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Abstract. Optimal control for an elliptic system with pointwise Euclidean

norm constraints on the control variables is investigated. First order optimal-

ity conditions are derived in a manner that is amenable for numerical reali-
sation. An efficient semi-smooth Newton algorithm is proposed based on this
optimality system. Numerical examples are given to validate the superlinear

convergence of the semismooth Newton algorithm.

1. Introduction

Optimal control with control constraints have been studied intensively in recent
papers, see e.g. [3, 5, 6, 10, 12] and the references cited there. In most previous
discussions, the control constraints are taken as linear inequalities (e.g. unilateral or
bilateral constraints). But for systems, the constraints may have more complicated
structure, see [9] for a discussion on affine constraints and [13] for general convex
constraints. In this paper, we consider the treatment of nonlinear constraint with
an efficient numerical method. A pointwise Euclidean norm constraint for control
variables, i.e., the control variable ~u ∈ K, where K is an ellipse is considered,
and a semismooth Newton algorithm is analyzed. For optimal control problems
with scalar-valued elliptic equation constraints and unilateral constraints on the
controls, an algebraic manipulation linking a parameter of the complementarity
system to the weight of the control cost, denoted by α below, was the key technical
step for proving superlinear convergence of the semi-smooth Newton method in
[4]. Here we cannot rely on this technique, but rather have to develop an alternate
complementarity system, which lends itself to analyzing the Newton differentiability
property.

We choose a quadratic tracking type cost functional

J(~y, ~u) =
1
2
‖~y − ~yd‖2 +

α

2
‖C~u‖2,

where the target function ~yd ∈ (L2(Ω))m. The state and control variables satisfy
an elliptic system with zero Dirichlet boundary condition:

(1.1) Λ~y = C~u + ~d, ~y|∂Ω = ~0,
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where Ω be an open bounded domain in Rn, for n = 2 or 3 with smooth boundary
∂Ω. The vectors ~y and ~u have m-components. The optimal control problem is
given by

Problem 1.1.

minJ(~y, ~u), such that equations (1.1) hold and |B~u(x)−~b| ≤ 1, a.e. x ∈ Ω.

The control variable ~u has support in a sub-domain Ω̃, and the operator C :
(L2(Ω̃))m 7→ (L2(Ω))m denotes the extension-by-zero operator. The m×m matrix
B is invertible, ~b is a given vector in Rm, and | · | denotes the Euclidean norm in
Rm, .

The paper is organized as follows. In section 2 and 3, we consider a special
case, where Ω̃ = Ω, B = I and ~b = 0 to avoid some tedious notation. For this
case, we give the details for constructing the optimality system and super-linear
convergence for a semi-smooth Newton algorithm. In section 4, we point out that
our results can be generalized in several directions, i.e., for a general subdomain
Ω̃, a general invertible matrix B and translation vector ~b. In the last section 5,
numerical examples are given to depict the efficiency for the semismooth Newton
Algorithm.

We will use the standard notations Wm,p and Hm for the Sobolev spaces, and
simplify the notation of the norm of Hm as ‖f‖m = ‖f‖Hm and ‖f‖ = ‖f‖L2 . The
vector function

~z ∈ (Wm,p(Ω))m = Wm,p(Ω,Rm)
if and only if each coordinate of ~z is an element in Wm,p(Ω). We use (·, ·) as inner
product in L2(Ω) (for scalar functions) or (L2(Ω))m (for vector functions).

2. Optimality System For a Special case

We start with a simple case, where the governing equation is an elliptic system
with zero boundary condition

(2.1) Λ~y = ~u + ~d, ~y|∂Ω = ~0,

where Λ is a strong elliptic operator with the a-priori estimation

‖~y‖2 ≤ C‖Λ~y‖.
In this section, the control variable ~u has support in the whole domain Ω, and it lies
in the unit ball |~u(x)| ≤ 1 for almost every x ∈ Ω. The optimal control problems
in this case is given by

Problem 2.1.

minJ(~y, ~u) =
1
2
‖~y − ~yd‖2 +

α

2
‖~u‖2, s.t. equation (2.1) hold and |~u(x)| ≤ 1, a.e. x ∈ Ω.

We first obtain the existence for the optimal solution and provide the first order
optimality condition. Define the map f from (L∞)m to L∞ by

f(~u)(x) = |~u(x)|2 − 1.

Then let K be the subset of L∞ defined by

(2.2) K = {g(x) ∈ L∞(Ω) : g(x) ≤ 0, a.e.x ∈ Ω},
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and IK be the indicator functional of K:

(2.3) IK(g) =
{ +∞, g /∈ K

0, g ∈ K.

