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Abstract

The bang-bang property of time optimal controls for Burgers equations in dimension up
to three, with homogeneous Dirichlet boundary conditions and distributed controls acting
on an open subset of the domain is established. This relies on an observability estimate from
a measurable set in time for linear parabolic equations, with potentials depending on both
space and time variables. The proof of the bang-bang property relies on a Kakutani fixed
point argument.
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1 Introduction

While significant progress was made over the last years giving sufficient conditions for the bang-
bang property of time optimal control problems of linear control systems, see e.g. [8] and [14],
the bang-bang nature of controls for non-linear infinite dimensional control systems is much less
understood, see, however [1], [17] and [22] . The purpose of this work is to analyze the bang-bang
property of time optimal controls for a system which is not of global Lipschitzian nature.

Unless stated otherwise Ω is a bounded, convex domain in Rd, if d = 2, 3, with boundary
∂Ω of class C2, and it is a bounded interval if d = 1. Further ω is a non-trivial subdomain of
Ω. We write χω for the characteristic function of the set ω. For q ≥ 2 and ρ0 > 0, to be made
precise later, we define the constraint set of controls to be

U ≡ {~u : [0,+∞)→ (Lq(Ω))d is measurable : ‖~u(·, t)‖(Lq(Ω))d ≤ ρ0 for almost all t > 0}.
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The controlled Burgers equation under consideration is as follows:
~yt −∆~y + (~y · ∇)~y = χω~u in Ω× (0,+∞),

~y = ~0 on ∂Ω× (0,+∞),
~y(·, 0) = ~y0(·) in Ω.

(1.1)

This equation was developed by J.M.Burgers as a simplified fluid flow model, which describes the
propagation of diffusive waves of finite amplitude (see. e.g. [5], [6] and [18]). While for d = 1 the
function space setting for (1.1) is well-established this does not appear to be the case for higher
dimensions. Therefore we consider well-posedness for (1.1) in a function space that is convenient

for our analysis. Specifically for ~y0(·) ∈W 2−2/q
q (Ω)∩W 1,q

0 (Ω) and ~u ∈ L∞(0, T ;Lq(Ω)) we prove

that (1.1) has a unique solution ~y(·, ·; ~u) ∈ Ẇ 2,1
q (QT ), see Proposition 2.1. Here for s > 0 and

T > 0 fixed, the set

{y ∈ Ls(Ω× (0, T )) : yt ∈ Ls(Ω× (0, T )) and y ∈ Ls(0, T ;W 2,s(Ω) ∩W 1,s
0 (Ω))}

endowed with the usual W 2,1
s (Ω × (0, T ))-norm is denoted by Ẇ 2,1

s (QT ). For simplicity of
notation we do not distinguish in notation between the space X and the vector-valued space
Xd.

The set of admissible controls contains those which are bounded and which steer the state
to the origin in finite time:

Uad ≡ {~u ∈ U : ~y(·, T ; ~u) = ~0 over Ω, ~y(·, ·; ~u) ∈ Ẇ 2,1
q (QT ) for some T > 0}.

In Proposition 2.4 it will be proved that Uad is not empty.
The time optimal control problem under consideration can now be stated as follows:

(P ) inf{T : ~u ∈ Uad} ≡ T ∗,

i.e., the minimal time needed to steer the system to ~0 with controls in Uad. In this problem, the
number T ∗ is called the optimal time; a control ~u∗ ∈ Uad, with ~y(·, T ∗; ~u∗) = ~0 over Ω, is called
a time optimal control (or optimal control for simplicity). In Proposition 2.4 it will be proved
that (P ) allows optimal controls.

We can now state the main result of this paper:

Theorem 1.1. Assume that q > 2 for d = 2, and q ∈ (3, 6] for d = 3. Then there exists a
nontrivial interval I of bounds ρ0 such that the bang-bang property holds for (P ): for ρ0 ∈ I any
optimal control ~u∗ satisfies that ‖~u∗(·, t)‖Lq(Ω) = ρ0 for a.e. t ∈ (0, T ∗). For d = 1 the assertion
holds with q = 2 and all ρ0 > 0.

The bang-bang property is one of the most important and interesting properties of time
optimal control problems. For abstract linear problems in Banach spaces, to the best of our
best knowledge, this property was first established, via a smart construction manner, by H. O.
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Fattorini (see. e.g. [7]). But in the context of the distributed control of the heat equation,
for example, these techniques only apply for the special case where the control is distributed
everywhere in the domain, i.e. ω = Ω. Since then, bang-bang controls with ω = Ω for time
optimal problems related to linear and semilinear parabolic differential equations, were investi-
gated in many papers, see e.g. [1], [2], [8], [13], [22] and the references therein. More recently
the case ω ( Ω was treated successfully for parabolic equations. In [20], after establishing null-
controllability of the internally controlled heat equation with controls restricted to a product set
of an open nonempty subset in Ω and a subset of positive measure in time, the author proved the
bang-bang property of time optimal controls. Partially motivated by these results the authors
in [17] realized that the bang-bang property can be obtained by combining a strategy based on
null controllability of the system, where the control functions act on a measurable set, and a
fixed point argument. When the target set is a ball, the bang-bang properties for time optimal
control problems of differential equations can be also derived from the Pontryagin maximum
principle and unique continuation properties for the corresponding equations. We mention [21],
[10], and [11] in this respect.

Controllability and numerical methods for optimal control of the Burgers equation were
investigated in e.g. [9] and [19]. However, the bang-bang property for time optimal control
problems of Burgers equation, with controls restricted over a proper subset of Ω was not yet
studied. To prove Theorem 1.1, we first establish an observability estimate from a measurable
set in time for parabolic equations, and then use the Kakutani’s fixed point theorem. It should
be pointed out that compared with (1.1), the semilinear equation considered in [17] has good
properties, such as global existence and uniqueness of the strong solution, and good regularity of
potential in the linearized system. However, the Burgers equation (1.1) lacks these properties,
see Proposition 2.1 and (2.34).

The observability estimate mentioned above, can be obtained in arbitrary dimension. For
this purpose let Ω̂ be a bounded connected domain in Rd, d ≥ 1, with boundary ∂Ω̂ of class C2,
let T > 0 and m be a positive integer. We introduce the following parabolic equation:

∂t~ϕ−∆~ϕ+A~ϕ+ a~ϕ+ (~b · ∇)~ϕ = ~0 in Ω̂× (0, T ),

~ϕ = ~0 on ∂Ω̂× (0, T ),

~ϕ(·, 0) = ~ϕ0 ∈ L2(Ω̂),

(1.2)

where ~ϕ = (ϕ1, · · · , ϕm)>, A = (aij)1≤i,j≤m ∈ (L∞(0, T ;Lq̂(Ω̂)))m×m, a ∈ L∞(0, T ;Lq̂(Ω̂)) with

q̂ ≥ 2 for d = 1, and q̂ > d for d ≥ 2, ~b ∈ (L∞(Ω̂×(0, T )))d and (~b·∇)~ϕ = (~b·∇ϕ1, · · · ,~b·∇ϕm)>.
Then we have the following result.

Theorem 1.2. Let E ⊂ (0, T ) be a measurable set with a positive measure and let ω̂ be a
nonempty subdomain of Ω̂. Then any solution of (1.2) satisfies the estimate

‖~ϕ(·, T )‖L2(Ω̂) ≤ eC(Ω̂,ω̂,d,m,q̂,E) (1.3)

·eC(Ω̂,ω̂,d,m,q̂)[1+(‖A‖2∞+‖a‖2∞+‖~b‖2∞)(T+1)+‖A‖4/(2−p̂)∞ +‖a‖4/(2−p̂)∞ ]

∫
ω̂×E
|~ϕ(x, t)| dx dt,
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where ‖A‖∞ ≡ ‖A‖L∞(0,T ;Lq̂(Ω̂)), ‖a‖∞ ≡ ‖a‖L∞(0,T ;Lq̂(Ω̂)), ‖~b‖∞ ≡ ‖~b‖L∞(Ω̂×(0,T )) and

p̂ =

{ 2d
q̂ if d < q̂ < 2d,

1 if 2d ≤ q̂.
(1.4)

Here and throughout Section 3, C(· · · ) denotes a generic positive constant that only depends on
what is enclosed in the brackets.

Estimate (1.3) is an observability inequality from a measurable set in time. It was established
for the case m = 1 and assuming that Ω̂ is convex in [16], where the essential step consisted
in a quantitative unique continuation at one point in time. Later, in [17], still for m = 1 the
convexity assumption on Ω̂ was successfully dropped, but the potentials were assumed to be
bounded. In our Theorem 1.2, the potentials still have the same regularity as in [16]. We prove
(1.3) by using similar arguments as [17]. But compared with [17] and [16], the method of the
present paper has the following merit: In [17] and [16], as ϕ0(·) 6= 0, the facts that ϕ(·, t) 6= 0
in a small open subset of Ω̂ and ϕ(·, t) 6= 0 in Ω̂ are the basis of the proofs, respectively. These
properties can be guaranteed by the strong unique continuation property of parabolic equations
with homogeneous boundary conditions and Théorème II.1 in [4], respectively. In this paper,
the property ϕ(·, t) 6= 0 is unnecessary. This is a consequence of the construction of a special
frequency function, see Lemma 3.2. Moreover, the above-mentioned unique continuation prop-
erty can be deduced by the result in this paper, see Remark 3.6. Finally let us remark that
the results of this paper remain applicable if −∆ in (1.1) is replaced by −ε∆ with ε a positive
diffusion coefficient.

The rest of the paper is organized as follows: Section 2 contains the proof of Theorem 1.1.
In Section 3 we give the proof of Theorem 1.2.

2 Time optimal control for the Burgers equation

The ultimate goal of this section is to give the proof for Theorem 1.1. Before address existence
and uniqueness for (1.1), which is not readily available in the literature, and prove existence for
the optimal control problem (P ). The restrictions on the spatial dimension and on the range of
q will be specified with each of these results. The case d = 1 will be considered at the end of this

section. For convenience we first recall the definition of the space W
2−2/q
q (Ω). It is a Banach

space consisting of the elements of W 1,q(Ω) with finite norm (see. e.g [12])

‖ϕ‖
W

2−2/q
q (Ω)

= ‖ϕ‖W 1,q(Ω) +

(∫
Ω

∫
Ω

|Dxϕ(x)−Dx̃ϕ(x̃)|q

|x− x̃|q
dx̃ dx

) 1
q

.

