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Abstract

The infimal convolution of total (generalized) variation type functionals and its appli-
cation as regularization for video and image reconstruction is considered. The definition of
this particular type of regularization functional is motivated by the need of suitably com-
bining spatial and temporal regularity requirements for video processing. The proposed
functional is defined in an infinite dimensional setting and important analytical properties
are established. As applications, the reconstruction of compressed video data and of noisy
still images is considered. The resulting problem settings are posed in function space and
suitable numerical solution schemes are established. Experiments confirm a significant
improvement compared to standard total variation type methods, which originates from
the introduction of spatio-temporal and spatial anisotropies.

Mathematical subject classification: 94A08 49M29 65F22
Keywords: Video reconstruction, infimal convolution, total generalized variation, image re-
construction, temporal regularization, line enhancement.

1 Introduction

Motivated by the problem of reconstructing incomplete or corrupted video data, this paper
proposes the application of the infimal convolution of total variation type functionals as reg-
ularization in the context of image processing. We consider the infimal convolution of an
arbitrary number of modified total (generalized) variation functionals, discuss its analytical
properties and propose two applications.

The combination of two different regularization functionals by infimal convolution has al-
ready been mentioned in [16], where special emphasis was put on the combination of a first
and second order total variation functional. Given two functionals J1 and J2, their infimal
convolution is defined by

(J1∆J2)(u) = inf
v

(J1(u− v) + J2(v)).

In some settings it is the convex envelope of the nonconvex function

u 7→ min{J1(u), J2(u)}.
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As regularization functional, the latter favours reconstructions having either low J1 or low J2

value, while the former has the advantage that, besides being convex, it balances the contribu-
tion of J1 and J2 locally. More specifically, it provides an additive decomposition of u where
one part fits to the model enforced by J1 and the other part fits to the model enforced by J2.

This property will be useful when applying the infimal convolution of total variation type
functionals for image sequence regularization, where we consider an image sequence to be a
function defined on a three dimensional space time domain. In such a setting, it allows to
suitably combine spatial and temporal regularity constraints. A combination of two or more
total variation type functionals can also be used advantageously in other situations beyond
image sequences. As a second application we consider the improvement of the reconstruction
of certain line structures in the still image setting.

Space time regularization for videos is quite an open topic in mathematical image processing.
The application of infimal convolution of total variation type functionals in this context is
discussed in Section 4, where we also give a short overview on the available literature. An
application to the still image setting is then addressed in Section 5. Here the literature has
already evolved further, as will be discussed in the same section.

In order to motivate the particular type of functional that we consider in this paper, let us
discuss some aspects of regularization for image sequences: Applying regularization means to
enforce a particular model on the obtained reconstruction. The model should be rich enough to
cover a broad class of realistic applications, but also simple enough for a practical implemen-
tation. The total generalized variation (TGV) functional [12] has been proven to satisfy these
demands and to allow a good reconstruction quality for still images. The underlying assumption
of TGV regularization, namely piecewise smoothness, is a reasonable approximation for many
realistic images. Extending TGV regularization to image sequences in a straightforward way,
by applying it on functions defined on a three dimensional domain, we can expect to obtain a
good reconstruction quality for image sequences that are piecewise smooth in space and time.

The question if such an approximation again allows a good visual reconstruction quality
for a broad enough class of realistic image sequences remains open. Indeed, the perception
of brightness variations in time is different from the perception of brightness variations in
space. The human eye is for example very sensitive to brightness variations in time on a stable
background. This indicates that what might be a reasonable approximation for still images is
not necessarily a good approximation for videos.

In addition, the extension of TGV regularization to space time forces us to fix the scale of
time with respect to space. Fixing this scale means to decide how much emphasis is put on
regularity in space compared to regularity in time.

For simplicity, consider the the total variation (TV) functional and assume that a given
image sequence of k frames of size n× n is modelled as the discretization of a function defined
on the space time domain (0, n)2 × (0,m). This means to choose a spatial stepsize of 1 and a
temporal stepsize of m/k. Note that, even knowing that one frame step relates to a physical
timestep of t seconds, we have not information on how to choose the ratio m/k. This ratio,
however, weights the norm of the discretized gradient. With κ = k/m and δx, δy and δt
being finite difference operators with a stepsize of 1 in the spatial and temporal directions,
respectively, we get for the discrete spatio-temporal gradient

|∇u(z)| =
√

(δxu(z))2 + (δyu(z))2 + κ2(δtu(z))2.

Using TV regularization, the weight κ thus defines how strongly temporal variations are pun-
ished.

By applying infimal convolution of total variation type functionals (ICTV), we can utilize
the additional freedom of the parameter κ to benefit from the additional information of space-
time correspondence in videos. We make the (arbitrary) choice that one pixel step corresponds
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to one frame step, but fix a parameter 1 < κ. Defining the norms

|x|β1 =
√
κ2(x2

1 + x2
2) + x2

3, |x|β2 =
√
x2

1 + x2
2 + κ2x2

3,

we can use the functional

u 7→ min
v

(‖|∇(u− v)|β1‖1 + ‖|∇v|β2‖1)

for spatio-temporal regularization. This means to regularize with TV, by either using a large
or a small space-time ratio. Using this concept, the additional temporal information of time
correspondence of frames allows to relax the piecewise smoothness assumption in space and
time by assuming that the image sequence is locally piecewise smooth in space or time. In
other words, the function u 7→ ‖|∇u|β1‖1, enforces piecewise regularity in space and time, but
allows more model deviation in time than in space. The mapping u 7→ ‖|∇u|β2‖1 acts the other
way around by allowing more deviation in space than in time. The combination of the two
functionals via infimal convolution locally emphasises one of these assumptions. In practice,
we can thus hope to get a good reconstruction of videos not only in areas that are piecewise
smooth in space and time, but also in the two cases of either rapidly moving objects that are
piecewise smooth in space or textured background regions, both of which do not satisfy the
assumption of piecewise smoothness in space and time simultaneously.

Mathematically, the infimal convolution of a number of n TV functionals using norms
| · |β1 , . . . , | · |βn on the gradient can be rigorously defined, for u ∈ L1

loc(Ω), by

ICTVn
β(u) = sup

{∫
u div p | p ∈ C1

c (Ω,Rd), such that div p = div qi,

with qi ∈ C1
c (Ω,Rd), ‖qi‖∞,β∗i ≤ 1, 1 ≤ i ≤ n

}
, (1)

where ‖q‖∞,β∗i = ess sup
r∈Ω

|q(r)|β∗i and |η|β∗i := supξ∈Rd(η, ξ) − I{|ξ|βi≤1}(ξ) are the dual norms.

Since we are actually interested in using the infimal convolution of TGV type functionals of
arbitrary order, this definition will appear in a more general setting later on.

We show in this paper that the infimal convolution of TGV functionals with arbitrary
norms provides an analytically well justified, flexible, convex regularization approach that allows
applications not only for video but also for still image reconstruction. After stating some
preliminary definitions in Section 2, we will define the ICTV functional and derive interesting
properties in Section 3, and afterwards discuss two concrete applications in Sections 4 and 5.

2 Preliminaries

For the sake of a streamlined presentation of the analysis of later sections, it will be convenient
to summarize the necessary notation. For a more detailed information on the presented concepts
we refer to the Preliminaries section of [9].

Throughout this work, let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain. For any
p ∈ [1,∞] we set p′ = p/(p− 1) for p > 1 and p′ =∞ for p = 1.

Definition 2.1. By Symk(Rd) we denote the space of symmetric k−tensors, i.e. the space of
multilinear mappings ξ : Rd× . . .×Rd → R such that ξ(x1, . . . , xk) = ξ(xπ(1), . . . , xπ(k)) for any
permutation π : {1, . . . , k} → {1, . . . , k}. The standard inner product and norm on Symk(Rd)
are defined as

(ξ, ξ) = |ξ|2 =
∑

p∈{1,...,d}k
ξ(ep1 , . . . , epk)

2,

where ei ∈ Rd denotes the i−th standard basis vector.
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Mappings from Ω to Symk(Rd) are called tensor fields and the spaces

Cn(Ω, Symk(Rd)), C∞c (Ω, Symk(Rd)), Lp(Ω, Symk(Rd)),

for p ∈ [1,∞], are defined in the usual way. The space of Radon measures M(Ω, Symk(Rd)) is
defined by duality as

M(Ω, Symk(Rd)) = C0(Ω, Symk(Rd))∗,

where C0(Ω, Symk(Rd)) denotes the closure of Cc(Ω, Symk(Rd)) with respect to the sup-norm.
The norm ‖ · ‖M on M(Ω, Symk(Rd)) is defined as the dual norm.

Definition 2.2. For u ∈ C1(Ω, Symk(Rd)), the derivative ∇⊗u and divergence div u are again
tensor fields defined by

(∇⊗ u)(x)(x1, . . . , xk+1) := Du(x)(x1)(x2, . . . , xk+1)

and

div u(x)(x1, . . . , xk−1) = tr(∇⊗ u) :=
d∑
i=1

(∇⊗ u)(x)(ei, x1, . . . , xk−1, ei),

where Du denotes the standard Fréchet derivative. For distributions u ∈ D(Ω, Symk(Rd)), the
weak symmetrized derivative Eu is defined in the weak sense by

〈Eu, ϕ〉 = −〈u, divϕ〉, ϕ ∈ C∞c (Ω, Symk+1(Rd)).

Note that the derivative of a symmetric tensor field is in general not symmetric, but the
symmetrized derivative and the divergence are.

Since norms on finite dimensional vector spaces will play an important role later on, we
introduce the following notation:

S: To denote different norms on Rd, we define S to be a set of symbols such that, for γ ∈ S,
| · |γ denotes an arbitrary but fixed norm on Rd.

| · |β: Given n ∈ N, we use parameter matrices β ∈ Sk1 × . . . × Skn with orders ki ∈ N,
i = 1, . . . , n to denote a set of norms on symmetric tensor spaces, i.e.

| · |βi,j denotes a norm on Symkj−i(Rd)

for i = 0, . . . , kj − 1, j = 1, . . . , n.

| · |β∗ : Given n ∈ N and a norm parameter matrix β ∈ Sk1 × . . . × Skn , we denote by β∗ the
norm parameter matrix corresponding to the dual norms, i.e.

|η|β∗i,j = sup
ξ∈Symkj−i(Rd)

(η, ξ)− I{ν : |ν|βi,j≤1}(ξ)

for η ∈ Symkj−i(Rd), i = 0, . . . , kj − 1, j = 1, . . . , n.

‖ · ‖p,γ: For a given norm parameter γ ∈ S, ‖ · ‖p,γ denotes the p-norm of a symmetric tensor
field, i.e.

‖φ‖p,γ = ‖|p|γ‖p

md(β): This denotes the maximal vector dimension of a parameter matrix β, i.e.

md(β) = max{ki | i = 1, . . . , n} if β ∈ Sk1 × . . .× Skn .
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(n, β): By a parameter tuple (n, β) we denote a natural number n together with a norm pa-
rameter matrix β ∈ Sk1 × . . . × Skn . With such a tuple, also the vector dimensions
k1, . . . , kn, the maximal vector dimension md(β) and the dual norm parameter matrix
β∗ are implicitly introduced.

