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Abstract

A general framework for calculating shape derivatives for domain optimiza-
tion problems with partial differential equations as constraints is presented. The
first order approximation of the cost with respect to the geometry perturbation is
arranged in an efficient manner that allows the computation of the shape deriva-
tive of the cost without the necessity to involve the shape derivative of the state
variable. In doing so, the state variable is only required to be Lipschitz continuous
with respect to geometry perturbations. Application to shape optimization with the
Navier-Stokes equations as PDE constraint is given.
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1 Introduction
In this paper, we consider the problem of finding a domain Ω (in a class of admissible
domains Uad) minimizing the functional

J(u,Ω)≡
∫

Ω

j1(Cγ u) dx (1)

subject to a constraint
E(u,Ω) = 0, u ∈ X . (2)

Here E(u,Ω) = 0, represents a partial differential equation posed on Ω with boundary
∂Ω, u is the state variable and X ⊂ L2(Ω)l , l ∈N, is a Hilbert space with a dual X∗. The
class of admissible domains Uad does not admit a vector space structure, making the
application of traditional optimization methods difficult. This difficulty is bypassed by
describing shapes by means of transformations. Due to lack of closed form solutions to
E(u,Ω) = 0, problem (1-2) is usually solved numerically using iterative methods, e.g.,
the gradient descent method. For such methods, one needs to compute the derivative of
the cost with respect to Ω. Rigorous derivations of shape derivative of J can be found in
literature, see e.g [7], [2]. In [7], the approach taken involves differentiation of the state
equation with respect to the domain. The state variable lives in a Hilbert space X which
depends on the geometry with respect to which optimization is carried out. To obtain
sensitivity information of Ω 7→ Ĵ(Ω) = J(Ω,u(Ω)), a chain rule approach involving
the shape derivative of Ω 7→ u(Ω) is chosen. Other techniques presented in, e.g., [2]
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use function space parametrization and function space embedding methods. The latter
depends strongly on sophisticated differentiability properties of saddle point problems.
In this paper, we present a computation of the shape derivative of J under minimal
regularity assumptions. The technique we employ was first suggested in [5], and then
used in [3], and allows to compute the shape derivative of the mapping Ω 7→ Ĵ(Ω)
without using the shape derivative of the state variable with respect to the geometry.
In [5], a cost functional J : X 7→ R of the form J(u,Ω) =

∫
Ω

j1(u) dx was considered.
However, in many applications such as vortex control in fluids, cost functionals are
typically of the form (1), where Cγ : X 7→ H, H a Banach space, is either a linear
operator, e.g., Cγ u = curl u or generally a non-linear operator, e.g., Cγ u = det ∇u. In
addition, we note that cost functionals of the form (1) can be expressed in the form

J(u,Ω) = G(F(u)), (3)

where the mappings
F : X 7→ H, G : H 7→ R,

are defined as F(u) = Cγ u and G(v) =
∫

Ω
j1(v) dx, respectively. In this work, we

specifically address this composite structure of the cost functionals of the form (1),
where Cγ is an affine operator

Cγ : u(·) 7→Cu(·)+ γ(·) γ ∈ L2(D),

D, an open and bounded hold all domain to be specified later, and C ∈L (X ,L2(Ω)) is
a linear operator. An application involving a cost functional with a non-linear operator
C in the integrand is also presented. The approach that we use can be summarized as
follows: The difference quotient of the cost J with respect to the geometry perturbation
is arranged in an efficient manner so that computation of the shape derivative of the
state can be bypassed. In doing so, the existence of the material derivative of the state u
can be replaced by Hölder continuity with exponent greater than or equal to 1

2 of u with
respect to the geometric data. The constraint E(u,Ω) = 0 is observed by introducing
an appropriately defined adjoint equation. Furthermore, well known results from the
method of mapping and the differentiation of functionals with respect to geometric
quantities are utilized on a technical level.

The rest of the paper is organized as follows. In Section 2 we present the proposed
general framework to compute the shape derivative for (1-2). The application of the
general theory to shape optimization problems with the Navier Stokes equations as
equality state constraints is presented in Section 3.

2 Shape derivative
In this section we focus on sensitivity analysis for the shape optimization problem (1)-
(2). To describe the class of admissible domains Uad , let D ⊂ Rd , d = 2,3 be a fixed
bounded domain with a C2 boundary ∂D and let S be a domain with a C2 boundary
Γ := ∂S satisfying S̄ ⊂ D (see Figure (1)). For the reference domain, either of the
following three cases is admitted
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Figure 1: Domain

(i) Ω = S,

(ii) Ω = D,

(iii) Ω = D\ S̄.

Then the boundary ∂Ω for the three cases is given by

(i) ∂Ω = Γ,

(ii) ∂Ω = ∂D,

(iii) ∂Ω = Γ∪∂D.

Shapes are difficult entities to be dealt with directly, so we manipulate them by means
of transformations. If Ω is the initial admissible shape, and Ωt is the shape at time t,
one considers transformations Tt : Ω 7→ Ωt . Such transformations can be constructed,
for instance, by perturbation of the identity [2]. To construct an admissible class of
these transformations, let Ω⊂ D̄ be a bounded domain and

H = {h ∈C2(D̄) : h|∂D = 0}

be the space of deformation fields. The fields h ∈H define for t > 0, a perturbation of
Ω by

Tt : Ω 7→Ωt ,

x 7→ Tt(x) = x+ th(x).

For each h ∈H , there exists τ̃ > 0 such that Tt(D) = D and {Tt} is a family of C2-
diffeomorphisms for |t|< τ̃ [2]. For each t ∈ R with |t|< τ̃ , we set Ωt = Tt(Ω), Γt =
Tt(Γ). Thus Ω0 = Ω, Γ0 = Γ, Ωt ⊂ D.

2.1 Notation
In what follows, the following notation will be used:

It = det DTt , A(t) = It(DTt)−1(DTt)−T , (4)
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and ∇u shall stand for (Du)T where u is either a scalar or vector valued function (if u is
bold faced, i.e., u). In (4), (DTt)−T takes the meaning of transpose of the inverse matrix
(DTt)−1. Furthermore, two notations for the inner product in Rd shall be used, namely
(x,y) and x · y, respectively. The latter shall be used in case of nested inner products.
In addition, throughout this work, unless specified otherwise, the following parenthesis
(·, ·)Ω, (·, ·)∂Ω shall denote the L2(Ω), L2(∂Ω) inner products, respectively. In some
cases, the subscript Ω may be omitted, but the meaning will remain clear in the given
context. The scalar product and the norm in the Hilbert space X will be denoted by
(·, ·)X and ‖ · ‖X , respectively, and the duality pairing between X∗ and X is denoted by
〈·, ·〉X∗×X . The curl of a vector field u = (u1,u2) ∈ R2, denoted by curl u, is defined as

curl u :=
∂u2

∂x
− ∂u1

∂y
,

while the curl of a scalar field u in the case d = 2, denoted by curl u, is defined as

curl u := (
∂u
∂y

,−∂u
∂x

).

The determinant of the velocity gradient tensor of a vector field u = (u1,u2) ∈ R2,
denoted by det∇u(x), is defined as

det∇u(x) :=
∂u1

∂x
∂u2

∂y
− ∂u2

∂x
∂u1

∂y
. (5)

The unit outward normal and tangential vectors to the boundary ∂Ω shall be denoted
by n = (nx,ny) and τ = (−ny,nx), respectively. We denote by Hm(S ), m ∈ R, the
standard Sobolev space of order m defined by

Hm(S ) :=
{

u ∈ L2(S ) | Dα u ∈ L2(S ), for 0≤ |α| ≤ m
}

,

where Dα is the weak (or distributional) partial derivative, and α is a multi-index. Here
S , which is either the flow domain Ω, or its boundary ∂Ω, or part of its boundary. The
norm || · ||Hm(S ) associated with Hm(S ) is given by

||u||2Hm(S ) = ∑
|α|≤m

∫
S
|Dα u|2 dx.