It is clear that K is a convex closed set in L∞, and that the indicator functional
IK is a convex lower semicontinuous functional.

By using the notation of the control to state mapping T = Λ−1, the cost func-
tional J(~y, ~u) can equivalently be represented as

Ĵ(~u) = J(T~u, ~u).

Then Problem 2.1 can be rewritten in the following equivalent way:

(2.4) inf
~u∈(L∞)m

Ĵ(~u) + IK(f(~u)).

Theorem 2.2. There exists a unique solution (~y∗, ~u∗) for Problem 2.1.

Proof. We can check that Ĵ + IK ◦ f is a lower semi-continuous convex functional.
Standard arguments imply the existence of an optimal solution, and strict convexity
implies its uniqueness. ¤

Next we establish the optimality system by convex analysis methods. The ad-
missible set of control variables ~u is given by

Uad = {~u : ~u ∈ (L∞(Ω))m, |~u(x)| ≤ 1, a.e.x ∈ Ω}.
First ~0 is an interior point of Uad and hence the Slater condition is satisfied (c.f.
[2]). Then for the optimal solution ~u∗, we have

0 ∈ ∂Ĵ(~u∗) + f ′(~u∗)∂Ik(f(~u∗)).

Hence there exists λ∗ ∈ ∂Ik(f(~u∗)) such that λ∗ ∈ (L∞)′ and

0 ∈ ∂Ĵ(~u∗) + f ′(~u∗)λ∗.

Since Ĵ(~u∗) = 1
2‖T~u∗ − ~yd‖2 + α

2 ‖~u∗‖2 and f ′(~u∗) = 2~u∗, we have

T ∗(T~u∗ − ~yd) + α~u∗ + 2λ∗~u∗ = 0.

Denote the adjoint state ~p∗ by ~p∗ = −T ∗(~y∗ − ~yd). It satisfies the adjoint equation

(2.5) ΛT ~p∗ = ~yd − ~y∗, ~p∗|∂Ω = ~0,

and the optimality condition in the weak sense

(2.6) ~p∗ = (α + 2λ∗)~u∗,

i.e.,
2〈λ∗~u∗, ~v〉(L∞)′,L∞ = (~p∗ − α~u∗, ~v), ∀~v ∈ (L∞(Ω))m.

Moreover the following variational inequality holds:

(2.7) 〈λ∗, g − f(~u∗)〉(L∞)′,L∞ ≤ 0,∀g ∈ K.

This implies that
〈λ∗, t〉(L∞)′,L∞ ≥ 0,∀t ∈ L∞, t ≥ 0

and
〈λ∗, f(~u∗)〉(L∞)′,L∞ = 0.
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Define two disjoint subsets of Ω as following:

Ã = {x ∈ Ω : |~u∗(x)|2 ≥ 1
2
},

B̃ = {x ∈ Ω : |~u∗(x)|2 <
1
2
}.

The set Ã contains the active set A(~u∗) which is defined as

(2.8) A(~u∗) = {x ∈ Ω : |~u∗(x)| = 1}.
Clearly Ω = Ã ∪ B̃ and hence for any scalar valued function φ, we have φ =
φχÃ + φχB̃, where χX is a characteristic function on the set X. One can observe
that

〈λ∗, f(~u∗)χB̃〉(L∞)′,L∞ = 0.

Now consider any nonnegative function φ ∈ L∞ with ‖φ‖L∞ ≤ 1
2 . We have

0 ≤ 〈λ∗, φ

2
χB̃〉(L∞)′,L∞ = 〈λ∗, (φ

2
+ f(~u∗))χB̃〉(L∞)′,L∞ ≤ 0,

and hence

(2.9) 〈λ∗, φ〉(L∞)′,L∞ = 0, for all φ with support in B̃.

Define the function λ̂ as

λ̂(x) =





0 x ∈ B̃
1
2 ( ~p∗(x)·~u∗(x)

|~u∗(x)|2 − α) x ∈ Ã.

We have λ̂ ∈ L∞, and for any φ ∈ L∞, by (2.9)

〈λ∗, φ〉(L∞)′,L∞ = 〈λ∗, φχÃ〉(L∞)′,L∞ = 〈λ∗~u∗, φχÃ
~u∗

|~u∗|2 〉(L∞)′,L∞

=
1
2
(~p∗ − α~u∗, φχÃ

~u∗

|~u∗|2 ) =
1
2
(
~p∗ · ~u∗
|~u∗|2 − α, φχÃ) = (λ̂, φ).

