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Abstract. A multitude of important problems can be cast as nonsmooth variational
problems in function spaces, and hence in an infinite-dimensional, setting. Traditionally
numerical approaches to such problems are based on first order methods. Only more
recently Newton-type methods are systematically investigated and their numerical effi-
ciency is explored. The notion of Newton differentiability combined with path following
is of central importance. It will be demonstrated how these techniques are applicable to
problems in mathematical imaging, and variational inequalities. Special attention is paid
to optimal control with partial differential equations as constraints.
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1. Introduction

Let X, H be real Hilbert spaces and K a closed convex subspace of X. Identify
H with H∗ and let ⟨·, ·⟩ denote the duality product on X∗ ×X. We consider the
minimization problem

min f(x) + φ(Λx) over x ∈ K, (P )

where f : X → R is a lower semi-continuous, continuously differentiable, convex
function, Λ ∈ L(X,H) and φ : H → (−∞,∞] is a proper, lower semi-continuous,
convex function. Typically X and H will be real-valued function spaces over a
bounded domain Ω ⊂ Rn with smooth boundary ∂Ω. This is a problem that is
well-studied within convex analysis framework. This aspect, as well as first order
numerical iterative solution methods are reviewed in part from a non-classical per-
spective in Section 2. Since φ is not assumed to be regular, classical Newton meth-
ods are not directly applicable. In Section 3 the concept of Newton-differentiability
and semi-smooth Newton methods are introduced. In the subsequent sections the
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applicability of these tools is demonstrated for a wide variety of topics, including
optimal boundary control in Section 4, optimal control with sparsity constraints in
Section 5, time optimal control in Section 6, and data fitting problems in Section
7. The final Section 8 is devoted to a general class of non-linear, non-differentiable
complementarity problems. Most of these applications involve differential equa-
tions.

2. First order Augmented Lagrangian Method

In this section we summarize convex analysis techniques for solving (P ). For basic
convex analysis concepts see [ET, ETu]. Throughout we assume that

f, φ are bounded below by zero on K (A1)

⟨f ′(x1)− f ′(x2), x1 − x2⟩ ≥ σ |x1 − x2|2X for all x1, x2 ∈ K and σ > 0, (A2)

φ(Λx0) <∞ for some x0 ∈ K. (A3)

Note that

f(x)− f(x0)− ⟨f ′(x0), x− x0⟩

=
∫ 1

0
⟨f ′(x0 + t(x− x0))− f ′(x0), x− x0⟩ dt ≥ σ

2 |x− x0|2.

Since φ is proper there exists an element y0 ∈ D(∂φ) and

φ(Λx)− φ(y0) ≥ (y∗0 ,Λx− y0)H for y∗0 ∈ ∂φ(y0),

where ∂φ denotes the subdifferential of φ. Hence, lim f(x) + φ(Λx) → ∞ as
|x|X → ∞ and it follows that there exists a unique minimizer x∗ ∈ K for (P ).

Theorem 2.1. The necessary and sufficient condition for x∗ ∈ K to be the mini-
mizer of (P ) is given by

⟨f ′(x∗), x− x∗⟩+ φ(Λx)− φ(Λx∗) ≥ 0 for all x ∈ K. (1)

Proofs to the results of this section can be found in [IK1]. Next a Lagrangian
associated to the nonsmooth summand φ in (P ) will be introduced, while the
condition x ∈ K is kept as explicit constraint. For this purpose we consider

f(x) + φc(Λx, λ) over x ∈ K, (Pc)

where the regularization φc of φ is defined as the shifted inf-convolution

φc(y, λ) = inf {φ(y − u) + (λ, u) +
c

2
|u|2} over u ∈ H, (2)

for y, λ ∈ H and c > 0.
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Before we return to the necessary optimality condition, properties of the smooth
approximation φc(x, λ) to φ are addressed. For λ > 0 let Jλ = (I+λ∂φ)−1 denote
the resolvent of ∂φ and let

Aλx = λ−1 (x− Jλx).

stand for the Yosida approxiamtion of ∂φ.

Theorem 2.2. For x, λ ∈ H the infimum in (2) is attained at a unique point
uc(x, λ) where uc(x, λ) = x−J1/c (x+c−1λ). Further φc(x, λ) is convex, (Lipschitz-
) continuously Fréchet differentiable in x and φ′

c(x, λ) = λ+ c uc(x, λ) = A1/c (x+
c−1λ). Moreover, limc→∞ φc(x, λ) = φ(x) and

φ(J1/c (x+ c−1λ))− 1

2c
|λ|2 ≤ φc(x, λ) ≤ φ(x)

for every x, λ ∈ H.

In the above statement the prime denotes differentiation with respect to the
primal variable x.

Theorem 2.3. For x, λ ∈ H we have

φc(x, λ) = sup
y∗∈H

{(x, y∗)− φ∗(y∗)− 1

2c
|y∗ − λ|2}, (3)

where the supremum is attained at the unique point λc(x, λ) = φ′
c(x, λ).

Above φ∗ denotes the conjugate of φ defined by

φ∗(y∗) = sup
y∈H

{(y, y∗)− φ(y)} for y∗ ∈ H.

Remark 2.1. If φ = I{y=0}, where and IS is the indicator function of a set S:

IS(x) =

 0 if x ∈ S

∞ if x ̸∈ S
,

then φc(y, λ) = (λ, y) + c
2 |y|

2 which is the classical augmented Lagrangian func-
tional associated to equality constraints, [Be, IK1].

Remark 2.2. In many applications the conjugate function φ∗ is given by

φ∗(v) = IC∗(v),

where C∗ is a closed convex set in H. In this case it follows from Theorem 2.3
that for v, λ ∈ H

φc(v, λ) = sup
y∗∈C∗

{− 1

2c
|y∗ − (λ+ c v)|2H}+ 1

2c
(|λ+ c v|2H − |λ|2H). (4)

Hence the supremum is attained at λc(v, λ) = ProjC∗(λ + c v) where ProjC∗(ϕ)
denotes the projection of ϕ ∈ H onto C∗.
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The following theorem provides an equivalent characterization of λ ∈ ∂φ(x).

Theorem 2.4. If λ ∈ ∂φ(y) for y, λ ∈ H, then λ = φ′
c(y, λ) for all c > 0.

Conversely, if λ = φ′
c(y, λ) for some c > 0, then λ ∈ ∂φ(y).

We return to (Pc). Since x → φc(Λx, λ) is bounded from below by − 1
2c |λ|

2
H ,

the regularized problems (Pc) admit a unique solution xc ∈ K. The necessary and
sufficient optimality condition is given by

⟨f ′(xc), x− xc⟩+ (φ′
c(Λxc, λ), Λ(x− xc))H ≥ 0 for all x ∈ K. (5)

Theorem 2.5. Assume that there exist λ∗c ∈ ∂φ(Λxc) for c ≥ 1 such that {|λ∗c |H}c≥1

is bounded. Then, xc converges strongly to x∗ in X as c → ∞ and for each weak
cluster point λ∗ of {λc}c≥1 in H

λ∗ ∈ ∂φ(Λx∗) and ⟨f ′(x∗), x− x∗⟩+ (λ∗, Λ(x− x∗))H ≥ 0 for all x ∈ K. (6)

Conversely, if x∗ ∈ K satisfies (6) then x∗ solves (P ).

The following lemma addresses the assumption of Theorem 2.5.

Lemma 2.1. (1) If dom(φ) = H then ∂φ(Λxc) is non-empty and |∂φ(Λxc)|H is
uniformly bounded for c ≥ 1.
(2) If φ = χC with C a closed convex set in H and Λxc ∈ C for all c > 0, then λ∗c
can be chosen to be 0 for all c > 0.

Theorem 2.6. Assume that there exists a pair (x∗, λ∗) ∈ K×H that satisfies (6).
Then the complementarity condition λ∗ ∈ ∂φ(Λx∗) can equivalently be expressed
as

λ∗ = φ′
c(Λx

∗, λ∗) (7)

and x∗ is the unique solution of

min f(x) + φc(Λx, λ
∗) over x ∈ K (8)

for every c > 0.

Note that (7) follows directly from Theorem 2.4. The importance of Theo-
rem 2.6 is given by the fact that the complementarity condition in the form of a
differential inclusion is replaced by a nonlinear equation, which is preferable for
computations. In the case of Remark (2.2), φ′

c(Λx, λ) is a projection.
We turn to the discussion of the first order augmented Lagrangian method.