Proposition 2.1. Let q ≥ 2 for d = 2, q ∈ [2, 6] for d = 3, and q ∈ (2, 4) for d = 4. Then
for any T > 0 and M > 0, there exists a positive constant ρ1 = ρ1(M,T ), such that for

(~u, ~y0) ∈ L∞(0, T ;Lq(Ω))×W 2−2/q
q (Ω) ∩W 1,q

0 (Ω) satisfying

‖~u‖L∞(0,T ;Lq(Ω)) + ‖~y0‖W 2−2/q
q (Ω)∩W 1,q

0 (Ω)
≤ ρ1,
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the equation 
∂t~y −∆~y + (~y · ∇)~y = χω~u in Ω× (0, T ),

~y = ~0 on ∂Ω× (0, T ),
~y(·, 0) = ~y0 in Ω

(2.1)

has a unique solution ~y ∈ Ẇ 2,1
q (QT ). Moreover, ‖~y‖

Ẇ 2,1
q (QT )

≤M .

Proof. The proof is based on the Schauder fixed point theorem. We set

K = {~ξ ∈ Lq(0, T ;Lq(Ω)) : ‖~ξ‖
Ẇ 2,1
q (QT )

≤M},

and consider for ~ξ ∈ K the following linear equation
∂t~y −∆~y + (~y · ∇)~ξ = χω~u in Ω× (0, T ),

~y = ~0 on ∂Ω× (0, T ),
~y(·, 0) = ~y0 in Ω.

(2.2)

Multiplying the first equation of (2.2) by −2∆~y and integrating it over Ω×(0, t) we obtain using
that d ≤ 4

‖~y(·, t)‖2H1
0 (Ω) ≤ C

(
‖~y0‖2H1

0 (Ω) + ‖~u‖2L2(0,T ;L2(Ω))

)
+ C

∫ t

0
‖~y‖2H1

0 (Ω)‖~ξ‖
2
H2(Ω) ds, ∀ t ∈ [0, T ].

Here and below C denotes a generic constant. Using Gronwall’s inequality we find

‖~y(·, t)‖2H1
0 (Ω) ≤ C

(
‖~y0‖2H1

0 (Ω) + ‖~u‖2L2(0,T ;L2(Ω))

)
e
C‖~ξ‖2

L2(0,T ;H2(Ω)) , ∀ t ∈ [0, T ].

By Sobolev’s embedding theorem, it can be checked that for the choice of dimensions and range
of q values the following estimate holds:∫

Ω
|(~y · ∇)~ξ|q dx ≤ C‖~y‖q

H1
0 (Ω)
‖~ξ‖q

W 2,q(Ω)

for a constant C independent of ~y ∈ H1
0 (Ω) and ~ξ ∈ W 2,q(Ω). Here we could still use q ∈ [2, 4)

for d = 4. Combining these estimates we obtain∫ T

0

∫
Ω
|(~y · ∇)~ξ|q dx dt ≤ C(M,T )

(
‖~y0‖2

W
2−2/q
q (Ω)∩W 1,q

0 (Ω)
+ ‖~u‖2L∞(0,T ;Lq(Ω))

) q
2

. (2.3)

From (2.2), (2.3) and Lp-theory for parabolic equations (see Theorem 9.1 of Chapter 4 in [12]),
it follows that

‖~y‖
Ẇ 2,1
q (QT )

≤ C(M,T )
(
‖~y0‖W 2−2/q

q (Ω)∩W 1,q
0 (Ω)

+ ‖~u‖L∞(0,T ;Lq(Ω))

)
. (2.4)

By (2.4) we obtain that there exists a constant ρ1 = ρ1(M,T ) > 0, such that if

‖~y0‖W 2−2/q
q (Ω)∩W 1,q

0 (Ω)
+ ‖~u‖L∞(0,T ;Lq(Ω)) ≤ ρ1,
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then ‖~y‖
Ẇ 2,1
q (QT )

≤M .

Now we define the mapping Φ : K → K by Φ(~ξ) = ~y, ~ξ ∈ K, where ~y is the solution to (2.2)
and verify the conditions of the Schauder fixed point theorem. This consists of two steps.

Step 1. The fact that

K is a compact convex subset of Lq(0, T ;Lq(Ω)),

follows from Sobolev’s embedding theorems.

Step 2. Φ : K → K is continuous, i.e., if ~ξn ∈ K, ~ξn → ~ξ strongly in Lq(0, T ;Lq(Ω)), then
Φ(~ξn)→ Φ(~ξ) strongly in Lq(0, T ;Lq(Ω)).

Proceeding by a contradiction argument, assume that there exist a constant ε0 > 0 and a
subsequence of {Φ(~ξn)}n≥1, denoted by {Φ(~ξnk)}k≥1, such that

‖Φ(~ξnk)− Φ(~ξ)‖Lq(0,T ;Lq(Ω)) ≥ ε0. (2.5)

Since Φ(~ξnk) ∈ K, there exist a subsequence of {nk}k≥1, still denoted by the same notation, and
~z ∈ K, such that

Φ(~ξnk)→ ~z, ~ξnk → ~ξ weakly in Ẇ 2,1
q (QT ) and strongly in Lq(0, T ;W 1,q

0 (Ω)), (2.6)

and 
∂tΦ(~ξnk)−∆Φ(~ξnk) + (Φ(~ξnk) · ∇)~ξnk = χω~u in Ω× (0, T ),

Φ(~ξnk) = ~0 on ∂Ω× (0, T ),

Φ(~ξnk)(·, 0) = ~y0 in Ω.

(2.7)

Now we claim that there exists a subsequence of {nk}k≥1, still denoted in the same manner,
such that

(Φ(~ξnk) · ∇)~ξnk → (~z · ∇)~ξ weakly in Lq(0, T ;Lq(Ω)). (2.8)

On one hand,

‖(Φ(~ξnk) · ∇)~ξnk‖Lq(0,T ;Lq(Ω)) = ‖∂tΦ(~ξnk)−∆Φ(~ξnk)− χω~u‖Lq(0,T ;Lq(Ω)) ≤ C(M,T ). (2.9)

On the other hand, for any ~h ∈ L∞(Ω× (0, T )), by (2.6), we have∣∣∣∫ T

0

∫
Ω

[(Φ(~ξnk) · ∇)~ξnk − (~z · ∇)~ξ]~h dx dt
∣∣∣

=
∣∣∣∫ T

0

∫
Ω

((Φ(~ξnk)− ~z) · ∇)~ξnk
~h dx dt+

∫ T

0

∫
Ω

(~z · ∇)(~ξnk − ~ξ)~h dx dt
∣∣∣

≤ C‖Φ(~ξnk)− ~z‖L2(0,T ;L2(Ω)) + C‖∇(~ξnk − ~ξ)‖L2(0,T ;L2(Ω)) → 0.

(2.10)
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It follows from (2.9) and (2.10) that (2.8) holds. Then, passing to the limit for k → +∞ in (2.5)
and (2.7), by (2.6) and (2.8), we obtain that

‖~z − Φ(~ξ)‖Lq(0,T ;Lq(Ω)) ≥ ε0 and ~z = Φ(~ξ),

which lead to a contradiction.

By Step 1 and Step 2 the Schauder fixed point theorem implies the existence of ~y ∈ K such
that Φ(~y) = ~y.

Finally we prove uniqueness. Let ~y1, ~y2 ∈ Ẇ 2,1
q (QT ) be two solutions to (2.1). Then

∂t(~y1 − ~y2)−∆(~y1 − ~y2) = ((~y2 − ~y1) · ∇)~y2 + (~y1 · ∇)(~y2 − ~y1) in Ω× (0, T ),

~y1 − ~y2 = ~0 on ∂Ω× (0, T ),

(~y1 − ~y2)(·, 0) = ~0 in Ω.

(2.11)

Multiplying the first equation of (2.11) by 2(~y1 − ~y2), and integrating over Ω, we obtain by
Hölder inequality and the Sobolev’s embedding theorem that

d

dt
‖(~y1 − ~y2)(·, t)‖2L2(Ω) + 2‖∇(~y1 − ~y2)(·, t)‖2L2(Ω)

≤ C‖∇(~y1 − ~y2)(·, t)‖L2(Ω)(‖~y1(·, t)‖W 2,q(Ω) + ‖~y2(·, t)‖W 2,q(Ω))‖(~y1 − ~y2)(·, t)‖L2(Ω),

where we use that W 2,q(Ω) embeds continuously into C(Ω̄) if 2q > d. This implies that

d

dt
‖(~y1 − ~y2)(·, t)‖2L2(Ω) ≤ C(‖~y1(·, t)‖2W 2,q(Ω) + ‖~y2(·, t)‖2W 2,q(Ω))‖(~y1 − ~y2)(·, t)‖2L2(Ω).

Integrating the latter inequality over (0, t), t ∈ [0, T ], and using Gronwall’s inequality, we obtain
that ~y1 = ~y2.

The next proposition is concerned with the local null controllability of (2.1).

Proposition 2.2. Let q > 2 for d = 2, or q ∈ (3, 6] for d = 3. Then for any T > 0, there exist
positive constants ρ2 = ρ2(T ) and ρ3 = ρ3(T ) such that if ‖~y0‖W 2−2/q

q (Ω)∩W 1,q
0 (Ω)

≤ ρ3 then there

exists a control ~u with ‖~u‖L∞(0,T ;Lq(Ω)) ≤ ρ2‖~y0‖L2(Ω), such that the solution of (2.1) satisfies

~y(·, T ) = ~0 in Ω.

Proof. We shall use Kakutani’s fixed point theorem (see e.g. [1]) for the proof. For this purpose,
define

K = {~ξ ∈ Lq(0, T ;Lq(Ω)) : ‖~ξ‖
Ẇ 2,1
q (QT )

≤ 1}.

For each ~ξ ∈ K, we consider the linear control system
∂t~y −∆~y + (~y · ∇)~ξ = χω~u in Ω× (0, T ),

~y = ~0 on ∂Ω× (0, T ),
~y(·, 0) = ~y0 in Ω.

(2.12)
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Its adjoint system is 
∂t ~ψ + ∆~ψ − (∇~ξ)~ψ = ~0 in Ω× (0, T ),
~ψ = ~0 on ∂Ω× (0, T ),
~ψ(·, T ) ∈ L2(Ω),

and hence by Theorem 1.2, and the equivalence of observability and controllability there exist
a positive constant ρ2 = ρ2(T ), and a control ~u ∈ L∞(0, T ;Lq(Ω)) such that

~y(·, T ) = ~0, (2.13)

and
‖~u‖L∞(0,T ;Lq(Ω)) ≤ ρ2‖~y0‖L2(Ω). (2.14)

Now we define a multivalued mapping Φ : K → Lq(0, T ;Lq(Ω)) by

Φ(~ξ) = {~y : there exists a control ~u such that (2.12)− (2.14) hold}, where ~ξ ∈ K.