Hence

λ∗ = λ̂ =





0 x ∈ B̃
1
2 ( ~p∗(x)·~u∗(x)

|~u∗(x)|2 − α) x ∈ Ã,
λ∗ ∈ L∞(Ω).

Setting β∗ = α + 2λ∗, we have β∗ ∈ L∞ and β∗ ≥ α. The optimality condition
(2.6) and the complimentary condition (2.7) can now be represented in pointwise
form:

(2.10)

{
~p∗(x) = β∗(x)~u∗(x), β∗(x) = α + 2λ∗(x),

λ∗(x) ≥ 0, |~u∗(x)| ≤ 1, λ∗(x)(|~u∗(x)| − 1) = 0,

for almost every x ∈ Ω. The first equation of (2.10) implies that at almost every
point x, the two vectors ~p∗(x) and ~u∗(x) are linearly dependent and

(2.11) |~p∗(x)| = β∗(x)|~u∗(x)|.
It can be proved by contradiction

{ |~p(x)| ≤ α ⇒ λ∗(x) = 0,

|~p(x)| ≥ α ⇒ |~u∗| = 1, λ∗(x) = 1
2 (|~p(x)| − α).



OPTIMAL CONTROL 5

Therefore, the optimality condition and complementary condition (2.10) can equiv-
alently be expressed as

~p∗ = β∗~u∗, β∗ = max(α, |~p|).
Combining the above results, we have proved the following result:

Theorem 2.3. The optimality system of Problem 2.1 is given by

(2.12)

Primal equation Λ~y∗ = ~u∗ + ~d, ~y∗|∂Ω = ~0,

Adjoint equation ΛT ~p∗ = ~yd − ~y∗, ~p∗|∂Ω = ~0,

Optimality condition ~p∗ = β∗~u∗, β∗ = max(α, |~p∗|).

Remark 2.1. The optimality condition in Theorem 2.3 is equivalent but simpler
than its original form (2.6) and (2.7). In this form, Lagrange multiplier λ∗ =
1
2 (β∗(x)−α) has been expressed explicitly as a function of the adjoint state ~p∗, for
which Newton differentiability will be shown later. This fact plays an essential role
in the successful use of the semismooth Newton method.

From this optimality system, we deduce that the optimal solution (~y∗, ~u∗) en-
joys more regularity, which is important to prove superlinear convergence of the
semismooth Newton algorithm in the next section.

Corollary 2.4. Given ~yd ∈ (L2)m, ~d ∈ (L2)m, the optimal solution (~y∗, ~u∗) of
Problem 2.1 satisfies

~y∗ ∈ (W 1,p)m, ~u∗ ∈ (W 1,p)m,

where p = 6 for n = 3, and p < ∞ for n = 2 with Ω ⊂ Rn. In additional , if
~d ∈ (W 1,p)m, then ~y∗ ∈ (W 3,p)m.

Proof. Let the index p = 6 for n = 3 and p < ∞ for n = 2. From the second
equation in (2.12) and since ~y, ~yd ∈ (L2)m, and by the Sobolev embedding theorem
(c.f. [1]), we have

~p∗ ∈ (H2(Ω))m ↪→ (W 1,p(Ω))m ↪→ (C(Ω))m.

This implies that |~p∗| ∈ C(Ω) and β∗ = max(α, |~p∗|) ∈ C(Ω). Therefore ~u∗ = ~p∗

β∗ ∈
C(Ω) as well. To check that the derivative is in Lp, we define two subsets of Ω by

Ω1 = {x ∈ Ω : |~p∗(x)| > α

2
}, Ω2 = {x ∈ Ω : |~p(x)| < α}.

Thanks to |~p∗| ∈ C(Ω), these two set Ωi, i = 1, 2 are open. In Ω1, we have

∇|~p∗| = ~p∗ · ∇~p∗

|~p∗|2 .

Therefore ∫

Ω1

|∇|~p∗| |p =
∫

Ω1

|~p∗ · ∇~p∗|p
|~p∗|2p

≤ |~p∗|pL∞
(α

2 )2p

∫

Ω1

|∇~p∗|p < ∞.

This implies that |~p∗| ∈ W 1,p(Ω1). By max(0, ·) : W 1,p 7→ W 1,p (see [8]), and the
third equation in (2.12), we obtain β∗ ∈ W 1,p(Ω1). On the other hand, β∗ = α in
Ω2. Since Ωi, i = 1, 2 are two open sets, with Ω1 ∪ Ω2 = Ω we find

β∗ ∈ W 1,p(Ω1 ∪ Ω2) = W 1,p(Ω).
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Using ~u∗ = ~p∗

β∗ , we find
∫

Ω

|∇~u∗|p =
∫
Ω
|β∗∇~p∗−~p∗⊗∇β∗

(β∗)2 |p ≤ 2p−1

α2p

∫
Ω
(|β∗∇~p∗|p + |~p∗ ⊗∇β∗|p)

≤ 2p−1‖β∗‖p
L∞

α2p

∫
Ω
‖∇~p∗‖p + 2p−1|~p|p

L∞
α2p

∫
Ω
‖∇β∗‖p < ∞,

where the tensor product (· ⊗ ·) for two column vectors is defined by

(2.13) ~v1 ⊗ ~v2 = ~v1~v
T
2 .