We point out that the purpose of the norm parameter matrices is to fix and name different,
arbitrary norms finite dimensional vector spaces. The notation is, however, motivated by our
applications later on, where we are in particular interested in weighted Euclidean norms, e.g.,

|ξ|γ =
√
ξ2

1 + ξ2
2 + γξ2

3

where ξ ∈ R3 and γ > 0 is a positive parameter.
At last, we recall the space of functions of bounded variation and related functionals.

Definition 2.3. The space BV(Ω) is defined as the set of L1(Ω) functions u such that

TV(u) = sup


∫
Ω

u divϕ dx |ϕ ∈ C1
c (Ω,Rd), ‖ϕ‖∞ ≤ 1

 <∞.

A norm on BV(Ω) is given by ‖u‖BV = ‖u‖L1 + TV(u).

Remember that u ∈ L1(Ω) is contained in BV(Ω) if and only if its weak derivative, denoted
by Du, can be identified with a finite Radon measure, i.e., Du ∈M(Ω,Rd), see [1].

A generalization of the TV functional is the Total Generalized Variation (TGV) functional,
introduced in [12]. We slightly extend its definition by allowing arbitrary norms on the test
functions:

Definition 2.4. Denote with β ∈ Sk parameters for k arbitrary norms on Rd. The TGV
functional of order k is then defined as

TGVk
β(u) = sup

{∫
Ω

u · divk ξ dx
∣∣ ξ ∈ Ck

c (Ω, Symk(Rd)),

‖ divi ξ‖∞,βi ≤ 1, i = 0, . . . , k − 1

}
. (2)

Note that, with | · |βi = α−1
i | · | the definition of TGVk

α coincides with the one of [12]. In [9]
it has been shown that TGVk

β, with | · |βi = α−1
i | · |, can equivalently be written as

TGVk
β(u) = min

vi∈BD(Ω,Symi(Rd)),
i=1...k,
vk=0

αk−1‖Du− v1‖M +
k∑
i=2

αk−i‖E(vi−1)− vi‖M,

where BD(Ω, Symi(Rd)) denotes the space of tensor fields of bounded deformation (see [9]).
Also, the norm ‖u‖BGV = ‖u‖L1 + TGVk

β(u) is an equivalent norm on BV(Ω).
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3 The ICTV functional

With these preparations we can define the ICTV functional. Let (n, β) with β ∈ Sk1× . . .×Skn
be a parameter tuple. For u ∈ L1

loc(Ω), we define the extended real valued functional

ICTVn
β(u) = sup

{∫
Ω

uφ |φ = divki qi, with qi ∈ Ckic (Ω, Symki(Rd)),

‖ divl qi‖∞,β∗l,i ≤ 1, l = 0, . . . , ki − 1, i = 1, . . . , n

}
. (3)

Note that ICTVn
β can equivalently be written as

ICTVn
β(u) = sup

φ∈
⋂n
i=1 Ui

∫
Ω

uφ = sup
φ∈Cc(Ω)

∫
Ω

uφ−
n∑
i=1

IUi(φ)

 ,

where
Ui = {divki p | p ∈ Cki

c (Ω, Symki(Rd)), ‖ divl p‖∞,β∗l,i ≤ 1, 0 ≤ l < ki}.

By applying Fenchel duality formally one gets that

ICTVn
β(u) = inf

v0,...,vn∈BV(Ω)
v0=u,vn=0

n∑
i=1

TGVki
β·,i

(vi−1 − vi). (4)

Thus, n determines the number of TGV functionals we want to convolute and ki, i = 1, . . . , n,
their orders. In particular, for n = 2 and k1 = k2 = 1 we get formally

ICTVn
β(u) = inf

v∈BV(Ω)
‖D(u− v)‖M,β1 + ‖Dv‖M,β2 .

After providing some basic properties of ICTVn
β we will show that this primal formulation is

indeed equivalent.

3.1 Properties of ICTV

The following propositions sum up basic properties of the ICTV functional:

Proposition 3.1. Let (n, β) be a given parameter tuple. Then the ICTVn
β functional enjoys

the following properties:

1. For any parameter tuple (ñ, β̃) with md(β) ≥ md(β̃), there exists a constant c > 0 such
that, for all u ∈ L1

loc(Ω),
c ICTVn

β(u) ≤ ICTVñ
β̃
(u).

In particular, ICTVn
β is equivalent to ICTVñ

β̃
for any parameter tuple (ñ, β̃) with md(β) =

md(β̃), i.e., there exist constants c1, c2 > 0 such that, for all u ∈ L1
loc(Ω),

c1 ICTVn
β(u) ≤ ICTVñ

β̃
(u) ≤ c2 ICTVn

β(u). (5)

2. ICTVn
β is equivalent to TGVk̃

β̃
with k̃ = md(β) and any parameter vector β̃ ∈ Sk̃+.

3. ICTVn
β is proper, convex and lower semi-continuous w.r.t weak L1 convergence.
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4. ICTVn
β is a semi-norm on the space BV(Ω).

5. For u ∈ L1
loc(Ω), we have ICTVn

β(u) = 0 if and only if u is a polynomial of degree less
that md(β).

6. The norm ‖ · ‖ICTVnβ
= ‖ · ‖L1 + ICTVn

β(·) is equivalent to ‖ · ‖BV for any k ∈ N and any
choice of norms β.

Proof. We start by showing that, for an arbitrary parameter tuple (ñ, β̃) with β̃ ∈ Sk̃1×. . .×Sk̃n
and md(β) ≥ md(β̃), there exists a constant c such that, for all u ∈ L1

loc(Ω),

c ICTVn
β(u) ≤ ICTVn

β̃
(u). (6)

Fix j ∈ N such that kj = md(β). By equivalence of norms, there exist constants cl,i > 0 such
that

cl,i|η|β̃∗l,i ≤ |η|β∗l,j for all η ∈ Symk̃i−l(Rd),

and l = 0, . . . , k̃i − 1, i = 1, . . . , ñ. Define c = minl,i{cl,i}. For any norm parameter matrix
γ ∈ Sl1 × · · · × Slm , introduce the set

Uγ,i(Ω) = {divli p : p ∈ Clic (Ω, Symli(Rd)) : ‖ divl p‖∞,γ∗l,i ≤ 1, l = 0, . . . , li − 1}.

Recall that

ICTVn
γ(u) = sup

φ∈
⋂n
i=1 Uγ,i(Ω)

∫
Ω

uφ (7)

for any u ∈ L1
loc(Ω). Now take any φ ∈

⋂n
i=1 Uβ,i. Hence φ = divkj p ∈ Uβ,j(Ω). Then, cφ ∈ Uβ̃,i

since cφ = divk̃i(divkj−k̃i cp) and

| divl(divkj−k̃i cp)|β̃∗l,i ≤ | divl(divkj−div k̃i)p|β∗l,j ≤ 1

for any 0 ≤ l < ki. Hence, for any u ∈ L1
loc(Ω),

c ICTVn
β(u) = sup

φ∈
⋂n
i=1 Uβ,i(Ω)

∫
ω

u(cφ) ≤ sup
φ̃∈

⋂n
i=1 Uβ̃,i(Ω)

∫
ω

u(φ̃) = ICTVn
β̃
(u)

and (6) holds.
The equivalence of ICTVn

β to ICTVñ
β̃

with md(β̃) = md(β) follows by interchanging the

roles of β and β̃. Also the equivalence to TGVk̃
β̃

with k̃ = md(β) and β̃ ∈ Sk̃ is immediate once

we notice that TGVk̃
β̃

= ICTV1
β̃
.

To verify 3., note that by equation (7), ICTVn
β is given as pointwise supremum of a family

of affine functions u 7→
∫

Ω
u div p that are continuous with respect weak L1 topology. This

yields convexity and lower semi-continuity of ICTVn
β. Since ICTVn

β is obviously proper, claim
3. follows.

It is also easy to see that ICTVn
β(u) is positively-homogeneous since

⋂n
i=1 Uβ,i is balanced,

hence its is a seminorm on BV (Ω).
The remaining assertions follow immediately from the equivalence of ICTVn

β to TGVk
α with

k = md(β), α ∈ Rk
+, and the corresponding assertions on TGVk

α as in [9].

Below, for any orthogonal matrix O ∈ Rd×d and ξ ∈ Symk(Rd), k ∈ N, we define the right
multiplication ξO ∈ Symk(Rd) by

(ξO)(a1, . . . , ak) = ξ(Oa1, . . . , Oak).
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Proposition 3.2. Let again (n, β) be a given parameter tuple. ICTVn
β is invariant under

rotations that leave all norms |·|β∗l,i invariant, i.e. for any orthogonal matrix O ∈ Rd×d satisfying

|ξOT |β∗l,i = |ξ|β∗l,i for all ξ ∈ Symki−l(Rd) and l = 0, . . . , ki − 1, i = 1, . . . , n, it follows that for

any u ∈ L1
loc(Ω), u ◦O ∈ L1

loc(O
TΩ) and

ICTVn
β(u ◦O) = ICTVn

β(u).

Proof. For i = 1, . . . , n we recall the definition of Uβ,i(Ω) from the proof of the previous propo-
sition. We shall also use Uβ,i(O

TΩ), where O satisfies the assumptions of the proposition. The
assertion will be verified by showing that

sup
φ∈

⋂n
i=1 Uβ,i(O

TΩ)

∫
OTΩ

u(Ox)φ(x) dx = sup
ψ∈

⋂n
i=1 Uβ,i(Ω)

∫
Ω

u(x)ψ(x) dx. (8)

First, let φ ∈
⋂n
i=1 Uβ,i(O

TΩ), so that for each i = 1, . . . , n we have φ = divki pi ∈ Uβ,i(OTΩ),
for some pi ∈ Ckic (OTΩ, Symki(Rd)). From (A.4) in [12] it follows that

pi ∈ Ckic (OTΩ, Symki(Rd))⇔ p̃i = (pi ◦OT )OT ∈ Ckic (Ω, Symki(Rd))

and
divl p̃i = ((divl pi) ◦OT )OT , for l = 0, . . . , ki.

Consequently by the assumed invariance of norms

‖ divl p̃i‖∞,β∗l,i = ‖(divl pi ◦OT )OT‖∞,β∗l,i
= ‖ divl pi ◦OT‖∞,β∗l,i = ‖ divl pi‖∞,β∗l,i ,

(9)

where the∞−norm is taken over Ω in the first three expressions, and over OTΩ in the last one.
It follows that divki p̃i ∈ Uβ,i(Ω). Also, they coincide since φ = divki p for all i = 1, . . . , n, and
hence ψ := divki p̃i ∈

⋂n
i=1 Uβ,i(Ω). These arguments can be reversed: For ψ = divki qi ∈ Uβ,i(Ω)

with qi ∈ Ckic (Ω, Symki(Rd)) we have pi = (qi ◦ O)O ∈ Ckic (OTΩ, Symki(Rd)) and φ = divki pi ∈
Uβ,i(O

TΩ).
Finally for each i = 1, . . . , n we find∫

OTΩ
u(Ox)φ(x) dx =

∫
OTΩ

u(Ox) divki pi(x) dx =
∫

Ω
u(x) divki(pi(O

Tx)) dx

=
∫

Ω
u(x)(divki p̃i)(x) dx =

∫
Ω
u(x)ψ(x) dx.

Together with (9) this implies (8).