From the above arguments it follows that Φ(~ξ) 6= ∅ for each ~ξ ∈ K.
Next we shall check in three steps the conditions of Kakutani’s fixed point theorem.

Step 1. It is straightforward to verify that

K is a convex, compact subset of Lq(0, T ;Lq(Ω)) and

Φ(~ξ) is a convex subset of Lq(0, T ;Lq(Ω)) for each ~ξ ∈ K.

Step 2. Φ(K) ⊂ K.

In fact, for any ~ξ ∈ K, there exists a control ~u ∈ L∞(0, T ;Lq(Ω)) satisfying

‖~u‖L∞(0,T ;Lq(Ω)) ≤ ρ2‖~y0‖L2(Ω) (2.15)

and such that ~y = ~y(u) satisfies
∂t~y −∆~y + (~y · ∇)~ξ = χω~u in Ω× (0, T ),

~y = ~0 on ∂Ω× (0, T ),
~y(·, 0) = ~y0 in Ω,

~y(·, T ) = ~0 in Ω.

By (2.15) and the same arguments that led to (2.4), we have

‖~y‖
Ẇ 2,1
q (QT )

≤ C(T )
(
‖~y0‖W 2−2/q

q (Ω)∩W 1,q
0 (Ω)

+ ‖~u‖L∞(0,T ;Lq(Ω))

)
≤ C(T )‖~y0‖W 2−2/q

q (Ω)∩W 1,q
0 (Ω)

,

from which, we obtain that there exists a positive constant ρ3 = ρ3(T ), such that if

‖~y0‖W 2−2/q
q (Ω)∩W 1,q

0 (Ω)
≤ ρ3,
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then ~y ∈ K.

Step 3. The map Φ is upper semicontinuous in Lq(0, T ;Lq(Ω)), i.e., if ~ξn → ~ξ strongly in
Lq(0, T ;Lq(Ω)), ~yn ∈ Φ(~ξn) and ~yn → ~z strongly in Lq(0, T ;Lq(Ω)), then ~z ∈ Φ(~ξ).

Since ~yn ∈ Φ(~ξn), there exists ~un ∈ L∞(0, T ;Lq(Ω)) satisfying (2.15) and
∂t~yn −∆~yn + (~yn · ∇)~ξn = χω~un in Ω× (0, T ),

~yn = ~0 on ∂Ω× (0, T ),
~yn(·, 0) = ~y0 in Ω,

~yn(·, T ) = ~0 in Ω.

(2.16)

By Step 2 we have that {~yn}n≥1 ⊂ K. By (2.15) with ~u replaced by ~un there exist a subsequence
of {n}n≥1, still denoted in the same manner, and ~u ∈ L∞(0, T ;Lq(Ω)), such that

~yn → ~z, ~ξn → ~ξ weakly in Ẇ 2,1
q (QT ),

strongly in Lq(0, T ;W 1,q
0 (Ω)) ∩ C([0, T ];Lq(Ω)),

(2.17)

~un → ~u weakly star in L∞(0, T ;Lq(Ω)) (2.18)

and
‖~u‖L∞(0,T ;Lq(Ω)) ≤ ρ2‖~y0‖L2(Ω). (2.19)

From (2.17) and the same arguments that led to (2.8) it follows that there exists a subsequence
of {n}n≥1, still denoted by the same notation, such that

(~yn · ∇)~ξn → (~z · ∇)~ξ weakly in Lq(0, T ;Lq(Ω)). (2.20)

Passing to the limit for n→ +∞ in (2.16), we obtain from (2.17)-(2.20) that ~z ∈ Φ(~ξ).

Kakutani’s fixed point theorem now implies the existence of ~y ∈ K such that ~y ∈ Φ(~y). This
completes the proof.

From Proposition 2.1 and Proposition 2.2 we deduce the following corollary, in which C0

denotes the embedding constant of W
2− 2

q
q (Ω) into L2(Ω), and M0 > 0 and T0 > 0 are arbitrarily

fixed constants.

Corollary 2.3. Choose ~y0 ∈W 2−2/q
q (Ω) ∩W 1,q

0 (Ω) satisfying

0 < ‖~y0‖W 2−2/q
q (Ω)∩W 1,q

0 (Ω)
< min

{
ρ1(M0, T0)

ρ2(T0)C0 + 1
, ρ3(T0)

}
, (2.21)

and let

ρ ∈

[
ρ2(T0),

1

C0

(
ρ1(M0, T0)

‖~y0‖W 2−2/q
q (Ω)∩W 1,q

0 (Ω)

− 1

)]
.
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Then for any ~u ∈ L∞(0,+∞;Lq(Ω)) with ‖~u‖L∞(0,+∞;Lq(Ω)) ≤ ρ0 := ρ‖~y0‖L2(Ω), the equation
∂t~y −∆~y + (~y · ∇)~y = χω~u in Ω× (0, T0),

~y = ~0 on ∂Ω× (0, T0),
~y(·, 0) = ~y0 in Ω

(2.22)

has a unique solution ~y ∈ Ẇ 2,1
q (QT0) with ‖~y‖

Ẇ 2,1
q (QT0

)
≤ M0. Moreover, there exists a control

~v ∈ L∞(0,+∞;Lq(Ω)) with ‖~v‖L∞(0,+∞;Lq(Ω)) ≤ ρ0, such that the solution ~y(·, ·;~v) of (2.22)

corresponding to ~v satisfies ~y(·, T0;~v) = ~0 in Ω.

Henceforth we fix ~y0 satisfying (2.21) and ρ0 = ρ‖~y0‖L2(Ω).

Proposition 2.4. Problem (P ) has at least one solution.

Proof. From Corollary 2.3 it follows that problem (P ) has an admissible control. Let T ∗ =
inf(P ). It is obvious that 0 ≤ T ∗ ≤ T0.

If T ∗ = T0, then the proof is complete. Otherwise T ∗ < T0, and there exist sequences
{Tn}n≥1 and {~un}n≥1 ⊂ U such that

T ∗ = lim
n→+∞

Tn (2.23)

and 
∂t~yn −∆~yn + (~yn · ∇)~yn = χω~un in Ω× (0, Tn),

~yn = ~0 on ∂Ω× (0, Tn),
~yn(·, 0) = ~y0 in Ω,

~yn(·, Tn) = ~0 in Ω,

(2.24)

where ~yn(·, ·) = ~y(·, ·; ~un) ∈ Ẇ 2,1
q (QTn). By (2.23) and (2.24), we can assume that 0 < Tn < T0.

Set

~vn(·, t) =

{
~un, t ∈ (0, Tn),
~0, t ∈ [Tn,+∞)

and ~zn(·, t) =

{
~yn, t ∈ (0, Tn),
~0, t ∈ [Tn, T0].

(2.25)

From the fact that {~un}n≥1 ⊂ U , (2.24) and (2.25) it follows that

{~vn}n≥1 ⊂ U (2.26)

and ~zn(·, ·) ∈ Ẇ 2,1
q (QT0) satisfies

∂t~zn −∆~zn + (~zn · ∇)~zn = χω~vn in Ω× (0, T0),

~zn = ~0 on ∂Ω× (0, T0),
~zn(·, 0) = ~y0 in Ω,

~zn(·, Tn) = ~0 in Ω.

(2.27)

By (2.26), (2.27) and Corollary 2.3, we obtain

‖~zn‖Ẇ 2,1
q (QT0

)
≤M0, ∀ n ≥ 1,
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which, combined with (2.26), implies that there exist a subsequence of {n}n≥1, still denoted in
the same manner, ~z ∈ Ẇ 2,1

q (QT0) and ~v ∈ U , such that

~zn → ~z weakly in Ẇ 2,1
q (QT0) and strongly in Lq(0, T0;W 1,q

0 (Ω)) ∩ C([0, T0];Lq(Ω)),
~vn → ~v weakly star in L∞(0,+∞;Lq(Ω)).

(2.28)

By (2.28) and the same arguments as for (2.8) we have that there exists a subsequence of {n}n≥1,
still denoted by the same notation, such that

(~zn · ∇)~zn → (~z · ∇)~z weakly in Lq(0, T0;Lq(Ω)). (2.29)

Passing to the limit for n→ +∞ in (2.27), by (2.28), (2.29) and (2.23), we obtain
∂t~z −∆~z + (~z · ∇)~z = χω~v in Ω× (0, T0),

~z = ~0 on ∂Ω× (0, T0),
~z(·, 0) = ~y0 in Ω,

~z(·, T ∗) = ~0 in Ω.

This completes the proof.

Now we give the proof of Theorem 1.1.

Proof. By a contradiction argument, there would exist a positive constant ε0 < ρ0 and a
measurable subset E∗ ⊂ (0, T ∗) with |E∗| > 0 such that

‖~u∗(·, t)‖Lq(Ω) ≤ ρ0 − ε0, ∀ t ∈ E∗. (2.30)

Take δ0 ∈ (0, |E∗|/2) and denote E∗δ0 = {t ∈ (0, T ∗) : t + δ0 ∈ E∗}. Then we have |E∗δ0 | > 0.
Indeed, on one hand by the definition of E∗δ0 , if t ∈ E∗δ0 , then t + δ0 ∈ E∗ ∩ (δ0, T

∗). On the
other hand, if t ∈ E∗ ∩ (δ0, T

∗), then t− δ0 ∈ E∗δ0 . Hence

|E∗δ0 | = |E
∗ ∩ (δ0, T

∗)| ≥ |E∗| − δ0 > 2−1|E∗|.

Denote ~y∗(x, t) = ~y(x, t; ~u∗) and ~z∗δ0(x, t) = ~y∗(x, t+ δ0). Then we get that
(~z∗δ0)t −∆~z∗δ0 + (~z∗δ0 · ∇)~z∗δ0 = χω~u

∗(·, t+ δ0) in Ω× (0, T ∗ − δ0),

~z∗δ0 = ~0 on ∂Ω× (0, T ∗ − δ0),

~z∗δ0(·, 0) = ~y∗(·, δ0) in Ω,

~z∗δ0(·, T ∗ − δ0) = ~0 in Ω.