Therefore ~u∗ ∈ (W 1,p)m. If ~d ∈ (W 1,p)m standard elliptic regularity theory implies
that ~y∗ ∈ (W 3,p)m (c.f. [7]). ¤
Proposition 2.5. The solution to the optimality system (2.12) is unique.

Proof. We consider the original optimality system, i.e., primal equation (2.1), ad-
joint equation (2.5), the optimality condition (2.6) and complementary condition
(2.7). Since λ∗ ∈ L∞(Ω), we can express these equations as:

(2.14)

Λ~y∗ = ~u∗ + ~d, ~y∗|∂Ω = ~0,

ΛT ~p∗ = ~yd − ~y∗, ~p∗|∂Ω = ~0,

~p∗ = (α + 2λ∗)~u∗, |~u∗| ≤ 1, (λ∗, t− f( ~u∗)) ≤ 0,∀t ∈ K.

From the arguments in Theorem 2.3, the optimality system (2.12) is equivalent to
system (2.14). Suppose that system (2.14) admits two solutions (~y1, ~u1, ~p1, λ1) and
(~y2, ~u2, ~p2, λ2), the difference of these two solutions by (δ~y, δ~u, δ~p, δλ) = (~y1, ~u1, ~p1, λ1)−
(~y2, ~u2, ~p2, λ2). We observe that

(λ1, |~u1|2 − |~u2|2) ≥ 0, (λ2, |~u1|2 − |~u2|2) ≤ 0.

Hence (δλ, |~u1|2 − |~u2|2) ≥ 0. By (2.14) we find that

Λδ~y = δ~u, δ~y|∂Ω = ~0,

ΛT δ~p = −δ~y, δ~p|∂Ω = ~0,

δ~p = αδ~u + 2(λ1~u1 − λ2~u2).
Taking the inner product of the first equation with δ~p and the second equation with
δ~y and adding the resulting expression, we have

α‖δ~u‖2 + ‖δ~y‖2 + 2(λ1~u1 − λ2~u2, δ~u) = 0.

The last term in the above equation satisfies

2(λ1~u1 − λ2~u2, δ~u) = 2(λ1, |~u1|2) + 2(λ2, |~u2|2)− 2(λ1 + λ2, ~u1 · ~u2)
= (δλ, |~u1|2 − |~u2|2) + (λ1 + λ2, |~u1|2 + |~u2|2 − 2~u1 · ~u2) ≥ 0.

This implies that δ~y = δ~u = 0, hence the uniqueness follows. ¤

3. Semismooth Newton Algorithm

We will use a semismooth Newton method to solve the nonlinear system (2.12).
First ~u∗ can be replaced by ~p∗

β∗ . Let x = (~y, ~p, β)t, and

(3.1) F (x) =




Λ~y − ~p
β − ~d

ΛT ~p + ~y − ~yd

β −max(α, |~p|)


 ,
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where max(α, |~p|) is defined pointwise. Associated to ~p define the active set and
inactive set as

(3.2) A = {x : |~p(x)| > α}, I = {x : |~p(x)| ≤ α}.
The active set we defined here is different from the previous definition (2.8) which
was used to derive the optimality system. The Newton derivative of F at x can be
written as

(3.3) DNF (x) =




Λ − 1
β

~p
β2

I ΛT 0

0 − ~pt

|~p|χA I


 ,

see e.g. [4]. Now we introduce the semismooth Newton iteration from xk to xk+1.
Define the active sets and inactive sets at iterative level k as

(3.4) Ak = {x : |~pk(x)| > α}, Ik = {x : |~pk(x)| ≤ α}.
Then the Newton step

DNF (xk)(xk+1 − xk) = −F (xk)

is equivalent to the system of equations,

(3.5)





Λ~yk+1 = 1
βk ~pk+1 + ~pk

(βk)2
(βk − βk+1) + ~d, ~yk+1|∂Ω = ~0,

ΛT ~pk+1 = ~yd − ~yk+1, ~pk+1|∂Ω = ~0,

βk+1 = αχIk + ~pk· ~pk+1

|~pk| χAk .

