFT above is a partial sum of the F series where the
coefficients are approximated by the trapezidoal rule. If we define

f̃(t) :=

{
f(x) for x ∈ [0, π]

f(−x) for x ∈ [−π, 0]
,

then CL(f) = F2L(f̃). If f was continuously differentiable and we extend f̃
2π-periodically to the whole real line, then the extension is periodic, continuous
and piecewise continuously differentiable.

Remark 3.19. For the discrete scalar product it is true that for all trigonomet-
ric polynomials with degree less or equal to L ∈ N the relation 1

2π 〈·, ·〉
2
L2(−π,π) =

〈·, ·〉2D(L) holds, since for the functions eikt for −L/2 < k ≤ L/2 the same or-
thonormality relations hold in the discrete and the continuous scalar product
(see [7, p.399f]). Thus for two orthogonal polynomials

f =
bL/2c∑

k=1−dL/2e
f [k]eikx, and g =

bL/2c∑
k=1−dL/2e

g[k]eikx of degree L we have the

relation

1

π
〈f, g〉L2(0,T ;H) =

bL/2c∑
k=1−dL/2e

〈f [k], g[k]〉H = 〈f, g〉D(L) .

Thus the value of discrete scalar product is exact for trigonometric polynomi-
als of degree L. Analogously the relation 1

π 〈·, ·〉
2
L2(0,π) = 〈·, ·〉2D(L) holds for

all cosine polynomials of degree L, using the relation CL(f) = F2L(f̃) from
Remark 3.18.

We note also that

〈f, g〉L2(0,T ;H) =
T

π
〈f, g〉L2(0,π;H) = C(T ) 〈f, g〉D(L) ,

where C(T ) = T is the constant which results from a coordinate transform from
[0, π] onto [0, T ].

Lemma 3.20 (Aliasing). For f ∈ C1([0, T ];H) the Fourier coefficients Ĉ[k] of
FL(f) satisfy the identity

Ĉ[k] =

∞∑
l=−∞

C[k + lL],

for k ∈ {−N/2, . . . , N/2}.

11



Proof.

Ĉ[k] =
1

L

L−1∑
j=0

( ∞∑
l=−∞

C[l]eil
2πj
L

)
e−ik

2πj
L =

1

L

∞∑
l=−∞

C[l]
〈
eik·, eil·

〉
D(L)

=
1

L

∞∑
l=−∞

C[k + lL].

Corollary 3.21. For f ∈ C1([0, T ];H) we have

f(t)−FL(f) = 2
∑

k∈Z\{−dL/2e−1,...,bL/2c}

C[k]eikt.

Proof. We use Lemma 3.20. After a straightforward calculation and rearranging
the sums, using absolute convergence, we get the desired result.

Theorem 3.22. Let f ∈ C([0, T ];H) be piecewise continuously differentiable,
and let CL(f) be its DFT on an equidistant grid with even number of grid points.
Then it holds that

‖f − CL(f)‖L2
≤ c

L
‖f‖H1(0,T ;H) .

If f is twice continuously differentiable it is even true that

‖f − CL(f)‖L2
≤ c

L2
‖f‖H1(0,T ;H) .

Proof. We can follow the proofs of Hanke-Bourgeois [7] by using Lemma
3.20 and Bessel’s inequality.

We now have the following estimate for the solution operator.

Theorem 3.23. Let j ∈ {1, 2}. For x ∈ Cj([0, T ];H) there exists a constant
D(T ) such that

‖Sx− SLx‖L2(0,T ;H) ≤
D(T ) ‖x‖Cj([0,T ];H))

Lj
.

Proof. We have

‖Sx− SLx‖L2(0,T ;H) ≤ ‖Sx− CL(Sx)‖L2(0,T ;H) + ‖CL(Sx)− SLx‖L2(0,T ;H) .

Now we apply Theorem 3.22 and Theorem 3.13, keeping in mind that

‖CL(Sx)− SLx‖L2(0,T ;H) = T ‖Sx− SLx‖D(L) .

Corollary 3.24. Let j ∈ {1, 2}. For x ∈ Cj([0, T ];H) there exists a constant
D(T ) such that

‖S∗x− S∗Lx‖L2(0,T ;H) ≤
D(T ) ‖x‖Cj([0,T ];H)

Lj
.

Proof. Shifting the adjoint problem (AW) like in Remark 2.8 and using the
identity (12), we can apply Theorem 3.23 to show convergence.

12



4. Optimization

This section is devoted to discussing the solution of (OC) on the basis of
the optimality system (3). Self-adjointness H = S∗S + αI, suggests to use the
conjugate gradient method, whose asymptotic convergence properties also hold
in infinite dimensions (see [12]).

4.1. Convergence in time

The discrete operators SL and S∗L of Section 3 cannot be directly defined on
L2(0, T ;H), because the set IP = { kπLT : k, L ∈ N} is a Lebesgue null-set. Thus
two functions f, g which coincide on [0, T ] \ IP are the same functions in the
Lebesgue sense, but SLf 6= SLg, if f 6= g on IP . As a consequence we interpret
SL and S∗L as operators from C1([0, T ];H) into L2(0, T ;H). Of course, in this
sense S∗L is not the adjoint operator of SL.

For B ∈ L(C1([0, T ];H), L2(0, T ;H)) we denote with ‖B‖C1;L2
the operator

norm

‖B‖C1;L2
:= ‖B‖C1([0,T ],H);L2(0,T ;H) := sup

y∈C1,‖y‖L2=1

‖By‖L2((0,T );H) .

This norm should not be confused with the induced operator norm. Also we
have to note that the normed space (L(C1([0, T ];H), L2(0, T ;H)), ‖B‖C1;L2

) is
not a Banach space. Thus we cannot apply the Banach-Steinhaus Theorem,
and have to take a detour in the proof of Lemma 4.1.