The assumption on the relationship between O and | · |β∗l,i in Proposition 3.2 is satisfied, for
instance, if the weighted norm is given by

|ξ|β∗l,i = (
∑

p∈{1,...,d}ki−l
ξ(Be1, . . . , Bepki−l)

2)
1
2 ,

with B ∈ Rd×d a positive definite matrix which commutes with O. In fact, since the operation
ξ → ξOT is an orthogonal transformation on Sym(Rd)ki−l, [12], we have

|ξ|2β∗l,i =
∑

p∈{1,...,d}ki−l ξ(Be1, . . . , Bepki−l)
2

=
∑

p∈{1,...,d}ki−l ξ(BO
T e1, . . . , BO

T epki−l)
2

=
∑

p∈{1,...,d}ki−l ξ(O
TBe1, . . . , O

TBepki−l)
2 = |ξOT |2β∗l,i .
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This situation will be relevant for our treatment of image sequences, where the temporal and
spatial coordinates are uncoupled and the spatial coordinates are subject to rotation.

We now show that the dual formulation of ICTVn
β as in (4) is indeed equivalent and that,

for any u ∈ BV(Ω), the infimum in (4) is actually achieved.
For this purpose, we first establish for Lp(Ω), p ∈ [1,∞], what would be an orthogonal

decomposition of L2(Ω) as L2(Ω) = Pk−1(Ω)⊕Pk−1(Ω)⊥. However, in a general Banach space
setting, such a decomposition is a somewhat more involved. For the readers convenience, we
provide an abstract functional analytic lemma from which the desired decomposition will follow.

For a normed space X with dual X∗ and M ⊂ X, N ⊂ X∗ define the annihilators

M⊥ = {f ∈ X∗ | 〈f, x〉X∗,X = 0 for all x ∈M},

N⊥ = {x ∈ X | 〈f, x〉X∗,X = 0 for all f ∈ N}.

Note that the definition of the annihilator depends on whether the set is contained in X or X∗.

Lemma 3.1. Let X be a Banach space and P ⊂ X a finite dimensional subspace. Further
suppose that F : P → X∗ is a linear mapping such that 〈F (p), p〉X∗,X = 0 implies p = 0. Then,
there exists a continuous, linear projection R : X → P ⊂ X such that

ker(R) = F (P )⊥

and every x ∈ X can be uniquely decomposed as x = x−R(x) +R(x) ∈ F (P )⊥ + P .

Proof. First remember [29, Theorem 4.7] that (F (P )⊥)⊥ = F (P )
∗
, where F (P )

∗
denotes the

closure of F (P ) ⊂ X∗ w.r.t. the weak-star topology. By F (P ) being a finite dimensional
subspace of X∗, it is closed w.r.t. weak-star convergence [15, Remark 10, pg. 64] and hence we
get

F (P ) = (F (P )⊥)⊥.

To obtain the decomposition of X as claimed, note that A := P + F (P )⊥ is a closed
subspace of X as the sum of a finite dimensional and a closed subspace [15, Theorem 11.4].
Also P ∩ F (P )⊥ = {0} since 0 = 〈F (p), p〉X∗,X implies p = 0.

To show that A = X, take any f ∈ X∗ such that

〈f, p+ q〉X∗,X = 0 for all p ∈ P, q ∈ F (P )⊥ ⊂ X.

Choosing p = 0 this implies that f ∈ (F (P )⊥)⊥ = F (P ). Thus there exists p0 ∈ P with
F (p0) = f and choosing q = 0 in the equation above implies that 〈F (p0), p0〉X∗,X = 0 and thus
f = 0.

Hence A = A = X. Thus the linear mapping

T : P × F (P )⊥ → X, T (p, q) := p+ q

is bijective and the unique decomposition follows. Equipping P × F (P )⊥ with the norm
‖(p, q)‖P×F (P )⊥ := ‖p‖X +‖q‖X , T is also continuous and, as consequence of the open mapping
theorem [15, Corollary 2.7], it possesses a continuous inverse. Thus the linear projection given
by R(x) = p for x = p+ q ∈ P + F (P )⊥ is continuous since

‖p‖X ≤ ‖p‖X + ‖q‖X = ‖T−1(x)‖P×F (P )⊥ ≤ C‖x‖X

and the assertion follows.

Lemma 3.1 implies the following corollary that will be relevant for our work.
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Corollary 3.1. With k ∈ N and Pk−1(Ω) the space of polynomials of degree less or equal to
k−1, for each p ∈ [1,∞], there exists a linear, continuous projection Rk,p : Lp(Ω)→ Pk−1(Ω) ⊂
Lp(Ω) such that ker(R) = P⊥k,p with

P⊥k,p := {u ∈ Lp(Ω) | (u, p) = 0 for all p ∈ Pk−1(Ω)}

Proof. We apply Lemma 3.1 with X = Lp(Ω) and P = Pk−1(Ω).
If p < ∞, we can define the mapping F of Lemma 3.1 to be the identity from Pk−1(Ω) →

Lp
′
(Ω). The duality paring 〈·, ·〉X∗,X then coincides with the standard pairing (·, ·) between Lp

′

and Lp(Ω) and hence the assertion follows.
If p =∞ we can use the canonical injection J : L1(Ω)→ (L∞(Ω))∗ and define F to be the

restriction of J to P as subset of L1(Ω). Then, for all x ∈ X = L∞(Ω) and f ∈ J(L1(Ω)) ⊂ X∗,
the duality paring 〈f, x〉X∗,X again coincides with the standard pairing (x, f) between Lp and
Lp
′
(Ω) and the assertion follows.

The important part of the previous corollary is that the exponent p is also allowed to take
the values 1 and ∞. Without these two cases, the decomposition would have followed more
easily as a result of reflexivity of Lp(Ω).

We are now able to state one of our main results, from which the primal representation of
the ICTV functional will follow.

Proposition 3.3. Let k ∈ N, β ∈ Sk be a parameter vector for the TGVk
β functional and let

ψ : Ld(Ω)→ R be a convex, l.s.c. function such that

0 ∈ dom(ψ) ⊂ P⊥k,d,

with P⊥k,d as in in Corollary 3.1. Denote by

U = {divk φ ∈ C∞c (Ω, Symk(Rd)) | ‖ divi φ‖∞,βi ≤ 1, 0 ≤ i ≤ k − 1} ⊂ Ld(Ω)

such that I∗U = TGVk
β in Ld

′
(Ω). Then, for any u ∈ Ld′(Ω),

(IU + ψ)∗(u) = min
v∈Ld′ (Ω)

TGVk
β(u− v) + ψ∗(v) in Ld

′
(Ω). (10)

Proof. First note that it is sufficient to show the assertion with U replaced by its closure in
Ld(Ω), which is denoted by U .

By [2, Theorem 1.1], the claimed assertion is true if we can show that
⋃
λ≥0 λ(U − dom(ψ))

is a closed vector space. We shall verify that⋃
λ≥0

λ(U − dom(ψ)) = P⊥k,d, (11)

which is a closed subspace of Ld(Ω). To this aim, define F : Ld
′ → R by

F (u) = TGVk
β(u) + IP⊥

k,d′
(u).

Then F (x) is proper, convex, lower semi-continuous and coercive, i.e. F (x) → ∞ whenever
‖x‖d′ →∞. To see the coercivity, define Rk,d′ : Ld

′
(Ω)→ Pk−1(Ω) to be the continuous, linear

projection of Corollary 3.1. Now take any sequence (xn)n in Ld
′
(Ω) such that F (xn) is bounded.

It follows that xn ∈ P⊥k,d′ and thus Rk,d′(xn) = 0. Hence, by the Poincaré-type inequality for
TGV [9, Proposition 3.1],

‖xn‖d′ = ‖xn −Rk,d′(xn)‖d′ ≤ C TGVk
β(xn)

10



and consequently also ‖xn‖d′ is bounded. As a consequence (see [7, Theorem 4.4.10]), Bε(0) ⊂
dom(F ∗) ⊂ (Ld

′
(Ω))∗ , for some ε > 0. Denoting by Rk,d : Ld(Ω)→ Pk−1(Ω) again a projection

as in Lemma 3.1, we get, for u ∈ Ld(Ω) ⊂ (Ld
′
(Ω))∗,

F ∗(u) = sup
v∈Ld′ (Ω)

(u, v)− F (v) = sup
v∈P⊥

k,d′

(u, v)− TGVk
β(v) (12)

= sup
v∈P⊥

k,d′

(u−Rk,d(u) +Rk,d(u), v)− TGVk
β(v) (13)

= sup
v∈P⊥

k,d′

(u−Rk,d(u), v)− TGVk
β(v) (14)

= sup
v∈Ld′ (Ω)

(u−Rk,d(u), v)− TGVk
β(v) = IU(u−Rk,d(u)) (15)

To show the inclusion ⊃ in equation (11), take u ∈ P⊥k,d. Then, with λ := ε−12‖u‖d, ũ := u/λ ∈
Bε(0) since the canonical injection J : Ld → (Ld

′
(Ω))∗ is isometric. Hence ũ−Rk,d(ũ) = ũ ∈ U .

Since 0 ∈ dom(ψ), u = λ(ũ− 0) ∈
⋃
λ≥0 λ(U − dom(ψ)). The inclusion ⊂ equation (11) is also

satisfied, since both U and dom(ψ) are contained in P⊥k,d. The assertion follows.

Remark 3.1. Note that, as consequence of the proof of Proposition 3.3, we know that the
closure of the set

U = {divk φ ∈ C∞c (Ω, Symk(Rd)) | ‖ divi φ‖∞ ≤ 1, 0 ≤ i ≤ k − 1}

in Ld(Ω) has nonempty relative interior in Ld(Ω) ∩ P⊥k,d, i.e. there exists ε > 0 such that

Bε(0) ∩ P⊥k,d ⊂ U .

The previous remark has also consequences for the solvability of the equation divk φ = g
with φ suitably defined. For that purpose, we define

‖φ‖d
d,divk

:=
k∑
i=0

‖ divi φ‖dd

and the spaceW d
0 (divk; Ω, Symk(Rd)) as the closure of C∞c (Ω, Symk(Rd)) with respect to ‖·‖d,divk

(see [19, Section 2.3]) as norm. We then get the following result.

Corollary 3.2. There exists a constant C > 0 such that, for any g ∈ Ld(Ω)∩P⊥k,d, there exists

φ ∈ W d
0 (divk; Ω, Symk(Rd)) with ‖ divi φ‖∞ <∞ for i = 0, . . . k − 1 such that

divk φ = g and max
i=0,...,k−1

{‖ divi φ‖∞} ≤ C‖g‖d (16)

Proof. With U as in Remark 3.1, we can choose ε > 0 such that Bε(0) ∩ P⊥k,d ⊂ U . Note also
that

U =
{

divk φ |φ ∈ W d
0 (divk; Ω, Symk(Rd), ‖ divi φ‖∞ ≤ 1, i = 0, . . . , k − 1

}
,

which can be shown by weak sequential compactness arguments (see [19, Proposition 4.3]).
Thus, for g ∈ Ld(Ω) ∩ P⊥k,d there exists φ ∈ U such that divk φ = εg/(2‖g‖d). Consequently,

φ̃ := ε−12‖g‖dφ satisfies

divk φ̃ = g and ‖ divi φ̃‖∞ ≤ 2ε−1‖g‖d for i = 0, . . . , k − 1.