We give the semismooth Newton algorithm in Algorithm 1. Step 4 ensures that
βk ≥ α, and hence the right hand side of first equation in (3.5) is well-defined.

Algorithm 1 Semismooth Newton Algorithm

1: Set k=0, initialize ~p0, β0 > 0.

2: Let Ak = {x : |~pk| > α}, Ik = {x : |~pk| ≤ α}.
3: Solve (~yk+1, ~pk+1, βk+1) from system (3.5).

4: Replace βk+1 by max(α, βk+1).

5: stop or update k = k + 1, and go to 2.

For the analysis of Algorithm 1, we require the following technical lemma.

Lemma 3.1. Consider the elliptic system with zero Dirichlet boundary condition
as

(3.6)

{
Λ~z = (A + B)~q + ~h,

ΛT ~q = −~z.

Let A be a nonnegative linear operator in L((L2)m, (L2)m), i.e. (~q,A~q) ≥ 0, for
all ~q ∈ (L2(Ω))m, and let B ∈ L((L2)m, (L2)m) be a perturbation operator which
satisfies |(~q,B~q)| ≤ 1

4κ‖~q‖2L4 , where κ is a constant such that

‖u‖2 + ‖u‖2L4 ≤ κ‖ΛT u‖2, ∀u ∈ H2 ∩H1
0 .
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Then system (3.6) has a unique solution (~z, ~q) for any h ∈ (L2(Ω))m, and we have
the a-priori estimation

(3.7) ‖~q‖2 + ‖~z‖ ≤ C‖~h‖.
Proof. We only need to check inequality (3.7), the existence being guaranteed by
the Fredholm alternative (c.f. [7]). Taking the inner product of (3.6) with (~q, ΛT ~q)
we have

(A~q, ~q) + (B~q, ~q) + (~h, ~q) = (Λ~z, ~q) = −‖ΛT ~q‖2,
and hence

‖ΛT ~q‖2 +(A~q, ~q) = −(B~q+~h, ~q) ≤ 1
4κ
‖~q‖2L4 +κ‖~h‖2 +

1
4κ
‖~q‖2 ≤ 1

2
‖ΛT ~q‖2 +κ‖~h‖2.

Together with ‖~q‖2 ≤ C‖ΛT ~q‖, this gives estimate (3.7). ¤

Setting
(~zk, ~qk, γk) = (~yk, ~pk, βk)− (~y∗, ~p∗, β∗),

we find

(3.8)





Λ~zk+1 = β∗~qk+1−~p∗γk

β∗βk + ~pk

(βk)2
(γk − γk+1), ~zk+1|∂Ω = ~0,

ΛT ~qk+1 = −~zk+1, ~qk+1|∂Ω = ~0,

γk+1 = ~pk·~qk+1

|~pk| χAk + Rk,

where

Rk = max(α, |~pk|)−max(α, |~p∗|)− ~pk · ~qk

|~pk| χAk .

By the chain rule, ~p → max(α, |~p|) is Newton differentiable from L∞ to L4 (c.f.
[4]), and DN max(α, |~p|) = ~p

|~p|χA. Hence

‖Rk‖L4 = o(‖~qk‖L∞).

From the first equation of (3.8), we have

Λ~zk+1 =
1
βk

[
~qk+1 − 1

βk

(
~pk · ~qk+1

|~pk| χAk + Rk

)
~pk +

γk

βk
~pk − γk

β∗
~p∗

]
= Mk~qk+1+hk,

where, using γk = βk − β∗, ~qk = ~pk − ~p∗,
(3.9)

Mk =
1
βk

(
I − 1

βk

~pk ⊗ ~pk

|~pk| χAk

)
, hk =

1
βk

(
γk

βkβ∗
(β∗~qk − γk~p∗)− Rk

βk
~pk

)
.

Then we decompose Mk into two parts

Mk =
1
βk

(
I − 1

β∗
H(~p∗)χAk

)

︸ ︷︷ ︸
Dk

+
1
βk

(
1
β∗
H(~p∗)χAk − 1

βk

~pk ⊗ ~pk

|~pk| χAk

)

︸ ︷︷ ︸
Ek

,

where

H(~p∗) =
{

~p∗⊗~p∗

|~p∗| if |~p∗| > 0,
0m×m if ~p∗ = 0.
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Lemma 3.2. If βk ≥ α, then Dk is a nonnegative operator in L((L2)m, (L2)m),
i.e. (~q,Dk~q) ≥ 0 for all ~q ∈ (L2(Ω))m. Moreover if ‖~pk−~p∗‖L∞ +‖βk−β∗‖L4 ≤ ε,
for sufficient small ε, then we have

(3.10) |(~q, Ek~q)| ≤ 1
4κ
‖~q‖2L4 .