Lemma 4.1. For the operators SL, S
∗
L : C1([0, T ];H)→ L2(0, T ;H) with L ∈

N, the sequences ‖SL‖C1;L2
and ‖S∗L‖C1;L2

are uniformly bounded with respect
to L.

Proof. From Theorem 3.23 it follows that for fixed x ∈ C1([0, T ];H) we have

lim
L→∞

‖Sx− SLx‖L2(0,T ;H) ≤ lim
L→∞

D(T ) ‖x‖C1([0,T ];H)

L
= 0,

and therefore
lim
L→∞

SLx = Sx for all x ∈ C1([0, T ];H).

Analogously we prove that

lim
L→∞

S∗Lx = S∗x for all x ∈ C1([0, T ];H). (15)

First we note that C1([0, T ], H) is dense in L2(0, T ;H) (See [1][L 1.3.3]),
and that the cosine polynomials also are dense in L2 in the L2-norm. We
also recall that a continuous function is identified by its interpolating signal
in the discrete scalar product. Suppose now that lim supL→∞ ‖SL‖C1;L2

= ∞
(or even ‖SL‖C1;L2

= ∞ for some L ∈ N). Without loss of generality we
assume that the whole sequence diverges to infinity. Then there exists a sequence
(xn) ∈ C1([0, T ], H) such that ‖xn‖L2

= 1 and a sequence (ML)L∈N such that
‖SLxL‖L2(0,T ;H) > ML and limL→∞ML = ∞. Since (xL)L∈N is bounded in

L2([0, T ], H), the sequence (CL(xL))L∈N is also bounded. This follows from the
fact that the interpolation error can be estimated by the remainder of the F
series times a constant factor (see Hanke-Burgeois [7] or Boyd [2, p.94]), and

13



therefore {CL(xL) : L ∈ N} is bounded in L2(0, T ;H) by Parseval’s inequality.
From boundedness it follows that there exists x ∈ L2(0, T ;H) and a subsequence
(CLk(xLk))k∈N which converges weakly in L2(0, T ;H) to some x ∈ L2(0, T ;H).

We also observe that for f ∈ C1([0, T ];H), and a trigonemtric polynomial g
of degree L the relation

C(T ) 〈f, g〉D(L) = C(T ) 〈CL(f), g〉D(L) = 〈CL(f), g〉L2(0,T ;H) (16)

holds. Thus for all g which are cosine polynomials of degree K we have

〈SLkxLk , g〉L2(0,T ;H) = C(T ) 〈SLkxLk , g〉D(Lk) = C(T )
〈
xLk , S

∗
Lk
g
〉
D(Lk)

=
〈
CLk(xLk), S∗Lkg

〉
L2(0,T ;H)

,

for Lk > K. Now we may conclude that

lim
k→∞

〈SLkxLk , g〉L2(0,T ;H) = lim
k→∞

〈
C(xLk)Lk , S

∗
Lk
g
〉
L2(0,T ;H)

= 〈x, S∗g〉L2(0,T ;H)

= 〈Sx, g〉L2(0,T ;H) ,

using Relation (15) which implies S∗Lkg → S∗g, and the assumption that CLk(xLk) ⇀

x. Thus we have
〈
CLk(xLk), S∗Lkg

〉
→ 〈x, S∗g〉 for all cosine polynomials g. Since

the trigonometric polynomials are dense in L2(0, T ;H), we get that SLkxLk ⇀
Sx, which is a contradiction to the unboundedness of the sequence (SLkxLk)k∈N.
Boundedness of ‖S∗L‖C1;L2

can be verified analogously.

Now we (semi-)discretize the functional J defined in (2) by approximating
it by the time-discrete functional JL for L ∈ N

JL(uL) :=
1

2
‖SLuL − zL‖2D(L) +

α

2
‖uL‖2D(L) , (17)

where uL ∈ SignaL(H) and zL = IL(z). Taking directional derivatives and
applying Theorem 3.6 leads us to the discrete optimality condition

J ′L(uL)vL =
dJL
dt

(uL + tvL)

∣∣∣∣
t=0

= 〈HLuL − S∗LzL, vL〉D(L) = 0,

for all vL ∈ SignaL(H) or equivalently

HLuL = S∗LzL, (18)

with the approximated Hessian

HL := S∗LSL + α CL = CL ◦S∗LSL ◦ IL +α CL .

Conversely if we approximate the continuous optimality condition (3) by re-
placing S by SL, and z by zL = IL(z), then we arrive again at (18). With this
choice of discretization and S∗L as in (12) of Theorem 3.6 the operator HL in
(18) is self-adjoint.

In order to prove L2(0, T ;H) convergence of the optimization scheme we
first have to estimate the error in the discrete norm.
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Lemma 4.2 (Error in the discrete norm). Let u be the continuous control, uL
the solution of the discrete system HLuL = S∗LzL and j ∈ {1, 2}. If u and
z ∈ Cj([0, T ];H) where z = z̃ − SH(y(0), yt(0)). Then the error ‖u− uL‖D(L)

in the discrete norm is of the order O
(

1
Ljα

)
.

Proof. Set zL := CL(I(z)), where CL(IL(z)) is the DCT of z defined in Defini-
tion 3.14. Recall the definitions H = S∗S + αI, and the approximated Hessian
HL := S∗LSL + α CL. First consider the error of the discrete control uL. Recall
that in the discrete norm u is identified by IL(u)), and that {HL} is uniformly
elliptic in the discrete scalar product with ellipticity constant α. Then it holds
that

α ‖u− uL‖2D(L) ≤ 〈HL(u− uL), uL − u〉D(L) = 〈HLu−HLuL, u− uL〉D(L) .