Problem (P ) is equivalent to{
min f(x) + φ(Λx− u)

subject to x ∈ K and u = 0 in H.
(9)

To treat the constraint u = 0 in (9) by the augmented Lagrangian method we
consider the sequential minimization over x ∈ K and u ∈ H of the form

min f(x) + φ(Λx− u) + (λ, u)H +
c

2
|u|2H , (10)

4



where λ ∈ H is a multiplier and c is a positive scalar penalty parameter [Be, IK1].
Equivalently (10) can be expressed as

min Lc(x, λ) = f(x) + φc(Λx, λ) over x ∈ K, (11)

where φc(v, λ) is defined in (2). The (first-order) augmented Lagrangian method
is given next:

Augmented Lagrangian Method

(i) Choose a starting value λ1 ∈ H, a positive number c and set k = 1.

(ii) Given λk ∈ H determine xk ∈ K from

Lc(xk, λk) = min Lc(x, λk) over x ∈ K.

(iii) Update λk by λk+1 = φ′
c(Λxk, λk).

(iv) If the convergence criterion is not satisfied then set k = k + 1 and go to (ii).

The following theorem asserts unconditional convergence with respect to c of
the augmented Lagrangian method.

Theorem 2.7. Assume that there exists λ∗ ∈ ∂φ(Λx∗) such that (6) is satisfied.
Then the sequence (xk, λk) is well-defined and satisfies

σ

2
|xk − x∗|2X +

1

2c
|λk+1 − λ∗|2H ≤ 1

2c
|λk − λ∗|2H , (12)

and
∞∑
k=1

σ

2
|xk − x∗|2X ≤ 1

2c
|λ1 − λ∗|2H , (13)

which implies that |xk − x∗|X → 0 as k → ∞.

Example 2.1 (Obstacle problem). We consider the problem{
min

∫
Ω
( 12 |∇u|

2 − f̃ u) dx over u ∈ H1
0 (Ω)

subject to ϕ ≤ u ≤ ψ a.e. in Ω,
(14)

with f̃ ∈ L2(Ω) and ϕ, ψ given obstacles. In the context of the general framework
we choose X = H1

0 (Ω), H = L2(Ω) and Λ = the natural injection, and define
f : X → R and φ : H → R by

f(u) =

∫
Ω

(|∇u|2 − f̃ u) dx and φ(v) = IC ,

where C ⊂ H is the closed convex set defined by C = {v ∈ H : ϕ ≤ v ≤
ψ a.e. in Ω}. For one the sided constraint u ≤ ψ (i.e., ϕ = −∞) it is shown from
the literature, see e.g. [GLT, IK3], that there exists a unique λ∗ ∈ ∂φ(u∗) such
that (6) is satisfied provided that ψ ∈ H1(Ω), ψ|Γ ≥ 0 and sup(0, f̃+∆ψ) ∈ L2(Ω).
Let us set Cψ = {v ∈ H : v ≤ ψ a.e. in Ω}. Then we have I∗Cψ (v) = (ψ, v) if v ≥ 0
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a.e. and I∗Cψ (v) = ∞ otherwise. By Theorems 2.2, 2.3, for example, we can argue

that λc(u, λ) = max(0, λ+ c(u−ψ)), where max is the pointwise a.e. operation in
Ω. Therefore the optimal pair (u∗, λ∗) ∈ (H2 ∩H1

0 )× L2 satisfies{
−∆u∗ + λ∗ = f̃

λ∗ = max(0, λ∗ + c (u∗ − ψ)).
(15)

In this case Steps 2−3 in the augmented Lagrangian method is given by

−∆uk + λk+1 = f̃

λk+1 = max(0, λk + c (uk − ψ)).

For bilateral constraints the existence of a multiplier is much more delicate.
We refer to [IK1, IK2, IK3] and assume that ϕ, ψ ∈ H1(Ω) satisfy

ϕ ≤ 0 ≤ ψ on Γ, and max(0,∆ψ + f̃), min(0,∆ϕ+ f̃) ∈ L2(Ω),

S1 = {x ∈ Ω : ∆ψ + f̃ > 0} ∩ S2 = {x ∈ Ω : ∆ϕ+ f̃ < 0} is empty,

−∆(ψ − ϕ) + c0 (ψ − ϕ) ≥ 0 a.e. in Ω for some c0 > 0.

Once existence of a multiplier in L2(Ω) guaranteed, see [IK1] p.123, the optimal-
ity system we can use Theorem 2.3 and Theorem 2.6 to express the optimality
condition can be expressed as

−∆u∗ + λ∗ = f̃ , with λ∗ ∈ ∂IC(Λu
∗). (16)

The latter expression is equivalent to u∗ ∈ ∂∗C(λ
∗). By Remark 2.2 and Theorem

2.4, this is equivalent to u∗ = ProjC(λ
∗+ cu∗), which after some manipulation can

be expressed as

λ∗ = max(0, λ∗ + c (u∗ − ψ)) + min(0, λ∗ + c(u∗ − ϕ)).

The augmented Lagrangian method for the two-sided constraint can be expressed
as

−∆uk + λk+1 = f̃ , λk+1 = max(0, λk + c (uk − ψ)) + min(0, λk + c (uk − ψ)).

Example 2.2 (Bingham fluid and imaging denoising). The simplified Bingham
fluid problem is given by

min

∫
Ω

(
λ

2
|∇u|2 − f̃ u) dx+ g

∫
Ω

|∇u| dx over u ∈ H1
0 (Ω) (17)

where Ω is a bounded open set in R2 with Lipschitz boundary and f̃ ∈ L2(Ω). In
the context of the general theory we choose

X = H1
0 (Ω), H = L2(Ω)× L2(Ω), K = X, and Λ = g grad,
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and define f : X → R and φ : H → R by

f(u) =
1

g

∫
Ω

(
λ

2
|∇u|2 − f̃ u) dx, and φ(v1, v2) =

∫
Ω

√
v21 + v22 dx.

Since dom(φ) = H it follows from Theorem 2.5 and Lemma 2.1 that there exists
λ∗ such that (6) holds. Moreover φ∗(v) = χC∗(v), where C∗ = {v ∈ H : |v(x)|R2 ≤
1 a.e. in Ω}. Hence it follows that the optimality system for (17) is given by

∫
Ω
(λ∇u∗ ∇v − f̃v) dx+

∫
Ω
(λ∗∇u∗) dx = 0 for all v ∈ X

λ∗ = ProjC∗(λ∗ + c∇u∗) = λ∗+c∇u∗

|λ∗+c∇u∗|R2
a.e. ∈ Ω.

(18)

Moreover steps (ii)-(iii) in the augmented Lagrangian method are given by

−λ∆uk − g divλk+1 = f̃ , (19)

where

λk+1 =


λk + c∇uk on Ak = {x : |λk(x) + c∇uk(x)|R2 ≤ 1}

λk + c∇uk
|λk + c∇uk|

on Ω \Ak.
(20)

Equation (19) is a nonlinear equation for uk ∈ H1
0 (Ω). The augmented Lagrangian

method is thus closely related to the explicit duality (Uzawa-) method, where λk+1

in (19) is replaced by λk. The Uzawa method is conditionally convergent in the
sense that there exist 0 < ρ < ρ̄ such that it converges for ρ ∈ [ρ, ρ̄], [ET], [GLT].
On the other hand the augmented Lagrangian method converges unconditionally
by Theorem 2.7.

The image denoising problem based on BV-regularisation and an additional H1

semi-norm regularisation term (λ much smaller than g) is given by

min

∫
Ω

(
λ

2
|∇u|2 + g |∇u|) dx+

1

2

∫
Ω

|u− z|2 dx over u ∈ H1(Ω), (21)

where z denotes the noise corrupted data. It can be treated analogously as the
Bingham fuid problem. For a duality based treatment expressing BV-regularized
problems as bilateral obstacle problems we refer to [HK1].

In the simplified friction problem the functional φ is given by φ =
∫
∂Ω

|u| ds.
It also can be treated with the concepts of this section, see [IK4].

3. Semi-Smooth Newton Method in Function Spaces

In the previous section we discussed how equations such as (16) and (18) can be
solved by the augmented Lagrangian method. Due to lack of Fréchet differentia-
bility of the involved operations they are not directly amenable for treatment by
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the Newton algorithm. Therefore in this section we focus on the notion of Newton
differentiability.

Let X and Z be Banach spaces and consider the nonlinear equation

F (x) = 0 , (22)

where F : D ⊂ X → Z, and D is an open subset of X.

Definition 3.1. The mapping F : D ⊂ X → Z is called Newton differentiable in
the open subset U ⊂ D if there exists a family of mappings G : U → L(X,Z) such
that

lim
h→0

1

|h|X
|F (x+ h)− F (x)−G(x+ h)h|Z = 0, (A)

for every x ∈ U .