Proof. We first check that Dk is nonnegative. From the optimality system (2.12),
we find ~p∗ = 0 ⇔ ~u∗ = 0. Then defining

Z = {x : |~p∗(x)| > 0},

we have

(3.11)
1
β∗
H(~p∗)χAk =

1
β∗

~p∗ ⊗ ~p∗

|~p∗| χZχAk =
~u∗ ⊗ ~u∗

|~u∗| χZχAk , a.e. in Ω.

Hence for any ~q ∈ (L2)m, we obtain

(~q,Dk~q) = (~q,
~q

βk
)− (

~q

βk
,
~u∗ ⊗ ~u∗

|~u∗| χZχAk~q).

Let ~w = ~q√
βk

and y = ~wt~u∗, and compute

(~q,Dk~q) = ‖~w‖2 −
∫

Ω

(~w · ~u∗)2
|~u∗| χZχAkdx ≥ ‖~w‖2 −

∫

Ω

|~w|2|~u∗|dx ≥ 0.

The last step is due to the constraint |~u∗| ≤ 1. Next we check that Ek satisfies
(3.10). By (3.11),

Ek =
1

βkβ∗
~p∗ ⊗ ~p∗

|~p∗| χZχAk − 1
(βk)2

~pk ⊗ ~pk

|~pk| χAk

=

(
1

βkβ∗
~p∗ ⊗ ~p∗

|~p∗| − 1
(βk)2

~pk ⊗ ~pk

|~pk|

)
χZ∩Ak − 1

(βk)2
~pk ⊗ ~pk

|~pk| χAk\Z

=
(|~pk| − |~p∗|)~p∗ ⊗ ~p∗

βkβ∗|~pk||~p∗| χZ∩Ak

︸ ︷︷ ︸
N1

+
(βk − β∗)~p∗ ⊗ ~p∗

(βk)2β∗|~pk| χZ∩Ak

︸ ︷︷ ︸
N2

+
(~p∗ − ~pk)⊗ ~p∗

(βk)2|~pk| χZ∩Ak

︸ ︷︷ ︸
N3

+
~pk ⊗ (~p∗ − ~pk)

(βk)2|~pk| χZ∩Ak

︸ ︷︷ ︸
N4

− 1
(βk)2

~pk ⊗ ~pk

|~pk| χAk\Z
︸ ︷︷ ︸

N5

,

hence

|(~q, Ek~q)| ≤ |(~q, N1~q)|+ |(~q,N2~q)|+ |(~q,N3~q)|+ |(~q,N4~q)|+ |(~q,N5~q)|.
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We need to estimate each term:

|(~q,N1~q)| ≤ 1
α2

∫

Ω

(|~pk| − |~p∗|)|~p∗|
|~pk| |~q|2χZ∩Akdx ≤ 1

α3
‖~p∗‖L∞‖~pk − ~p∗‖L∞‖~q‖2 ≤ Cε‖~q‖2L4 ,

|(~q,N2~q)| ≤ 1
α3

∫

Ω

|~p∗|2
|~pk| |β

k − β∗||~q|2χZ∩Akdx ≤ C

α4
‖~p∗‖2L∞‖βk − β∗‖L4‖~q‖2L4 ≤ Cε‖~q‖2L4 ,

|(~q,N3~q)| ≤ 1
α2

∫

Ω

(|~pk| − |~p∗|)|~p∗|
|~pk| |~q|2χZ∩Akdx ≤ 1

α3
‖~p∗‖L∞‖~pk − ~p∗‖L∞‖~q‖2 ≤ Cε‖~q‖2L4 ,

|(~q,N4~q)| ≤ 1
α2

∫

Ω

(|~pk| − |~p∗|)|~p∗|
|~pk| |~q|2χZ∩Akdx ≤ 1

α3
‖~p∗‖L∞‖~pk − ~p∗‖L∞‖~q‖2 ≤ Cε‖~q‖2L4 ,

|(~q,N5~q)| ≤ 1
α2

∫

Ω

|~pk||~q|2χAk\Zdx ≤ ε

α2
‖~q‖2.

The last inequality follows from the fact:

~pk = ~pk − ~p∗,∀x ∈ Ak\Z.

If ε is sufficiently small, we obtain (3.10). ¤

Lemma 3.3. Let βk ≥ α, and ‖~pk−~p∗‖L∞ +‖βk−β∗‖L4 ≤ ε, then for sufficiently
small ε, we have ‖hk‖ = o(ε).