Therefore we have

‖u− uL‖D(L) ≤
‖HLu−HLuL‖D(L)

α
=
C(T )

α
‖HLu−HLuL‖L2(0,T ;H) . (19)

To investigate the error further we make the following splitting:

HLu−HLuL = HLu−Hu+Hu−HLuL = (HL −H)u+ (S∗z − S∗LzL).

The first term can be estimated by

‖HLu−Hu‖L2(0,T ;H) = ‖S∗LSLu− S∗Su+ α(CL(u)− u)‖L2(0,T ;H)

= ‖CL ◦S∗L ◦ SL ◦ IL(u)− S∗Su+ α(CL(u)− u)‖L2(0,T ;H)

= ‖CL ◦S∗L ◦ IL ◦ CL ◦SL ◦ IL(u)− S∗Su+ α(CL(u)− u)‖L2(0,T ;H)

≤‖CL ◦S∗L ◦ IL ◦ CL ◦SL ◦ IL u− CL ◦S∗L ◦ IL(Su)‖L2(0,T ;H)

+ ‖CL ◦S∗L ◦ IL(Su)− S∗Su‖L2(0,T ;H) + α ‖CL(u)− u‖L2(0,T ;H)

= ‖CL ◦S∗L ◦ IL(CL ◦SL ◦ IL u− Su)‖L2(0,T ;H)

+ ‖(CL ◦S∗L ◦ IL−S∗)Su‖L2(0,T ;H) + α ‖CL(u)− u‖L2(0,T ;H)

= ‖S∗L(SLu− Su)‖L2(0,T ;H)

+ ‖(S∗L − S∗)Su‖L2(0,T ;H) + α ‖CL(u)− u‖L2(0,T ;H)

≤‖S∗L‖C1;L2
‖(SLu− Su)‖L2(0,T ;H)

+ ‖S∗LSu− S∗Su‖L2(0,T ;H) + α ‖u− CL(u)‖L2(0,T ;H) .

(20)
Now let j ∈ {1, 2} and u ∈ Cj([0, T ];H). From Theorem 3.23 and Lemma 4.1
we know that

‖S∗L‖C1;L2
‖(SLu− Su)‖L2(0,T ;H) ≤

D1 ‖u‖Cj([0,T ];H)

Lj
,

and

‖S∗LSu− S∗Su‖L2(0,T ;H) ≤
D2 ‖Su‖Cj([0,T ];H)

Lj
,

for suitable positive constants D1, D2. From Corollary 3.22 we also get the
estimate

‖u− CL(u)‖L2(0,T ;H) ≤
D3 ‖u‖H1([0,T ];H)

Lj
. (21)
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Thus (20) becomes

‖HLu−Hu‖L2(0,T ;H) ≤
D4 max(‖u‖Cj([0,T ];H) , ‖Su‖Cj([0,T ];H))

Lj
, (22)

for a suitable D4 > 0.
Next we estimate S∗z−S∗LzL = (S∗z−S∗Lz) +S∗L(z− zL). With the help of

Corollary 3.24 and Lemma 4.1 we can find suitable constants D5, D6 > 0 such
that

‖S∗z − S∗Lz‖L2(0,T ;H) ≤
D5 ‖z‖Cj([0,T ];H)

Lj
,

and

‖S∗L‖C1;L2
‖z − zL‖L2(0,T ;H) ≤

D6 ‖z‖H1([0,T ];H)

Lj
.

Thus for D7 = max{D5, D6} we have

‖S∗z − S∗LzL‖ ≤
D7 ‖z‖Cj([0,T ];H)

Lj
. (23)

Combining the estimates (19), (20) and (23) we finally get

‖u− uL‖D(L) ≤
D4 ‖u‖Cj([0,T ];H)

Lj

+
D7 ‖z‖Cj([0,T ];H)

Lj
,

and thus

‖u− uL‖L2(0,T ;H) ≤ O
(

1

αLj

)
,

which was to be shown.

The following theorem shows that the resulting sequence (uL)L∈N of solu-
tions to the discrete optimality condition approximates the solution u of the
optimality system (3) in the L2(0, T ;H) sense that

lim
L→∞

‖u− CL(uL)‖L2(0,T ;H) = 0.

Theorem 4.3 (Convergence of the optimization scheme in time). Let u, z ∈
Cj([0, T ];H) for j ∈ {1, 2}, where z = z̃−SH(y(0), yt(0)) ∈ C1([0, T ];H). Then
the DCTs of the sequence (uL)L∈N of the semi approximated solutions in time
converge strongly to the solution u of (3). Further the error ‖u− uL‖L2(0,T ;H)

is of order O
(

1
αLj

)
.

Proof. We have the estimate

‖u− uL‖L2(0,T ;H) ≤ ‖u− CL(u)‖L2(0,T ;H) + ‖CL(u)− uL‖L2(0,T ;H)

= ‖u− CL(u)‖L2(0,T ;H) +
1

C(T )
‖u− uL‖D(L) .

With Theorem 3.22 and Lemma 4.2 we can conclude the proof.
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Remark 4.4 (Notes on the influence of the parameter α on the optimization
error). Consider L ∈ N fixed. Since S∗LSL is positive definite, it follows that
α ≤ λmin(HL) ≤ λmax(HL) ≤ C + α, for a constant C ≥ 0. It follows that

κ(H) ≤ C + α

α
= 1 + C/α = O(1/α).

Therefore the number of iterations, and the error of the Conjugate Gradient
scheme defined in Listing 1 strongly depend on the parameter α. Numerical
experiments validate this: Dividing α by ten leads to three times more iterations
to reach the stopping criterion. Denote the approximated minimum of the CG
scheme with uCG, and the tolerance for the residual with ε. For the error it
holds that,

‖uL − uCG‖D(L) =
∥∥H−1

L HL(uL − uCG)
∥∥
D(L)

=
∥∥H−1

L (S∗LzL −HLuCG)
∥∥
D(L)

≤
∥∥H−1

L

∥∥ ε ≤ ε

α
.