(2.31)

We claim that there exists a real number δ1 ∈ (0, δ0), such that as δ ∈ (δ1, δ0), there exists a
couple (~hδ, ~uδ) ∈ Ẇ 2,1

2 (QT ∗−δ0)× L∞(0, T ∗ − δ0;Lq(Ω)) satisfying
(~hδ)t −∆~hδ + ((~hδ + ~z∗δ0) · ∇)~hδ + (~hδ · ∇)~z∗δ0 = χωχE∗δ0

~uδ in Ω× (0, T ∗ − δ0),

~hδ = ~0 on ∂Ω× (0, T ∗ − δ0),
~hδ(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω,
~hδ(·, T ∗ − δ0) = ~0 in Ω

(2.32)
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and
‖~uδ‖L∞(0,T ∗−δ0;Lq(Ω)) ≤ c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω), (2.33)

where c1 > 0 is a constant independent of δ and to be determined later.

We shall use the Kakutani’s fixed point theorem to prove (2.32) and (2.33). To this end we
set q̃ = min{q, 10/3} and define

Kδ0 = {~ξ ∈ L2(0, T ∗ − δ0;L2(Ω)) : ‖~ξ‖
Ẇ 2,1

2 (QT∗−δ0 )
+ ‖~ξ‖

L∞(0,T ∗−δ0;W 1,q̃
0 (Ω))

≤ 1}.

Let δ ∈ (0, δ0) be a constant which is fixed later. For any ~ξ ∈ Kδ0 consider the linear control
system

~ht −∆~h+ ((~ξ + ~z∗δ0) · ∇)~h+ (~h · ∇)~z∗δ0 = χωχE∗δ0
~u in Ω× (0, T ∗ − δ0),

~h = ~0 on ∂Ω× (0, T ∗ − δ0),
~h(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω.

(2.34)

Its adjoint system is
~ψt + ∆~ψ − (∇~z∗δ0)~ψ + (div~z∗δ0 + div~ξ)~ψ + ((~ξ + ~z∗δ0) · ∇)~ψ = ~0 in Ω× (0, T ∗ − δ0),
~ψ = ~0 on ∂Ω× (0, T ∗ − δ0),
~ψ(·, T ∗ − δ0) ∈ L2(Ω),

and hence by Theorem 1.2, and the equivalence of observability and controllability, we deduce
that there exist a positive constant c1 ≡ C1(Ω, ω, E∗δ0 , T

∗, δ0) and a control ~u ∈ L∞(0, T ∗ −
δ0;Lq(Ω)) such that

~h(T ∗ − δ0; ~u) = ~0, (2.35)

and
‖~u‖L∞(0,T ∗−δ;Lq(Ω)) ≤ c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω). (2.36)

Now, we define the multivalued map Φδ : Kδ0 → L2(0, T ∗ − δ0;L2(Ω)) by

Φδ(~ξ) = {~h : there exists a control ~u such that (2.34), (2.35) and (2.36) hold}, for ~ξ ∈ Kδ0 .

From the above arguments it follows that Φδ(~ξ) 6= ∅ for each ~ξ ∈ Kδ0 .
Next we check in three steps the conditions of Kakutani’s fixed point theorem.

Step 1. It is straightforward to check that

Kδ0 is a convex, compact set in L2(0, T ∗ − δ0;L2(Ω)) and

Φδ(~ξ) is a convex set in L2(0, T ∗ − δ0;L2(Ω)) for each ~ξ ∈ Kδ0 .

Step 2. Φδ(Kδ0) ⊂ Kδ0.
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To achieve this goal, we use that for every ~ξ ∈ Kδ0 , there exists a control ~u ∈ L∞(0, T ∗ −
δ0;Lq(Ω)) satisfying

‖~u‖L∞(0,T ∗−δ0;Lq(Ω)) ≤ c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω) (2.37)

such that the associated state ~h = ~h(x, t) satisfies
~ht −∆~h+ ((~ξ + ~z∗δ0) · ∇)~h+ (~h · ∇)~z∗δ0 = χωχE∗δ0

~u in Ω× (0, T ∗ − δ0),

~h = ~0 on ∂Ω× (0, T ∗ − δ0),
~h(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω,
~h(·, T ∗ − δ0) = ~0 in Ω.

(2.38)

Multiplying the first equation of (2.38) by 2~h and integrating it over Ω, we have that

d

dt
‖~h(·, t)‖2L2(Ω) + 2‖∇~h(·, t)‖2L2(Ω)

≤ 2‖~ξ + ~z∗δ0‖L∞(Ω)‖∇~h‖L2(Ω)‖~h‖L2(Ω)

+2‖∇~z∗δ0‖Lq(Ω)‖~h‖L2(Ω)‖~h‖
L

2q
q−2 (Ω)

+ 2‖~u‖L2(Ω)‖~h‖L2(Ω)

≤ ‖∇~h(·, t)‖2L2(Ω) + C‖~h(·, t)‖2L2(Ω) + C‖~u(·, t)‖2L2(Ω), ∀ t ∈ [0, T ∗ − δ0].

Here and throughout Step 2, C denotes a generic positive constant independent of δ. Integrating
the latter inequality over (0, t), by Gronwall’s inequality and (2.37), we obtain

‖~h‖2C([0,T ∗−δ0];L2(Ω)) +

∫ T ∗−δ0

0
‖∇~h‖2L2(Ω) dt ≤ C‖~y

∗(·, δ)− ~y∗(·, δ0)‖2L2(Ω). (2.39)

From (2.39) it follows that

‖((~ξ + ~z∗δ0) · ∇)~h+ (~h · ∇)~z∗δ0‖
2
L2(0,T ∗−δ0;L2(Ω))

≤ C‖∇~h‖2L2(0,T ∗−δ0;L2(Ω)) + 2

∫ T ∗−δ0

0
‖∇~z∗δ0‖

2
Lq(Ω)‖~h‖

2

L
2q
q−2 (Ω)

dt

≤ C‖∇~h‖2L2(0,T ∗−δ0;L2(Ω)) ≤ C‖~y
∗(·, δ)− ~y∗(·, δ0)‖2L2(Ω),

which, combined with (2.38) and (2.37), implies that

‖~h‖2C([0,T ∗−δ0];H1
0 (Ω)) + ‖~h‖2

Ẇ 2,1
2 (QT∗−δ0 )

≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖2H1
0 (Ω). (2.40)

Recalling that q̃ = min{q, 10/3}, we claim that

‖((~ξ + ~z∗δ0) · ∇)~h+ (~h · ∇)~z∗δ0‖Lq̃(0,T ∗−δ0;Lq̃(Ω)) ≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖H1
0 (Ω). (2.41)

Indeed, if q̃ = 10
3 then∫ T ∗−δ0

0

∫
Ω
|((~ξ + ~z∗δ0) · ∇)~h|10/3 dx dt ≤ C

∫ T ∗−δ0

0
‖∇~h(·, t)‖10/3

L10/3(Ω)
dt,
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which, combined with the interpolation inequality that ‖∇~h‖L10/3(Ω) ≤ C‖∇~h‖2/5
L2(Ω)

‖∇~h‖3/5
L6(Ω)

,

implies ∫ T ∗−δ0

0

∫
Ω
|((~ξ + ~z∗δ0) · ∇)~h|10/3 dx dt ≤ C

∫ T ∗−δ0

0
‖∇~h‖4/3

L2(Ω)
‖~h‖2H2(Ω) dt.

This together with (2.40) implies

‖((~ξ + ~z∗δ0) · ∇)~h‖L10/3(0,T ∗−δ0;L10/3(Ω)) ≤ C‖~y
∗(·, δ)− ~y∗(·, δ0)‖H1

0 (Ω). (2.42)

On the other hand, if q̃ = q, then for any ~ϕ ∈ Lq/(q−1)(Ω), by Hölder’s inequality, we have that∣∣∣∣∫
Ω

(~h · ∇)~z∗δ0 · ~ϕ dx
∣∣∣∣ ≤ ‖∇~z∗δ0‖C(Ω)‖~h‖Lq(Ω)‖~ϕ‖Lq/(q−1)(Ω)

≤ C‖~z∗δ0‖W 2,q(Ω)‖∇~h‖L2(Ω)‖~ϕ‖Lq/(q−1)(Ω),

where we used that q ≤ 6 as d = 3. From the latter and (2.40) it follows that∫ T ∗−δ0

0
‖(~h · ∇)~z∗δ0‖

q
Lq(Ω) dt ≤ C‖~y

∗(·, δ)− ~y∗(·, δ0)‖q
H1

0 (Ω)
,

which, combined with (2.42), indicates (2.41).
Now we rewrite (2.38) as

~ht −∆~h = ~f in Ω× (0, T ∗ − δ0),
~h = ~0 on ∂Ω× (0, T ∗ − δ0),
~h(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω,
~h(·, T ∗ − δ0) = ~0 in Ω,

where ~f = χωχE∗δ0
~u− ((~ξ + ~z∗δ0) · ∇)~h− (~h · ∇)~z∗δ0 . It follows from (2.37) and (2.41) that

‖~f‖Lq̃(0,T ∗−δ0;Lq̃(Ω)) ≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖H1
0 (Ω). (2.43)

It is obvious that ~h = ~h1 + ~h2, where ~h1 and ~h2 satisfy
(~h1)t −∆~h1 = ~f in Ω× (0, T ∗ − δ0),
~h1 = ~0 on ∂Ω× (0, T ∗ − δ0),
~h1(·, 0) = ~0 in Ω

(2.44)

and 
(~h2)t −∆~h2 = ~0 in Ω× (0, T ∗ − δ0),
~h2 = ~0 on ∂Ω× (0, T ∗ − δ0),
~h2(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω,

(2.45)
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respectively. By (2.43), (2.44) and the same arguments as for (2.4), we obtain

‖~h1‖Ẇ 2,1
q̃ (QT∗−δ0 )

≤ C‖~f‖Lq̃(0,T ∗−δ0;Lq̃(Ω)) ≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖H1
0 (Ω). (2.46)

By Remark 8.8 in [3] and Hille-Yosida Theorem, since Ω is a bounded, convex subset of Rd
with smooth boundary, ∆ is the infinitesimal generator of a C0 semigroup of contractions on
W 1,q

0 (Ω). Considering the fact that ~y∗ ∈ C([0, T ∗];W 1,q
0 (Ω)), from (2.45) we get

‖~h2‖Ẇ 2,1
2 (QT∗−δ0 )

+ ‖~h2‖C([0,T ∗−δ0];W 1,q
0 (Ω))

≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖
W 1,q

0 (Ω)
.