We refer to [CNQ, K, HIK] for work related (A). In [CNQ] the term slant
differentiability and in [K], for a slightly different notion, the term Newton map
were used. Note that it is not required that the mapping G serving as generalized
( or Newton) derivative is not required to be unique. The following convergence
result is well known [CNQ, HIK].

Theorem 3.1. Suppose that x∗ is a solution to (22) and that F is Newton differ-
entiable in an open neighborhood U containing x∗ with Newton derivative G(x). If
G(x) is nonsingular for all x ∈ U and {∥G(x)−1∥ : x ∈ U} is bounded, then the
Newton–iteration

xk+1 = xk −G(xk)−1F (xk)

converges superlinearly to x∗ provided that ∥x0 − x∗∥ is sufficiently small.

Proof. Note that the Newton iterates satisfy

|xk+1 − x∗| ≤ |G(xk)−1| |F (xk)− F (x∗)−G(xk)(xk − x∗)|, (23)

provided that xk ∈ U . Let B(x∗, r) denote a ball of radius r centered at x∗

contained in U and let M be such that ∥G(x)−1∥ ≤ M for all x ∈ B(x∗, r). We
apply (A) with x = x∗. Let η ∈ (0, 1] be arbitrary. Then there exists ρ ∈ (0, r)
such that

|F (x∗ + h)− F (x∗)−G(x∗ + h)h| < η

M
|h| ≤ 1

M
|h| (24)

for all |h| < ρ. Consequently, if we choose x0 such that |x0 − x∗| < ρ, then
by induction from (23), (24) with h = xk − x∗ we have |xk+1 − x∗| < ρ and in
particular xk+1 ∈ B(x∗, ρ). It follows that the iterates are well-defined. Moreover,
since η ∈ (0, 1] is chosen arbitrarily xk → x∗ converges superlinearly.

Here we are especially interested in applications involving the pointwise max
operation when X is a function space consisting of elements defined over a bounded
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domain Ω ⊂ Rn with Lipschitzian boundary ∂Ω. Let δ ∈ R be fixed arbitrarily.
We introduce candidates for Newton derivatives Gm of the form

Gm(x)(s) =

 1 if x(s) > 0 ,
0 if x(s) < 0 ,
δ if x(s) = 0 ,

(25)

where x ∈ X.

Proposition 3.1. (i) Gm can in general not serve as a Newton derivative for
max(0, ·) : Lp(Ω) → Lp(Ω), for 1 ≤ p ≤ ∞.

(ii) The mapping max(0, ·) : Lq(Ω) → Lp(Ω) with 1 ≤ p < q ≤ ∞ is Newton
differentiable on Lq(Ω) and Gm is a Newton derivative.

For the proof which directly verifies property (A), see [HIK]. Alternatively, if
ψ : R → R is semi-smooth in the sense of mappings between finite-dimensional
spaces, i.e. ψ is locally Lipschitz continuous and limV ∈∂ψ(x+th′),h′→h,t→0+ V h

′

exists for all h ∈ R, then the substitution operator F : Lq(Ω) → Lp(Ω) defined by

F (x)(s) = ψ(x(s)) for a.e.s ∈ Ω

is Newton differentiable on Lq(Ω), if 1 ≤ p < q ≤ ∞, see [U]. In particular this
applies to the max operation.

The following chain rule is useful in many applications.

Proposition 3.2. Let f : Y → Z and g :→ Y be Newton differentiable in open
sets V and U , respectively, with U ⊂ X, g(U) ⊂ V ⊂ Y . Assume that g is
locally Lipschitz continuous and that there exists a Newton map Gf (·) associated
to f which is bounded on g(U). Then the superposition f ◦ g : X → Z is Newton
differentiable in U with a Newton map GfGg.

For the proof we refer to [HK3].
A class of nonlinear complementarity problems: The above concepts are applied

to nonlinear complementarity problems of the form

g(x) + λ = 0, λ ≥ 0, x ≤ ψ and (λ, x− ψ)L2 = 0, (26)

where g : X = L2(Ω) → Lp(Ω), p > 2 is Lipschitz continuous and ψ ∈ Lp(Ω). If
J is a continuously differentiable functional on X then (26) with g = J ′, is the
necessary optimality condition for

min
x∈L2(Ω)

J(x) subject to x ≤ ψ. (27)

As discussed in the previous section, (26) can equivalently be expressed as

g(x) + λ = 0, λ = max(0, λ+ c (x− ψ)), (28)

for any c > 0, where max denotes the pointwise max-operation, with λ the La-
grange multiplier associated to the inequality constraint.
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Let us assume that (28) admits a solution (x∗, λ∗) ∈ L2(Ω)×L2(Ω). Equation
(28) can equivalently be expressed as

F (x) = g(x) + max(0,−g(x) + c (x− ψ)) = 0, (29)

where F is considered as mapping from X into itself. The semi-smooth Newton
iteration for this reduced equation is given by

g′(xk)(xk+1 − xk) +G
(
−g(xk) + c (xk − ψ)

) (
−g′(x)(xk+1 − xk) + c (xk+1 − xk)

)
+g(xk) + max(0,−g(xk) + c (xk − ψ)) = 0,

(30)
where Gm was defined in (25). To investigate local convergence of (30) we denote
for any partition Ω = A∪I into measurable sets I and A by RI : L2(Ω) → L2(I)
the canonical restriction operator and by R∗

I : L2(I) → L2(Ω) its adjoint. Further
we set

g′(x)I = RI g
′(x) R∗

I .

Proposition 3.3. Assume that (28) admits a solution x∗, that x→ g(x)−c(x−ψ)
is a C1 function from L2(Ω) to Lp(Ω) in a neighborhood U of x∗ for some c > 0
and p > 2, and that

{g′(x)−1
I ∈ L(L2(I)) : x ∈ U, Ω = A ∪ I} is uniformly bounded .

Then the iterates xk defined by (30) converge superlinearly to x∗, provided that
|x∗ − x0| is sufficiently small. Here x0 denotes the initialization of the algorithm.

Proof. By Propositions 3.1, 3.2 the mapping x → max(0,−g(x) + c(x − ψ)) is
Newton differentiable in U as mapping from L2(Ω) into itself and Gm(−g(x)+c(x−
ψ))(−g′(x) + cI) is a Newton-derivative. Consequently F is Newton differentiable
in U . Moreover g′(x) +Gm(−g(x) + c(x− ψ))(−g′ + cI) is invertible in L(L2(Ω))
with uniformly bounded inverses for x ∈ U . In fact, setting

z = −g(x) + c(x− ψ), A = {z > 0}, I = Ω \ A, hI = χIh, hA = χAh,

this follows from the fact that for given f ∈ L2(Ω) the solution to the equation

g′(x)h+G(z)(−g′(x)h+ ch) = f

is given by

chA = fA and hI = g′I(x)
−1(fI − 1

c
χI g

′(x)fA).

From Theorem 3.1 we conclude that xk → x∗ superlinearly, provided that |x∗−x0|
is sufficiently small.

It can be observed that the semi-smooth Newton step can be equivalently ex-
pressed as
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g′(xk)(xk+1 − xk) + g(xk) + λk+1 = 0

xk+1 = ψ in Ak = {s : −g(xk)(s) + c (xk(s)− ψ(s)) > 0}

λk+1 = 0 in Ik = {s : −g(xk)(s) + c (xk(s)− ψ(s)) ≤ 0}.

(31)

Remark 3.1. We refer to (31) as the primal-dual active set strategy for the
reduced equation. If the semi-smooth Newton step is applied to (28) rather than
to the reduced equation, then the resulting algorithm differs in the update of the
active/inactive sets. In fact, in this case the update for the active set is given
by Ak = {s : λk(s) + c (xk(s) − ψ(s)) > 0} = {s : −g(xk−1)(s) − g′(xk−1)(xk −
xk−1)(s) + c (xk(s)− ψ(s)) > 0}. In case g is linear the two updates coincide.

If we consider regularized least squares problems of the form

min J(x) =
1

2
|Tx− z|2Y +

α

2
|x|2L2 , subject to x ≤ ψ, (32)

where Y is a Hilbert space, T ∈ L(L2(Ω), Y ), α > 0 and z ∈ Y, ψ ∈ Lp(Ω), then
g(x) = T ∗(Tx−z)+αx and g(x)−α(x−ψ) = T ∗(Tx−z)+αψ. Hence Proposition
3.3 with c = α is applicable if T ∗ ∈ L(Y,Lp(Ω)), for some p > 2. The optimality
condition (29) is given by

α(x− ψ) + max(0, T ∗(Tx− z) + αψ) = 0, (33)

in this case.