11



This result can be put into context with a result in [8], which says that for g ∈ Ld(Ω) with∫
Ω
g = 0 there exists φ ∈ C0(Ω) ∩W 1,d

0 (Ω) and a constant C, independent of g, such that

div φ = g and ‖φ‖∞ + ‖φ‖W 1,d ≤ C‖g‖d.

For the case k = 1, this can be used to obtain the results of of Proposition 3.3. For arbitrary
k, an alternative proof of Proposition 3.3 would have been to modify the arguments of [8]
by defining divk as unbounded operator and arguing with the closed range theorem. For our
purposes, the proof presented above is more direct.

We are now able to provide an equivalent definition of ICTV.

Proposition 3.4. For n ∈ N and β ∈ Sk1 × . . . × Skn, let ki and β·,i, i ∈ {1, . . . , n}, be the
order and parameter vectors for the TGVki

β·,i
functionals, respectively. Further denote by Ui the

sets such that I∗Ui = TGVki
β·,i

in Ld
′
(Ω). Then, for any u ∈ Ld′(Ω),

ICTVn
β(u) = min

vi∈Ld
′
(Ω),

1≤i<n,
v0=u, vn=0

(
n∑
i=1

TGVki
β·,i

(vi−1 − vi)

)
(17)

Proof. By definition, (
n∑
i=1

IUi

)∗
(u) = ICTVn

β(u).

Choose i1 such that ki1 = min{k1, . . . , kn}. Then,

0 ∈ dom(
n∑
i=1
i 6=i1

IUi) ⊂ P⊥ki1 ,d

and we can apply Proposition 3.3 to get

(
n∑
i=1

IUi

)∗
(u) = min

v1∈Ld′ (Ω)
TGV

ki1
β·,i1

(u− v1) +

 n∑
i=1
i 6=i1

IUi


∗

(v1)

Proceeding inductively, the assertion follows after finitely many steps.

Remark 3.2. By the embedding BV(Ω) ⊂ Ld
′
(Ω) it follows that for u ∈ L1

loc(Ω) \ Ld′(Ω) both
ICTVn

β and the right hand side of (17) equal infinity. Thus the right hand side (17) is an
equivalent definition for ICTVn

β for any u ∈ L1
loc(Ω).

Remark 3.3. Also note that, when two norms β·,i, β·,j are chosen equal in the definition of
ICTVn

β given in equation (3), then the corresponding L∞ restrictions simplify to one restriction

and hence the ICTVn
β functional reduces to ICTVn−1

β̃
.

Remark 3.4. For the sake of illustration let us consider a special case with k = 2, d = 2 and
two norms on R2 given by |x|βi = (

∑2
j=1 β

j
i x

2
j)

1
2 , with βji > 0, for i = 1, 2; j = 1, 2. By Theorem

1.1 we have
ICTV2

β(u) = min
v∈BV (Ω)

‖D(u− v)‖M,β1 + ‖Dv‖M,β2 . (18)

If β1 = β2 then the two restrictions ‖qi‖∞,β∗i ≤ 1 in the definition of ICTV2
β(u) according to

(3) reduce to just one constraint. Equivalently, since ‖D(u− v)‖M,β1 + ‖Dv‖M,β1 ≥ ‖Du‖M,β1,
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we observe that the minimum on the right hand side of (18) is attained at v = αu for any
α ∈ [0, 1]. As soon as β1 6= β2 the coefficients βji influence the contributions along the xj-
directions in such a way that the effect of |∂x1 · |M is emphasized if β1

i is large relative to β2
i .

The contribution of ‖D(u − v)‖M,β1 is balanced with that of ‖Dv‖M,β2. This balancing takes
place locally. Therefore, as a regularization term, the effect of ICTV2

β is different from that of

α‖Du‖M,β1 + (1− α)‖Du‖M,β2 (19)

with α ∈ [0, 1], since (19) acts globally while (18) acts locally.

3.2 ICTV as regularization

Let p ∈ [1,∞]. We consider
min

u∈Lp(Ω)
j(u) + ICTVn

β(u), (P)

where j : Lp(Ω)→ R+ is convex. We additionally make the following assumption:
Any sequence (un)∞n=1 in Lp(Ω), for which ICTVn

β(un) + j(un) is bounded,

admits a subsequence L1-weakly converging to some u ∈ Lp(Ω)

such that j(u) ≤ lim inf
i→∞

j(uni).

(A)

Then we have the following result.

Proposition 3.5. With (A) holding, there exists at least one solution to (P).

Of course, assumption (A) is constructed in such a way that existence of a solution to (P)
follows by properties of the ICTV functional and standard arguments. It will be shown in the
subsequent corollaries that this assumption is convenient to cover all generic settings we are
interested in.

Proof of Proposition. For the sake of completeness, we provide a short proof. Take (un)n to be a
minimizing sequence for (P). Obviously, ICTVn

β +j is bounded below by zero. If ICTVn
β +j does

not admit a finite value, any u ∈ Lp(Ω) will be a minimizer. In the other case, we can assume
that the sequence {ICTVn

β(un) + j(un)} is bounded. By assumption (A) there exists u ∈ Lp(Ω)
and a subsequence (uni)i such that uni → u weakly in L1(Ω) and j(u) ≤ lim infi→∞ j(uni). By
lower semi-continuity of ICTVn

β with respect to weak L1 convergence we conclude that

j(u) + ICTVn
β(u) ≤ lim inf

i→∞
j(uni) + lim inf

i→∞
ICTVn

β(uni)

≤ lim inf
i→∞

(j(uni) + ICTVn
β(uni)) = inf

u∈Lp(Ω)
j(u) + ICTVn

β(u).

Hence u is a solution to (P).

A first consequence is the following:

Corollary 3.3. In the problem setting (P), suppose that j(u) := 1
p
‖u− u0‖pp in case p <∞ or

j(u) = ‖u− u0‖∞ in case p =∞, for given u0 ∈ Lp(Ω). Then assumption (A) holds true and
thus there exists a solution to (P).

Proof. In general, ‖ · ‖pp is weakly lower semi-continuous with respect to Lq convergence for any
p ≤ q.

If p ∈ (1,∞), assumption (A) holds trivially since any sequence (un)n in Lp(Ω) for which
(‖un − u0‖pp)n is bounded, admits a subsequence Lp-weakly converging to some u ∈ Lp(Ω).
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If p = 1, boundedness of ‖un‖1 + ICTVn
β(un) yields, by compact embedding of BV(Ω) into

Ld
′
(Ω), existence of a subsequence (uni)i weakly converging in Ld

′
(Ω) to some u ∈ Ld′(Ω) and

thus assumption (A) again holds true (replace d′ by any r ∈ (1,∞) if d = 1).
If p =∞, boundedness of ‖un‖∞ yields existence of subsequence (uni)i weakly-star converg-

ing to some u ∈ L∞(Ω). Since L∞(Ω) ⊂ L1(Ω) ⊂ (L∞(Ω))∗, (uni)i converges to u also weakly
in L1(Ω), and by weak-star lower semi-continuity of ‖ · ‖∞ [15, Proposition 3.13], assumption
(A) holds.

Similarly, one can show the following.

Corollary 3.4. In the problem setting (P), with p ∈ [1,∞), suppose that j(u) is lower semi-
continuous and coercive in Lp(Ω), i.e. j(u)→∞ for ‖u‖p →∞. Then, assumption (A) holds
true and there exists a solution to (P).

In fact, the properties of j(u) = 1
p
‖u − u0‖pp used in the proof of Corollary 3.3 are exactly

lower semi-continuity and coercivity in Lp(Ω), hence the result can be shown as above. Of
course, the result also holds for p =∞ assuming that j is weak-star lower semi-continuous.

For another important choice of j, existence of a solution to (P) follows from Proposition
3.5, even if j itself is not coercive:

Corollary 3.5. In the problem setting (P), suppose that

j(u) :=
1

q
‖Ku− u0‖qY for K ∈ L(Lp(Ω), Y )

where p, q ∈ [1,∞), p ≤ d′ and Y is a normed space. Then there exists a solution to (P).

Proof. We partly follow [9, Corollary 4.3]: Define M = ker(K) ∩ Pk−1(Ω) ⊂ Lp(Ω). Since M
is a subspace of the finite dimensional space Pk−1(Ω), we can proceed as in Corollary 3.3 and
apply Lemma 3.1 to obtain that

M⊥
k,p := {u ∈ Lp(Ω) | (u, q) = 0 for all q ∈M}

is closed as subspace of Lp(Ω) and the existence of a continuous linear projection Rk,p : Lp(Ω)→
M ⊂ Lp(Ω) with ker(Rk,p) = M⊥

k,p.
Since any u ∈ Lp(Ω) admits a unique decomposition u = u − Rk,p(u) + Rk,p(u) and both

j and ICTVn
β are zero on M , it is sufficient to find a minimizer in M⊥

k,p ⊂ Lp(Ω). Consider
the convex function F (u) = j(u) + IM⊥k,p(u). Any sequence (un)n in Lp(Ω) such that F (un) +

ICTVn
β(un) is bounded satisfies Rk,p(un) = 0. As a consequence of a Poincaré-type inequality

for TGVk
α [9, Proposition 3.11] and equivalence of TGVn

α to ICTVn
β as in Proposition 3.1, we

get that ‖un −Rk,p(un)‖d′ ≤ C ICTVn
β(un), with C > 0, and thus it is bounded. (Note that by

embedding, (un)n indeed is in Ld
′
(Ω).)

Since p ≤ d′ and p <∞ we can thus choose a subsequence (uni)i weakly converging to u in
Lp. By weak-weak continuity of K and weak lower semi-continuity of any norm it follows that
F (u) ≤ lim infi→∞ F (uni). Thus assumption (A) holds true for F + ICTVn

β. Since we already
know that any minimizer of F + ICTVn

β also minimizes j + ICTVn
β, existence of a solution

follows.

4 Application to image sequence reconstruction

As first application we deal with the reconstruction of corrupted image sequences. More specif-
ically, we consider the decompression of videos where each frame has been compressed individ-
ually using JPEG compression. This setting serves as first test situation for the application of
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ICTV regularization for image sequence reconstruction. It has the particular advantage that
there is no parameter necessary to weight between data fidelity and regularization, thus the
comparison of different methods is simpler. Similar applications that are also captured with
our framework are image sequence denoising or deblurring.

A future goal could be the application of ICTV regularization to MPEG decompression,
which combines frame-wise JPEG decompression and motion compensation. However, due
to the more involved coding and, as a consequence, the more involved data constraints, we
only consider frame wise JPEG encoding (MJPEG) in this paper, where the focus lies on
regularization rather than data modeling.

The mathematical field of image sequence reconstruction is by far not as evolved as still
image reconstruction. While there is rich literature on problems such as optical flow computa-
tions, publications that propose variational models for image sequence reconstruction are, by
best knowledge of the authors, relatively rare.

We refer to [4, 20] for a short overview on image sequence reconstruction. A crucial point is
the incorporation of the additional time dimension. Methods for image sequence reconstruction
can thus be very well classified by their approach to resolve this issue.