This together with (2.46) implies that

‖~h‖
Ẇ 2,1

2 (QT∗−δ0 )
+ ‖~h‖

C([0,T ∗−δ0];W 1,q̃
0 (Ω))

≤ C‖~y∗(·, δ)− ~y∗(·, δ0)‖
W 1,q

0 (Ω)
.

From the latter inequality we obtain that there exists a constant δ1 ∈ (0, δ0) such that

‖~h‖
C([0,T ∗−δ0];W 1,q̃

0 (Ω))
+ ‖~h‖

Ẇ 2,1
2 (QT∗−δ0 )

≤ 1, ∀ δ ∈ (δ1, δ0), (2.47)

and thus
Φδ(Kδ0) ⊂ Kδ0 , ∀ δ ∈ (δ1, δ0).

Step 3. The mapping Φδ is upper semicontinuous in L2(0, T ∗−δ0;L2(Ω)), i.e., if ~ξn ∈ Kδ0 →
~ξ strongly in L2(0, T ∗ − δ0;L2(Ω)) and ~hn ∈ Φδ(~ξn)→ ~h strongly in L2(0, T ∗ − δ0;L2(Ω)), then
~h ∈ Φδ(~ξ).

Since ~hn ∈ Φδ(~ξn), there exists ~un ∈ L∞(0, T ∗ − δ0;Lq(Ω)) satisfying

‖~un‖L∞(0,T ∗−δ0;Lq(Ω)) ≤ c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω), ∀ n ≥ 1, (2.48)

(~hn)t −∆~hn + ((~ξn + ~z∗δ0) · ∇)~hn
+(~hn · ∇)~z∗δ0 = χωχE∗δ0

~un in Ω× (0, T ∗ − δ0),

~hn = ~0 on ∂Ω× (0, T ∗ − δ0),
~hn(·, 0) = ~y∗(·, δ)− ~y∗(·, δ0) in Ω,
~hn(·, T ∗ − δ0) = ~0 in Ω.

(2.49)

From (2.48), {~ξn}n≥1 ⊂ Kδ0 and {~hn}n≥1 ⊂ Kδ0 , it follows that there exist a subsequence of
{n}n≥1, still denoted in the same manner, and ~u ∈ L∞(0, T ∗ − δ0;Lq(Ω)) such that

~ξn → ~ξ, ~hn → ~h weakly in Ẇ 2,1
2 (QT ∗−δ0), weakly star in L∞(0, T ;W 1,q̃

0 (Ω)),
strongly in L2(0, T ∗ − δ0;H1

0 (Ω)) ∩ C([0, T ∗ − δ0];L2(Ω)),
a.e. in Ω× (0, T ∗ − δ0),

(2.50)

~un → ~u weakly star in L∞(0, T ∗ − δ0;Lq(Ω)) (2.51)
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and
‖~u‖L∞(0,T ∗−δ0;Lq(Ω)) ≤ c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω). (2.52)

Next we claim that

((~ξn + ~z∗δ0) · ∇)~hn → ((~ξ + ~z∗δ0) · ∇)~h strongly in L2(0, T ∗ − δ0;L2(Ω)) (2.53)

and
(~hn · ∇)~z∗δ0 → (~h · ∇)~z∗δ0 strongly in L2(0, T ∗ − δ0;L2(Ω)). (2.54)

Indeed, from (2.50) and Lebesgue’s dominated convergence theorem it follows that

‖((~ξn + ~z∗δ0) · ∇)~hn − ((~ξ + ~z∗δ0) · ∇)~h‖2L2(0,T ∗−δ0;L2(Ω))

≤ 2‖((~ξn + ~z∗δ0) · ∇)(~hn − ~h)‖2L2(0,T ∗−δ0;L2(Ω)) + 2‖((~ξn − ~ξ) · ∇)~h‖2L2(0,T ∗−δ0;L2(Ω))

≤ C‖~hn − ~h‖2L2(0,T ∗−δ0;H1
0 (Ω))

+ 2‖((~ξn − ~ξ) · ∇)~h‖2L2(0,T ∗−δ0;L2(Ω)) → 0

and
‖((~hn − ~h) · ∇)~z∗δ0‖

2
L2(0,T ∗−δ0;L2(Ω)) → 0.

Passing to the limit for n→ +∞ in (2.49) we obtain from (2.50)-(2.54) that ~h ∈ Φδ(~ξ).

By Step 1 - Step 3 and Kakutani’s fixed point theorem there exists a ~hδ ∈ Kδ0 such that
~hδ ∈ Φδ(~hδ). Thus (2.32) and (2.33) follow.

Using (2.31) and (2.32), we have

(~hδ + ~z∗δ0)t −∆(~hδ + ~z∗δ0) + ((~hδ + ~z∗δ0) · ∇)(~hδ + ~z∗δ0)

= χω[~u∗(·, t+ δ0) + χE∗δ0
~uδ(·, t)] in Ω× (0, T ∗ − δ0),

(~hδ + ~z∗δ0) = ~0 on ∂Ω× (0, T ∗ − δ0),

(~hδ + ~z∗δ0)(·, 0) = ~y∗(·, δ) in Ω,

(~hδ + ~z∗δ0)(·, T ∗ − δ0) = ~0 in Ω.

(2.55)

Setting

~u∗δ(·, t) ≡ ~u∗(·, t+δ0)+χE∗δ0
~uδ(·, t) =

{
~u∗(·, t+ δ0) + ~uδ(·, t) if t ∈ E∗δ0 ,
~u∗(·, t+ δ0) if t ∈ (0, T ∗ − δ0) \ E∗δ0 ,

(2.56)

by (2.30), (2.33) and (2.56), we obtain that

‖~u∗δ(·, t)‖Lq(Ω) ≤ ρ0 − ε0 + c1‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω), a.e. t ∈ E∗δ0 , (2.57)

and

‖~u∗δ(·, t)‖Lq(Ω) = ‖~u∗(·, t+ δ0)‖Lq(Ω) ≤ ρ0, a.e. t ∈ (0, T ∗ − δ0) \ E∗δ0 . (2.58)
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Now we choose δ ∈ (δ1, δ0) , with δ1 determined in (2.47) such that ‖~y∗(·, δ)− ~y∗(·, δ0)‖L2(Ω) ≤
ε0c
−1
1 . Then from (2.56), (2.57) and (2.58) it follows that

‖~u∗δ(·, t)‖Lq(Ω) ≤ ρ0, a.e. t ∈ (0, T ∗ − δ0).

The latter inequality, together with (2.55), (2.56) and Proposition 2.1, implies that if we take

~v∗δ (·, t) =


~u∗(·, t) t ∈ (0, δ],
~u∗δ(·, t− δ) t ∈ (δ, T ∗ − δ0 + δ),
~0 t ∈ [T ∗ − δ0 + δ,+∞),

then ~v∗δ ∈ U and the equation
~yt −∆~y + (~y · ∇)~y = χω~v

∗
δ in Ω× (0, T ∗ − δ0 + δ),

~y = ~0 on ∂Ω× (0, T ∗ − δ0 + δ),
~y(·, 0) = ~y0 in Ω

has a unique solution ~y(·, ·;~v∗δ ) ∈ Ẇ
2,1
q (QT ∗−δ0+δ) satisfying

~y(·, T ∗ − δ0 + δ;~v∗δ ) = ~0 in Ω.

This gives a contradiction and completes the proof for d ∈ {2, 3}.

We close the section by giving the sketch for the proof of Theorem 1.1 for d = 1. In this
case, let Ω = (0, 1) and ω be an open and non-empty subset of Ω. For an arbitrarily fixed ρ0 > 0
we define the constraint set of controls

U ≡ {u : [0,+∞)→ L2(0, 1) is measurable : ‖u(·, t)‖L2(0,1) ≤ ρ0 for almost all t > 0}.

We fix y0(·) ∈ L2(0, 1) \ {0} and consider the controlled Burgers equation
yt − yxx + yyx = χωu in (0, 1)× (0,+∞),
y(0, t) = y(1, t) = 0 in (0,+∞),
y(·, 0) = y0 in (0, 1),

(2.59)

where u ∈ U . For any T > 0, existence and uniqueness of a solution in y(·, ·;u) ∈ C([0, T ];L2(0, 1))
to (2.59) can be ensured by standard arguments. The set of admissible controls is defined to be

Uad ≡ {u ∈ U : y(·, T ;u) = 0 over (0, 1), for some T > 0}.

Now carry out the proof in three stages.
Stage 1.

Problem (P ) has at least one admissible control.

This will be done by four steps as follows.
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Step 1. We consider the equation
yt − yxx + yyx = 0 in (0, 1)× (0, T0),
y(0, t) = y(1, t) = 0 in (0, T0),
y(·, 0) = y0, in (0, 1),

(2.60)

where T0 > 0 will be determined later. It is well-known that

‖y(·, T0)‖L2(0,1) ≤ e−λ1T0‖y0‖L2(0,1), (2.61)

where λ1 > 0 is the first eigenvalue of −∆ with Dirichlet boundary conditions.

Step 2. Let z = z(x, t) be the solution of
zt − zxx + zzx = 0 in (0, 1)× (0, 2),
z(0, t) = z(1, t) = 0 in (0, 2),
z(·, 0) = y(·, T0) in (0, 1).

(2.62)

We can check that
‖zx(·, 2)‖2L2(0,1) ≤ ‖y(·, T0)‖2L2(0,1)e

C‖y(·,T0)‖2
L2(0,1) ,

where C denotes a generic positive constant independent of T0. From the latter and (2.61) it
follows that

‖zx(·, 2)‖2L2(0,1) ≤ Ce
−2λ1T0 . (2.63)

Step 3. By standard arguments for local null controllability, Theorem 1.2 and (2.63), for
sufficiently large T0, there exists a u ∈ L∞(0, 2;L2(0, 1)) with ‖u(·, t)‖L2(0,1) ≤ ρ0 a.e. t ∈ (0, 2),
such that w = w(x, t) satisfies

wt − wxx + wwx = χωu in (0, 1)× (0, 2),
w(0, t) = w(1, t) = 0 in (0, 2),
w(·, 0) = z(·, 2) in (0, 1),
w(·, 2) = 0 in (0, 1).

(2.64)

Step 4. By (2.60), (2.62) and (2.64), we see that

ū(·, t) =


0, in (0, T0 + 2),
u(·, t), in [T0 + 2, T0 + 4)
0, in [T0 + 4,+∞).

is an admissible control for the problem (P ).

Stage 2. Existence of solution for (P) can be obtained by standard arguments.