Note that H0(S ) = L2(S ) and || · ||H0(S ) = || · ||L2(S ). For the vector valued functions,
we define the Sobolev space Hm(S ) by

Hm(S ) := {u = (u1,u2) | ui ∈ Hm(S ), for i = 1,2} ,

and its associated norm

||u||2Hm(S ) =
2

∑
i=1
||ui||2Hm(S ).
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2.2 Properties of Tt

Let J = [0,τ0] with τ0 sufficiently small. Then the following regularity properties of
the transformation Tt can be shown, see for example ([5], [7], [2, Chapter 7] ):

T0 = id t 7→ Tt ∈C1(J ,C1(D̄;Rd))

t 7→ T−1
t ∈C1(J ,C1(D̄;Rd)) t 7→ It ∈C1(J ,C(D̄))

t 7→ (DTt)−T ∈C(J ,C1(D̄;Rd×d)) d
dt Tt |t=0 = h

d
dt T−1

t |t=0 =−h d
dt DTt |t=0 = Dh

d
dt DT−1

t |t=0 =−Dh d
dt It |t=0 = div h

It |t=0 = 1 I−1
t |t=0 = 1.

(6)

The limits defining the derivatives at t = 0 exist uniformly in x∈ D̄. We shall also make
use of the surface divergence, denoted by divΓ, which is defined for ϕ ∈C1(D̄,Rd) by

divΓϕ := divϕ|Γ− (Dϕ n) ·n. (7)

2.3 The Eulerian derivative
Definition 2.1. For given h ∈H , the Eulerian derivative of J at Ω in the direction h
is defined as

dJ(u,Ω)h = lim
t→0

J(ut ,Ωt)− J(u,Ω)
t

, (8)

where ut satisfies
E(ut ,Ωt) = 0. (9)

The functional J is said to be shape differentiable at Ω if dJ(Ω,u)h exists for all h∈H
and the mapping h 7→ dJ(Ω,u)h is linear and continuous on H .

Under suitable regularity assumptions one can furthermore show that dJ(u,Ω)h only
depends on the normal component of the deformation field h on ∂Ω and can be repre-
sented as

dJ(u,Ω)h =
∫

∂Ω

GΩh ·n ds, (10)

where the kernel GΩ does not involve the shape derivative of u with respect to Ω. This
is the main result of the Zolesio-Hadamard structure theorem [2, Pg. 348]. Let {Xt}t≥0
be a family of functional spaces defined over the domains Ωt . Then the variational
form of (9) is given by : Find ut ∈ Xt such that

〈E(ut ,Ωt),ψt〉X∗t ×Xt = 0, (11)

holds for all ψt ∈ Xt . Throughout we choose Xt = Tt(X) and we assume that equation
(11) has a unique solution ut , for all t sufficiently small. Using the method of mappings,
equation (11) represents the weak form of the reference problem (2) given by

〈E(u,Ω),ψ〉X∗×X = 0, for all ψ ∈ X (12)
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for t = 0. The adjoint state p ∈ X to this equation is defined as the solution to

〈Eu(u,Ω)ψ, p〉X∗×X = (C∗ j′1(Cγ u),ψ). (13)

Any function ut : Ωt 7→ Rl , for l ∈ N, can be mapped back to the reference domain by

ut = ut ◦Tt : Ω 7→ Rl . (14)

From the chain rule it follows that the gradients of ut and ut are related by

(∇ut)◦Tt = (DTt)−T
∇ut , (15)

(see [7] Prop: 2.29). Moreover ut : Ω 7→ Rl satisfies an equation on the reference
domain which we express as

Ẽ(ut , t) = 0, |t|< τ̃.

Because T0 = id, one obtains u0 = u and

Ẽ(u0,0) = E(u,Ω).

In order to circumvent the computation of the derivative of u with respect to Ω, the
following assumptions (H1-H4) were imposed on Ẽ and E in [5].

(H1) There is a C1-function Ẽ : X×(−τ̃, τ̃) 7→ X∗ such that E(ut ,Ωt) = 0 is equivalent
to

Ẽ(ut , t) = 0 in X∗,

with Ẽ(u,0) = E(u,Ω) for all u ∈ X .

(H2) There exists 0 < τ0≤ τ̃ such that for |t|< τ0, there exists a unique solution ut ∈X
to Ẽ(ut , t) = 0 and

lim
t→0

||ut −u0||X
|t| 12

= 0.

(H3) Eu(u,Ω) ∈L (X ,X∗) satisfies

〈E(v,Ω)−E(u,Ω)−Eu(u,Ω)(v−u),ψ〉X∗×X = O(||v−u||2X ).

(H4) Ẽ and E satisfy

lim
t→0

1
t

〈
Ẽ(ut , t)− Ẽ(u, t)−

(
E(ut ,Ω)−E(u,Ω)

)
,ψ
〉

X∗×X
= 0.

Additionally we need that the following assumptions on j1 and Cγ hold.

(H5) We assume that
∫

Ω
j1(Cγ u) dx,

∫
Ω
( j′1(Cγ u))2 dx exists for all u ∈ X and∣∣∣∫

Ω

It
[

j1(Cγ ut)− j1(Cγ u)−
(

j′1(Cγ u),C(ut −u)
)]

dx
∣∣∣≤ K||ut −u||2X ,

where K > 0 does not depend on t ∈J .
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To compute the Eulerian derivative of J(u,Ω) in (8), we need to transform the value of
J(ut ,Ωt) =

∫
Ωt

j1(Cγ ut) dxt back to Ω. This is done by using the relation

J(ut ,Ωt) =
∫

Ωt

j1(Cγ ut) dxt =
∫

Ω

j1((Cγ ut)◦Tt)It dx.

The transformation of (Cγ ut)◦Tt back to Ω induces some matrix At that we shall require
to satisfy:

(H6)



There exists a matrix At such that t 7→ At ∈C(J ,C(D̄,Rd×d)) and

(Cγ ut)◦Tt = AtCut + tG + γ, G ∈ L2(Ω),

Cγ(u◦T−1
t ) = (AtCu+ tG + γ)◦T−1

t ,

limt→0
At−I

t exists, At |t=0 = I.

(H7) Let M (t)=
∫

Ω
It
[

j1(AtCut +tG +γ)− j1(AtCu+tG +γ)+ j1(Cγ u)− j1(Cγ ut)
]

dx.
Then we shall require M to satisfy

lim
t→0

M (t)
t

= 0. (16)

Some illustrative examples for (H6) and a remark on (H7) are given next. If Cγ = C =
∇, i.e., γ = 0, then (15) gives At = DT−T

t and G = 0. This gives the first relation in
(H6). By applying the chain rule on ∇(u◦T−1

t ), we obtain

∇(u◦T−1
t ) = DT−T

t ∇u◦T−1
t . (17)

This gives the second relation in (H6). The third relation in (H6) is satisfied by At since

lim
t→0

DT−T
t − I

t
=−DhT , and lim

t→0
DT−T

t = I.

In the next example, we consider the case where Cγ = C = div, i.e., γ = 0. For
this purpose, we derive the transformation of the divergence operator in the following
lemma.

Lemma 2.1. Suppose ut and ut are related by (14), then

(div ut)◦Tt = I−1
t (div ut)+ tG , (18)

where

div ut = (∂xut
1 +∂yut

2) and G = I−1
t (h2,y∂xut

1 +h1,x∂yut
2−h2,x∂yut

1−h1,y∂xut
2). (19)

Proof. By definition

(div u)◦Tt = (∂xu1 +∂yu2)◦Tt = (∂xu1)◦Tt +(∂yu2)◦Tt .