A first approach would of course be to ignore the time correspondence of frames and reg-
ularize each frame in space only. This, however, ignores both, the fact that time correlation
provides important information for spatial regularization of each frame, and that the observed
visual reconstruction quality is heavily influenced by the transitions between the individual
frames. Simple numerical experiments later on will support these claims.

A second, more suitable approach, is to explicitly handle time correlation between frames
by coupling them via partial differential equations. Methods using optical flow or transport
models follow this direction. Regularization can then be either carried out in space only, since
the PDE deals with time correspondence, or, in case of optical flow models, additionally in the
direction of the optical flow. We refer to [18, 27, 6, 23] for optical flow based methods that are
applied for image restoration. Drawbacks of such methods are that they are typically limited to
particular situations and have a non-convex nature. With standard optical flow based methods,
one either has to apply prior optical flow computations which can be error-prone due to noisy
data or to solve the non-convex problem of obtaining the optical flow and the reconstructed
image sequence simultaneously.

Another possibility, which is also considered in the present paper, is to deal with image
sequences as functions defined on the space-time domain and apply suitable regularization
techniques for those functions. This raises questions concerning scaling of the time dimension
with respect to the space dimension (does one pixel step correspond to one timestep?) and how
to regularize in time. It was already noted in [4] for example, that piecewise constancy in time
is not a well suited model for realistic image sequences. Thus, total variation regularization
does not naturally transfer to the situation where an additional time dimension appears. This
will also be confirmed by our numerical experiments. In [20], the authors tried to resolve such
issues by separating the fore- and background of an image sequence and regularizing the static
background.

A fore- and background separation is also the aim of increasingly popular approaches of low-
rank and sparse decomposition, where an additive separation of images sequences into a low
rank component and a sparse component is achieved by penalizing the nuclear norm and the L1

norm of a matrix containing the individual frames as column vectors. Without modifications
the regularization effect of such techniques is of course limited.

Using the ICTV functional, we are able to propose a more flexible regularization functional
for image sequence reconstruction. In particular, a combination of different norms on the space
time gradient deals with the problem of space-time scaling and allows for regularization that
automatically, locally adapts to different situations.
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Usage of the ICTV functional for image sequence regularization is motivated by two im-
portant observations: The first one is that static background regions should be reconstructed
as such, since flickering effects on static regions are very well visible by the human observer.
The second one is that the additional information provided by the temporal correspondence
of frames allows to loosen some regularity assumptions: It is sufficient to focus on piecewise
regularity either in space or in time, regularity for the other direction can be relaxed.

As explained in the introduction to this paper, these observations can be incorporated by
using the infimal convolution of two TV-type functional with different norms. Choosing 1 < κ,
we define the norms

|x|β1 =
√
κ2(x2

1 + x2
2) + x2

3, |x|β2 =
√
x2

1 + x2
2 + κ2x2

3, (20)

for x = (x1, x2, x3) ∈ R3, we use the functional

u 7→ min
v

(‖|∇(u− v)|β0‖+ ‖|∇v|β1‖)

for regularization. This will separate the image sequence u into two image sequences, u − v
and v, one with little illumination change in space and the other one with little illumination
change in time. The formulation as infimal convolution balances the contribution from each of
the two sequences.

Based on the results of section 3 we can now rigorously state a resulting minimization
problem for MJPEG decompression with ICTV regularization in the following subsection.

4.1 The ICTV regularized MJPEG decompression model

The modeling of data fidelity for MJPEG decompression is very similar to that for JPEG de-
compression. We refer to [10] for a detailed description of data modeling for individual JPEG
images and give only a brief explanation in the following: As already mentioned, MJPEG
compression means to apply JPEG compression to each frame of the image sequence. JPEG
compression is a lossy image compression standard whose main part is a block-cosine trans-
formation of the image, followed by a quantization and rounding to integer of each resulting
block of coefficients. As a consequence, given a JPEG compressed image file, one can obtain
a set of integer coefficients (dn)n as quantized values of a block-cosine transform of the image.
Knowledge of the quantization table thus allows to obtain maximal error bounds for each of the
coefficients. Denoting now the block-cosine operator by BDCT, we can obtain closed, bounded
intervals (Jn)n from a given, compressed JPEG file, such that each possible source image for
the compression process must be contained in the data set UD, where

UD = {u | (BDCT(u))n ∈ Jn for all n}.

In an infinite dimensional setting for MJPEG compressed image sequences, this means that we
are given a domain Ω ⊂ R3, an orthonormal operator A : L2(Ω) → `2, i.e. A∗ = A−1, and
closed, bounded intervals (Jn)n∈N such that the data set can be defined as

UD = {u ∈ L2(Ω) | (A(u))n ∈ Jn for all n ∈ N}.

Note that, since the same quantization is applied to each block of 8× 8 coefficients, a uniform
bound on the size of the error intervals is given by the maximal quantization value, thus the
data set UD is bounded.
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Given 1 < κ and defining the norms | · |β1 , | · |β2 as in (20), we can define the ICTV2
β

functional for u ∈ L2(Ω) as

ICTV2
β(u) = sup

{∫
u div p | p ∈ C1

c (Ω,Rd), such that div p = div q0 = div q1,

with q0, q1 ∈ C1
c (Ω,Rd), ‖|q0|β∗1‖∞ ≤ 1, ‖|q1|β∗2‖∞ ≤ 1

}
. (21)

According to Proposition 3.4, an equivalent definition is given by

ICTV2
β(u) = min

v∈L2(Ω)
TVβ0(u− v) + TVβ1(v),

where TVβ1 and TVβ2 denote the standard TV functional with the Euclidean norm replaced
by | · |β0 and | · |β1 , respectively. The minimization problem for MJPEG decompression is then
given as

min
u∈L2(Ω)

ICTV2
β(u) + IUD(u), (22)

where IUD denotes the convex indicator function of the set UD, i.e. IUD(u) = 0 if u ∈ UD and
infinity else. Boundedness of UD yields coercivity of IUD in L2(Ω) and, since closed and convex
sets are also weakly closed, IUD is lower semi-continuous with respect to weak L2 convergence.
Thus Corollary 3.4 applies and existence of a solution to (22) follows.

Remark 4.1. We end this subsection with a comment on the choice of the gradient norms (20)
for the definition of the ICTV functional in the context of video regularization. As explained,
the different weighting of the coordinates is motivated by the aim of separating areas with little
motion and areas with moving objects. However, one could also think of using weighted L1 type
product norms, i.e.,

|x|β̃1 =
√
κ2(x2

1 + x2
2) + |x3|, |x|β̃2 =

√
x2

1 + x2
2 + κ|x3|.

In the situation of still image regularization, rotational invariance is a strong argument for using
the Euclidean norm on the gradient, but this argument does not apply to our setting, since there
is no obvious interpretation of rotational invariance in space-time. When applying a L1 type
product norm on the space-time gradient of the image sequence, where the third coordinate
contains the time derivative, rotational invariance in space would still hold. A counterargument
against this choice of norm is that it leads to a decoupling of space and time derivatives, i.e.,
the functional gives equal cost whether variations in space and time are correlated or not. But
this is not desirable since we expect space-time variations to be correlated, i.e., in areas of one
frame with constant brightness values, also a variation in time is less likely to appear in the next
frame. Also, in areas of a frame with strong brightness variations, high time variations appear
once some movement occurs. Noise in the other hand is typically not space-times correlated
and should be penalized more strictly, which is an argument for coupling the derivatives.

Coupling the space and time gradient with an L∞ norm would be another possibility but
has the disadvantage that, once a high derivative in one direction occurs, noise in the other
direction will not be penalized.

4.2 Numerics of ICTV based MJPEG decompression

In this subsection we discuss the discretization and numerical solution of (22). For discretization
we use a finite difference scheme with forward differences. Given the image sequence dimensions
N ×M × T ∈ N3, we define the space of discrete images as U := RN×M×T and the space for
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discrete gradient information as V := U × U × U . Note that the space dimensions N,M are
assumed to be multiples of 8 due to the 8 × 8-block-cosine transform as part of the JPEG
standard.

Norms and inner products on these spaces are given as

‖u‖2
U = (u, u)U =

∑
i,j,k

u2
i,j,k, ‖v‖2

V = (v, v)V =
∑
i,j,k

(v1
i,j,k)

2 + (v2
i,j,k)

2 + (v3
i,j,k)

2,

for u ∈ U , v = (v1, v2, v3) ∈ V . Using the forward differences

(δx+u)i,j,k =

{
(ui+1,j,k − ui,j,k) if 0 ≤ i < N − 1,
0 if i = N − 1,

(δy+u)i,j,k =

{
(ui,j+1,k − ui,j,k) if 0 ≤ j < M − 1,
0 if j = M − 1,

(δt+u)i,j,k =

{
(ui,j,k+1 − ui,j,k) if 0 ≤ k < T − 1,
0 if k = T − 1,

(23)

the spatiotemporal gradient ∇ is defined as

(∇u) = (δx+u, δy+u, δt+u)T.

The discrete, blockwise component operator C : U → U is defined locally, for each 8× 8 block
(zi,j)0≤i,j≤7 of each frame, as

(Cz)p,q = cpcq

7∑
n,m=0

zn,m cos

(
π(2n+ 1)p

16

)
cos

(
π(2m+ 1)q

16

)
, (24)

for 0 ≤ p, q ≤ 7 and

cs =

{
1√
8

if s = 0,
1
2

if 1 ≤ s ≤ 7.

For each JPEG compressed frame of the MJPEG compressed image sequence, we can obtain
a set of maximal error intervals for the coefficients of its block-cosine transform, thus we suppose
the closed, bounded intervals (Ji,j,k)0≤i,j,k<N,M,T to be given. The set of possible source images
can then be defined as

UD = {u ∈ L2(Ω) | (Cu)i,j,k ∈ Ji,j,k for all 0 ≤ i, j, k < N,M, T}. (25)

Setting | · |β1 , | · |β2 to be the norms of (20) with 1 < κ, the discrete version of the ICTV2
β

functional is given as

ICTV2
β(u) = min

v∈U
‖|∇(u− v)|β1‖1 + ‖|∇(v)|β2‖1, (26)

with ‖ · ‖1 the discrete L1 norm. Note that, as can be shown by working on the subspace
ker(∇)⊥ of the finite dimensional Hilbert space U similar as in Corollary 3.5, the minimum in
the definition of the discrete ICTV functional indeed exists.

In the following, we will use an equivalent reformulation of the ICTV functional with
weighted gradients instead of different norms, which turns out to be more convenient for the
implementation. We define the weighted discrete gradients

∇1u = (κ(δx+u), κ(δy+u), δt+u), ∇2u = (δx+u, δy+u, κ(δt+u))
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such that
ICTV2

β(u) = min
v∈U
‖∇1(u− v)‖1 + ‖∇2v‖1.

We solve the discrete minimization problem by applying the globally convergent primal dual
algorithm of [17] to an equivalent saddle point formulation. Equivalence follows from the
following proposition, which can be shown by standard arguments from convex analysis.