Stage 3. The bang-bang property for (P) is obtained by the same arguments as for the case
d = 2, 3, only that in this case Kδ0 is replaced with

Kδ0 = {ξ ∈ L2(0, T ∗ − δ0;L2(Ω)) : ‖ξ‖
Ẇ 2,1

2 (QT∗−δ0 )
≤ 1}.
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3 Proof of the observability estimate

In this section, for the sake of simplicity, we only give the detailed proof of Theorem 1.2 for
m = 1, i.e., for any solution ϕ to the equation:

∂tϕ−∆ϕ+ aϕ+~b · ∇ϕ = 0 in Ω̂× (0, T ),

ϕ = 0 on ∂Ω̂× (0, T ),

ϕ(·, 0) = ϕ0 ∈ L2(Ω̂),

(3.1)

the following estimate holds:

‖ϕ(·, T )‖L2(Ω̂) ≤ e
C(Ω̂,ω̂,d,q̂,E)eC(Ω̂,ω̂,d,q̂)[1+(‖a‖2∞+‖~b‖2∞)(T+1)+‖a‖4/(2−p̂)∞ ]

∫
ω̂×E
|ϕ(x, t)| dx dt. (3.2)

As mentioned before, (3.2) is proved by using similar arguments as in [17]. We therefore
only sketch the proof below and point out the differences.

Lemma 3.1. There exists a positive constant C0 = C0(Ω̂, d, q̂) such that for any t ∈ (0, T ],

‖ϕ(·, t)‖2
L2(Ω̂)

≤ eC0(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)
(3.3)

and
‖∇ϕ(·, t)‖2

L2(Ω̂)
≤ t−1eC0(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)

. (3.4)

Proof. Multiplying the first equation of (3.1) by 2ϕ we obtain after some calculations that

d

dt
‖ϕ(·, t)‖2

L2(Ω̂)
+ ‖∇ϕ(·, t)‖2

L2(Ω̂)
≤ C(Ω̂, d, q̂)(‖a‖2∞ + ‖~b‖2∞)‖ϕ(·, t)‖2

L2(Ω̂)
.

Integrating the latter inequality over (0, t), we have that

‖ϕ(·, t)‖2
L2(Ω̂)

+

∫ t

0
‖∇ϕ(·, s)‖2

L2(Ω̂)
ds

≤ C(Ω̂, d, q̂)(‖a‖2∞ + ‖~b‖2∞)

∫ t

0
‖ϕ(·, s)‖2

L2(Ω̂)
ds+ ‖ϕ0‖2L2(Ω̂)

∀ t ∈ [0, T ].

(3.5)

This, together with Gronwall’s inequality, implies

‖ϕ(·, t)‖2
L2(Ω̂)

≤ eC(Ω̂,d,q̂)(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)
. (3.6)

Moreover, it follows from (3.5) and (3.6) that∫ t

0
‖∇ϕ(·, s)‖2

L2(Ω̂)
ds ≤ ‖ϕ0‖2L2(Ω̂)

eC(Ω̂,d,q̂)(‖a‖2∞+‖~b‖2∞)t, ∀ t ∈ [0, T ]. (3.7)

Multiplying the first equation of (3.1) by −2t∆ϕ, we have that

t∂t‖∇ϕ(·, t)‖2
L2(Ω̂)

≤ C(Ω̂, d, q̂)(‖a‖2∞ + ‖~b‖2∞)‖∇ϕ(·, t)‖2
L2(Ω̂)

t.
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Integrating the latter over (0, t), we obtain by (3.7) and Gronwall’s inequality that

t‖∇ϕ(·, t)‖2
L2(Ω̂)

≤ e2C(Ω̂,d,q̂)(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)
. (3.8)

From (3.6) and (3.8) the inequalities (3.3) and (3.4) follow.

Let x0 ∈ Ω̂ and denote by BR ≡ B(x0, R) the open ball with center x0 and radius R.

Lemma 3.2. Let R0 > 0 and λ > 0. Introduce for t ∈ [0, T ] and x0 ∈ Ω̂,

Gλ(x, t) =
1

(T − t+ λ)d/2
e
− |x−x0|

2

4(T−t+λ) .

Define for u ∈ W 1,2(0, T ;L2(Ω̂ ∩ BR0)) ∩ L2(0, T ;H2(Ω̂ ∩ BR0) ∩H1
0 (Ω̂ ∩ BR0)), t ∈ (0, T ] and

ε > 0,

N ε
λ(t) =

∫
Ω̂∩BR0

|∇u(x, t)|2Gλ(x, t) dx∫
Ω̂∩BR0

|u(x, t)|2Gλ(x, t) dx+ ε

.

The following two properties hold:

i)
1

2

d

dt

∫
Ω̂∩BR0

|u(x, t)|2Gλ(x, t) dx+

∫
Ω̂∩BR0

|∇u(x, t)|2Gλ(x, t) dx

=

∫
Ω̂∩BR0

u(x, t)(∂t −∆)u(x, t)Gλ(x, t) dx.
(3.9)

ii) When Ω̂∩BR0 is star-shaped with respect to x0, i.e., νx̃0 ·(x̃0−x0) ≥ 0 for a.e. x̃0 ∈ ∂Ω̂∩BR0,

d

dt
N ε
λ(t) ≤ 1

T − t+ λ
N ε
λ(t) +

∫
Ω̂∩BR0

|∂tu−∆u|2Gλ(x, t) dx∫
Ω̂∩BR0

|u(x, t)|2Gλ(x, t) dx+ ε

. (3.10)

Proof. Equality (3.9) follows from direct computations. The proof of (3.10) is the same as that
in [15].

Lemma 3.3. Let R > 0 and δ ∈ (0, 1]. Then there are constants C1 = C1(δ,R) > 0, C2 =
C2(Ω̂, δ, R, d, q̂) > 0, C3 = C3(Ω̂, δ, R, d, q̂) > 0 and C4 = C4(δ,R) > 0, such that for any
ϕ0 ∈ L2(Ω̂) with ϕ0 6= 0 and ε̃ ∈ (0, ‖ϕ0‖2L2(Ω̂)

), the quantity

h0 =
C1

ln

[
(1 + C3)e2+

2C1
T e(C2+2C0)(‖a‖2∞+‖~b‖2∞)T

‖ϕ0‖2
L2(Ω̂)∫

Ω̂∩BR
|ϕ(x,T )|2 dx+ε̃

e‖a‖
4

2−p̂
∞ +‖a‖2∞+‖~b‖2∞

] (3.11)

satisfies the following two properties:
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i)

0 <

[
1 +

2C1

T
+ (C0 + C2)(‖a‖2∞ + ‖~b‖2∞)T + ‖a‖

4
2−p̂
∞ + ‖a‖2∞ + ‖~b‖2∞

]
h0 < C1. (3.12)

ii) For any t ∈ [T − h0, T ], it holds

eC0(‖a‖2∞+‖~b‖2∞)T

∫
Ω̂
|ϕ0|2 dx ≤ e

1+
C4
h0

(∫
Ω̂∩B(1+δ)R

|ϕ(x, t)|2 dx+ ε̃

)
. (3.13)

Proof. Inequality (3.12) follows from (3.11), (3.3) and the fact that ε̃ ∈ (0, ‖ϕ0‖2L2(Ω̂)
). To verify

(3.13) let h > 0, ρ(x) = |x − x0|2 and χ ∈ C∞0 (B(1+δ)R) be such that 0 ≤ χ ≤ 1, χ = 1 on

{x : |x−x0| ≤ (1 + 3δ/4)R}. Multiplying the first equation of (3.1) by 2e−
ρ
hχ2ϕ and integrating

over Ω̂ ∩B(1+δ)R, we get

d

dt

∫
Ω̂∩B(1+δ)R

e−
ρ
hχ2ϕ2 dx+ 2

∫
Ω̂∩B(1+δ)R

e−
ρ
h |χ∇ϕ|2 dx

≤
∫

Ω̂∩B(1+δ)R

e−
ρ
2h |χ∇ϕ|

(
4

h
|x− x0|e−

ρ
2hχ|ϕ|+ 4|∇χ|e−

ρ
2h |ϕ|

)
dx

−2

∫
Ω̂∩B(1+δ)R

ae−
ρ
hχ2ϕ2 dx− 2

∫
Ω̂∩B(1+δ)R

(~b · ∇ϕ)e−
ρ
hχ2ϕdx.

(3.14)

Considering the following estimate:

−2

∫
Ω̂∩B(1+δ)R

ae−
ρ
hχ2ϕ2 dx ≤

 2‖a‖Ld(Ω̂∩B(1+δ)R)‖e
− ρ
h (χϕ)2‖

L
d
d−1 (Ω̂∩B(1+δ)R)

for d ≥ 2,

2‖a‖L1(Ω̂∩B(1+δ)R)‖e
− ρ
h (χϕ)2‖L∞(Ω̂∩B(1+δ)R) for d = 1

≤ C(Ω̂, δ, R, d, q̂)‖a‖∞‖∇[e−
ρ
h (χϕ)2]‖L1(Ω̂∩B(1+δ)R),

we obtain that

−2

∫
Ω̂∩B(1+δ)R

ae−
ρ
hχ2ϕ2 dx ≤ C(Ω̂, δ, R, d, q̂)‖a‖∞

[
(1 + δ)R

h
+ ‖a‖∞

] ∫
Ω̂∩B(1+δ)R

e−
ρ
hχ2ϕ2 dx

+C(Ω̂, δ, R, d, q̂)‖∇χ‖2L∞(B(1+δ)R)e
− [(1+3δ/4)R]2

h

∫
Ω̂∩B(1+δ)R

ϕ2 dx

+

∫
Ω̂∩B(1+δ)R

e−
ρ
hχ2|∇ϕ|2 dx.

This together with (3.14) and (3.3) implies

d

dt

(
e
−
{

16(1+δ)2R2

h2 +C(Ω̂,δ,R,d,q̂)‖a‖∞[
(1+δ)R

h
+‖a‖∞]+2‖~b‖2∞

}
t
∫

Ω̂∩B(1+δ)R

e−
ρ
hχ2ϕ2 dx

)
≤ C(Ω̂, δ, R, d, q̂)‖∇χ‖2L∞(B(1+δ)R)e

− [(1+3δ/4)R]2

h eC0(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)

·e
−
{

16(1+δ)2R2

h2 +C(Ω̂,δ,R,d,q̂)‖a‖∞[
(1+δ)R

h
+‖a‖∞]+2‖~b‖2∞

}
t
.