This can also be verified by numerical experiments.

4.2. Inexact Conjugate Gradient Method
In order to solve the operator equation (3) we deal with the abstract oper-

ators HL, SL and S∗L, which represent solution algorithms of PDE. Since these
algorithms only compute numerical approximations, rather than exact solutions
we have to consider an inexact matrix vector multiplication, and further the im-
pact on the calculated solution by the Conjugate Gradient (CG) algorithm.

Considering that the results of this section apply to the CG method in
general, we look at a generic linear system Qx = b in a Hilbert space H, where
Q is self adjoint, bounded and H-elliptic with ellipticity constant c > 0. (In our
case Q = HL and H = L2(0, T ;H))

In order to solve the linear system we execute the abstract CG algorithm.
In Appendix B in Listing 1 we give a simple implementation of the algorithm.

We use the the absolute residual criterion ‖rn‖ ≤ ε as stopping criterion.
The reason why we do not use the relative criterion ‖rn‖ ≤ ‖r0‖ ε is that in our
case we often start with a large starting residuum r0. An alternative would be
to use ‖rn‖ ≤ min(‖r0‖ , 1)ε

It is well known that the the algorithm from Listing 1 converges. See for
example [12].

Now we start with investigating the behavior of the inexact CG method.
We denote the approximation of the operator Q at the k − th iteration by
Q̃k := Q + Ek, where Ek is a linear disturbance of Q with ‖Ek‖ < ε for some
ε > 0.

We further denote by rk, pk, qk, αk the r’s, p’s, q’s and alpha’s of the k-th
iteration in the CG algorithm, and additionally with ρk the residuum of the
k-th iteration.

Let us define the disturbance vector gk of the k-th iteration of the inexact
CG algorithm by gk = Ekpk which is the error in the inexact matrix vector
product, i.e. Q̃kpk = qk = Qpk + gk.

Additionally we denote by r̃k the actual residual of the inexact method
defined by

r̃k = b−Q

x0 +

k∑
j=0

αjpj

 .
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We are especially interested in investigating the residual gap which is given by
‖rk − r̃k‖, since it measures the accuracy which we can achieve at best.

Recall that the recurrence relations for rk and r̃k, are given by

rk+1 = rk − αkQpk,

and
r̃k+1 = r̃k − αkQpk.

Forming the difference yields

∆rk+1 := r̃k+1 − rk+1 = ∆rk − αkgk,

and therefore

∆rm =

m∑
k=−1

αkgk.

If we consider that

∆r0 = r̃0 − r0 = b−Qx0 − b−Qx0 − E−1x0 = E0x0,

and set p−1 := x0, g−1 := E−1p−1, α−1 = 1, then it holds that

‖∆rn‖ ≤
m∑

k=−1

‖αkgk‖ ≤
m∑

k=−1

|αk| ‖Ek‖ ‖pk‖ .

From this inequality we deduce the following theorem, using an appropriate
choice for an upper bound of ‖Ek‖:

Theorem 4.5. For ε > 0, let rm = b − Qxm be the residual of the inexact
CG method, and r̃m the actual residual after m iterations. Further denote by
Q̃k = Q+ Ek the disturbed operator of the k-th iteration. If

‖Ek‖ ≤
dkε

D |αk| ‖pj‖
,

where dk ≥ 0 and
∑m
k=−1 dk = D, then the residual gap satisfies ‖r̃m − rm‖ ≤ ε.

A reasonable choice for dk is 1/(m + 1), for example. But there are other
choices for dk depending on the strategy used.

The residual gap indicates which accuracy could be achieved at best. This
is an important matter considering numerical convergence of the CG algorithm,
since the algorithm may not converge if the matrix vector operations are done
without sufficient high accuracy.

Remark 4.6. Similar results can be found in [3]. The differences between the
work in [3] and this section is, that we consider the conjugate gradient methods
on arbitrary Hilbert spaces instead of RN and give a more practical error bound.
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5. Numerical Results

5.1. Numerical tests

We describe numerical results for two test cases. In the first one, the ana-
lytical solution is known, in the second one it is not. The first problem under
consideration is

min j(y, u) =
1

2
‖y − z̃‖2L2(0,T ;Ω) +

α

2
‖u‖2L2(0,T ;Ω) ,

subject to

�y = u,

y(0, x1, x2) = 2 sin(x1) sin(x2),

yt(0, x1, x2) = y0,

y|Ω(t, x1, x2) = 0,

where � = ∂2

∂t2 −
∂2

∂x2
1
− ∂2

∂x2
2

+ 2 in the domain Ω = (0, π)2, on the time horizon

[0, T ] with T = π/2. The desired state z̃(t, x, y) = z1(t) sin(x1) sin(x2), where

z1(t) =
1

4
cos (2 t) cos (t)

4
+

1

8
t sin (2 t) +

1

8
sin (2 t)

2
+

1

32
sin (2 t) sin (4 t)

+ 2α+
7

4
cos (2 t) ,

and the initial value y(0, x1, y1) = 2 sin(x1) sin(x2). For these data the optimal

control is given by u(t, x, y) = (1 + cos(2t)) sin(x1) sin(x2)
2 . While the focus is put

on the performance of the temporal discretization by means of the Gautschi
method, we also compare among one of following spatial discretizations

• Spectral Method with trigonometric polynomials (Fourier method),

• Spectral Method with Legendre-Chebyshev Method

• FEM with piecewise linear functions, on a rectangle grid,

• Spectral Element Method (SEM) with piecewise Legendre Polynomials
For Legendre polynomials with degree 1 the SEM method is equivalent to
the FEM, and for one element SEM is equivalent to the spectral method.

For evaluation of the trigonometric functions we use the approach of Hoch-
bruck and Grimm (see [6]). This approach is a Krylov method which computes
an approximation of Cos(t)v and Sin(t)v in a K− dimensional Krylov space
span{v,Qv, . . . QK−1v}.