Proposition 4.1. With UD and ICTV as in (25) and (26), respectively, and IUD the convex
indicator function of the set UD, there exists a solution to the primal problem

inf
u,v∈U

‖∇1(u− v)‖1 + ‖∇2v‖1 + IUD(u), (27)

to the dual problem

sup
p,q∈V

−I‖·‖∞≤1(p)− I‖·‖∞≤1(q)− sup
w1∈UD

(− div1 p, w1)U − I{0}(div1 p− div2 q) (28)

and the saddle point problem

inf
u,v∈U

sup
p,q∈V

((
∇1 −∇1

0 ∇2

)(
u
v

)
,

(
p
q

))
V×V
− I‖·‖∞≤1(p)− I‖·‖∞≤1(q) + IUD(u). (29)

Further, the infimum of the primal and the supremum of the dual problem coincide and the
problems are equivalent in the sense that (u, v, p, q) solves (29) if and only if (u, v) solves (27)
and (p, q) solves (28).

In the above proposition, the operators div1, div2 : V → U are the negative adjoints of the
discrete gradient operators ∇1,∇2 and are given by

div1 p = κ(δx−p
1 + δy−p

2) + δt−p
3, div2 p = δx−p

1 + δy−p
2 + κ(δt−p

3),

where

(δx−z)i,j,k =


−zi−1,j,k if i = N − 1,
(zi,j,k − zi−1,j,k) if 0 < i < N − 1,
zi,j,k if i = 0,

(30)

and similar for the y, t coordinates. The expression I‖·‖≤1 is an abbreviation for the convex
indicator function of the set {q ∈ V | ‖q‖ ≤ 1}.

The implementation of our solution algorithm is described in Algorithm 1. The operants
proj1 and projUD given there denote projections to the sets {p ∈ V | ‖p‖∞ ≤ 1} and UD,
respectively. Note that these projections can be evaluated easily by pointwise projections, and
evaluation of the operators C, C∗ for projUD .

The stepsizes σ, τ are chosen adaptively, as proposed in [19], i.e., for θ, δ ∈ (0, 1),

σn+1τn+1 = SK(σn, τn) =


δ‖K(xn−xn−1)‖V 2

‖xn−xn−1‖U2
if θσnτn ≥

‖K(xn−xn−1)‖V 2

‖xn−xn−1‖U2

θσnτn if σnτn ≥
‖K(xn−xn−1)‖V 2

‖xn−xn−1‖U2
> θσnτn

σnτn if σnτn <
‖K(xn−xn−1)‖V 2

‖xn−xn−1‖U2
,

(31)

with

K =

(
∇1 ∇1

0 ∇2

)
and xn = (un, vn) the primal iterates of the algorithm. For this adaptive stepsize choice,
convergence of the primal dual algorithm can still be guaranteed.

As stopping criterion we can use a primal dual gap:
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Algorithm 1 Scheme of implementation for JPEG decompression

1: function ICTV-MJPEG(Jcomp)

2: (Jn)n ← Decoding of MJPEG-Object Jcomp

3: u← u0 (Standard decompression)

4: v ← 0, u← u, v ← 0, p← 0, q ← 0

5: choose σ, τ > 0 arbitrary

6: repeat

7: p← proj1 (p+ σ∇1(u− v))

8: q ← proj1(q + σ∇2v)

9: u+ ← u− τ(− div1 p)

10: v+ ← v − τ(div1 p− div2 q)

11: u+ ← projUD(u+)

12: u← (2u+ − u), v ← (2v+ − v)

13: u← u+, v ← v+

14: στ ← SK(σ, τ)

15: until Stopping criterion fulfilled

16: return u+

17: end function

Proposition 4.2. Let (û, v̂) be the a solution to (27) and (xn, yn) = ((un, vn), (pn, qn)) be the
iterates of Algorithm 1. For γ > 1, define

G(xn, yn) = ‖∇1(un − vn)‖1 + ‖∇2vn‖1

+ sup
w∈UD

(w, div1 pn) + γ‖vn‖2‖ div1 pn − div2 qn‖2.
(32)

Then G(xn, yn) converges to zero as n→∞ and

G(xn, yn) ≥ ‖∇1(un − vn)‖1 + ‖∇2vn‖1 − ICTVn
β(û) ≥ 0

whenever γ‖vn‖2 ≥ ‖v̂‖2.

Proof. First note that, since the iterates (xn, yn) are known to converge to an optimal solution
of the primal and dual problem (27) and (28), respectively, and all quantities in the definition
of G are continuous w.r.t. the iterates, convergence of G(xn, yn) to zero follows.

Take now (p̂, q̂) a solution of the dual problem (28). For convenience we define

F (p, q) = ‖p‖1 + ‖q‖1, with K =

(
∇1 ∇1

0 ∇2

)
,

and note that
F ∗(p, q) = I‖·‖∞≤1(p) + I‖·‖∞≤1(q).

Due to the projections involved in Algorithm 1, F ∗(pn, qn) = IUD(un) = 0 for all iterates. We
can estimate

G(xn, yn) ≥ F (K(xn)) + sup
w0,w1∈U

‖w1‖2≤γ‖vn‖2

((w0, w1),−K∗(pn, qn)) + F ∗(pn, qn)− IUD(w0)
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Now if γ‖vn‖2 ≥ ‖v̂‖2, and since (û, v̂, p̂, q̂) solves the saddle point problem (29), we get

G(xn, yn) ≥ F (K(xn)) + ((û, v̂),−K∗(pn, qn)) + F ∗(pn, qn)− IUD(û)

≥ F (K(xn))− [((û, v̂), K∗(p̂, q̂))− F ∗(p̂, q̂) + IUD(û)]

= F (K(xn))− [ sup
p,q∈V

((û, v̂), K∗(p, q))− F ∗(p, q) + IUD(û)]

= F (K(xn))− F (K(x̂)) ≥ 0

and the assertion follows.

Note that, due to orthogonality of the basis transformation operator, the supremum in the
definition of the duality gap (32) can be easily calculated as

sup
w∈UD

(w0, div1 pn) =
∑
i,j,k

(A(div1 pn))i,j,j<0

(A(div1 pn))i,j,kli,j,k

+
∑
i,j,k

(A(div0 pn))i,j,j≥0

(A(div0 pn))i,j,kri,j,k,

where (li,j,k) and (ri,j,k) are such that

Ji,j,k = [li,j,k, ri,j,k] .

For the numerical experiments we will use the normalized primal dual gap

G̃(xn, yn) = G(xn, yn)/(NMT ) (33)

as stopping criterion. This is done to make the primal dual gap independent of the image size
and to estimate the average pixel-wise error

[|∇1(un − vn)|+ |∇2vn|]i − [∇1(û− v̂)|+ |∇2v̂|]i.

4.3 Numerical experiments for MJPEG decompression

In this subsection, numerical experiments for the decompression of MJPEG compressed image
sequences are presented. We start with an evaluation of some straightforward methods on
a test image sequence. The one that gives the best results will then be compared to ICTV
regularization. The following approaches are tested:

TVst Total variation regularization in space and time,

TVfl Total variation regularization in direction of a precomputed optical flow,

TGVfr Second order total generalized variation regularization in space only,

TGVst Second order TGV regularization in space and time.

These functionals are combined with the data fidelity term IUD , where UD is given in (25), in
order to reconstruct MJPEG compressed videos. While we have already discussed arguments
against the first three types of regularization, the qualitative behavior of total generalized
variation regularization in space and time is a priori not clear. With TV regularization in space
time we expect flickering of moving objects as a consequence of a temporal staircasing effect.
Thus the use of TGV regularization in space and time may give an improvement.
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TV regularization along the lines of the optical flow means that we penalize the space
gradient in a standard way and use directional time derivatives in the direction of a precomputed
optical flow. The optical flow is computed using the method presented in [34], where the
implementation for computing the flow has been obtained from the Matlab R© package provided
in [28].

The discretization for these methods is again done by finite differences and is very similar
to the one presented in Subsection 4.2. The spatial stepsize is fixed to 1 for all methods. The
temporal stepsize for TGV regularization in space-time is chosen 2, meaning that illumination
changes in space are twice as ”cheap” as illumination changes in time. The ratio of the pa-
rameters for TGV is fixed to α0/α1 =

√
2, as this has delivered good results for still images in

previous works [11]. For the optical-flow based method we choose a temporal stepsize of 0.1,
which has been proposed in [34] for inpainting and restoration and puts much more emphasis
on regularity along the optical flow. We tried a large range of different temporal stepsizes and
observed that the proposed choices lead to the best results in terms of observed visual image
quality.

All four methods were implemented by the authors using the general framework of the
primal dual algorithm of [17]. For this first experiment, we use a fixed iteration number of 5000
as stopping criterion. A modified primal dual gap, similar to (32), has been used to ensure a
proper implementation and optimality for all implementations.

As it is already very difficult to define a good measure of visual image quality for still images,
it seems almost impossible to obtain such a measure for image sequences. We thus visualize
quality improvements by showing frames and plotting time graphs for the image sequences.
Also, all tested image sequences and obtained results are available as Matlab R© data files at one
of the authors webpage [24].

At first, Figure 1 shows the original and standard compressed/decompressed version of
frame 21 of a 50-frame test image sequence. The movement of the objects is indicated with
blue arrows on the original frame. As one can see, the standard decompressed frame suffers
from heavy JPEG artifacts.

Figure 2 then shows the improved decompression of the same test image sequence using
the regularizations TVst, TVfl, TGVfr, TGVst. The left hand side shows again frame 21 with
one pixel line marked in red. For the right hand side, we have moved this red line with the
underlying object, such that it always marks the same region of the object, and plotted the
development of the brightness values at this line in time. With a perfect reconstruction, the
graphs on the right hand side should thus be constant in time direction for all 35 shown frames.
This allows us to evaluate the flickering of this region, which is an eye-catching artifact when
watching the video. It can be observed on the surface plots that the methods TVst, TVfl,
TGVfr suffer heavily from this artifact. In particular the method TGVfr, which leads to a good
reconstruction quality for each individual frame, shows the importance of such surface plots to
validate reconstruction quality. In contrast to that, TGVst yields a similar frame wise image
quality, but with the surface plot being almost constant in time. This shows an improved visual
reconstruction quality for this method. For the TV based reconstructions, one can also observe
staircasing in space when looking at the linear part of the surfaces. Motivated by this first
experiment, we now use the method TGVst for comparison to ICTV regularization.

The next evaluations are carried out on realistic images sequences. As first example, we
use a section of the juggler image sequence from the Middlebury optical flow test dataset [25].
Frame 5 of the original and MJPEG compressed image sequence are shown in Figure 3. This
8-frame image sequence contains both fast and complex movements of the balls and the hands
of the juggler and it is therefore a challenging test scenario. As stopping criterion for the
subsequent experiments we require a modified primal dual gap, see (32) for its definition in
case of the ICTV functional, to be below the threshold of 0.5. The resulting iteration numbers
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Figure 1: Frame 21 of the original and standard compression/decompression of a test image
sequence. The blue arrows indicate the moving direction of the objects, the object with the
circle continuously gets darker.

are given in the figures. We point out that, for the implementation of ICTV regularization, we
fixed the ratio between the primal and dual stepsize to 0.22 since this accelerated convergence
significantly.

Figure 4 shows test results for different regularization approaches. On the left we show
frame 5 of the reconstructed image sequences together with a line marked in red, while on the
right we plot the temporal development of the brightness values along this line. Since the line
is contained entirely in the background during the whole sequence, this graph should ideally
again be constant in the temporal direction.