(3.15)

21



Set c1 = 17(1 + δ)2, c2 = (1 + 3δ/4)2, c3 = (1 + δ/2)2 and C1 = (c2−c3)(c3−1)R2

c1
. Integrating

(3.15) on (t, T ), we have after some calculations that there exists a positive constant C2 =
C2(Ω̂, δ, R, d, q̂) such that∫

Ω̂∩BR
ϕ2(x, T ) dx ≤ e

(c2−c3+1)R2

h eC2(‖a‖2∞+‖~b‖2∞)T

∫
Ω̂∩B(1+δ)R

ϕ2(x, t) dx (3.16)

+C2e
(C2+C0)(‖a‖2∞+‖~b‖2∞)T ‖∇χ‖2L∞(B(1+δ)R)

c2 − c3

c1
he−

(c3−1)R2

h ‖ϕ0‖2L2(Ω̂)
,

whenever 0 < T − c2−c3
c1

h ≤ t ≤ T . Now we set C3 = C2‖∇χ‖2L∞(B(1+δ)R)C1 and choose

h = c1
c2−c3h0. From (3.12) it follows that for any 0 < T − c2−c3

c1
h ≤ t ≤ T ,

C2e
(C2+C0)(‖a‖2∞+‖~b‖2∞)T ‖∇χ‖2L∞(B(1+δ)R)

c2 − c3

c1
he−

(c3−1)R2

h ‖ϕ0‖2L2(Ω̂)
≤ 1

e

∫
Ω̂∩BR

|ϕ(x, T )|2 dx+
ε̃

e
.

This, together with (3.16), (3.11) and (3.12), implies

(e− 1)eC0(‖a‖2∞+‖~b‖2∞)T ‖ϕ0‖2L2(Ω̂)
≤ e1+

C4
h0

(∫
Ω̂∩B(1+δ)R

ϕ2(x, t) dx+ ε̃

)

for C4 = 3C1 + (c2−c3+1)(c2−c3)R2

c1
, and (3.13) follows.

Lemma 3.4. Let 0 < r < R. Suppose that Br ⊂ Ω̂ and Ω̂∩B(1+2δ)R is star-shaped with respect

to x0 for some δ ∈ (0, 1]. Then there exists a constant β = β(Ω̂, δ, R, r, d, q̂) > 0, such that for
any ε̃ ∈ (0, ‖ϕ0‖2L2(Ω̂)

),∫
Ω̂∩BR

|ϕ(x, T )|2dx+ ε̃

≤

[
(1 + C3)e2+

2C1
T e(C2+2C0)(‖a‖2∞+‖~b‖2∞)T ‖ϕ0‖2L2(Ω̂)

e‖a‖
4

2−p̂
∞ +‖a‖2∞+‖~b‖2∞

]β
[
2

(∫
Br

|ϕ(x, T )|2 dx+ ε̃

)]1−β
.

Proof. Let 0 < r < R and R0 = (1 + 2δ)R. Let χ ∈ C∞0 (BR0), 0 ≤ χ ≤ 1, χ = 1 on
{x : |x− x0| ≤ (1 + 3δ/2)R}. We will apply Lemma 3.2 with u = χϕ. It is obvious that

(∂t −∆)u = −au−~b · ∇u+ g

with g = −2∇χ∇ϕ−∆χϕ+~b(ϕ∇χ). We shall divide the proof into the following three steps.
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Step 1. Noticing that g is supported on {x : (1 + 3δ/2)R ≤ |x− x0| ≤ R0}, and recalling the
fact that χ = 1 on {x : |x− x0| ≤ (1 + δ)R}, we have∫

Ω̂∩BR0

u(x, t)g(x, t)Gλ(x, t) dx∫
Ω̂∩BR0

|u(x, t)|2Gλ(x, t) dx+ ε̃

≤
C(δ,R)

∫
Ω̂∩{x:(1+3δ/2)R≤|x−x0|≤R0}

[|ϕ| · |∇ϕ|+ ϕ2(‖~b‖∞ + 1)] dx∫
Ω̂∩B(1+δ)R

|ϕ(x, t)|2 dx+ ε̃e
(1+δ)2R2

4(T−t+λ) (T − t+ λ)
d
2

e−
C5

T−t+λ

(3.17)

with C5 = − (1+δ)2R2

4 + (1+3δ/2)2R2

4 > 0. Since e
(1+δ)2R2

4(T−t+λ) (T − t + λ)
d
2 ≥ C(δ,R, d) > 0, we have

from (3.17) and Lemma 3.1 that∫
Ω̂∩BR0

ugGλ dx∫
Ω̂∩BR0

|u|2Gλ dx+ ε̃

≤
C(δ,R, d)(1 + ‖~b‖∞ + t−

1
2 )eC0(‖a‖2∞+‖~b‖2∞)t‖ϕ0‖2L2(Ω̂)∫

Ω̂∩B(1+δ)R

|ϕ(x, t)|2 dx+ ε̃

e−
C5

T−t+λ . (3.18)

Similarly, we obtain

∫ T

t

∫
Ω̂∩BR0

|g(x, s)|2Gλ(x, s) dx∫
Ω̂∩BR0

|u(x, s)|2Gλ(x, s) dx+ ε̃

ds

≤
∫ T

t

C(δ,R, d)(1 + ‖~b‖2∞ + s−1)eC0(‖a‖2∞+‖~b‖2∞)s‖ϕ0‖2L2(Ω̂)∫
Ω̂∩B(1+δ)R

|ϕ(x, s)|2 dx+ ε̃

e−
C5

T−s+λ ds.

(3.19)

By (3.12) we have that h0 < C1 and h0 ∈ (0, T/2). Now, for any t ∈ [T − ε, T ), with ε ∈ (0, h0]
to be determined later, we get by (3.13), (3.18) and (3.19) that

2

∫
Ω̂∩BR0

ugGλ dx∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

+ 3

∫ T

t

∫
Ω̂∩BR0

|g|2Gλ(x, s) dx∫
Ω̂∩BR0

|u|2Gλ(x, s) dx+ ε̃

ds

≤ C(δ,R, d)
(

1 + ‖~b‖2∞ + T−
1
2

)
e
C4+C5
h0 e−

C5
ε+λ , Qh0,ε,λ.

(3.20)
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Step 2. In this step we obtain a bound for λN ε̃
λ(T ). Firstly, by (3.10), we have

d

dt
N ε̃
λ(t) ≤ 1

T − t+ λ
N ε̃
λ(t) + 3

∫
Ω̂∩BR0

|au|2Gλ(x, t) dx∫
Ω̂∩BR0

|u|2Gλ(x, t) dx+ ε̃

+3‖~b‖2∞

∫
Ω̂∩BR0

|∇u|2Gλ(x, t) dx∫
Ω̂∩BR0

|u|2Gλ(x, t) dx+ ε̃

+ 3

∫
Ω̂∩BR0

|g|2Gλ(x, t) dx∫
Ω̂∩BR0

|u|2Gλ(x, t) dx+ ε̃

.

(3.21)

Now we deal with the second term on the right hand side of (3.21). Recalling (1.4), we see∫
Ω̂∩BR0

|au|2Gλ dx ≤ ‖a2‖
L
d
p̂ (Ω̂∩BR0

)
‖u2Gλ‖

L
d
d−p̂ (Ω̂∩BR0

)

≤ ‖a‖2
L

2d
p̂ (Ω̂∩BR0

)
‖(u2Gλ)

1
p̂ ‖p̂
L

dp̂
d−p̂ (Ω̂∩BR0

)

≤ C(Ω̂, δ, R, d, q̂)‖a‖2
Lq̂(Ω̂∩BR0

)

∥∥∥∇((u2Gλ)
1
p̂

)∥∥∥p̂
Lp̂(Ω̂∩BR0

)
for d ≥ 2,

and∫
Ω̂∩BR0

|au|2Gλ dx ≤ ‖a‖2
L2(Ω̂∩BR0

)
‖u2Gλ‖L∞(Ω̂∩BR0

)

≤ C(Ω̂, δ, R, d, q̂)‖a‖2
Lq̂(Ω̂∩BR0

)

∥∥∇ (u2Gλ
)∥∥
L1(Ω̂∩BR0

)
for d = 1.

Hence ∫
Ω̂∩BR0

|au|2Gλ dx

≤ C(Ω̂, δ, R, d, q̂)‖a‖2∞
∫

Ω̂∩BR0

(|u|2−p̂|∇u|p̂Gλ + u2(Gλ)1−p̂|∇Gλ|p̂) dx

≤
∫

Ω̂∩BR0

|∇u|2Gλ dx+ C(Ω̂, δ, R, d, q̂)

[
‖a‖

4
2−p̂
∞ +

‖a‖2∞
(T − t+ λ)p̂

] ∫
Ω̂∩BR0

|u|2Gλ dx,

which, combined with (3.21), implies

d

dt
[(T − t+ λ)e−3(1+‖~b‖2∞)tN ε̃

λ(t)]

≤ C(Ω̂, δ, R, d, q̂)e−3(1+‖~b‖2∞)t

[
(T − t+ λ)‖a‖

4
2−p̂
∞ +

‖a‖2∞
(T − t+ λ)p̂−1

]

+3(T − t+ λ)e−3(1+‖~b‖2∞)t

∫
Ω̂∩BR0

|g|2Gλ(x, t) dx∫
Ω̂∩BR0

|u|2Gλ(x, t) dx+ ε̃

.
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Integrating the latter inequality from t to T , we obtain after some calculations that

e−3(1+‖~b‖2∞)ε λ

ε+ λ
N ε̃
λ(T )

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)

≤

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
{
N ε̃
λ(t) + C(Ω̂, δ, R, d, q̂)

[
ε‖a‖

4
2−p̂
∞ + ‖a‖2∞(ε+ λ)1−p̂

]

+3

∫ T

t

∫
Ω̂∩BR0

|g|2Gλ(x, s) dx∫
Ω̂∩BR0

|u|2Gλ(x, s) dx+ ε̃

ds

}
, ∀ 0 < T − ε ≤ t < T.

(3.22)

Secondly, by (3.9), we have that

1

2

d

dt

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
+N ε̃

λ(t)

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
= −

∫
Ω̂∩BR0

au2Gλ dx−
∫

Ω̂∩BR0

u(~b · ∇u)Gλ dx

+

∫
Ω̂∩BR0

ugGλ dx∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
.