Proof. Recall the definition (3.9),

hk =
1
βk

(
γk

βkβ∗
(β∗~qk − γk~p∗)− Rk

βk
~pk

)
,

and rk = βk − β∗. Then

‖ γk

(βk)2
~qk‖ ≤ 1

α2
‖~qk‖L∞‖γk‖ = o(ε),

‖ (γk)2

(βk)2β∗
~p∗‖ ≤ 1

α3
‖~p∗‖L∞‖γk‖2L4 = o(ε),

‖ Rk

(βk)2
~pk‖ ≤ 1

α2
‖~pk‖L∞‖Rk‖ = o(ε),

which completes the estimate. ¤

Now we move to our convergence result for the semismooth Newton method.

Theorem 3.4. Superlinear Convergence for Algorithm 1.
If we assume βk ≥ α, and ‖βk−β∗‖L4 +‖~pk−~p∗‖L∞ ≤ ε, then the Newton iteration
in Algorithm 1 is well defined and ‖βk+1 − β∗‖L4 + ‖~pk+1 − ~p∗‖∞ = o(ε).

Proof. We denote the solution to (3.5) by (~yk+1, ~pk+1, ~uk+1, β̃k+1) and

βk+1 = max(α, β̃k+1).

We apply Lemma 3.2 to the first two equations in (3.8) by setting

Dk = A, Ek = B, ~zk+1 = ~z, ~qk+1 = ~q, ~hk = ~h,

where Dk, Ek and hk are defined in (3.9). By Lemma 3.2, it is noticed that Dk

and Ek satisfy the conditions in Lemma 3.1. Combined with Lemma 3.3, and
~zk+1 = ~pk+1 − ~p∗, this implies that

‖~pk+1 − ~p∗‖L∞ ≤ C‖~pk+1 − ~p∗‖2 ≤ C‖~hk‖ = o(ε).
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Then we notice that

‖β̃k+1 − β∗‖L4 ≤ ‖~pk · ~qk+1

|~pk| χAk‖L4 + ‖Rk‖L4 ≤ C‖~pk+1 − ~p∗‖L∞ + ‖Rk‖L4 = o(ε).

Thanks to β∗ ≥ α, the projection step does not increase error, i.e.

|βk+1(x)− β∗(x)| = |max(α, β̃k+1(x))− β∗(x)| ≤ |β̃k+1(x)− β∗(x)|, a.e.x ∈ Ω.

Then we obtain
‖βk+1 − β∗‖L4 + ‖~pk+1 − ~p∗‖∞ = o(ε).

¤
Remark 3.1. We eliminated the control variable ~u from the optimality system
using ~p = β~u. The semismooth Newton algorithm can also be applied is we treat
~u as an independent variable.

4. Generalization

We will discuss a few generalizations which are related to Problem 1.1. The opti-
mality system corresponding to Problem 1.1 can be obtained by a similar argument
as in section 2 and is given by
(4.1)
Primal equation Λ~y = C~u + ~d, ~y|∂Ω = ~0,

Adjoint equation ΛT ~p = ~yd − ~y, ~p|∂Ω = ~0,

Optimality condition C∗~p = αC∗C~u + 2λBT (B~u +~b) in the weak sense,

Complementary condition λ ≥ 0, |B~u−~b| ≤ 1, 〈λ, |B~u−~b|2 − 1〉(L∞)′,L∞ = 0.

To apply the semismooth Newton algorithm, we need to rewrite the optimality
system in terms of a system of nonlinear equations which are Newton differen-
tiable. Since the primal and adjoint equations are both linear, we only focus on the
optimality and the complementary conditions.

In this section we generalize our previous work in three directions, namely the
case where the control ~u is supported in a subdomain Ω̃ ⊂ Ω, the case of an
arbitrary translative vector ~b, and the case of an invertible linear transformation
B. For simplicity of discussion, we take each generalization individually, but these
generalization can be combined.

Our goal in the following subsections is to rewrite the optimality system into
equivalent nonlinear equations and to prove that these nonlinear equations are
actually Newton differentiable, and hence that the semismooth Newton method
provides an efficient algorithm with locally superlinear convergence.