In the tables we use the following notation: L is the number of time-steps
which is a power of 2, i.e. L = 2l for l ∈ N, and by N we denote the order of
approximation in space. In the case of spectral methods this is the polynomial
degree, while in the case of finite and spectral elements it is the number of Ansatz
functions per element, times the number of elements. The error is measured
by ‖uNL − u‖L2(0,T ;L2(Ω)), where u is the analytical solution and uNL is the
numerical solution. With iter we denote the number of required CG iterations.
As stopping criterion for the CG algorithm which is used for solving, we use
‖rk‖H < ε with the residual rk = Qxk − b.

19



l error iter

4 1.35 · 10−03 14
6 8.34 · 10−05 14
8 5.60 · 10−06 14

Table 1: Fourier; N = 4, K = 1, ε = 10−10, α = 10−5. Quadratic convergence in time.

The first results are presented for the Fourier approximation in Table 5.1.
Since the exact solution is a trigonometric polynomial of degree 1 there is no
space discretization error. The only errors are due to temporal discretization
and the optimization algorithm (CG-method). Thus this is a good example
to analyze the error of the time discretization. The numerical result show a
quadratic convergence rate, not only for α = 10−5 as depicted in Table 5.1, but
for a much wider range of values for α.

Next we use finite elements, with piecewise linear Ansatz functions for space
discretization. Tables 2 and 3 depict the spatial and temporal convergence rated
respectively. In either case we observe quadratic convergence. To suppress
temporal, respectively spatial, errors the discretization for either of them is
chosen to be fine for the results in Tables 2 and 3. The dimension of the Krylov
space is fixed to be K = 10.

In Table 4 we depict the results for Gautschi timestepping with SEM space
discretization with integrated Legendre polynomials on one element. This demon-
strates quadratic decrease of the error with respect to time discretization, for a
wide range values for the control cost α.

In Table 5 we demonstrate spectral convergence of the spatial discretization
error again the the SEM space. With only a few doublings of the polynomial
degree, the error decreases rapidly until it reaches the level of the temporal
discretization error.

Finally we give a numerical example in 2D where the exact solution is not
known. Here all the specifications are as above, except for the fact that the

control only acts on the subdomain ω =
(
0, π2

)2
. Table 6 depicts the difference

between the solution at discretization level l against the numerical solution with
N = 32, and l = 9. It is shown to decay quadratically as desired.

5.2. Computational complexity

In this subsection we address the computational complexity of the Gautschi
timestepping with Krylov methods. First we analyze the computational com-
plexity of solving the wave equation with these methods.

N l error iter

4 6 1.50 · 10−01 5
16 6 1.11 · 10−02 5
32 6 2.74 · 10−03 5
64 6 6.23 · 10−04 5

Table 2: FEM; K = 10, ε =
10−10, α = 10−2. Influence of
space discretization error.

l error iter

2 2.32 · 10−03 3
3 5.52 · 10−04 3
4 1.29 · 10−04 3

Table 3: FEM; N = 26, K =
10, ε = 10−10, α = 10−1. In-
fluence of time discretization
error.

20



α l error iter

1 · 10−0 4 1.40 · 10−04 3
1 · 10−0 5 3.50 · 10−05 3
1 · 10−0 6 8.74 · 10−06 3

1 · 10−1 4 7.08 · 10−04 4
1 · 10−1 5 1.77 · 10−04 4
1 · 10−1 6 4.41 · 10−05 4

1 · 10−2 4 1.40 · 10−03 5
1 · 10−2 5 3.49 · 10−04 5
1 · 10−2 6 8.70 · 10−05 5

1 · 10−5 4 2.11 · 10−03 70
1 · 10−5 5 5.25 · 10−04 69
1 · 10−5 6 1.31 · 10−04 54

Table 4: SEM; N = 24, K =
25, ε = 10−10.

α N error ln(error) iter

0 4 3.17 · 10−02 −3.45 4
0 8 1.18 · 10−05 −11.35 3
0 16 3.41 · 10−08 −17.19 3

1 4 1.80 · 10−01 −1.72 6
1 8 2.16 · 10−05 −10.74 5
1 16 1.72 · 10−07 −15.57 4

2 4 7.70 · 10−01 −0.26 11
2 8 1.43 · 10−04 −8.85 10
2 16 3.40 · 10−07 −14.90 6

Table 5: SEM; K = 25, L =
210, ε = 10−10. Influence of
the space discretzation.

l iter relative error
2 26 1.37 · 10+00

3 24 2.90 · 10−01

4 24 6.56 · 10−02

5 14 1.58 · 10−02

6 14 3.89 · 10−03

7 14 9.26 · 10−04

8 14 1.85 · 10−04

Table 6: SEM; K = 10, ε =
10−10, α = 10−2. Control on
partial domain. Influence of
the time discretzation.

L N rel. err in % time [ms]

4 4 1.824 · 10−1 147
16 16 6.138 · 10−3 517
128 16 9.594 · 10−5 3350

Table 7: Hardware AMD
Dual Core with 1GHz and
3GB RAM.
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Since the Gautschi timestepping is a simple timestepping method we need
O(L) evaluations involving matrix sine and cosine operators, where L denotes
again the number of timesteps. Thus we have an overall cost of O(LF (N)),
where F (N) denotes the computational cost which is needed to evaluate a
trigonometric matrix operator depending on the size of the spatial dicretiza-
tion N . The value F (N) depends on the form of the space discretization, and
the algorithm which evaluates the matrix operator. The range of F (N) may
vary from N , if the system matrix is diagonal, to N3, for a general matrix
evaluated with conventional methods like diagonalization.