Using (15) we have(
∂xut,1 ∂xut,2
∂yut,1 ∂yut,2

)
◦Tt =

1
It

(
1+ th2,y −th2,x
−th1,y 1+ th1,x

)(
∂xut

1 ∂xut
2

∂yut
1 ∂yut

2

)
. (20)
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From (20) we have for the diagonal components

It(∂xut,1)◦Tt = (1+ th2,y)∂xut
1− th2,x∂yut

1,

It(∂yut,2)◦Tt =−th1,y∂xut
2 +(1+ th1,x)∂yut

2,

from which upon addition of both terms on the right hand side, one obtains

It(div ut)◦Tt = (1+ th2,y)∂xut
1− th2,x∂yut

1− th1,y∂xut
2 +(1+ th1,x)∂yut

2

= div ut + t(h2,y∂xut
1 +h1,x∂yut

2−h2,x∂yut
1−h1,y∂xut

2).

From Lemma 2.1, we note that At from (H6) is given by At = I−1
t I. For u ∈ X ,

divu ∈ L2(Ω) by assumption, hence G given in (19) is in L2(Ω). Moreover by (6), we

have that lim
t→0

At− I = 0 and lim
t→0

At − I
t

=−div h holds in L∞(Ω). Since ut = ut ◦T−1
t ,

one obtains div (ut ◦ T−1
t ) =

(
I−1
t (div ut) + tG

)
◦ T−1

t from Lemma 2.1. Thus all
conditions of assumption (H6) are satisfied by this transformation.

We now provide a remark on assumption (H7).

Remark 2.1. If we suppose that either γ = 0 in (H6) and j1(t) = |t|2 or γ 6= 0 in (H6)
and j1(t) = |t− γ|2, then

M (t) =
∫

Ω

It
[
|(AtCut + tG )|2−|(AtCu+ tG |2 + |Cu|2−|Cut |2

]
dx, M (0) = 0.

Using (a2−b2) = (a+b)(a−b), we can express M such that

M (t)
t

=
∫

Ω

It
[ (At − I)

t
(At + I)C(ut +u)+2AtG

]
C(ut −u) dx.

Note that It and I−1
t can be expressed as

It = I + tdiv h+ t2detDh and I−1
t = I− tdiv h+ t2detDh,

respectively. Hence for t ∈J , It , At + I, and At−I
t are bounded in L∞(Ω). Moreover∣∣∣M (t)

t

∣∣∣≤ ∫
Ω

∣∣∣It (At − I)
t

(At + I)C(ut +u)C(ut −u)
∣∣∣ dx︸ ︷︷ ︸

E1(t)

+2
∫

Ω

∣∣∣ItAtGC(ut −u)
∣∣∣ dx︸ ︷︷ ︸

E2(t)

,

and

E1(t)≤ K1||It ||L∞ || (At − I)
t
||L∞ ||(At + I)||L∞ ||ut +u||X ||ut −u||X ,

E2(t)≤ K2||It ||L∞ ||At ||L∞ ||G ||L2 ||ut −u||X ,

for some generic constants K1 and K2. Hence by H2, we obtain limt→0 Ei(t) = 0, i =
1,2 and this leads to (16).
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In what follows, the following lemmas shall be utilized.

Lemma 2.2. [5]

(1) Let f ∈C(J ,W 1,1(D)), and assume that ft(0) exists in L1(D). Then

d
dt

∫
Ωt

f (t,x) dxt |t=0 =
∫

Ω

ft(0,x) dx+
∫

Γ

f (0,x)h ·n ds.

(2) Let f ∈C(J ,W 2,1(D)), and assume that ft(0) exists in W 1,1(D). Then

d
dt

∫
Γt

f (t,x) dxt |t=0 =
∫

Γ

ft(0,x) ds+
∫

Γ

(
∂ f (0,x)

∂n
+κ f (0,x)

)
h ·n ds,

where κ stands for the mean curvature of Γ.

The assumptions of Lemma 2.2 can be verified using the following Lemma

Lemma 2.3. [7, Chapter.2]

(1) If u ∈ Lp(D), then t 7→ u◦T−1
t ∈C(J ,Lp(D)),1≤ p < ∞.

(2) If u ∈ H2(D), then t 7→ u◦T−1
t ∈C(J ,H2(D)).

(3) If u ∈ H2(D), then d
dt (u◦T−1

t )|t=0 exists in H1(D)and is given by

d
dt

(u◦T−1
t )|t=0 =−(Du)h.

Note 2.1. As a consequence of Lemma 2.3, we note that d
dt ∇(u ◦ T−1

t )
∣∣∣
t=0

exists in

L2(D) and is given by
d
dt

∇(u◦T−1
t )

∣∣∣
t=0

=−∇(Duh).

For the transformation of domain integrals, the following well known fact will be
used repeatedly.

Lemma 2.4. Let φt ∈ L1(Ωt), then φt ◦Tt ∈ L1(Ω) and∫
Ωt

φt dxt =
∫

Ω

φt ◦Tt It dx.

As a main result, we now formulate the representation of the Eulerian derivative of
J in the following theorem.

Theorem 2.1. If (H1-H7) hold, and j1(Cγ u) ∈W 1,1(Ω), then the Eulerian derivative
of J in the direction h ∈H exists and is given by the expression

dĴ(Ω)h =− d
dt
〈Ẽ(u, t), p〉X∗×X |t=0 +

∫
∂Ω

j1(Cγ u)h ·n ds−
∫

Ω

j′1(Cγ u)Cγ(∇uT ·h) dx.

(21)
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Proof. The Eulerian derivative of a cost functional J(u,Ω) is defined by (8). Using
Lemma 2.4 we obtain

J(ut ,Ωt)− J(u,Ω) =
∫

Ω

j1((Cγ ut)◦Tt)It − j1(Cγ u) dx,

and by (H6)

J(ut ,Ωt)− J(u,Ω) =
∫

Ω

It
(

j1(AtCut + tG + γ)− j1(Cγ ut)
)

dx

+
∫

Ω

(
It j1(Cγ ut)− j1(Cγ u)

)
dx.

The following estimate is obtained along the lines of [5]. We set

R(t) =
∫

Ω

(
It j1(Cγ ut)− j1(Cγ u)

)
dx, R(0) = 0,

S(t) =
∫

Ω

It
(

j1(AtCut + tG + γ)− j1(Cγ ut)
)

dx, S(0) = 0.

Since C is a bounded linear operator, we have

R(t) =
∫

Ω

It
[

j1(Cγ ut)− j1(Cγ u)−
(

j′1(Cγ u),C(ut −u)
)]

dx+∫
Ω

(It −1)
(

j′1(Cγ u),C(ut −u)
)

dx+
∫

Ω

(
j′1(Cγ u),C(ut −u)

)
dx

+
∫

Ω

(It −1) j1(Cγ u) dx.

We express R(t) = R1(t)+ R2(t)+ R3(t)+ R4(t). Using (H2) and (H5), we have that

lim
t→0

1
t

R1(t) = 0. Moreover using H5 and similar arguments as in Remark 2.1, we have

∣∣∣R2(t)
t

∣∣∣≤ || (It − I)
t
||L∞ || j′1(Cγ u)||L2 ||ut −u||X .

Therefore, by (H2) and (6), one obtains limt→0 | 1t R2(t)| = 0. Next observe that using
(13) with ψ = ut −u ∈ X , we have that

R3(t) = ( j′1(Cγ u),C(ut −u)) = (C∗ j′1(Cγ u),(ut −u))
= 〈Eu(u,Ω)(ut −u), p〉X∗×X .