The first line shows the result obtained with TGVstregularization. While the visual quality
of the individual frame is quite good, the surface plot shows a flickering of the background
region in time, which is again an eye-catching artifact when watching the image sequence. The
flickering can be explained by low penalization of brightness change in time due to a stepsize of
2 and the originally texture-type background region. This causes the model to focus on spatial
regularity rather than temporal constancy.

To resolve this, an obvious solution would be to put more emphasis on time regularity, for
example by choosing a timestep of 0.2. As can be observed on the second line of Figure 4, this
indeed keeps background regions constant, but lead to strong motion artifacts in the frame. All
intermediate timestep choices suffer from the same problem of balancing between background
flickering and motion artifacts.

In contrast to that, the result with ICTV regularization, as can be seen in the third line of
Figure 4, avoids both, motion artifacts and background flickering. Drawing on the experience
with TGV−regularization we choose κ = 5 in the definition of the norms (20), which corre-
sponds to a space/time step relation of 1/5 and 5 for the two different functionals. We want to
point out however that, since for simplicity we use infimal convolution of TV functional only,
some spatial staircasing can be observed in the individual frames. This can be overcome by
using infimal convolution of second order TGV functionals.

Solving the minimization problem for ICTV reconstruction not only provides the recon-
structed image sequence, but also a separation of this sequence in two components possessing
either little spatial or little temporal brightness changes. As can be seen in Figure 5, in case of
the juggler image sequence, this yields a separation of the image sequence into the fast moving
hands and balls on the one hand, and the slowly moving person together with the stable back-
ground on the other. The success of this separation depends on the parameter κ and the type
of object and movement.

As last experiment we again compare TGV regularization in space-time for different timesteps
with ICTV regularization on the minicooper sequence, also obtained as section of a video from
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Figure 2: Comparison of different regularization techniques. From top to bottom: TV in
space/time, TV along the optical flow, TGV in space only, TGV in space/time. Left: Frame
21 of the compressed test image sequence of Figure 2 with marked region of one object. Right:
Development of pixel values of this object region in time.
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Figure 3: Frame 5 of the original and standard compressed/decompressed juggler image se-
quence.

the Middlebury optical flow test dataset [25]. In this case, a much larger region of the image
sequence is moving. Figure 6 shows the original image sequence and the standard decom-
pression of a MJPEG compression version. Figure 7 then shows the result of using the three
different types of regularization, again with a surface plot of a background line marked in red.
The behaviour is very similar to the one in the juggler experiment. TGV in space time either
suffers from motion artifacts or background flickering, depending on the timestep choice, and
ICTV regularization is able to reconstruct each frame with less motion artifacts and keeps the
background constant.

5 Application to still images reconstruction

Infimal convolution of total variation type functionals can also be used to introduce anisotropies
in still image reconstruction. Combining the standard total (generalized) variation functional,
where the Euclidean norm is used to penalize the gradient, with total variation type functionals
whose gradient norm unit balls are ellipses, allows a separation of images into isotropic and
anisotropic components. Indeed, the anisotropic component will contain line structures whose
direction is determined by the major axes of these ellipses. An immediate application of such
a functional is the enhancement or separation of lines pointing in a predefined direction. But
also, by combining a standard TV functional and four TV type functionals with the major
axis of the ellipses pointing in the directions 0, π/4, π/2, 3π/4, we can hope for separation of
cartoon and line structures.

As particular case of the analytic framework described in Section 3, we suggest the following
functional for still image regularization:

ICTV5
β(u) = min

v1,...,v4
TGV2

α(u− v1) +
4∑
i=1
v5=0

TVβi+1
(vi − vi+1),

where TGV2
α is the standard total generalized variation functional of second order using Eu-

clidean norms and the TVβi+1
functionals use gradient norms whose unit balls are ellipses with

major axis pointing in direction (i− 1)π/4, i = 1, . . . , 4.
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Figure 4: Comparison of different regularization functionals for the juggler image sequence.
From top to bottom: TGV regularization in space time using temporal stepsizes of 2 and 0.2,
and ICTV regularization in space time. On the left, frame 5 of the image sequence is shown
with line of the background region marked in red, on the right the temporal development of
this line is plotted. Iteration numbers to reach the stopping criterion, from top to bottom: 250,
2102, 2546. 26



Figure 5: Decomposition of the juggler image sequence, frame 5.

Figure 6: Frame 5 of the original and standard compressed/decompressed Minicooper image
sequence.
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Figure 7: Comparison of different regularization functionals for the Minicooper image sequence.
From top to bottom: TGV regularization in space time using temporal stepsizes of 2 and 0.2,
and ICTV regularization in space time. On the left, frame 5 of the image sequence is shown
with line of the background region marked in red, on the right the temporal development of
this line is plotted. Iteration numbers to reach the stopping criterion, from top to bottom: 542,
5416, 6621. 28



In order to support the choice of using four different anisotropic components, we provide a
numerical example for this setting in advance. Figure 8 shows the result of applying standard
TV and ICTV5

β denoising on a test image, corrupted by salt and pepper noise on 10 percent of

the pixels. For information on the numerical methods and the choice of ICTV5
β related param-

eters we refer the subsequent sections. Data fidelity has been ensured by using L1 discrepancy
and the regularization parameter has been chosen optimal in terms of Peak Signal to Noise Ra-
tio (PSNR). Figure 8 shows that with ICTV5

β we achieve a significant improvement compared
to TV, which is also reflected in a much higher PSNR value. In addition, the figure shows two
of the anisotropic components v2, v3, obtained with the ICTV5

β reconstruction. The norm unit
balls of these components are ellipses pointing in direction π/4 and π/2. As one can see, the
functional allows a certain flexibility regarding these directions and we can thus hope that four
anisotropic components are sufficient to capture line structures of different orientations. Nev-
ertheless, ICTV5

β regularization will always favour line structures that are exactly orthogonal
to one of the major axis and thus we cannot expect rotational invariance.

Application of this kind of regularization yields a separation of the image in a piecewise
smooth and a texture component. There have been various attempts in this direction in the
past years. One approach, that has been taken in [5, 32, 26], originates in the work of Meyer
[22] and decomposes the image into a cartoon part with low total variation and a texture/noise
part capturing oscillatory components. For the texture part, the original idea was to minimize
the norm

‖v‖G = inf{‖g‖∞ | v = div g}

over a suitable space. This approach works very well for the separation of cartoon and texture of
noise-free images or the denoising of cartoon-type images. Its application to general denoising
problems seems, however, limited by the fact that both texture and noise posses a low G-norm.

Another very interesting approach is to introduce two transform operators, such as (wavelet)
frames, which are well suited to approximate piecewise smooth and texture structures, respec-
tively. One can then decompose images by penalizing the `1 norm of the coefficients needed for
both transforms to approximate the original image. We refer to [21] for an overview and the
analysis of such models and to [31] for numerical experiments.

Recently, in [30], the ideas of low-rank and sparse decomposition have been applied for still
image regularization in a discrete setting. Again, the images get decomposed into a cartoon and
texture part, where the cartoon part is expected to have low total variation. For the texture
part, [30] suggests to decompose the image into small, non-overlapping blocks, reorder them as
vectors, and try to keep the rank of a matrix, whose columns consist of all such vectors, low.
This is done by minimizing the nuclear norm of this matrix. The numerical experiments of
[30] suggest that this approach works very well for cartoon-texture decomposition. The main
disadvantage seems to be the difficulty in selecting the block size and position for the matrix
decomposition. The size of the chosen blocks has to somehow match scale of oscillations one
wants to recover and one might expect problems when their position has a bad fit to texture-
cartoon boundaries.

In the context of enhancing line structures, we also refer to the works [13, 14], where a convex
relaxation of Euler’s Elastica functional is applied and to [3], where the aim is to reconstruct
point or line structures as low dimensional objects.

Despite being quite simple, our method works very well in particular for line structures.
The formulation as infimal convolution of TV type functionals allows a nice embedding of this
approach into a general convex model in function space setting. Even though the numerical
implementation does not pose any additional difficulties compared to standard TV regulariza-
tion, we are able to obtain a surprisingly high improvement with respect to TV regularization
in terms of visual image quality and error measures. Disadvantages are of course the bias of
this regularization approach towards certain directions and the fact that we cannot expect to
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Figure 8: Test image. Top: Noisy and original image, middle: TV (left) and ICTV5
β (right)

based reconstruction, bottom: Two anisotropic components obtained with the ICTV5
β recon-

struction. PSNR values are 16.58 (TV) and 19.52 (ICTV3
γ).
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recover texture that is not decomposed of different line structures. However, for a certain, not
to small class of images, the proposed approach works very well.

5.1 ICTV based image denoising

For image denoising, we consider the following problem setting:

min
u∈L1(Ω)

ICTV5
β(u) + λ‖u− f‖1, (34)

where f ∈ L1(Ω) is given, Ω ⊂ R2 is again a bounded Lipschitz domain. For the norm parameter
β ∈ R2 × R× R× R× R, we define the norms

| · |β0,1 = α−1
0 | · |, | · |β1,1 = α−1

1 | · |,

and, for ξ ∈ R2,
|ξ|β0,i = µ|Oi · ξ|κ

with

Oi =

(
cosφi − sinφi
sinφi cosφi

)
, |ξ|κ =

√
(κ1ξ1)2 + (κ2ξ2)2

i = 2 . . . 5. Note that theOi are simple rotation matrices and α0, α1 are the standard parameters
for the TGV functional of second order. The scalars µ and κ1, κ2 are weights for the anisotropic
part and the directional derivatives, respectively. To reduce the amount of parameters, we
further normalize the integral mean of the norm | · |κ over all possible directions to one, i.e., we
require

1 =
1

2π

2π∫
0

√
(κ1 cosφ)2 + (κ2 sinφ)2 dφ.

This corresponds to choosing κ1, κ2 such that the ellipses with κ1, κ2 as semi-axis has perimeter
2π, and hence we obtain the second weight parameter κ2 as a function of the first one. With
this we expect the anisotropic TV functionals to be at the same scale as the isotropic one,
independent of the ratio κ1/κ2. Thus our functional needs two parameters, µ as a weight of all
anisotropic components together and κ1 to control the amount of anisotropy corresponding to
each direction.

For this setting, the results of Section 3 apply, in particular existence of a solution follows
by Corollary 3.3.

5.2 Numerics for ICTV based denoising

For discretization and numerical solution of the ICTV denoising problem (34) we use a similar
framework as in Section 4.2 for image sequences.

Defining the space of discrete images to be U = RN×M and V = U × U , the discretized
version of (34) is

min
u0,...,u5∈U
u5=0, v∈V

α1‖∇(u0 − u1)− v‖1 + α0‖Ev‖1 + µ

4∑
i=1

‖∇i(ui − ui+1)‖1 + λ‖u0 − f‖1. (35)

The gradient operators are given as

∇u = (δx+u, δy+u)T , Ev = (δx−v1, δy−v2, (δy−v1 + δx−v2)/2)T ,

∇1u = (κ1δx+u, κ2δy+u)T , ∇2u = (κ2δx+u, κ1δy+u)T ,
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∇3u =

(
κ1 cos(π/4) −κ1 sin(π/4)
κ2 sin(π/4) κ2 cos(π/4)

)
(δx−u, δy+u)T

∇4u =

(
κ1 cos(−π/4) −κ1 sin(−π/4)
κ2 sin(−π/4) κ2 cos(−π/4)

)
(δx+u, δy+u)T ,

where δx+, δy+, δx−, δy− are forward and backward finite differences in horizontal (x) and ver-
tical (y) direction, respectively. Note that for the operator ∇3 we use backward instead of
forward differences for the horizontal derivative. This leads to an improvement in the model
approximation since rays are in practice better resolved by finite difference gradients whose
search directions both point to the same side of the ray.