Several methods for fast evaluation of matrix functions are available. We
refer to the papers by Moler [13] and [14]. A good approach for trigonometric
operators with sparse input matrices, which arise in the case of FEM or SEM
matrices, are Krylov methods proposed by Hockbruck, Lubich and Grimm (see
e.g. [6]). Nevertheless for systems where matrix inversions and multiplications
become costly (order O(N2)) it is advised to compute the diagonalization of
the matrix, because matrix function evaluation is cheap if the diagonalization is
known. Note here that optimization requires many matrix function evaluations.

Using the CG algorithm for optimization the overall computational complex-
ity is therefore of order O(LF (N)

√
κ)) (see e.g. [16, p.37f]), where κ denotes

the condition number of HLN , and HLN denotes the finite dimensional approx-
imation in space and time of the operator Hessian H.

Since H = S∗S + αI, the condition number is of order O( 1
α ). Thus only a

few CG iterations are needed if α is not too small, see Tables 2 and 4.
Table 7 shows the timings for the 1 dimensional wave equation with y0(x) =

sin(x), y1(x) = 0, Ω = (0, π), with homogeneous Dirichlet boundary data with
trigonometric polynomials as spatial Ansatz functions. Since for this simple
case the mass and stiffness matrices are diagonal, the evaluation of the matrix
functions with Krylov methods only needs a Krylov space of one dimension.
Hence we have F (N) = O(N), and the overall complexity is O(LN

√
κ). This

is confirmed by Table 7, where the increase in computing time is bounded by 4
from one row to the next.

Appendices
A. Vector Valued z-Transforms and Structural Properties of the Dis-

crete Solution Operator

In this section we give the proof of Theorem 3.6. First we look for an
alternative representation of SL.

Lemma A.1 (Implicit form of the discrete solution operator). The discrete
solution operator SL is implicitly given by

y[`] = SL(f)[`] =
∑̀
j=0

jGf [`− j]−GA
∑̀
j=0

jy[`− j]−Gf [0]/2.

Proof. First we show that for 1 ≤ l ≤ `− 1 the relation

y[`] = (l + 1)y[`− l]− ky[`− l − 1] +

l∑
j=0

jGf [`− j]−GA
k∑
j=0

jy[`− j],
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holds. We proceed by induction with respect to k. For k = 1 this is simply the
Gautschi time step (9). It follows by induction hypothesis that

y[`] =(k + 1)y[`− l]− ly[`− l − 1] +

k∑
j=0

jGf [`− j]−GA
l∑

j=0

jy[`− j]

(9)
=(k + 1)(2y[n− k − 1]− y[n− k − 2] +Gf [n− k − 1]−GAy[n− k − 1])

− ky[`− l − 1] +

l∑
j=0

jGf [`− j]−GA
l∑

j=0

jy[`− j]

=(2l + 2)y[`− l − 1]− (l + 1)y[`− l − 2] + (l + 1)Gf [`− l − 1]− (l + 1)GAy[`− l − 1]

− ly[`− l − 1] +

l∑
j=0

jGf [`− j]−GA
l∑

j=0

jy[`− j]

=(2l + 2)y[`− l − 1]− ky[`− l − 1]− (l + 1)y[`− l − 2]

+ (l + 1)Gf [`− l − 1] +

l∑
j=0

jGf [`− j]− (l + 1)GAy[`− l − 1]−GA
l∑

j=0

jy[`− j]

= (l + 2)y[`− l − 1]− (l + 1)y[`− l − 2] +

l+1∑
j=0

jGf [`− j]−GA
l+1∑
j=0

jy[`− j].

For l = `− 1 we get the desired result, if we take into account that y[0] = 0 and
y[1] = Gf [0]/2.

We briefly recapitulate the concept of convolution sums.

Notation A.2. In this subsection we will write fg := 〈f, g〉H for the inner
product of f, g ∈ H.

For f, g ∈ SignaL(H) we define the convolution sum by

(f ∗ g)[`] :=
∑̀
l=0

f [l]g[`− l].

Definition A.3. A (formal vector valued) power series f(z) ∈ R[[z]], with

f(z) =

∞∑
`=0

f [`]z`

is called the z-transform, (or generating function), of the signal, where f [`] = 0
for ` > L+ 1.

So in fact we consider polynomials.

Notation A.4. We write f(z) for the z-Transform of a signal f , in analogy to
the notation which is used in signal processing. Further let f be a signal, and
f(z) its z-Transform. For ` ∈ N we write

[z`]f(z) := f [`].
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Remark A.5. As in the scalar case we have the relation

[z`]f(z)g(z) =

n∑
l=0

f [l]g[`− l] := (f ∗ g)[`].

Thus (f ∗ g) is a signal over {0, . . . , L} to R.

Lemma A.6 (The z-transform of the discrete solution operator). The z-transform
of (SLf) = y(z) is given by

y(z) = R(z)(Gk(z)f(z)−Gk(z)f [0]/2),

where k[j] = j, and the operator R(z) is given as resolvent of GA

R(z) := R(GA,−k(z)) = (I +GAk(z))−1,

which is well defined for z sufficiently small.

Proof. From Lemma A.1 we know that

y[n] := SL(f)[n] =

n∑
j=0

jGf [n− j]−GA
n∑
j=0

jy[n− j]−Gf [0]/2.

We multiply this equation by zn, and sum over all n. So we get

y(z) = k(z)Gf(z)−GAk(z)y(z)− k(z)f [0]/2.

From Remark A.5 convolutions become products under the z-transform, and
thus

(I + k(z)GA)y(z) = k(z)Gf(z)− k(z)f [0]/2.

Since k(z) =
∑L+1
j=0 jz

j = z d
dz

∑L+1
j=0 z

j , we have limz→0 k(z) = 0. Since we can
choose z freely, we choose it sufficiently small, such that ‖k(z)GA‖ < 1. This
is possible since the operator GA is bounded. So the operator R is well defined
for such z, and we have the desired identity.