(22)

In order to bypass the computation of the shape derivative of u, we arrange terms on
the right hand side of (22) in an efficient manner to obtain

〈Eu(u,Ω)(ut −u), p〉X∗×X =−〈Ẽ(u, t)− Ẽ(u,0), p〉X∗×X

−〈E(ut ,Ω)−E(u,Ω)−Eu(u,Ω)(ut −u), p〉X∗×X

−〈Ẽ(ut , t)− Ẽ(u, t)−E(ut ,Ω)+E(u,Ω), p〉X∗×X .

By using assumptions (H2), (H3) and (H4), we have that

− lim
t→0

1
t
〈E(ut ,Ω)−E(u,Ω)−Eu(u,Ω)(ut −u), p〉X∗×X = 0,
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and

− lim
t→0

1
t
〈Ẽ(ut , t)− Ẽ(u, t)−E(ut ,Ω)+E(u,Ω), p〉X∗×X = 0.

Consequently utilizing (H1), we obtain

lim
t→0

R3(t)
t

=− d
dt
〈Ẽ(u, t), p〉X∗×X |t=0. (23)

We shall turn our attention to R4(t) later. Now let us focus on

S(t) =
∫

Ω

It
(

j1(AtCut + tG + γ)− j1(Cγ ut)
)

dx,

and consider the expression

j1(AtCut + tG + γ)− j1(Cγ ut).

This can be written as

j1(AtCut + tG + γ)− j1(AtCu+ tG + γ)+ j1(Cγ u)− j1(Cγ ut)+
j1(AtCu+ tG + γ)− j1(Cγ u).

Observe that

S(t) =
∫

Ω

It
(

j1(AtCu+ tG + γ)− j1(Cγ u)
)

dx+M (t). (24)

Expressing S(t) = S1(t)+M (t), where S1(t) is the first term in (24). Using (H7), we

have that lim
t→0

M (t)
t

= 0. Therefore collecting the remaining terms, i.e., R4(t) and S1(t)

into S5(t) := R4(t)+S1(t), we have that

S5(t) =
∫

Ω

It j1(AtCu+ tG + γ)− j1(Cγ u) dx, S5(0) = 0.

Using Lemma 2.4, we can express S5 as

S5(t) =
∫

Ωt

j1
(
[AtCu+ tG + γ]◦Tt

)
dxt −

∫
Ω

j1
(
Cγ u
)

dx. (25)

By H6, (25) can further be expressed as

S5(t) =
∫

Ωt

j1
(
Cγ(u◦T−1

t )
)

dxt −
∫

Ω

j1(Cγ u) dx. (26)

By definition of Eulerian derivative, we have that

lim
t→0

S5(t)
t

=
d
dt

∫
Ωt

j1
(
Cγ(u◦T−1

t )
)

dxt

∣∣∣
t=0

.



H. Kasumba & K. Kunisch 12

Since by assumption j1(Cγ u) ∈W 1,1(Ω), d
dt

[
j1(Cγ(u ◦T−1

t ))
]

t=0
exists in L1(Ω) [7].

Therefore, using Lemma 2.2 and Lemma 2.3, we have that

lim
t→0

S5(t)
t

=
∫

Ω

d
dt

[
j1(Cγ(u◦T−1

t ))
]

t=0
dx+

∫
∂Ω

j1(Cγ u)h ·n ds

=
∫

∂Ω

j1(Cγ u)h ·n ds−
∫

Ω

j′1(Cγ u)Cγ(∇uT ·h) dx.

Hence

dJ(u,Ω)h = lim
t→0

R(t)+S(t)
t

=− d
dt
〈Ẽ(u, t), p〉X∗×X |t=0 +

∫
∂Ω

j1(Cγ u)h ·n ds

−
∫

Ω

j′1(Cγ u)Cγ(∇uT ·h) dx.

3 Examples
As an application of the general theory developed in the previous section, we derive the
shape derivatives of cost functional used for vortex reduction in fluid dynamics. Here
we restrict ourselves to the 2D case. Typical cost functionals used for this purpose, are
based on minimization of the curl of the velocity field or tracking-type functionals, [1],
i.e.,

J1(u,Ω) =
1
2

∫
Ω

|curl u(x)|2 dx,

J2(u,Ω) =
1
2

∫
Ω

|Au(x)−ud(x)|2 dx, A ∈ R2×2,

(27)

where ud stands for a given desired flow field which contains some of the expected
features of the controlled flow field without the undesired vortices. Furthermore,

J3(u,Ω) =
∫

Ω

g3(det ∇u) dx, (28)

where

g3(t) =

{
0 t ≤ 0,

t3

t2+1 t > 0,

penalizes the complex eigen values of ∇u which are responsible for the swirling motion
in a given flow (see , e.g.,[4] and references there in). The rigorous characterization
of the shape derivative of this functional has not been done before, and therefore it is
of a big interest in this work. In (27-28), u represents the state variable that solves the
Navier-Stokes equations −η∆u+(u ·∇)u+∇p = f in Ω,

div u = 0 in Ω,
u = 0 on ∂Ω.

(29)
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Here η > 0, denotes the kinematic viscosity of the fluid, f∈L2(Ω) is the external body
force, p the pressure, and with reference to Figure 1, Ω = S with Γ = ∂S. Using the
notation of the previous section, we observe that E(u,Ω) = 0 is given by system (29).
We define the following functional spaces for velocity and pressure, respectively:

H1
0(Ω) = {ψ ∈H1(Ω) | ψ = 0 on Γ},

L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω

q dx = 0}.

The variational formulation of (29) is given by: Find (u, p)∈ X ≡H1
0(Ω)×L2

0(Ω) such
that

〈E((u, p),Ω),(ψ,ξ )〉X∗×X ≡ η(∇u,∇ψ)Ω +((u ·∇)u,ψ)Ω− (p,div ψ)Ω

−(f,ψ)Ω− (div u,ξ )Ω = 0,
(30)

holds for all (ψ,ξ ) ∈ X . It is well known that for sufficiently large values of η or for
small values of f, there exists a unique solution (u, p) to (30) in X . Moreover since
∂Ω ∈ C2, (u, p) ∈

(
H2(Ω)∩H1

0(Ω)
)
×
(
H1(Ω)∩L2

0(Ω)
)

[8]. On Ωt the perturbed
weak formulation of (29) reads:
Find (ut , pt) ∈ Xt ≡H1

0(Ωt)×L2
0(Ωt) such that

〈E((ut , pt),Ωt),(ψ t ,ξt)〉X∗t ×Xt ≡ η(∇ut ,∇ψ t)Ωt +((ut ·∇)ut ,ψ t)Ωt

−(pt ,div ψ t)Ωt − (ft ,ψ t)Ωt − (div ut ,ξt)Ωt = 0,
(31)

holds for all (ψ t ,ξt) ∈ Xt . Using the summation convention, the transformation of the
divergence [5] is given by

(div ψ t)◦Tt = Dψ
t
i AT

t ei = (At)i∇ψ
t
i ,

where ei stands for the i-th canonical basis vector in Rd and (At)i denotes the i-th row
of At = (DTt)−T . Thus using (15) the transformation of (31) back to Ω becomes,

〈Ẽ((ut , pt), t),(ψ,ξ )〉X∗×X ≡ η(ItAt∇ut ,At∇ψ)Ω +((ut ·At∇)ut , Itψ)Ω

−(pt , It(At)k∇ψ
t
k)Ω− (ft It ,ψ)Ω− (It(At)k∇ut

k,ξ )Ω = 0 for all (ψ,ξ ) ∈ X .
(32)

3.1 The Eulerian derivative of cost functional J1

For this cost functional, the operator Cγ = C = (curl,0) and C∗γ = (curl,0) with γ = 0.
Moreover it is easy to check that C ∈ L (X ,L2). Furthermore, since u ∈ H1

0(Ω) we
have that curl u ∈ L2(Ω,R) and therefore

u ∈ H(curl,Ω) :=
{

u ∈ L2(Ω,R2) : curl u ∈ L2(Ω,R)
}
.