So far we addressed local convergence. The following result gives a sufficient
condition for global convergence.

Proposition 3.4. Consider (32) and assume that ∥T∥2L(L2(Ω1),L2(Ω2))
< α. Then

the semi-smooth Newton algorithm converges independently of the initialisation to
the unique solution of (32).

The proof is based an argument using

M(x, λ) = α2

∫
Ω

|(x− ψ)+|2 ds+
∫
A(x)

|λ−|2 ds

as a merit function, where A(x) = {s : x(s) ≥ ψ(s)}. It decays along the iterates
(xk, λk) of the semi-smooth Newton algorithm. An analogous result can be ob-
tained in case of bilateral constraints and for nonlinear mappings g, if additional
requirements are met, [IK3].

Propositions 3.3 and 3.4 are applicable to optimal control problems with control
constraints, for example. This is the contents of the following section.
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4. Optimal Dirichlet Boundary Control

Let us consider the Dirichlet boundary optimal control problem with point-wise
constraints on the boundary, formally given by

min 1
2 |y − z|2L2(Q) +

α
2 |u|

2
L2(Σ)

subject to

∂ty − κ∆y + b · ∇y = f in Q

y = u, u ≤ ψ on Σ

y(0) = y0 in Ω,

(34)

where Q = (0, T ] × Ω , Σ = (0, T ] × ∂Ω and Ω a bounded domain in Rn,
n ≥ 2 with C2 boundary ∂Ω. This guarantees that the Laplacian with ho-
mogenous Dirichlet boundary conditions, denoted by ∆, is an isomorphism form
H2(Ω) ∩ H1

0 (Ω) to L2(Ω) . Further κ > 0, y0 ∈ H−1(Ω), z ∈ L2(Q), f ∈
L2(H−2(Ω)), u ∈ L2(Σ) and b ∈ L∞(Q), div b ∈ L∞(Ln̂(Ω)) where n̂ =
max(n, 3), and L∞(Q) =

⊗n
i=1 L

∞(Q) .
Under these conditions there exists a unique very weak solution y ∈ L2(Q) ∩

H1(H−2(Ω)) ∩ C(H−1(Ω)) satisfying for a.e. t ∈ (0, T )
⟨∂ty(t), v⟩ − κ(y(t),∆v)− (y(t),div (b(t)) v)− (y(t), b(t)∇v)

= ⟨f(t), v⟩ − κ(u(t), ∂∂nv)∂Ω for all v ∈ H2(Ω) ∩H1
0 (Ω),

y(0) = y0,

(35)

where ⟨·, ·⟩ = ⟨·, ·⟩H−2(Ω),H2(Ω)∩H1
0 (Ω) denotes the canonical duality pairing, (·, ·)

and (·, ·)∂Ω stand for the inner products in L2(Ω) and L2(∂Ω) respectively. More-
over

|y|L2(Q)∩H1(H−2(Ω))∩C(H−1(Ω)) ≤ C(|y0|H−1(Ω) + |f |L2(H−2(Ω)) + |u|L2(Σ)), (36)

where C depends continuously on κ > 0, |b|L∞(Q) and |div b|L∞(Ln̂(Ω)), and is
independent of f ∈ L2(H−2(Ω)), u ∈ L2(Σ) and y0 ∈ H−1(Ω).

Utilizing the a-priori bound (36) it is straightforward to argue the existence of
a unique solution u∗ ∈ L2(Σ) of (34). It can be shown that it is characterized by
the optimality system

∂ty − κ∆y + b · ∇y = f in Q,

y = u on Σ, y(0) = y0 in Ω,

−∂tp− κ∆p− div b p− b · ∇p = −(y − z) in Q,

p = 0 on Σ , p(T ) = 0 in Ω,

κ ∂p∂n + αu+ λ = 0 on Σ,

λ = max(0, λ+ c(u− ψ)) on Σ,

(37)
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where the primal must be interpreted in the very weak form. In terms of (32) we
have that the operator T : L2(Σ) → L2(Q) is given as the control to state operator
for (35). Its adjoint T ∗ ∈ L(L2(Q), L2(Σ)) is the solution of the adjoint equation,
i.e. the third and forth equations in (37), with right hand side φ ∈ L2(Q). In [KV]
we verified that the adjoint satisfies∥∥∥∥ ∂p∂n

∥∥∥∥
Lqn (Σ)

≤ C1 ∥p∥L2(H2(Ω))∩H1(L2(Ω)) ≤ C2∥φ∥L2(Q),

with an embedding constant C1, C2, where

qn =

{
2(n+1)
n , if n ≥ 3 ,

3− ε, if n = 2,

for every ε > 0, so that in particular qn > 2 for every n. Equation (33) is given by

αu− ψ +max(0, κ
∂p

∂n
+ αψ) = 0, (38)

in this case, and Propositions 3.3 and 3.4 imply that the semi-smooth Newton
method applied to (38) converges locally superlinearly, as well as globally, if α >
∥T∥2L(L2(Σ),L2(Ω)).

5. Sparse Controls

The control cost in optimal control problems is most frequently chosen to be of
the form α

2 |u|
2, where u denotes the control. In this way the control cost is differ-

entiable, in some applications the term can be interpreted as energy. It is indis-
pensable in the stochastic interpretation of the linear quadratic regulator theory.
However, it also has drawbacks, most notably, it does not put proportional weight
on the control. The purpose of this section is to sketch a framework for the use of
α|u| as control cost. For this choice the cost of the control is proportional to its
”size”. Moreover it has the feature of being sparse. To get an appreciation for this
latter property let us consider the non-differentiable problem in L2(Ω) given by

min
1

2
|u− z|2L2 + α|u|L1 . (39)

The solution to (39) is given in the a.e. sense by

u∗ =

{
0 if |z| < α−1

z − α−1 sgn z if |z| ≥ α−1.
(40)

In particular the solution is 0 where z is small relative to 1/α. The space of L1(Ω)-
controls, however, does not lend itself to weak∗ compactness arguments which are
needed to guarantee existence in the context of optimal control. Consequently

13



the control space is enlarged to measure-valued controls. We consider the model
problem  min

u∈M

1

2
|y − z|2L2 + α|u|M

s.t. Ay = u,
(PM)

where M denotes the vector space of all bounded Borel measures on Ω, that is the
space of all bounded σ-additive set functions µ : B(Ω) → R defined on the Borel
algebra B(Ω) satisfying µ(∅) = 0. The total variation of µ ∈ M is defined for all
B ∈ B(Ω) by |µ|(B) := sup {

∑∞
i=0 |µ(Bi)| :

∪∞
i=0Bi = B}, where the supremum

is taken over all partitions of B. Endowed with the norm |µ|M = |µ|(Ω), M
is a Banach space. By the Riesz representation theorem, M can be isometrically
identified with the topological dual of C0(Ω). This leads to the following equivalent
characterization of the norm on M:

|µ|M = sup
ϕ∈C0(Ω),
|ϕ|C0

≤1

∫
Ω

ϕdµ. (41)

Further A is a second order elliptic operator with homogenous Dirichlet bound-
ary conditions in the bounded domain Ω ⊂ Rn with n ∈ {2, 3}, and such that

∥A·∥L2 and ∥A∗·∥L2 are equivalent norms on H2(Ω) ∩H1
0 (Ω),

where A∗ denotes the adjoint of A with respect to the inner product in L2. For
u ∈ M, the equation Ay = u has a unique weak solution y ∈ W 1,p

0 (Ω), for all 1 ≤
p < n

n−1 . Furthermore, there exists a constant C > 0 such that |y|W 1,p
0

≤ C|u|M.

Since W 1,p
0 (Ω) is compactly embedded in L2(Ω), (PM) is well-defined, and

standard arguments imply the existence of a unique solution (y∗, u∗). Next we aim
for a formulation of the problem that is appropriate for computational purposes.
By Fenchel duality theory the predual to (PM) is given by min

p∈H2∩H1
0

1

2
|A∗p+ z|2 − 1

2
|z|2L2

s.t. |p|C0 ≤ α,

(P∗
M)

which can be considered as a bilaterally constraint problem. Existence of a unique
solution p∗ can readily be verified and the relationship between solutions to the
original and the predual problem are given by:

Ay∗ = u∗,

A∗p∗ = z − y∗,

0 ≤ ⟨u∗, p∗ − p⟩(H2∩H1
0 )

∗,H2∩H1
0
for all p ∈ H2 ∩H1

0 , |p|C0 ≤ α.