Finally we give the proof of Theorem 3.6.

Proof of Theorem 3.6. Since the operators R and G are self adjoint we can
change the order of multiplication. Recall that we assumed that y[0] = 0. Thus
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it holds that

L 〈SLf, g〉D(L) =

L+1∑
k=0

y[k]g[k]− y[L+ 1]g[L+ 1]/2− y[0]g[0]/2 =

=

L+1∑
k=0

y[k]g−[L+ 1− k]− y[L+ 1]g−[0]/2 =

= [zL+1]y(z)g−(z)− y(z)g−[0]/2

Lemma A.6
= [zL+1]R(z)(Gk(z)f(z)−Gk(z)f [0]/2)g−(z)

−R(z)(Gk(z)f(z)−Gk(z)f [0]/2)g−[0]/2

= [zL+1]R(z)Gk(z)f(z)g−(z)−R(z)k(z)Gf(z)g−[0]/2

−R(z)Gk(z)f [0]/2g−(z) +R(z)Gk(z)f [0]/2g−[0]/2

= [zL+1]f(z)R(z)(Gk(z)g−(z)− k(z)Gg−[0]/2)

− 1

2
f [0]R(z)(Gk(z)g−(z)−Gk(z)g−[0]/2)

Lemma A.6
= [zL+1]f(z)(SLg

−)(z)− f [0](SLg
−)(z)/2

= [zL+1]f(z)x−(z)− f [0]x−(z)/2

=

L+1∑
k=0

x[k]f [k]− x[0]f [0]/2− x[L+ 1]f [L+ 1]/2

=L 〈f, (S∗Lg)〉D(L) .

This was to be shown.

B. The Conjugate Gradient Method

Listing 1: Abstract CG

de f a b s t r a c t c g (Q, b , x0 , inner product ,
t o l = 10e−5, maxiter = None ,
n r i t e r a t i o n s = False ) :

”””
This i s an implementation o f the CG algor i thm on gene ra l
inne r product spaces .
INPUT : :

Q . . . e l l i p t i c l i n e a r operator on H i l b e r t space H
b . . . r i g h t hand s i d e vec to r in H
x0 . . . s t a r t i n g vec to r in H
inner product . . . i nne r product on H
t o l . . . wanted accuracy

OUTPUT: :
x . . . approximated s o l u t i o n o f Q x = b
k . . . needed i t e r a t i o n s i f n r i t e r a t i o n s i s s e t True

”””
#Prepare input
dim = Q. shape [ 1 ]
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i f maxiter i s None :
maxiter = dim∗10

x = z e r o s l i k e ( x0 )
x += x0
r = b − Q. matvec ( x0 )
p = r
res iduum old = inner product ( r , r )
#Test i f x0 i s a l r eady a s o l u t i o n
i f s q r t ( res iduum old ) < t o l :

r e turn x , 0

#Star t i t e r a t i n g
f o r k in range ( maxiter ) :

q = Q. matvec (p)
alpha = res iduum old / inner product (p , q )
x += alpha ∗p
r −= alpha ∗q
residuum new = inner product ( r , r )
i f s q r t ( residuum new ) < t o l : #Stopping c r i t e r i o n

return x , k

p = r + residuum new/ res iduum old ∗p
res iduum old = residuum new

e l s e :
p r i n t ” Maxiter reached ! ”
re turn x , ( k+1)

C. Rational Krylov Methods for the sinc Function

Here we consider rational Krylov methods for the sinc function with α = 1,
and input vector v which does not lie in D(A). For evaluating the matrix
function

f(τ2A) = τ sinc(τ
√
A)

with rational Krylov algorithms Grimm and Hochbruck suggested in [6] that the
parameters α = 0 or α = 1/2 should be used, since for applications the initial
value y1 for the velocity yt in general does not in D(A).

However, it may happen that u 6∈ D(A), but a finite dimensional approxi-
mation ũ of u is in D(A), and then the expression Aũ is defined while Au may
not be. Therefore in a discretized setting the algorithm can still be executed
with α = 1.

Theorem C.1 (Missing case α = 1). Let A be a positive definite and self
adjoint operator, and f = sinc(

√
x). Then the following error estimate holds

for the approximation yαm(τ) ≈ y(τ) = F (τ2A)v, where m denotes the dimension
of the Krylov space:∥∥∥y1

m − sinc(τ
√
A)
∥∥∥ ≤ C(γ)

m
τ2 ‖Av‖ , for v ∈ D(A),

and C(γ) does not depend on A or v.
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Proof. Set ψα(x) := F (x)−F (0)
xα and gαγ := ψα

((
1
x − 1

)
1
γ

)
. From [6] we know

that it only remains to show that Em−1
m−1,1 is bounded. This can be done with

the help of the modules of continuity ω(g1
γ ; δ) on [0, 1]. The modulus is defined

like in [17], namely

ω(F, δ) := sup
x,y∈[a,b],|x−y|≤δ

|F (x)− F (y)| .

The easiest way to calculate the modulus of continuity is to use the mean value
theorem. First we show that we can extend F to a continuous function onto the
boundary of [0, 1]. For easier reading we set z :=

√(
1
x − 1

)
1
γ . Then

lim
x→0+

g1
γ(x) = lim

x→0+
−

√
1
x−1

γ − sin

(√
1
x−1

γ

)
(

1
x−1

γ

)1+ 1
2

= lim
z→+∞

sin(z)

z3
− z−2 = 0

and

lim
x→1−

g1
γ(x) = lim

x→1−
−

√
1
x−1

γ − sin

(√
1
x−1

γ

)
(

1
x−1

γ

)1+ 1
2

= lim
z→0+

sin(z)− z
z3

= −1/6.