Hence the cost functional J1(u,Ω) is well defined. The adjoint state (λ ,q)∈ X is given
as a solution to

〈E ′((u, p),Ω)(ψ,ξ ),(λ ,q)〉X∗×X = (curl(curl u),ψ)Ω,
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with right hand side curl(curl u) =−∆u, which amounts to

η(∇ψ,∇λ )Ω +((ψ ·∇)u+(u ·∇)ψ,λ )Ω− (ξ ,div λ )Ω− (div ψ,q)Ω = (−∆u,ψ)Ω.
(33)

Integrating
(
(u ·∇)ψ,λ

)
Ω

by parts, one obtains the strong form of the adjoint equation
in (33), that we express as −η∆λ +(∇u) ·λ − (u ·∇)λ +∇q =−∆u in Ω,

div λ = 0 in Ω,
λ = 0 on ∂Ω,

(34)

where the first equation holds in L2(Ω) and the second one in L2(Ω). It is well known
that there exists a unique solution (λ ,q) ∈ X . Moreover, since ∂Ω ∈ C2, (λ ,q) ∈(
H2(Ω)∩H1

0(Ω)
)
×
(
H1(Ω)∩L2

0(Ω)
)
, (see e.g [5] and references there in). In view

of Theorem 2.1 we have to compute d
dt 〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0, for which we use

the representation on Ωt of (32). This writes

〈Ẽ((u, p), t),(λ ,q)〉X∗×X ≡ η(∇u◦T−1
t ,∇λ ◦T−1

t )Ωt +

((u◦T−1
t ·∇)u◦T−1

t ,λ ◦T−1
t )Ωt

−(p◦T−1
t ,div λ ◦T−1

t )Ωt − (f,λ ◦T−1
t )Ωt

−(div u◦T−1
t ,q◦T−1

t )Ωt = 0,

(35)

where (u, p),(λ ,q) ∈ X are solutions of (29) and (33), respectively. The computation
of d

dt 〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0, results in

d
dt
〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0 = (−η∆u+(u ·∇)u+∇p− f,ψλ )Ω+

η(∇u ·n,ψλ )∂Ω− (pψλ ,n)∂Ω +(−η∆λ +(∇u)λ − (u ·∇)λ +∇q,ψu)Ω

+η
(
ψu,∇λ ·n

)
∂Ω
− (q ·n,ψu)∂Ω +η

∫
∂Ω

(∇u,∇λ )h ·n ds,

(36)

where ψu =−∇uT ·h ∈H1(Ω) and ψλ =−∇λ
T ·h ∈H1(Ω), with h ∈H . By using

(34), the expression on the right hand side of (36) can further be simplified to obtain
(37), (see [5] for more details).

d
dt
〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0 =−

∫
∂Ω

[
η

∂u
∂n

∂λ

∂n

]
h ·n ds

+
∫

∂Ω

(
p(

∂λ

∂n
,n)+q(

∂u
∂n

,n)
)

h ·n ds+
∫

Ω

(∆u)∇uT ·h dx.
(37)

Using the definition of tangential divergence (7), we have that:

p(
∂λ

∂n
,n) = p(∇λ

T ·n) ·n = p div λ |∂Ω− p div∂Ω λ . (38)
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Since λ = 0 on ∂Ω, the last term in (38) vanishes (see [7] Page 82 for details). Further-
more div λ = 0 which renders this expression to be zero. Analogously, q( ∂u

∂n ,n) = 0.
Thus

d
dt
〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0 =−

∫
∂Ω

η
∂u
∂n

∂λ

∂n
h ·n ds+

∫
Ω

(∆u)∇uT ·h dx. (39)

In view of Theorem 2.1, we further need to show that assumptions (H1-H7) hold, and
moreover that |curl u|2 ∈W 1,1(Ω). Assumptions (H1-H4) were verified in [5]. To
check (H5), note that

1
2
|curl ut |2− 1

2
|curl u|2−

(
curl u,curl(ut −u)

)
=

1
2
(curl(ut −u))2.

Hence∫
Ω

It
[1

2
|curl ut |2− 1

2
|curl u|2−

(
curl u,curl(ut −u)

)]
dx =

∫
Ω

It
2

(curl(ut −u))2 dx.

Consequently by Young’s inequality, we have∣∣∣∫
Ω

It
2

(curl(ut −u))2 dx
∣∣∣≤ max

t∈[0,τ0]
||It ||L∞ ||ut −u||2X ,

for τ0 sufficiently small. Hence (H5) is satisfied with K = max
t∈[0,τ0]

||It ||L∞ .

Condition (H6) is checked next. It illustrates the choice of Cγ for the present example.

Lemma 3.1. Suppose ut and ut are related by (14), then

(curl ut)◦Tt = I−1
t (curl ut)+ tG , (40)

where
G = I−1

t (h2,y∂xut
2−h2,x∂yut

2 +h1,y∂xut
1−h1,x∂yut

1). (41)

Proof. By definition

(curl u)◦Tt = (∂xu2−∂yu1)◦Tt = (∂xu2)◦Tt − (∂yu1)◦Tt .

From (20) we have for the non-diagonal components

It(∂xut,2)◦Tt = (1+ th2,y)∂xut
2− th2,x∂yut

2,

It(∂yut,1)◦Tt =−th1,y∂xut
1 +(1+ th1,x)∂yut

1,

from which we obtain that

It(curl ut)◦Tt = (1+ th2,y)∂xut
2− th2,x∂yut

2 + th1,y∂xut
1− (1+ th1,x)∂yut

1

= curl ut + t(h2,y∂xut
2−h2,x∂yut

2 +h1,y∂xut
1−h1,x∂yut

1).

Thus (curl ut)◦Tt = I−1
t (curl ut)+ tG .
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From Lemma 3.1, we observe that At from (H6) is given by At = I−1
t I. Since

u ∈ H1
0(Ω), G given in (41) belongs to the Sobolev space L2(Ω). Moreover by (6),

we have that lim
t→0

At − I = 0 and lim
t→0

At − I
t

=−div h. Since ut = ut ◦T−1
t , one obtains

curl (ut ◦T−1
t ) =

(
I−1
t (curl ut)+ tG

)
◦T−1

t from Lemma 3.1. Thus all conditions of
assumption (H6) are satisfied by this transformation.
Cost functional J1 satisfies the conditions of Remark 2.1 and therefore (H7) holds.
In addition, since u ∈ H2(Ω), it follows that ∇curl u ∈ L2(Ω). Therefore, we infer
that ∇|curl u|2 = 2curl u ∇curl u ∈ L1(Ω). Consequently |curl u|2 ∈W 1,1(Ω). Since
all assumptions of Theorem 2.1 are satisfied, using (21) and (39), we can express the
Eulerian derivative of J1 as

dJ1(u,Ω)h =
∫

∂Ω

[
η

∂u
∂n

∂λ

∂n

]
h ·n ds−

∫
Ω

(∆u)∇uT ·h dx+

1
2

∫
∂Ω

|curl u|2 h ·n ds−
∫

Ω

curl u curl (∇uT ·h) dx.
(42)

We want to express (42) into the form required by the Zolesio-Hadamard structure
theorem (10). With this in mind, sufficient regularity of u together with Greens formula
for the curl, i.e.,∫

Ω

[
curl u curl (∇uT ·h)− (∆u)∇uT ·h

]
dx =

∫
∂Ω

(curl u)τ · (∇uT ·h) ds,

see, e.g., [6, Pg. 58], leads to

dJ1(u,Ω)h =
∫

∂Ω

[
η

∂u
∂n

∂λ

∂n
+

1
2
|curl u|2− (curl u)τ · ∂u

∂n

]
h ·n ds. (43)

3.2 The Eulerian derivative of cost functional J2

In this example we define the operator Cγ : u(x) 7→ Au−ud ∈ L2(Ω) with γ = −ud ∈
L2(D). The linear operator C ∈L (X ,L2(Ω)) is such that C : u(·) 7→ Au(·). Further-
more, since u ∈ H1

0(Ω) we have that Au− ud ∈ L2(Ω). Hence the cost functional
J2(u,Ω) is well defined. For this case the adjoint state (λ ,q) ∈ X , is given as a solution
to

〈E ′((u, p),Ω)(ψ,ξ ),(λ ,q)〉X∗×X = (Au−ud ,ψ)
Ω

,

which amounts to −η∆λ +(∇u) ·λ − (u ·∇)λ +∇q = (Au−ud), in Ω,
div λ = 0 in Ω,
λ = 0 on ∂Ω,

(44)

where the first equation in (44) holds in L2(Ω) and the second one in L2(Ω).