(42)

The inequality in (42) can be interpreted as the larger α, the smaller is the support
of the control u∗.
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While (P∗
M) is of bilateral constraint type, some further consideration is re-

quired before Newton methods can be used efficiently. Comparing to (32) and the
optimal control problem treated in Section 4, the operator appearing in (P∗

M) is
not of smoothing type. Note that if we were to discretize (32) and (P∗

M) then
these problems have the same structure. But this is not the case on the continuous
level. Computationally this becomes apparent in the context of mesh indepen-
dence. Applying the semi-smooth Newton method to the discretized form of (32)
with T satisfying T ∗ ∈ L(Y,Lp(Ω)) will result in mesh-independent iteration num-
bers of the semi-smooth Newton method, while this is not the case for (P∗

M). For
an analysis of mesh-independence of the semi-smooth Newton method we refer to
[HU].

To obtain a formulation which is appropriate for a super-linear and mesh-
independent behavior of the semi-smooth Newton method some type of regular-
ization is required. For example an additional regularization term of the form
β
2 |u|

2
L2 can be added to the cost in (PM), see e.g. [St]. Here we go a different

way and consider the Moreau-Yosida approximation, see (15), of the inequality
constraints leading to

min
p∈H2∩H1

0

1

2
|A∗p+ z|2L2 − 1

2
|z|2L2 +

c

2
|max(0, p− α)|2L2 +

c

2
|min(0, p+ α)|2L2 , (P∗

M,c)

where the max- and min- operations are taken pointwise in Ω. For c > 0 let pc denote
the solutions to (P∗

M,c). They satisfy the optimality system{
AA∗pc +Az + λc = 0,

λc = max(0, c(pc − α)) + min(0, c(pc + α)),
(43)

where λc ∈ W 1,∞ approximates the Lagrange multiplier associated to the constraint
|p|C0 ≤ α. Let (p∗, λ∗) ∈ H2 ∩ H1

0 × (H2 ∩ H1
0 )

∗ denote the unique solution to the
optimality system for (P∗

M): {
AA∗p∗ +Az + λ∗ = 0,

⟨λ∗, p− p∗⟩ ≤ 0,
(44)

for all p ∈ H2 ∩H1
0 with |p|C0 ≤ α. Then, see [CK], as c → ∞:

pc → p∗ in H2 ∩H1
0 , λc ⇀ λ∗ in (H2 ∩H1

0 )
∗. (45)

The regularized optimality system (P∗
M,c) can be solved efficiently by the semi-smooth

Newton method with Gm as in (25) and appropriately adapted for the min term. For
this purpose we express (P∗

M,c) as a nonlinear equation F (p) = 0 with F : H2 ∩ H1
0 →

(H2 ∩H1
0 )

∗, where

F (p) := AA∗p+max(0, c(p− α)) + min(0, c(p+ α)) +Az. (46)

Due to the regularity gap between the domain and the range of F the following result
can be obtained quite readily from Theorem 3.1, and Proposition 3.1, [CK].

Theorem 5.1. If |pc − p0|H2∩H1
0
is sufficiently small, the iterates pk of the semi-smooth

Newton algorithm converge superlinearly in H2 ∩ H1
0 to the solution pc of (P∗

M,c) as
k → ∞.
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Algorithm 1 Semismooth Newton method for (43)

1: Set k = 0, Choose p0 ∈ H2 ∩H1
0

2: repeat
3: Set

A+
k+1 = {x} pk(x) > α, A−

k+1 = {x} pk(x) < −α, Ak+1 = A+
k+1 ∪ A−

k+1

4: Solve for pk+1 ∈ H2 ∩H1
0 :

(A∗pk+1, A∗v)L2 + c(pk+1χAk , v)L2 = −(z,A∗v)L2 + cα(χA+
k
− χA−

k
, v)L2

for all v ∈ H2 ∩H1
0

5: Set k = k + 1
6: until (A+

k+1 = A+
k ) and (A−

k+1 = A−
k )

For this application, let us give the algorithm in detail in Algorithm 1. The stop-
ping criterion is typically met without any need for globalization. If it applies then the
algorithm stops at the solution of (43). For actual computations a discretisation of the
infinite dimensional spaces is required. This is not within the scope of this paper.

The question also arises how to choose c in practice. Large c implies that we can
be close to the solution of the unregularized problem at the expense of possible ill-
conditioning of the regularized one. We have only rarely experienced that ill-conditioning
actually occurs. In practice it is certainly advisable to utilize a continuation principle,
applying the Algorithm with a moderate value for c, and utilizing the solution thus ob-
tained as initialization for a computation with a larger value for c. This procedure can be
put onto solid ground for unilateral constraints by means of path following techniques as
detailed in [HK2]. Since the infinite dimensional problem always needs to be discretized a
natural stopping criterion for the increase of c is given once the error due to regularization
is smaller than that of discretization. For certain obstacle type problems which satisfy
a maximum principle the L∞ error due to regularization can be estimated, see [IK5]. –
Concerning regularization let us stress that discretization also has a regularizing effect.
In this case staggered grid strategies applied to the original unregularized formulation,
i.e. (P∗

M) in our case, correspond to the increase of the regularisation parameter c and
can be very effective in numerical computations. The formal analysis of this procedure
has not been carried out yet.

6. Time Optimal Control

This section is devoted to time optimal control problems for a class of nonlinear ordinary
differential equations. The techniques are applicable to much wider class of problems,
but the detailed analysis yet needs to be carried out. While the computation of time
optimal controls and trajectories has a long history, the use of Newton-type methods is
a very recent one. We refer to [IK4] for a detailed description of the procedure that we
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describe here. minτ≥0

∫ τ

0
dt subject to

d
dt
x(t) = Ax(t) +Bu(t), |u(t)|ℓ∞ ≤ 1, x(0) = x0, x(τ) = x1,

(PT )

where A ∈ Rn×n, B ∈ Rn×m, x0 ̸= x1 are given vectors in Rn, u(t) ∈ Rm, u is measurable,
and | · |ℓ∞ denotes the infinity-norm on Rm. It is assumed that x1 can be reached in finite
time by an admissible control. Then (PT ) admits a solution with optimal time denoted
by τ∗, and associated optimal state x∗ and optimal control u∗.

It is wellknown that under appropriate conditions [HL] the optimal solution is related
to the adjoint equation

p(t) = exp (AT (τ∗ − t)) q, with q ∈ Rn,

through

u∗(t) = −σ(BT p(t)) = −σ
(
BT exp (−AT (τ∗ − t)) q

)
, (47)

for t ∈ [0, τ∗], where q ∈ Rn and σ denotes the coordinate-wise operation

σ(s) ∈

{
sgn s if s ̸= 0

[−1, 1] if s = 0.
(48)

This operation prohibits the use of superlinear Newton-type methods for solving (PT )
numerically. Therefore a family of regularized problems given by minτ≥0

∫ τ

0
(1 + ε

2
|u(t)|2) dt subject to

d
dt
x(t) = Ax(t) +Bu(t), |u(t)|ℓ∞ ≤ 1, x(0) = x0, x(τ) = x1,

(Pε)

with ε > 0 is considered. The norm | · | used in the cost-functional denotes the Euclidean
norm. It is straightforward to argue the existence of a solution (uε, xε, τε). Convergence
of the solutions (xε, uε, τε) of (Pε) to a solution (x∗, u∗, τ∗) of (PT ) was analysed in
[IK4]. Note that τ∗ is unique.

Proposition 6.1. For every 0 < ε0 < ε1 and any solution (τ∗, u∗) of (P ) we have

τ∗ ≤ τε0 ≤ τε1 ≤ τ∗(1 +
ε1
2
), (49)

|uε1 |L2(0, τε1 ) ≤ |uε0 |L2(0, τε0 ) ≤ |u∗|L2(0, τ∗). (50)

If u∗ is a bang-bang solution, then

0 ≤ |u∗|2L2(0, τ∗) − |uε|2L2(0, τε)
≤ meas {t ∈ [0, τ∗] : |uε(t)| < 1} (51)

for every ε > 0. Moreover, if (A,Bi) is controllable for each column Bi of B, then the
solution u∗ is unique, it is bang-bang and uε → u∗ in L2 as ε → 0+.