(3.23)

Since

−
∫

Ω̂∩BR0

au2Gλ dx ≤

 ‖a‖Ld(Ω̂∩BR0
)‖u

2Gλ‖
L

d
d−1 (Ω̂∩BR0

)
for d ≥ 2,

‖a‖L1(Ω̂∩BR0
)‖u

2Gλ‖L∞(Ω̂∩BR0
) for d = 1,

we have that

−
∫

Ω̂∩BR0

au2Gλ dx

≤ C(Ω̂, δ, R, d, q̂)‖a‖Lq̂(Ω̂∩BR0
)‖∇(u2Gλ)‖L1(Ω̂∩BR0

)

≤ 1

4
N ε̃
λ(t)

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)

+C(Ω̂, δ, R, d, q̂)

(
‖a‖2∞ +

‖a‖∞
T − t+ λ

)(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
.

(3.24)
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From (3.23), (3.24) and (3.22) it follows that

d

dt

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
+ e−3(1+‖~b‖2∞)ε λ

ε+ λ
N ε̃
λ(T )

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)

≤
[
C(Ω̂, δ, R, d, q̂)

(
‖a‖2∞ +

‖a‖∞
T − t+ λ

+ ε‖a‖
4

2−p̂
∞ + ‖a‖2∞(ε+ λ)1−p̂

)
+ 2‖b‖2∞

]
·

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
(3.25)

+

2

∫
Ω̂∩BR0

ugGλ dx∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

+ 3

∫ T

t

∫
Ω̂∩BR0

|g|2Gλ(x, s) dx∫
Ω̂∩BR0

|u|2Gλ(x, s) dx+ ε̃

ds


·

(∫
Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)
, ∀ 0 < T − ε ≤ t < T.

For t ∈ [T − ε, T − ε/2], (T − t+ λ)−1 ≤ 2(ε+ λ)−1, from (3.25) and (3.20) it follows that

d

dt

[
e

e−3(1+‖~b‖2∞)ελ

ε+ λ
N ε̃
λ(T )− 2‖~b‖2∞ −Qh0,ε,λ

t

e
−C(Ω̂,δ,R,d,q̂)

(
‖a‖2∞+

‖a‖∞
ε+λ

+ε‖a‖
4

2−p̂
∞ +‖a‖2∞(ε+λ)1−p̂

)
t
(∫

Ω̂∩BR0

|u(x, t)|2Gλ dx+ ε̃

)]
≤ 0.

Integrating the latter inequality over (T − ε, T − ε/2) and after some calculations, we obtain
that

e
e−3(1+‖~b‖2∞)ε

2
ε

ε+λ
λN ε̃

λ(T )

≤ e
C(Ω̂,δ,R,d,q̂)ε

[
‖a‖2∞+

‖a‖∞
ε+λ

+ε‖a‖
4

2−p̂
∞ +‖a‖2∞(ε+λ)1−p̂

]
+ε‖~b‖2∞+ ε

2
Qh0,ε,λ

·

∫
Ω̂∩BR0

|u(x, T − ε)|2Gλ(x, T − ε) dx+ ε̃∫
Ω̂∩BR0

|u(x, T − ε/2)|2Gλ(x, T − ε/2) dx+ ε̃

.

(3.26)

Thirdly, we claim that∫
Ω̂∩BR0

|u(x, T − ε)|2Gλ(x, T − ε) dx+ ε̃∫
Ω̂∩BR0

|u(x, T − ε/2)|2Gλ(x, T − ε/2) dx+ ε̃

≤ e
(1+δ)2R2

ε/2+λ e
1+

C4
h0 e

ln
[

d!(2C1)
d
2

(1+δ)2dR2d+1

]
. (3.27)
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Indeed, on the one hand, by the definition of Gλ, (3.3) and (3.13), we have∫
Ω̂∩BR0

|u(x, T − ε)|2Gλ(x, T − ε) dx+ ε̃∫
Ω̂∩BR0

|u(x, T − ε/2)|2Gλ(x, T − ε/2) dx+ ε̃

≤

∫
Ω̂
|ϕ(x, T − ε)|2 dx+ ε̃(ε/2 + λ)

d
2∫

Ω̂∩B(1+δ)R

|ϕ(x, T − ε/2)|2 dx · e−
(1+δ)2R2

4(ε/2+λ) + ε̃(ε/2 + λ)
d
2

(3.28)

≤
e

(1+δ)2R2

4(ε/2+λ) e
1+

C4
h0

(∫
Ω̂∩B(1+δ)R

|ϕ(x, T − ε/2)|2 dx+ ε̃

)
+ ε̃(ε/2 + λ)

d
2 e

(1+δ)2R2

4(ε/2+λ)

∫
Ω̂∩B(1+δ)R

|ϕ(x, T − ε/2)|2 dx+ ε̃(ε/2 + λ)
d
2 e

(1+δ)2R2

4(ε/2+λ)

.

On the other hand,

e
(1+δ)2R2

ε/2+λ e
1+

C4
h0 e

ln
[

d!(2C1)
d
2

(1+δ)2dR2d+1

] [∫
Ω̂∩B(1+δ)R

|ϕ(x, T − ε/2)|2 dx+ ε̃(ε/2 + λ)
d
2 e

(1+δ)2R2

4(ε/2+λ)

]

≥ e
(1+δ)2R2

4(ε/2+λ) e
1+

C4
h0

∫
Ω̂∩B(1+δ)R

|ϕ(x, T − ε/2)|2 dx+ ε̃(ε/2 + λ)
d
2 e

(1+δ)2R2

4(ε/2+λ) (3.29)

+e
(1+δ)2R2

4(ε/2+λ) e
1+

C4
h0

(
2C1

ε/2 + λ

)d/2
ε̃.

Now we choose λ = µε with µ ∈ (0, 1) to be determined later. Recalling that 0 < ε ≤ h0 < C1

from (3.12), we obtain from (3.29) and (3.28) that (3.27) holds.
Next we set ε = C5

2(C4+C5)h0. It follows from (3.26) and (3.27) that

ελN ε̃
λ(T ) ≤ e3(1+‖~b‖2∞)εC(Ω̂, δ, R, d, q̂)(ε2‖a‖2∞ + ε‖a‖∞ + ε3‖a‖

4
2−p̂
∞ + ε3−p̂‖a‖2∞)

+e3(1+‖~b‖2∞)ε[4ε2‖~b‖2∞ + 2ε2Qh0,ε,λ + 4(1 + δ)2R2 + 4ε+ 4εC4h
−1
0 ]

+4εe3(1+‖~b‖2∞)εln

[
d!(2C1)

d
2

(1+δ)2dR2d + 1

]
.

(3.30)

Recalling (3.12) and the definition of Qh0,ε,λ in (3.20), we have by (3.30) that

ελN ε̃
λ(T ) ≤ C(Ω̂, δ, R, d, q̂).

From this estimate and the fact that ε < h0 < C1, we get

16λ

r2

(
d

4
+ λN ε̃

λ(T )

)
= µ

(
4d

r2
ε+

16

r2
ελN ε̃

λ(T )

)
≤ µ(1 + C6) (3.31)
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for some positive constant C6 = C6(Ω̂, δ, R, r, d, q̂).
Step 3. Now, by the same arguments as in Lemma 4 of [17] and (3.31), we have∫

Ω̂∩BR0

|u(x, T )|2e−
|x−x0|

2

4λ dx

≤
∫
Br

|ϕ(x, T )|2e−
|x−x0|

2

4λ dx+ µ(1 + C6)

(∫
Ω̂∩BR0

|u(x, T )|2e−
|x−x0|

2

4λ dx+ ε̃

)
.

(3.32)

Then we choose µ = 1
2(1+C6) . This, together with (3.32), implies∫

Ω̂∩BR0

|u(x, T )|2e−
|x−x0|

2

4λ dx+ ε̃ ≤ 2

(∫
Br

|ϕ(x, T )|2e−
|x−x0|

2

4λ dx+ ε̃

)
.

Using the fact that λ = C5
4(C4+C5)(1+C6)h0 and (3.11), we obtain that Lemma 3.4 holds with

β = (1+C6)(C4+C5)R2

(1+C6)(C4+C5)R2+C1C5
.

Lemma 3.5. Let ω̃ be a non-empty open subset of Ω̂. Then there are C = C(Ω̂, ω̃, d, q̂) > 0 and
β̃ = β̃(Ω̂, ω̃, d, q̂) ∈ (0, 1) such that for any T > 0 and ϕ0 ∈ L2(Ω̂),∫

Ω̂
|ϕ(x, T )|2 dx ≤ eC[1+T−1+(‖a‖2∞+‖~b‖2∞)(T+1)+‖a‖4/(2−p̂)∞ ]‖ϕ0‖2β̃L2(Ω̂)

‖ϕ(·, T )‖2(1−β̃)
L2(ω̃)

.

Proof. Indeed, by Lemma 3.4 and the same arguments as Lemma 5 in [17], we have∫
Ω̂
|ϕ(x, T )|2 dx+ ε̃ ≤ eC[1+T−1+(‖a‖2∞+‖~b‖2∞)(T+1)+‖a‖4/(2−p̂)∞ ]‖ϕ0‖2β̃L2(Ω̂)

(‖ϕ(·, T )‖2L2(ω̃) + ε̃)1−β̃

for some constants C = C(Ω̂, ω̃, d, q̂) > 0 and β̃ = β̃(Ω̂, ω̃, d, q̂) ∈ (0, 1), where ε̃ ∈ (0, ‖ϕ0‖2L2(Ω̂)
).

Passing to the limit for ε̃→ 0 in the above inequality completes the proof of this lemma.

By the same arguments as Theorem 4 in [17] and Lemma 3.5, we arrive at (3.2).

Remark 3.6. By Lemma 3.5, if ϕ(·, T ) = 0 in a non-empty open set of Ω̂, then ϕ(·, T ) = 0 in
Ω̂. This together with Théorème II.1 in [4] implies that ϕ(·, t) ≡ 0 in Ω̂× (0, T ).

Remark 3.7. If m > 1, for each ~u ∈W 1,2(0, T ;L2(Ω̂∩BR0))∩L2(0, T ;H2(Ω̂∩BR0)∩H1
0 (Ω̂∩

BR0)), t ∈ (0, T ] and ε > 0, we define the frequency function as

N ε
λ(t) =

∫
Ω̂∩BR0

|∇~u(x, t)|2Gλ(x, t) dx∫
Ω̂∩BR0

|~u(x, t)|2Gλ(x, t) dx+ ε

.

Then by the same arguments as above the estimate in Theorem 1.2 can be obtained.
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[18] A.Refik Bahadir, A fully implicit finite-difference scheme for two-dimensional Burger’s equa-
tion, Appl.Math.Comput., 137(2003), 131-137.
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