Theorem 3.1. The shape derivative of the cost functional J2(u,Ω) can be expressed as

dJ2(u,Ω)h =
∫

∂Ω

[
η

∂u
∂n

∂λ

∂n
+

1
2
(Au−ud)2

]
h ·n ds. (45)
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Proof. We want to make use of Theorem 2.1 to derive (45). For this purpose, we
remark that by using (36), (38) and (44) , one obtains

d
dt
〈Ẽ,(λ ,q)〉X∗×X |t=0 =−

∫
∂Ω

η
∂u
∂n

∂λ

∂n
ds−

∫
Ω

(Au−ud)AT (∇uT )h dx,

where (λ ,q) solves (44). Furthermore, we need to show that assumptions (H1-H7) of
Theorem 2.1 hold, and moreover that |Au−ud |2 ∈W 1,1(Ω). As stated earlier, assump-
tions (H1-H4) were verified in [5]. To check (H5), note that

1
2
|Aut −ud |2−

1
2
|Au−ud |2−

(
Au−ud , A(ut −u)

)
=

1
2
(A(ut −u))2.

Consequently by Young’s inequality, we have∣∣∣∫
Ω

It
2

(A(ut −u))2 dx
∣∣∣≤ 4ã max

t∈[0,τ0]
||It ||L∞ ||ut −u||2X , ã = max

i, j
|ai, j|, i, j = 1,2.

Hence (H5) is satisfied with K = 4ã max
t∈[0,τ0]

||It ||L∞ , for τ0 sufficiently small.

Note that the transformation (Cγ ut) ◦Tt = Cut −ud implies that G = 0 in (H6). Fur-

thermore At is given by At = I and lim
t→0

At − I
t

= 0. Moreover Cγ(ut ◦T−1
t ) = (Cut −

ud) ◦ T−1
t . Hence all conditions of (H6) are satisfied. Note that J2 satisfies condi-

tions of Remark 2.1 and hence (H7) holds. It is also clear that |Au− ud |2 ∈W 1,1

since u ∈H2(Ω). The preceding discussion shows that assumptions (H1-H7) are satis-
fied. Therefore using Theorem 2.1 together with the fact that ( j′1(Cu), C(∇uT h))Ω =
(Au−ud , AT (∇uT )h)Ω, one obtains

dJ2(u,Ω)h =
∫

∂Ω

[
η

∂u
∂n

∂λ

∂n
+

1
2
(Au−ud)2

]
h ·n ds. (46)

3.3 The Eulerian derivative of cost functional J3

First note that J3(u,Ω) is well defined. In fact, for u∈H1
0(Ω), we have det ∇u∈ L1(Ω).

Moreover 0 ≤ t3

t2+1 ≤ t for t ≥ 0, hence g3(det ∇u) is integrable. Furthermore for
δu ∈H1

0(Ω), there exists the directional derivative J′3(u,Ω)(δu) given by

J′3(u,Ω)(δu) =
∫

Ω

g′3(det ∇u)(det ∇u)′δu dx, (47)

where

(det ∇u)′δu = (u1
xδu2

y +δu1
xu2

y−u2
xδu1

y−u1
yδu2

x) and g′3(t) =

{
0 t ≤ 0,

t4+3t2

t4+2t2+1 t > 0.

Where appropriate, we shall use the short form notation g′3 to represent g′3(det ∇u) in
what follows.
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Lemma 3.2. The directional derivative J′3(u,Ω)(δu) can be expressed in the form

J′3(u,Ω)(δu) =
∫

Ω

T (u)(δu) dx+
∫

∂Ω

P(u)(δu) ds,

where

T (u) =
(
−curl

(
g′3∇u2

)
curl

(
g′3∇u1

) )
and P(u) =

 g′3(det ∇u)
(

∂u2
∂y nx− ∂u2

∂x ny

)
g′3(det ∇u)

(
∂u1
∂x ny− ∂u1

∂y nx

)  .

Proof. Integrating each term in (47) by parts, we obtain∫
Ω

g′3
∂u1

∂x
∂ (δu2)

∂y
dx =

∫
∂Ω

g′3
∂u1

∂x
(δu2)ny ds−

∫
Ω

∂

∂y

(
g′3

∂u1

∂x

)
δu2 dx,∫

Ω

g′3
∂ (δu1)

∂x
∂u2

∂y
dx =

∫
∂Ω

g′3
∂u2

∂y
(δu1)nx ds−

∫
Ω

∂

∂x

(
g′3

∂u2

∂y

)
δu1 dx,∫

Ω

−g′3
∂ (δu2)

∂x
∂u1

∂y
dx =−

∫
∂Ω

g′3
∂u1

∂y
(δu2)nx ds+

∫
Ω

∂

∂x

(
g′3

∂u1

∂y

)
δu2 dx,∫

Ω

−g′3
∂ (δu1)

∂y
∂u2

∂x
dx =−

∫
∂Ω

g′3
∂u2

∂x
(δu1)ny ds+

∫
Ω

∂

∂y

(
g′3

∂u2

∂x

)
δu1 dx.

Summing up the right hand sides of the terms in the above expressions gives the desired
result.

The adjoint state (λ ,q) ∈ X is given as a solution to

〈E ′((u, p),Ω)(ψ,ξ ),(λ ,q)〉X∗×X = (g′3(det ∇u), (det ∇u)′ψ)Ω, (48)

which by Lemma 3.2 amounts to −η∆λ +(∇u) ·λ − (u ·∇)λ +∇q = T (u), in Ω,
div λ = 0, in Ω,
λ = 0, on ∂Ω,

(49)

where the first equation in (49) hold in L2(Ω) and the second one in L2(Ω). More-
over, since ∂Ω ∈C2, (λ ,q) ∈

(
H2(Ω)∩H1

0(Ω)
)
×
(
H1(Ω)∩L2

0(Ω)
)
. Let us note that

Theorem 2.1 is not directly applicable to compute the shape derivative of J3 since the
operator “ det ∇ ” in the functional J3 in (28) is not affine. We therefore give an in-
dependent proof following the lines of the proof of Theorem 2.1. Firstly, we state and
prove the following lemma that will become important in what follows.

Lemma 3.3. Suppose ut and ut are related by (14). Then

(det ∇ut)◦Tt = I−1
t (det ∇ut)+ tG1 + t2G2, (50)

where

det ∇ut = (∂xut
1∂yut

2−∂xut
2∂yut

1),

G1 = I−1
t (E2∂xut

1 +E1∂yut
2−E4∂xut

2−E3∂yut
1) ∈ L1(Ω),

G2 = I−1
t (E1E2−E3E4) ∈ L1(Ω),
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and E1 = h2,y∂xut
2− h2,x∂yut

2, E2 = h1,x∂yut
1− h1,y∂xut

1, E3 = h2,y∂xut
1− h2,x∂yut

1, and
E4 = h1,x∂yut

2−h1,y∂xut
2.

Proof. By definition

(det ∇u)◦Tt = (∂xu1∂yu2−∂xu2∂yu1)◦Tt .