Recall that a control is called bang-bang if |ui(t)| = 1 for all t ∈ [0, τ∗] and i =
1, . . . ,m. Concerning a necessary optimality condition for (Pε) we have the following
result:
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Theorem 6.1. Let (xε, uε, τε) be a solution of (Pε). Assume that there exists some ĩ
such that

(A,Bĩ) is controllable, (H1)

and such that exist η > 0 and an interval Iĩ ⊂ (0, 1) satisfying

| (ûε)ĩ(t)|ℓ∞ ≤ 1− η for a.e. t ∈ Iĩ. (H2)

Then there exists an adjoint state pε such that

ẋε = Axε +Buε, xε(0) = x0, xε(τε) = x1,

−ṗε = AT pε,

uε = −σε(B
T pε),

1 + ϵ
2
|uε(τε)|2Rm + pε(τε)

T (Axε(τε) +Buε(τε)) = 0,

(52)

where

σε(s) ∈

{
sgn s if s ≤ −ε

s
ε

if |s| < ε.
(53)

System (52) can readily be treated by a semi-smooth Newton method. In a first step
the method of mappings is used to transform the system to a fixed time domain. The
transformation t → t

τ
transforms (52) to

ẋ = τ(Ax+Bu), x(0) = x0, x(1) = x1,

−ṗ = τAT p,

u = −σε(B
T p),

1 + ϵ
2
|u(1)|2 + p(1)T (Ax(1) +Bu(1)) = 0.

(54)

To investigate the semi-smooth Newton method we require an additional assumption

|BT
i pε(1)| ̸= ε, for all i = 1, . . . ,m, (H3)

where we now fix ε and a solution (xε, uε, τε) ∈ W 1,2(0, 1) × L2(0, 1) × R of (Pε) with
associated adjoint pε ∈ W 1,2(0, 1). With (H2) and (H3) holding there exists a neighbor-
hood Upε of pε in W 1,2(0, 1;Rn), t̄ ∈ (0, 1), and a nontrivial interval (α, α + δ) ⊂ (0, 1)
such that for p ∈ Upε we have

|BT
i p(t)| ̸= ε for all t ∈ [t̄, 1], and i = 1, . . . ,m, and |BT

ĩ p(t)| < ε for t ∈ (α, α+ δ).

Equation (54) suggests to introduce

F (x, p, u, τ) =



ẋ− τAx− τBu

−ṗ− τAT p

u+ σε(B
T p)

x(1)− x1

1 + ε
2
|u(1)|2 + p(1)T (Ax(1) +Bu(1))


. (55)
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where

F : DF ⊂ X → L2(0, 1;Rn)× L2(0, 1;Rn)× U × Rn × R,

and

DF = W 1,2(0, 1)× Upε × U × R, X = W 1,2(0, 1;Rn)×W 1,2(0, 1;Rn)× U × R.

Here we have set U = {u ∈ L2(0, 1;Rm) : u|[t̄, 1] ∈ W 1,2(t̄, 1;Rm)} endowed with the

norm |u|U = (|u|2L2(0,1) + |u̇|2L2(t̄,1))
1
2 . The only equation that requires special attention

in (55) is the third one which contains the operator σε. We use

Gσε(s) :=

{
1
ε

if |s| < ε

0 if |s| ≥ ε
(56)

as generalized derivative in the sense of Definition 3.1 for σε. It is now straightforward
to argue that F is Newton differentiable. To apply Theorem 3.1 it remains to argue that
the inverse of the Newton derivative of F is uniformly bounded in a neighborhood of
(xε, uε, τε, pε). For this purpose the Newton system is considered for reduced unknowns
(p(1), τ)T ∈ Rn+1. In terms of these variables the system matrix becomes:

A =

(
A11 A12

A21 0

)
,

where

A11 = ε−1τ

∫ 1

0

eτA(1−t)BχIB
T eτA

T (1−t) dt ∈ Rn×n, (57)

A12 = ε−1τ
∫ 1

0
eτA(1−t)BχIB

T
∫ 1

t
e−τAT (t−s)AT p(s) ds dt

−
∫ 1

0
eτA(1−t)(Ax+Bu) dt ∈ Rn,

(58)

A21 = (Ax(1) +Bu(1))T − (pT (1)B + εuT (1))Gσε(B
T p(1))BT ∈ (Rn)T , (59)

with χI = diag(χI1 , . . . , χIm) and χIi the characteristic function of the set

Ii = Ii(p) = {t : |(BT p)i| < ε}, i = 1, . . . ,m

which is nonempty for p ∈ Upε and i = ĩ. The controllability assumption (H1) together
with (H2) imply that the symmetric matrix A11 is invertible with bounded inverse uni-
formly with respect to p ∈ Upε and τ in compact subsets of (0,∞).

To guarantee uniform boundedness of the inverse of the Newton derivative we require
that the Schur complement A21 A

−1
11 A12 ∈ R of A for (x, p, u, τ) in a neighborhood of

(xε, pε, uε, τε) is nontrivial. We therefore assume that
there exists a bounded neighborhood

U ⊂ DF ⊂ X of (xε, pε, uε, τε) and c > 0 such that

|A21 A
−1
11 A12| ≥ c for all (x, p, u, τ) ∈ U .

(H4)

Theorem 6.2. If (H1)–(H4) hold and (xε, uε, τε) denotes a solution to (Pε) with associ-
ated adjoint pε, then the semi-smooth Newton algorithm converges superlinearly, provided
that the initialization is sufficiently close to (xε, pε, uε, τε).
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7. L1-Data Fitting

Here we treat the data fitting problem with robust L1(Ω) fit-to-data term and consider

min
x∈L2

{
Jα(x) ≡ |Kx− yδ|L1 +

α

2
|x|2
}
, (PL1)

where K : L2(Ω) → L2(Ω) is a compact linear operator, and yδ ∈ L2 are measurements
corrupted by noise. For every α there exists a unique minimizer xα. For the value function

F (α) = |Kxα − yδ|L1 +
α

2
|xα|2,

it can be shown that

F ′(α) =
1

2
|xα|2, (60)

[CJK, IK6]. Fenchel duality theory implies that the dual to (PL1) is given by min
p∈L2

1

2α
|K∗p|2L2 − (p, yδ)L2

s.t. |p|L∞ ≤ 1.

. (P∗
L1)

The dual problem has at least one solution pα and the relationship between xα and pα is
given by

K∗pα = αxα, 0 ≤ (Kxα − yδ, p− pα)L2 , for all p ∈ L2 with |p|L∞ ≤ 1. (61)

Problem (P∗
L1) does not lend itself to treatment with a superlinearly convergent semi-

smooth Newton algorithm. In fact the optimality system for (P∗
L1) is given by

1

α
KK∗pα − yδ + λα = 0, (λα, p− pα)L2 ≤ 0, for all |p|L∞ ≤ 1, (62)

where λα denotes the Lagrange multiplier associated to the inequality constraint. This
system does not admit a reformulation such that Theorem 3.1(ii) is applicable. We
therefore introduce the family of regularized problems min

p∈H1

1

2α
|K∗p|2L2 +

β

2
|∇p|2L2 − (p, yδ)

s.t. |p|L∞ ≤ 1,

(P∗
β)

for β > 0, and finally for the numerical realisation the Moreau-Yosida regularization of
the box constraints:

min
p∈H1

1

2α
|K∗p|2L2 +

β

2
|∇p|2L2 − (p, yδ)

+
1

2c
|max(0, c(p− 1))|2L2 +

1

2c
|min(0, c(p+ 1))|2L2 , (P∗

β,c)

for c > 0. It is assumed that ker K∗ ∩ ker ∇ = ∅. Then (P∗
β) and (P∗

β,c) admit unique
solutions in H1 denoted by pβ and pc respectively. At the end of this section we comment
on the choice of the regularization parameters.

The optimality system for (P∗
β,c) is given by

1

α
KK∗pc − β∆pc + λc = yδ,

λc = max(0, c(pc − 1)) + min(0, c(pc + 1)),
(63)
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where λc ∈ H1(Ω). It can be shown by techniques which are by now quite standard
[IK5, CJK] that for each fixed β > 0 we have

(pc, λc) → (pβ , λβ) in H1(Ω)×H1(Ω)∗,

where λβ ∈ H1(Ω)∗ is the Lagrange multiplier associated to the inequality constraint in
(P∗

β). Moreover, for every sequence βn → 0 there exists a subsequence such that pβk ⇀ pα
in L2(Ω), where pα is a solution of (P∗

L1). Analogously, if c is fixed then the solutions to
(P∗

β,c), now denoted by pβn,c converge to a solution of p0,c of (P∗
β,c) with β = 0.

To solve the optimality system (63) for the regularized problem we consider the non-
linear operator equation F (p) = 0 for F : H1(Ω) → H1(Ω)∗, where

F (p) :=
1

α
KK∗p− β∆p+max(0, c(p− 1)) + min(0, c(p+ 1))− yδ. (64)

In view of Section 3 we use as Newton derivative for the projection operator P (p) :=
max(0, (p− 1)) + min(0, (p+ 1)) the mapping

GP (p)h := hχ{|p|>1} =

{
h(x) if |p(x)| > 1,

0 if |p(x)| ≤ 1.