Abusing notation, the norm ‖·‖1 denotes discrete L1 norm for R, R2 and R3 valued functions,
where we use the Euclidean norm on the vector components in the R2 valued case and the norm
|ξ| =

√
ξ2

1 + ξ2
2 + 2ξ2

3 in the R3 valued case. The factor two in front of the third component is
to compensate for the symmetrization in the definition of E , see [12, 11] for details.

To simplify notation, we introduce the space W = U3 and denote by F : V ×W ×V 4 → R,
K : U × V × U4 → V ×W × V 4,

F (x1, . . . , x6) = α1‖x1‖1 + α0‖x2‖1 + µ
6∑
i=3

‖xi‖1, (36)

K =


∇ −IdV ∇ 0 0 0
0 E 0 0 0 0
0 0 ∇1 ∇1 0 0
0 0 0 ∇2 ∇2 0
0 0 0 0 ∇3 ∇3

0 0 0 0 0 ∇4

 . (37)

The discrete denoising problem (35) can then we rewritten as

min
x=(x1,...,x6)

F (Kx) + λ‖x1 − f‖1.

Note that, as in the discretization for the MJPEG decompression problem, we have included
the weighting of the norms in the linear operators rather than the norms themselves. For the
numerical solution, we again use a variant of the primal dual algorithm presented in [17] applied
to an equivalent saddle point problem. The implementation is given in Algorithm 2, where we
define

div = −∇∗, divE = −E∗,
divi = −∇∗i , i = 1, . . . , 4.

The operants proj∞, projL1 can be evaluated pointwise and are given as

(proj∞(y))1 = P{‖y1‖∞≤α1}(y
1), (proj∞(y))2 = P{‖y2‖∞≤α0}(y

2),

(proj∞(y))i = P{‖yi‖∞≤µ}(yi), i = 3, . . . , 6

and

(projL1(x))1
i,j =


x1
i,j − τλ if x1

i,j − fi,j > τλ

x1
i,j + τλ if x1

i,j − fi,j < −τλ
fi,j else

, i, j = 1, . . . , N,M,

(projL1(x))i = xi, i = 2, . . . , 6,

where PM denotes the projection on the set M . The operator SK again realizes an adaptive
stepsize choice similar to (31).
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Algorithm 2 Scheme of implementation for L1 denoising

1: function ICTV-L1(f)

2: x1 ← f (Standard decompression)

3: xi ← 0, i = 2, . . . , 6,

4: xi ← 0, yi ← 0, i = 1, . . . 6,

5: choose σ, τ > 0 arbitrary

6: repeat

7: y ← proj∞ (y + σKx)

8: x+ ← projL1(x− τK∗y)

9: x← (2x+ − x),

10: x← x+, y ← y+

11: στ ← SK(σ, τ)

12: until Stopping criterion fulfilled

13: return x1

14: end function

As stopping criterion we use a normalization of a partial primal dual gap

G̃(xn, yn) = G(xn, yn)/(NM),

where G is defined by

G(xn, yn) = F (Kxn) + λ‖x1
n − f‖1 + (− div(divE ỹ

2
n), u0)

+ γ‖x2
n‖2‖ div(divE ỹ

2
n)− div1 y3‖2

+
6∑
i=4

γ‖xin‖2‖ divi−3 yi−1 − divi−2 yi‖2.

(38)

It can be shown by similar techniques as in the proof of Proposition 4.2 that

G(xn, yn)→ 0 as n→∞

and that
G(xn, yn) ≥ F (Kxn) + λ‖x1 − f‖1 − (F (Kx̂n) + λ‖x̂1 − f‖1)

whenever γ‖xin‖2 ≥ ‖x̂i‖2 for i = 3, . . . , 6.

5.3 Numerical Results

In this section we compare numerical result of ICTV5
β denoising with results of standard TV

and ICTV3
γ denoising, where for ICTV3

γ denoising we convolute three TV functionals using only
the horizontal and vertical direction as anisotropic components, i.e.

ICTV3
γ(u) = min

u1,u2
‖∇(u− u1)‖1 + µ (‖∇1(u1 − u2)‖1 + ‖∇2u2‖2) .

For TV and ICTV3
γ based denoising we implemented a primal-dual algorithm similar to 2. We

carry out experiments on three different images which have been corrupted by salt and pepper
noise on 25 percent of the pixels. Parameters affecting the image quality are for all test cases
fixed as follows:
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• λ = 1.4: Chosen optimal for TV based denoising of the lighthouse image (see Figure 9)
in terms of visual image quality.

• κ1 = 3/2, µ = 1.6: Chosen optimal for ICTV3
γ based denoising of the lighthouse image

(see Figure 9) in terms of visual image quality.

• α0/α1 =
√

2. The ratio of the TGV2
α parameters for the isotropic part of ICTV5

β is chosen
in a standard way as suggested for example in [11].

Note that, while the optimal choice of the regularization parameter λ of course depends on the
noise level, the parameters κ1, µ, α0/α1 reflect the expected structure of realistic images and
can be fixed noise-level independently.

Parameters affecting convergence speed are for all test cases fixed as follows:

• TV: σ = (
√

1/8)0.05, τ = (
√

1/8)/0.05,.

• ICTV3
γ: Adaptive stepsize choice similar to (31), ratio σ/τ fixed to 0.052.

• ICTV5
β: Adaptive stepsize choice similar to (31), ratio σ/τ fixed to 0.032.

As stopping criterion, we use a normalized, modified primal dual gap similar to (38) for all
three implementations. The resulting iteration numbers are given in the caption of the figures.

We point out that the unequal stepsize choice for σ and τ resulted in a significantly ac-
celerated convergence of the methods, also for the standard TV−L1 case: For denoising the
lighthouse image, TVk−TVopt < 100 was satisfied after k = 80 iterations for a σ-τ ratio of
0.052, and k = 1680 iterations for a ratio of 1. Similarly, after 2000 iterations, the modified
duality gap with ratio 0.052 was at 1.6 · 10−3 while with ratio 1 it was at 1.9 · 10−1.

As first experiment we compare TV denoising and ICTV3
γ denoising of the lighthouse test

image. Figure 9 shows the noisy and original image on the top row, its TV denoised version and
an error plot in the middle row, and the ICTV3

γ denoised version with error plot on the bottom
row. The aim of this comparison is to show that a significant improvement can be achieved
even with using just standard TV for the isotropic component together with two anisotropic
components. As can be seen in the images and the error plots, in particular the fine details of the
fence are much better reconstructed using ICTV3

γ. But also the wall of the lighthouse appears

more realistic with ICTV3
γ than with TV since line structure are less frayed. In terms of Peak

Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) [33] a significant improvement
is achieved: While the PSNR and SSIM values of the TV reconstruction are 23.56 and 0.6891,
respectively, the ICTV3

γ reconstruction achieves 26.39 and 0.7899, respectively.

In Figure 10 we show the decomposition of the lighthouse image obtained with ICTV3
γ

denoising. The left image shows the isotropic component, while the right image shows the
addition of the two anisotropic components. As can be seen, the fence is almost entirely
contained in the anisotropic components, which explains the improvement achieved with ICTV3

γ

in this part of the image.
In the next experiment we compare TV and ICTV3

γ based denoising with ICTV5
β based

denoising. Remember that for ICTV5
β we use the total generalized variation functional of

second order for the isotropic component. The reconstruction of a section of the standard
Lenna test image can be seen in Figure 11. The top row shows the noisy image together with
the ICTV3

γ based reconstruction. The middle row depicts the TV based reconstruction (left) and

the ICTV5
β based reconstruction (right). The areas indicated by the red squares are magnified

below. On can see that the top right boundary of the hat and the line in the background is
better resolved with ICTV3

γ than with TV. The result with the ICTV5
β functional again yields

an improvement even with respect to ICTV3
γ. The brim of the hat appears much more realistic
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Figure 9: Lighthouse test image. Top: Noisy and original image, middle: TV based recon-
struction and error plot, bottom: ICTV3

γ based reconstruction and error plot. PSNR values are

23.60 (TV) and 26.39 (ICTV3
γ). Iteration numbers to reach the stopping criterion: 1067 (TV),

3020 (ICTV3
γ). 35



Figure 10: Isotropic and anisotropic component of ICTV3
γ based reconstruction of the noisy

lighthouse image.

and fine structure of the head are also much better resolved. This can in particular be seen in
the magnified squares on the bottom. Also the face appears more natural since, as a result of
using TGV2

α for the isotropic component, it suffers from less staircasing effects. PSNR values of
the reconstructions are 30.22 (TV), 30.62 (ICTV3

γ), 31.58 (ICTV5
β) and SSIM values are given

as 0.8683 (TV), 0.8749 (ICTV3
γ), 0.8954 (ICTV5

β). This in particular indicates a significant

improvement also by using ICTV5
β instead ICTV3

γ.

At last we compare TV and ICTV5
β denoising for the Barbara test image. The top row of

Figure 12 shows the noisy image and a summation of the anisotropic components using ICTV5
β

denoising. The middle row shows the result of TV (left) and ICTV5
β (right) denoising and

the bottom row again shows the corresponding close ups. It can be seen in the summation
of the anisotropic components on the top right that many line structures are captured by
the ICTV5

β functional, which are then resolved much better in the reconstruction. We also
observe, however, that curved lines are not resolved very well and that the reconstruction of
lines still depends on the direction. In particular lines on the left leg are not captured. By
adding additional directions this could certainly be improved, but the drawback of favouring
only particular, predefined directions remains.

We can conclude from these experiments that the ICTV5
β functional allows a surprisingly

strong improvement with respect to standard TV denoising. While remaining in a very similar,
convex problem setting, it is possible to capture certain structures much better and achieve a
much higher signal to noise ratio. In general, the results are superior to standard TV denoising
in all our experiments, while the level of improvement of course depends the particular images.
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Figure 11: Lenna test image. Top: Noisy image (left) and ICTV3
γ based reconstruction. Middle:

TV based reconstruction (left) and ICTV5
β based reconstruction with marked regions. Bottom:

Magnification of marked regions of TV (left) and ICTV5
β reconstructions. PSNR values are 30.22

(TV), 30.62 (ICTV3
γ) and 31.58 (ICTV5

β). Iteration numbers to reach the stopping criterion:

561 (TV), 2100 (ICTV3
γ), 4468 (ICTV5

β).
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Figure 12: Barbara test image. Top: Noisy image (left) and anisotropic components of ICTV5
β

based reconstruction. Middle: TV based reconstruction (left) and ICTV5
β based reconstruction

with marked regions. Bottom: Magnification of marked regions of TV (left) and ICTV5
β re-

constructions. PSNR values are 24.94 (TV), 25.96 (ICTV5
β), SSIM values are 0.7660 (TV) and

0.8145 (ICTV5
β). Iteration numbers to reach the stopping criterion: 1508 (TV), 4468 (ICTV5

β).
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