From (20) we have

(∂xut,2)◦Tt = I−1
t ∂xut

2 + tI−1
t E1, (∂yut,1)◦Tt = I−1

t ∂yut
1 + tI−1

t E2,

(∂xut,1)◦Tt = I−1
t ∂xut

1 + tI−1
t E3, (∂yut,2)◦Tt = I−1

t ∂yut
2 + tI−1

t E4.

From the above equations, we obtain

(det ∇ut)◦Tt = I−1
t (det ∇ut)+ tG1 + t2G2.

Note that for u ∈ X , G1,G2,∈ L1(Ω), and this concludes the proof.

Proposition 3.1. Assume that f ∈ Lp(Ω), p > 2 = dimension. If (H1-H4) hold, and
g3(det ∇u) ∈W 1,1(Ω), then the Eulerian derivative of J3(u,Ω) exists and is given by
the expression

dJ3(u,Ω)h =
∫

∂Ω

(
η

∂u
∂n

∂λ

∂n
+g3(det ∇u)−P(u)

∂u
∂n

)
h ·n ds. (51)

Proof. As stated earlier, assumptions (H1-H4) were verified in [5]. Using (8), we have

J3(ut ,Ωt)− J3(u,Ω) =
∫

Ωt

g3(det ∇ut) dx−
∫

Ω

g3(det ∇u) dx,

=
∫

Ω

Itg3((det ∇ut)◦Tt) dx−
∫

Ω

g3(det ∇u) dx.
(52)

Let G3 = G1 + tG2. Using equation (50), we can express (52) as

J3(ut ,Ωt)− J3(u,Ω) =
∫

Ω

Itg3(I−1
t (det ∇ut)+ tG3) dx−

∫
Ω

g3(det ∇u) dx. (53)

The right hand side of (53) can be written as R(t)+S(t), where

R(t) =
∫

Ω

Itg3(det ∇ut)−g3(det ∇u) dx, R(0) = 0,

S(t) =
∫

Ω

It
(

g3(I−1
t (det ∇ut)+ tG3)−g3(det ∇ut)

)
dx, S(0) = 0.

R(t) can be re-written as

R(t) =
∫

Ω

It
(

g3(det ∇ut)−g3(det ∇u)−g′3(det ∇u)(det ∇u)′(ut −u)
)

dx+∫
Ω

(It −1)g′3(det ∇u)(det ∇u)′(ut −u) dx+
∫

Ω

g′3(det ∇u)(det ∇u)′(ut −u) dx

+
∫

Ω

(It −1)g3(det ∇u) dx.
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We express R(t) = R1(t)+ R2(t)+ R3(t)+ R4(t). From Lemma A.1 (see Appendix),
we have

(det ∇u)′(ut −u) = det ∇ut −det ∇u−det ∇(ut −u).

Consequently R1(t) can be rewritten as

R1(t) =
∫

Ω

It
(

g3(det ∇ut)−g3(det ∇u)− (g′3(det ∇u), det ∇ut −det ∇u)
)

dx

+
∫

Ω

Itg′3(det ∇u)det ∇(ut −u) dx.

Let s = det ∇u and q = det ∇ut. Then R1(t) can further be rewritten as

R1(t) =
∫

Ω

It
{∫ 1

0

[
g′3(s+ γ(q− s))−g′3(s)

]
(q− s) dγ

}
dx

+
∫

Ω

Itg′3(det ∇u)det ∇(ut −u) dx.
(54)

Note that the functions g3(t) and g′3(t) are globally Lipschitz with constant 3/2, i.e.,

|g3(t)−g3(s)| ≤
3
2
|t− s|,

|g′3(t)−g′3(s)| ≤
3
2
|t− s|, 0≤ t,s ∈ R.

(55)

Furthermore, Young’s inequality implies that

|det ∇ u| ≤ 1
2

[(
∂u1

∂x1

)2
+
(

∂u2

∂x2

)2
+
(

∂u2

∂x1

)2
+
(

∂u1

∂x2

)2]
=

1
2
(∇u : ∇u).

Hence the second term R1,2(t) in (54) can be estimated as follows

|R1,2(t)|=
∣∣∣∫

Ω

Itg′3(det ∇u)det ∇(ut −u) dx
∣∣∣≤ 3

4
max

t∈[0,τ0]
||It ||L∞

∫
Ω

|∇(ut −u)|2 dx,

for τ0 sufficiently small.

Consequently lim
t→0

|R1,2(t)|
t

≤ 3
4

max
t∈[0,τ0]

||It ||L∞ lim
t→0

||ut −u||2H1

t
= 0, by (H2). Similarly

the first term can be estimated as∣∣∣∫
Ω

It
{∫ 1

0

[
g′3(s+ γ(q− s))−g′3(s)

]
(q− s) dγ

}
dx
∣∣∣≤ 3

2
max

t∈[0,τ0]
||It ||L∞

∫
Ω

|(q− s)|2 dx.

Note that
∫

Ω
|(q− s)|2 dx =

∫
Ω
|A+B|2 dx≤

∫
Ω
|A|2 +2|AB|+ |B|2 dx, where

A = ∂ut
1

∂x1

∂ut
2

∂x2
− ∂u1

∂x1

∂u2
∂x2

and B = ∂u2
∂x1

∂u1
∂x2
− ∂ut

2
∂x1

∂ut
1

∂x2
. Furthermore, let a = ∂u1

∂x1
, b = ∂u2

∂x2
, c =

∂u2
∂x1

, and d = ∂u1
∂x2

. Then A = atbt − ab = at(bt − b)+ b(at − a), and B = cd− ctdt =
d(c− ct) + ct(d − dt). Since ∂Ω ∈ C2 and f ∈ Lp(Ω) for p > 2 = dimension, u ∈
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W 2,p(Ω), p > 2. Consequently, a, at , b, bt , c, ct , d, dt ∈W 1,p(Ω) ↪→ C(Ω) for
p > 2, and∫

Ω

|A|2 dx =
∫

Ω

(at)2(bt −b)2 +2atb(bt −b)(at −a)+b2(at −a) dx

≤ ||at ||2L∞

∫
Ω

(bt −b)2 dx+ ||at ||L∞ ||b||L∞

∫
Ω

(at −a)2 +(bt −b)2 dx

+ ||b||2L∞

∫
Ω

(at −a)2 dx.

Hence since (H2) is satisfied, limt→0
∫

Ω

|A|2
t dx = 0 follows. Analogously we can show

that limt→0
∫

Ω

|AB|
t dx = 0 and limt→0

∫
Ω

|B|2
t dx = 0. Therefore limt→0

|R1(t)|
t = 0.

Furthermore, lim
t→0

R2(t)
t
≤ lim

t→0

3
2
|| It −1

t
||L∞

∫
Ω

|(det ∇u)′(ut −u)| dx = 0, by (H2).

Using (48) with ψ = ut −u ∈H1
0(Ω), ξ ∈ L2(Ω), we have

R3(t) =
∫

Ω

(g′3(det ∇u),(det ∇u)′ψ) dx = 〈E ′((u, p),Ω)(ψ,ξ ),(λ ,q)〉X∗×X . (56)

Proceeding as in the proof of Theorem 2.1, the term on the right hand side of (56) is
arranged in an efficient manner so that (23) holds. Consequently, by using the compu-
tation that led to (39), it follows that

lim
t→0

R3(t)
t

=− d
dt
〈Ẽ((u, p), t),(λ ,q)〉X∗×X |t=0 =

∫
∂Ω

η
∂u
∂n

∂λ

∂n
h ·n ds+∫

Ω

T (u)∇uT ·h dx,
(57)

where (λ ,q) solves (49). We shall turn our attention to the last term R4(t) later. Let us
now look at

S(t) =
∫

Ω

It
(

g3(I−1
t (det ∇ut)+ tG3)−g3(det ∇ut)

)
dx.