It can readily be verified that the update pk+1 ∈ H1(Ω) of the Newton equationGP (p
k)(pk+1−

pk) = −F (pk) is the solution to the equation

1

α
KK∗pk+1 − β∆pk+1 + cχAkp

k+1 = yδ + c(χA+
k
− χA−

k
), (65)

where the active sets are given by

A+
k := {x} pk(x) > 1, A−

k := {x} pk(x) < −1, Ak := A+
k ∪ A−

k .

Moreover we can use the techniques of Section 3 to establish the following result.

Theorem 7.1. If |pc−p0|H1 is sufficiently small, then the iterates pk of the semi-smooth
Newton algorithm converge superlinearly in H1(Ω) to the solution pc of (P∗

β,c) as k → ∞.

We turn to a discussion of the choice of the parameters α, β and c in problem (P∗
β,c).

Clearly β and c, which are used in the inner loop of an iterative procedure, should be
taken close to 0 and ∞, respectively. The choice of α, which is different from 0 in general,
is the most delicate one and we turn to it first.

Choice of α by model function approach: The model function approach proposed in
[IK6] approximates the value function F (α) by rational polynomials. Here we consider a
model function of the form

m(α) = b+
d

t+ α
. (66)

Noting that xα → 0 for α → ∞ and α|xα|2 → 0 by (61), we fix b = |yδ|L1 . The
parameters d and t are determined by interpolation conditions according to

m(α) = F (α), m′(α) = F ′(α), (67)

which together with the definition of m(α) gives

b+
d

t+ α
= F (α), − d

(t+ α)2
= F ′(α). (68)
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Algorithm 2 Fixed-point algorithm for adaptively determining α

1: Set k = 0, choose α0 > 0, b ≥ |y|L1 and σ > 1
2: repeat
3: Compute xαk by a path-following semismooth Newton method
4: Compute F (αk) and F

′(αk)
5: Construct the model function mk(α) = b+ dk

tk+α
by solving the interpolation

condition at αk

dk = − (b− F (αk))
2

F ′(αk)
, tk =

b− F (αk)

F ′(αk)
− αk.

6: Calculate the m-intercept m̂ of the tangent of mk(α) at (αk, F (αk)) by

m̂ = F (αk)− αkF
′(αk),

7: Solve for αk+1 by setting mk(αk+1) = σm̂, i.e. αk+1 = ck
σ−̂b − tk

8: Set k = k + 1
9: until the stopping criterion is satisfied.

We recall from (60) that F ′(α) = − 1
2
|xα|2L2 , and this expression can be calculated

without any extra computational effort. Note that F (α), just like m(α), is mono-
tonically increasing. In case the L1 fit-to-data term is replaced by an L2 term, then
F ′′(α) = −(xα, (αI +K∗K)−1xα) ≤ 0. In particular, in this case, F is concave, just as
m. One of the important features of our approach lies in not requiring knowledge of the
noise level. The rationale for noise level estimation is that F (0) represents a lower bound
on the noise level and consequently, if m approximates well F , then m(0) can be taken
as an approximation of the noise level.

To analyse the sequence {αk} determined by Algorithm (2) one can argue [CJK] that
if this sequence converges then its limit α∗ satisfies

(σ − 1)ϕ(α∗)− α∗F ′(α∗) = 0, (69)

where φ(α) = |Kxα − xδ|L1 . The intuitive interpretation of the iteration is clear: it
balances the weighted data-fitting term (σ − 1)ϕ(α) = (σ − 1)|Kxα − yδ|L1 and the
penalty term αF ′(α) = α

2
|xα|2L2 . The scalar σ controls the relative weighting between

the two terms.
From [CJK] we now quote the following result.

Theorem 7.2. (a) If σ is sufficiently close to 1 and yδ ̸= 0, then (69) has at least one
solution. (b) If in addition α0F

′(α0)− (σ− 1)φ(α0) > 0, then the iterates {αk} converge
monotonically from above to a solution of (69).

Choice of β within a path-following semismooth Newton method: The introduction
of the H1 smoothing alters the structure of the problem and therefore the value of β
should be as small as possible. However, the regularized dual problem (P∗

β,c) becomes
increasingly ill-conditioned as β decreases to zero due to the ill-conditioning of discretized
KK∗ and rank-deficiency of the diagonal matrix corresponding to the (discrete) active
set, see (65). Therefore, the respective system matrix will eventually become numerically
singular for vanishing β.
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One remedy is a continuation strategy: Starting with a large β, e.g. β0=1, we re-
duce its value, e.g. geometrically, as long as the system is still solvable, and take the
solution corresponding to the smallest such value. The question remains how to auto-
matically select the stopping index without a priori knowledge or expensive computations
for estimating the condition number or smallest singular value by e.g. singular value de-
composition. To select an appropriate stopping index, we exploit the structure of the
(infinite-dimensional) bound constraint problem: the correct solution should be nearly
feasible for c sufficiently large, i.e. ∥p∥L∞ ≤ τ for some τ ≈ 1. Recall that for the linear
system (65), the right hand side f satisfies ∥f∥L∞ ≈ c ≫ 1, which should be balanced
by the diagonal matrix cχA in order to verify the feasibility condition. If the matrix is
nearly singular, this will no longer be the case, and the solution p blows up and violates
the feasibility condition, i.e. ∥p∥L∞ ≫ 1. Once this happens, we take the last iterate
which is still (close to) feasible and return it as the solution. This procedure provides an
efficient and simple strategy to achieve the conflicting goals of minimizing the effect on
the primal problem and maintaining the numerical stability of the dual problem (P∗

β,c)
for sufficient accuracy.

For the choice of c it appears to be worthwhile to also investigate path-following
techniques as introduced in [HK2] but this remains to be done in future work.

8. Mathematical Programming

In this section we discuss a nonsmooth mathematical programming problem, which only
in part relies on convexity assumptions. Let X be a Banach space, Y a Hilbert space and
Z a Hilbert lattice with an ordering induced by a cone K with vertex at 0, i.e. x ≤ y if
x− y ∈ K. Consider the minimization

min F (y) subject to G1(y) = 0, G2(y) ≤ 0, y ∈ C, (70)

where G1 : X → Y is C1, G2 : X → Z is convex, and C ⊂ X is a closed convex set. We
assume that F = F0(y) + F1(y) where F0 is C1 and F1(y) is convex. Then we have the
following necessary optimality condition.

Theorem 8.1. Let y∗ ∈ C is a minimizer of (70). Then there exists a nontrivial
(λ0, µ1, µ2) ∈ R+ × Y ∗ × Z∗ such that

λ0

(
F ′
0(y − y∗) + F1(y)− F1(y

∗)
)
+ ⟨µ1, G

′
1(y

∗)(y − y∗)⟩+ ⟨µ2, G2(y)−G2(y
∗)⟩ ≥ 0

µ2 ≥ 0, ⟨µ2, G2(y
∗)⟩ = 0, for all admissible y ∈ C.

(71)

Proof. For ϵ > 0 define the functional

Jϵ(u, τ) =
(
((F (y)− F (y∗) + ϵ)+)2 + |G1(y)|2Y + |max(0, G2(y))|2Z

) 1
2 .

Then, Jϵ(y
∗) = ϵ and Jϵ(y

∗) ≤ inf Jϵ + ϵ. For any y ∈ C define the metric

d(y, y∗) = |y − y∗|X .
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By the Ekeland variational principle there exists a yϵ such that

Jϵ(y
ϵ) ≤ Jϵ(y

∗)

Jϵ(y)− Jϵ(y
ϵ) ≥ −

√
ϵ d(y, yϵ) for all y ∈ C

d(yϵ, y∗) ≤
√
ϵ.

(72)

Let
µϵ
1 = 2G1(y

ϵ), µϵ
2 = 2 max(0, G2(y

ϵ)).

Letting y = yt = yϵ + t (ŷ − yϵ), t ∈ (0, 1) with ŷ ∈ C in (72), we have

−
√
ϵ d(yt, y

ϵ) ≤ Jϵ(yt)− Jϵ(y
ϵ) ≤ 1

Jϵ(yϵ) + Jϵ(yt)
(αϵ,t (F (yt)− F (yϵ))

+⟨µϵ
1, G

′
1(y

ϵ)(yt − yϵ)⟩+ ⟨µϵ
2, G2(yt)−G2(y

ϵ)⟩+ |µϵ|o(|yt − yϵ|)),
(73)

where
αϵ,t = ((F (yt)− F (y∗) + ϵ)+ + (F (yϵ)− F (y∗) + ϵ)+).

and we used for t > 0 sufficiently small

(F (yt)− F (y∗) + ϵ)(F (yϵ)− F (y∗) + ϵ) ≥ 0.