Obviously g1
γ is differentiable in (0, 1). So the mean value theorem states that

g1
γ(x) − g1

γ(y) =
dg1
γ(x)

dξ (x − y) for all x, y ∈ [a, b] with a value ξ ∈ (x, y). Thus

it is sufficient to investigate the derivative of g1
γ at 0 and 1, which is given by

(calculated with Sage)

(g1
γ(x))′ = −

cos

(√
1
x
−1

γ

)

γx2

√
1
x
−1

γ

− 1

γx2

√
1
x
−1

γ

2
(

1
x−1

γ

)( 3
2 )

−
3

(√
1
x−1

γ − sin

(√
1
x−1

γ

))
2 γx2

(
1
x−1

γ

)( 5
2 )

. (24)

Since (24) is continuous in (0, 1) we have to only care about the boundary values
again. For the case x = 1 we use our notation of z again. Then (24) reads as
follows:

1

2γx2

1

z4

(
3

sin(z)− z
z

− cos(z) + 1

)
=

1

2γx2
(− 1

30
+ o(1)), for x→ 1

If we take the limit x→ 1 we get − 1
60γ . For x→ 0+ we see that the limit does

not exist, but the function is bounded in every neighborhood of 0. If we rewrite
(24) and get

lim sup
x→−0

g1
γ(x) = lim sup

x→0

γ

2(1− x2)

∣∣∣∣3sin(z(x))

z(x)
− cos(z(x))− 2

∣∣∣∣ ≤ 3γ

2
,

since sin and cos are bounded, and z(x) → ∞ for x → 0. So we can conclude

that
dg1
γ

dx is bounded on the whole interval, and this concludes the proof.
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Due to Theorem C.1 the algorithm converges faster for α = 1, then for
α = 0 or α = 1/2, which was investigated in [6]. This is due to the fact that the
error depends quadratically on the time stepsize τ in the case α = 1, instead
of linearly for α = 1/2, or even constant for α = 0. But this requires sufficient
regularity of the initial data, i.e. u ∈ D(Aα).

However, in finite dimensions the choice α = 1 is admissible. Of course, this
comes at the expense of a dimension-dependent error estimate, see (25) below,
where we also give a numerical example.

One could also interpret this in the following way: If we make a finite dimen-
sional approximation of a PDE in space, the approximation ũ of u has higher
regularity than the initial problem, and therefore the expression Aαũ makes
sense, although the expression Aαu may not be defined. We will demonstrate
here with some numerical experiments, that using α = 1 works well in practice.

We made numerical tests in one dimension with integrated Legendre Poly-
nomials, for the Heavyside function H : [−1, 1]→ R, given by

H(x) =

{
0 x < 0

1 x ≥ 0
.

For A = ∆ it is obvious that H 6∈ D(A). We denote with τ = T/L the
time parameter, and K is the dimension of the Krylov space. The function H
is approximated with help of interpolation.

We compare our calculated result with the classical evaluation methods for
matrix functions of the Scipy package for Python. In Scipy the unitary diag-
onalization of A will be computed, i.e. A = QDQ∗ and the function will be
evaluated by the formula f(A) = Qf(D)Q∗.

For comparision we choose the values for N , τ , and K, as

N = 24, 26, 28, τ = 2−4, 2−6, 2−8 and K = 1, 5, 10.

As we can see in Table 8 the error strongly depends on the size of the space
discretization. We can see that it is crucial to choose a sufficiently large Krylov
space and a sufficiently small stepsize τ . The results suggest, that τ should
satisfy

τ < 1/N,

such that the error is small enough, and convergence of the CG method is pro-
vided. This is reasonable since in one dimension the eigenvalues of the Laplacian
∆, are λk = π2k2, thus we can expect that the largest eigenvalue of the stiffness
matrix A is O(N2), and therefore the error of the Krylov approximation y1

K is
due to Theorem C.1

error =
∥∥∥y1
K − sinc(τ

√
A)v

∥∥∥
2
≤ C(γ)

K
τ2 ‖Av‖2 ≤

C̃(γ)

K
τ2N2 ‖v‖2 . (25)

Although the error depends linearly on the Krylov space dimension K, a
reasonable choice of the size of the parameter K can make a significant difference
as it can be seen in Table 9. We tested with two stepsizes τ = 2−8, 2−10. It
appears that a linear decay with respect to K is far too pessimistic compared
to the numerical results, which suggest that the error decays super linearly or
even exponentially.
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N τ K error
24 2−4 10 5.806 · 10−15

24 2−6 10 5.263 · 10−16

24 2−8 10 6.021 · 10−16

24 2−10 10 3.999 · 10−16

24 2−12 10 4.844 · 10−16

26 2−4 10 1.066 · 10−02

26 2−6 10 3.152 · 10−12

26 2−8 10 4.659 · 10−14

26 2−10 10 3.893 · 10−15

26 2−12 10 3.713 · 10−15

28 2−4 10 2.399 · 10−02

28 2−6 10 1.901 · 10−02

28 2−8 10 3.229 · 10−03

28 2−10 10 1.360 · 10−12

28 2−12 10 3.222 · 10−13

Table 8: Relative errors of
the evaluation of the func-
tion sinc(τ

√
A) with rational

Krylov methods with param-
eter α = 1.

N τ K error
28 2−8 1 1.146 · 10+00

28 2−8 10 3.229 · 10−03

28 2−8 20 4.440 · 10−13

28 2−8 30 1.733 · 10−06

28 2−8 40 9.740 · 10−14

28 2−8 50 1.139 · 10−13

28 2−10 1 8.024 · 10−01

28 2−10 10 1.360 · 10−12

28 2−10 20 1.105 · 10−12

28 2−10 30 9.704 · 10−14

28 2−10 40 8.977 · 10−14

28 2−10 50 7.832 · 10−14

Table 9: Relative errors of
the evaluation of the func-
tion sinc(τ

√
A) with rational

Krylov methods with param-
eter α = 1 for different K.
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