The expression g3(I−1
t (det ∇ut)+ tG3)−g3(det ∇ut), can be written as

g3(I−1
t (det ∇ut)+ tG3)−g3(I−1

t (det ∇u)+ tG3)+g3(det ∇u)−g3(det ∇ut)+

g3(I−1
t (det ∇u)+ tG3)−g3(det ∇u).

Observe that the function g3(r) can be expressed as g3(r) = r− r
r2 +1

. Let

s = det ∇u, q = det ∇ut, and A = g3(I−1
t q + tG3)− g3(I−1

t s + tG3)+ g3(s)− g3(q).
Then

S(t) = S1(t)+S2(t) =
∫

Ω

ItA dx+
∫

Ω

It
(

g3(I−1
t (det ∇u)+ tG3)−g3(det ∇u)

)
dx.

(58)
Note that A can be expressed as

A = (I−1
t −1)(q− s)+W (q)−W (s), (59)
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where W (r) = r
r2+1 −

I−1
t r+tG3

(I−1
t r+tG3)2+1

. The difference D = W (q)−W (s) can be ex-
pressed as

D =
(tG3 +(I−1

t −1)q)
(
I−1
t q2 +qtG3−1

)
(q2 +1)

(
(I−1

t q+ tG3)2 +1
) −

(tG3 +(I−1
t −1)s)

(
I−1
t s2 + stG3−1

)
(s2 +1)

(
(I−1

t s+ tG3)2 +1
) .

Let ϑ1 = tG3 +(I−1
t −1)q, ϑ2 = tG3 +(I−1

t −1)s, r1 = I−1
t q2 +qtG3−1,

r2 = I−1
t s2 +qtG3−1, n1 =

(
q2 +1

)(
(I−1

t q+ tG3)2 +1
)
,

n2 =
(
s2 +1

)(
(I−1

t q+ tG3)2 +1
)
, β := n2r1

n1n2
, and ρ := n1r2

n2r1
. Then

D =
ϑ1r1

n1
− ϑ2r2

n2
=

n2r1

(
ϑ1− n1

n2

r2
r1

ϑ2

)
n1n2

= β [(1−ρ)ϑ1 +ρ(ϑ1−ϑ2)].

Note that (ϑ1−ϑ2) = (I−1
t −1)(q− s) and

A

t
=

(I−1
t −1)

t
(q− s)+β [(1−ρ)

ϑ1

t
+ρ

(I−1
t −1)

t
(q− s)].

Consequently the estimate for S1(t)/t reads

|S1(t)/t| ≤ max
t∈[0,τ0]

||It ||L∞ || I
−1
t −1

t
||L∞ (1+ ||ρ||L∞ ||β ||L∞) ||det ∇ut −det ∇u)||L1

+ max
t∈[0,τ0]

||It ||L∞ ||β ||L∞ ||1−ρ||L1 ||
ϑ1

t
||L∞ ,

for τ0 sufficiently small. Note that since u ∈W 2,p, p > 2, β , ρ and ϑ1
t are bounded

in L∞(Ω). Furthermore n1
n2
→ 1 in L1(Ω), r2

r1
→ 1 in L1(Ω), and ρ → 1 in L1(Ω).

By (H2) it follows that lim
t→0

|S1(t)|
t

= 0. Therefore collecting the remaining terms into

S5(t) := R4(t)+S2(t), we have that

S5(t) =
∫

Ω

Itg3(I−1
t det ∇u+ tG3))−g3(det ∇u) dx.

Observe that g′3(det ∇u) ∈ L∞(Ω) and since u ∈ H2(Ω), we have ∇(det ∇u) ∈ L1(Ω)
and ∇(g3(det ∇u)) = g′3(det ∇u)∇(det ∇u) ∈ L1(Ω). Consequently g3(det ∇u) ∈
W 1,1(Ω). This implies that d

dt

[
g3(det ∇(u ◦ T−1

t ))
]

t=0
exists in L1(Ω), [7]. Hence
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using (50) and Lemma 2.2, we have that

lim
t→0

S5(t)
t

= lim
t→0

∫
Ω

Itg3(I−1
t det ∇u+ tG3))−g3(det ∇u) dx

t
,

= lim
t→0

∫
Ωt

g3([I−1
t det ∇u+ tG3]◦T−1

t )−
∫

Ω
g3(det ∇u) dx

t
,

=
limt→0

∫
Ωt

g3(det ∇(u◦T−1
t ))−

∫
Ω

g3(det ∇u) dx
t

,

=
d
dt

∫
Ωt

g3(det ∇(u◦T−1
t ))

∣∣∣
t=0

dxt ,

=
∫

∂Ω

g3(det ∇u))h ·n ds+
∫

Ω

g′3(det ∇u)
d
dt

(det ∇(u◦T−1
t )

∣∣∣
t=0

dx.

(60)

The second term on the right hand side in (60) can be simplified using Lemma 2.3 and
integration by parts leading to∫

Ω

g′3
d
dt

(det ∇(u◦T−1
t ))

∣∣
t=0 dx =−

∫
Ω

T (u)Du ·h dx−
∫

∂Ω

P(u)Du ·h ds.

Therefore

lim
t→0

S5(t)
t

=
∫

∂Ω

(
g3(det ∇u)−P(u)

∂u
∂n

)
h ·n ds−

∫
Ω

T (u)Du ·h dx. (61)

Finally, using (57) and (61), we obtain

dJ3(u,Ω)h =
∫

∂Ω

(
η

∂u
∂n

∂λ

∂n
+g3(det ∇u)−P(u)

∂u
∂n

)
h ·n ds. (62)

Expressions for dJi(u,Ω)h in (43), (46), and (62) are linear and continuous in h,
and hence the cost functionals J1,J2, and J3 are shape differentiable.
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A Appendix
Lemma A.1. Let ψ = ut−u, then for a 2D vector field u, the following relation holds

det ∇ut −det ∇u−det ∇ψ = (det ∇u)′(ut −u),

where

(det ∇u)′(ψ) =
∂u1

∂x
∂ (ut

2−u2)
∂y

+
∂u2

∂y
∂ (ut

1−u1)
∂x

− ∂u1

∂y
∂ (ut

2−u2)
∂x

− ∂u2

∂x
∂ (ut

1−u1)
∂y

.

Proof. Using (5), we have det ∇ψ =
∂ (ut

1−u1)
∂x

∂ (ut
2−u2)
∂y

−
∂ (ut

2−u2)
∂x

∂ (ut
1−u1)
∂y

.

Expansion of the differential terms leads to

det ∇ψ =
∂ut

1
∂x

∂ (ut
2−u2)
∂y

− ∂u1

∂x
∂ (ut

2−u2)
∂y

−
∂ut

2
∂x

∂ (ut
1−u1)
∂y

+
∂u2

∂x
∂ (ut

1−u1)
∂y

.

On the other hand

det ∇ut −det ∇u =
(

∂ut
1

∂x
∂ut

2
∂y
− ∂u1

∂x
∂u2

∂y

)
−
(

∂ut
2

∂x
∂ut

1
∂y
− ∂u2

∂x
∂u1

∂y

)
=

∂ut
1

∂x
∂ (ut

2−u2)
∂y

+
∂u2

∂y
∂ (ut

1−u1)
∂x

−
∂ut

2
∂x

∂ (ut
1−u1)
∂y

− ∂u1

∂y
∂ (ut

2−u2)
∂x

.

Thus

det ∇ut −det ∇u−det ∇ψ =
∂u1

∂x
∂ (ut

2−u2)
∂y

+
∂u2

∂y
∂ (ut

1−u1)
∂x

− ∂u1

∂y
∂ (ut

2−u2)
∂x

− ∂u2

∂x
∂ (ut

1−u1)
∂y

.