Since F1 and G2 are convex,

F (yt)− F (yϵ) ≤ t F ′
0(y

ϵ)(ŷ − yϵ) + t (F2(ŷ)− F2(y
ϵ)) + o(|yt − yϵ|)

G2(yt)−G2(y
ϵ) ≤ t (G2(ŷ)−G2(y

ϵ)).

Let

µ̃t,ϵ =
µϵ

Jϵ(yt) + Jϵ(yϵ)
, α̃ϵ,t =

αϵ,t

Jϵ(yt) + Jϵ(yϵ)
.

Since (α̃ϵ,t, µ̃ϵ,t) is bounded, there exits a subsequence such that µ̃ϵ,t ⇀ µ ∈ (Y × Z)∗

(weakly star) and α̃ϵ,t → λ0 ≥ 0 as ϵ → 0+, t → 0+. Dividing (73) by t and letting
t → 0+ and subsequently ϵ → 0+, we obtain

λ0 (F
′
0(ŷ − y∗) + F1(ŷ)− F1(y

∗)) + ⟨µ1, G
′
1(y

∗)(ŷ − y∗)⟩+ ⟨µ2, G(ŷ)−G(y∗)⟩ ≥ 0,

for all ŷ ∈ C. Since µ̃ϵ
2 ≥ 0 and ⟨µ̃ϵ

2, G2(y
ϵ)⟩ ≥ 0, it follows that µ2 ≥ 0 and ⟨µ2, G2(y

∗)⟩ ≥
0 and since G2(y

∗) ≤ 0, thus ⟨µ2, G2(y
∗)⟩ = 0.

Corollary 8.1. Assume there exists a nontrivial (λ0, µ1, µ2) ∈ R+ × Y ∗ × Z∗ such that
(71) holds. If the regular point condition:

0 ∈ int

{
G′

1(y
∗)(C − y∗)

G2(y)−G2(y
∗)−K +G2(y

∗)

}
. (74)

is satisfied at y∗, then one can take λ0 = 1.

Proof. As a consequence of the regular point condition, there exists for all (µ̃1, µ̃2) be-
longing to a neighborhood of 0 in Y × Z, elements y ∈ C, k ∈ K such that

(µ̃1, µ̃2) = (G′
1(y

∗)(y − y∗), G2(y)−G2(y
∗)− k +G2(y

∗)).
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Consequently ⟨µ1, µ̃1⟩+⟨µ2, µ̃2⟩ = ⟨µ1, G
′
1(y

∗)(y−y∗)⟩+⟨µ2, G2(y)−G2(y
∗)−k+G2(y

∗)⟩.
Note that ⟨µ2, k−G2(y

∗)⟩ = ⟨µ2, k⟩ ≤ 0. If λ0 = 0 then the first equation in (71) implies
that ⟨µ1, µ̃1⟩+ ⟨µ2, µ̃2⟩ ≥ 0 for all (µ̃1, µ̃2) in a neighborhood of 0 and thus µ1 = µ2 = 0,
which is a contradiction. That is, λ0 ̸= 0 and thus the problem is strictly normal and one
can set λ0 = 1.

L1-minimum norm control: Consider the optimal exit problem with minimum L1 norm
minu,τ

∫ τ

0
(f(x(t)) + δ|u(t)|) dt subject to

d
dt
x = b(x(t), u(t)), x(0) = x,

g(x(τ) = 0, |u(t)|Rm ≤ γ for a.e. t,

(75)

where δ > 0, f : Rn → R, b : Rn×Rm → Rn, g : Rn → Rk are smooth functions. We have
two motivations to consider (75). In the context of sparse controls, compare Section 5,
the pointwise norm constraints, allow us avoid controls in measure space. In the context
of time optimal controls the term δ

∫ T

0
|u| dt can be considered as regularisation term.

We shall see from the optimality condition (82) below that this determines the control
as a function of the adjoint by mean of an equation rather than an inclusion as in (47),
where no such regularisation was used.

One can transform (75) to the fixed interval s ∈ [0, 1] via the change of variable t = τ s
minu,τ

∫ 1

0
τ (f(x(t)) + δ|u(t)|) dt subject to

d
dt
x = τ b(x(t), u(t)), x(0) = x,

g(x(1)) = 0, u ∈ Uad = {u ∈ L∞(0, 1;Rm) : |u(t)| ≤ γ}.

(76)

Let y = (u, τ) and define

F0(y) = τ

∫ 1

0

f(x(t)) dt, F1(u) = δ

∫ 1

0

|u(t)| dt,

F (y) = F0(y) + τ F1(u), G(y) = g(x(1)),

where x = x(·;u, τ) is the solution to the initial value problem in (76), given u ∈ Uad and
τ ≥ 0. Then the control problem can equivalently formulated as

min
(u,τ)∈Uad×R+

F (y) subject to G(y) ∈ K. (77)

Assume that y∗ = (u∗, τ∗) is an optimal solution to (77) and suppose that the regular
point condition

0 ∈ int {Gu(y
∗)(v − u∗) +Gτ (τ − τ∗) : v ∈ Uad, τ > 0} (78)

holds. Since τ1 F1(u1) − τ2F1(u2) = (τ1 − τ2)F1(u1) + τ2(F1(u1) − F1(u2)), it is easy
to modify the proof of Theorem 8.1 to obtain the necessary optimality: there exist a
Lagrange multiplier µ ∈ Rk such that

τ∗ (F1(u)− F1(u
∗)) + (τ − τ∗)F1(u

∗)

+((F0)u +G∗
uµ)(u− u∗) + ((F0)τ +G∗

τµ)(τ − τ∗) ≥ 0
(79)
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for all u ∈ Uad and τ ≥ 0, where F0 = F0(y
∗), G0 = G0(y

∗). Note that for v ∈
L∞(0, 1;Rm))

Gu(v) = (gx(x
∗(1)), h(1))Rn , Gτ = (gx(x

∗(1)), ξ(1))Rn ,

(F0)u(v) = τ

∫ 1

0

(f ′(x(t)), h(t))Rn dt, (F0)τ (v) =

∫
0

(
(τ f ′(x(t)), ξ(t))Rn + f(x(t))

)
dt,

where (h, ξ) satisfies

d

dt
h(t) = τ∗ (bx(x

∗(t), u∗(t))h(t) + bu(x
∗(t), u∗(t))v(t)), h(0) = 0

d

dt
ξ(t) = τ∗ bx(x

∗(t), u∗(t))ξ(t) + b(x∗(t), u∗(t), ξ(0) = 0.

(80)

Let p ∈ H1(0, 1;Rn) satisfy the adjoint equation

− d

dt
p(t) = τ∗ (bx(x

∗(t), u∗(t))tp(t) + fx(x
∗(t))), p(1) = µgx(x

∗(1)), (81)

then

(h(1), p(1))Rn = τ∗
∫ 1

0

(
bu(x

∗(t), u∗(t))v(t)− (f ′(x∗(t)), h(t))
)
dt

(ξ(1), p(1))Rn =

∫ 1

0

(
b(x∗(t), u∗(t), p(t))Rn

)
dt.

From (79) therefore for all u ∈ Uad and τ ≥ 0

(τ − τ∗)

∫ 1

0

(f(x∗(t)) + δ|u∗(t)|+ (b(x∗(t), u∗(t)), p(t))) dt

+

∫ 1

0

(bu(x
∗(t), u∗(t))tp(t), u(t)− u∗(t)) + δ|u(t)| − δ|u∗(t)|) dt ≥ 0.

Hence we obtain the optimality condition

u∗(t) =


0 if |bu(x∗(t), u∗(t))tp(t)| ≤ δ

−γ
bu(x

∗(t), u∗(t))tp(t)

|bu(x∗(t), u∗(t))tp(t)|
if |bu(x∗(t), u∗(t))tp(t)| ≥ δ,

(82)

and ∫ 1

0

(
f(x∗(t)) + δ|u∗(t)|+ (b(x∗(t), u∗(t)), p(t))Rn

)
dt = 0.

This, together with the fact that the Hamiltonian H is constant along (u∗, x∗, p), implies
the transversality condition

H(t) := f(x∗(t)) + δ|u∗(t)|+ (b(x∗(t), u∗(t)), p(t))Rn = 0 on [0, 1]. (83)
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