4.1. Extension to a control domain Ω̃ ⊂ Ω.
Recall the definition of the bounded linear operator C : (L2(Ω̃))m 7→ (L2(Ω))m

as the extension-by-zero operator. We first note that the dual operator C∗ :
(L2(Ω))m 7→ (L2(Ω̃))m is the restriction operator C∗ ~f = ~fχΩ̃, and the operator
C∗C : (L2(Ω̃))m 7→ (L2(Ω̃))m is identity operator. Then the optimality condition
can be equivalently expressed as

~pχΩ̃ = α~u + 2λ~u.
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Using the same arguments as in Theorem 2.3, the optimality and complementary
conditions can be expressed in the following nonlinear equation

~pχΩ̃ = β~u, β = max(α, |~p|).
For a given ~yd ∈ L2(Ω), the adjoint equation provides a solution ~p ∈ H2∩H1

0 (Ω) ↪→
C0(Ω). Then the mapping ~p 7→ max(α, |~p|) is Newton differentiable (c.f. [4]) from
L∞ to Lp, for any p < ∞. Hence this nonlinear equation can be solved by a
semismooth Newton algorithm as in section 3.

4.2. Extension to a general translation vector b.
In this case, the optimality system reads

~p = α~u + 2λ(~u−~b),

and it can be equivalently expressed as

~p− α~b = (α + 2λ)(~u−~b).

We can then rewrite the optimality condition and complementary condition as

~p− α~b = β~u, β = max(α, |~p− α~b|)
by applying the same argument as in Theorem 2.3. This is again a Newton differ-
entiable function and the semismooth Newton algorithm is applicable.

The first two generalizations are straightforward, but the next case which involves
a general linear transformation B, is rather complicated.

4.3. Extension to a general invertible matrix B.
For a general m×m invertible matrix B, the argument in Theorem 2.3 on improv-

ing regularity of the Lagrange multiplier (from a measure to a function) needs to be
slightly modified as follows. Recall the optimality and complementary conditions

~p∗ = (αI + 2λBT B)~u∗ in the weak sense,

λ∗ ≥ 0, |B~u∗ −~b| ≤ 1, 〈λ∗, |B~u∗ −~b|2 − 1〉(L∞)′,L∞ = 0.

Define two disjoint subsets of Ω as follows:

Ã = {x ∈ Ω : |B~u∗(x)| ≥ 1
2
},

B̃ = {x ∈ Ω : |B~u∗(x)| < 1
2
}.

Then Ω = Ã ∪ B̃ and hence for any scalar valued function φ, φ = φχÃ + φχB̃. Now
as in Theorem 2.3, we have 〈λ∗, φ〉(L∞)′,L∞ = 0 for all φ ∈ L∞ with support in B̃.
Define a function λ̂ as

λ̂(x) =





0 x ∈ B̃,

1
2

(B~u∗(x))·(B−T (~p∗(x)−α~u∗(x))
|B~u∗(x)|2 x ∈ Ã.

We have λ̂ ∈ L∞. As in Theorem 2.3, for any φ ∈ L∞, we find 〈λ∗, φ〉(L∞)′,L∞ =
λ̂, φ), and hence λ∗ = λ̂ ∈ L∞(Ω). Thus the optimality and the complementary
conditions hold in a pointwise a.e. sense,

~p∗(x) = (αI + 2λBT B)~u∗(x),(4.2)

λ∗(x) ≥ 0, |B~u∗(x)| ≤ 1, λ∗(x) · (|B~u∗(x)| − 1) = 0, a.e.x ∈ Ω.(4.3)
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Equation (4.2) is equivalent to

(4.4) B−T ~p∗ = (αD + 2λI)(B~u∗),

where D = (BBT )−1 is a symmetric, positive definite (SPD) matrix. The eigenval-
ues of D satisfy

(4.5) 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξm < ∞.

Lemma 4.1. Given a nonzero vector ~p, the real valued function

h~p(λ) : λ 7→ |(αD + 2λI)−1B−T ~p|
is well-defined and strictly monotonically decreasing in (− 1

2αξ1,∞). Moreover,
limλ→∞ h~p(λ) = 0.

Proof. First we observe for every λ > − 1
2αξ1, the matrix αD + 2λI is also a SPD

matrix, hence it is invertible, and the function h~p is well-defined. Now we check
the monotone property. Let

−1
2
αξ1 < λ1 < λ2, ~q1 = (αD + 2λ1I)−1B−T ~p, ~q2 = (αD + 2λ2I)−1B−T ~p,

and define
q̃ = (αD + 2λ1I)−1(αD + 2λ2I)−1B−T ~p.

Clearly q̃ is not the zero vector. Since matrices αD+2λ1I and αD+2λ2I commute,
we have

~q1 = (αD + 2λ2I)q̃, ~q2 = (αD + 2λ1I)q̃.
Therefore,

|~q1|2 = |~q2 + 2(λ2 − λ1)q̃|2 = |~q2|2 + 4(λ2 − λ1)2|q̃|2 + 4(λ2 − λ1)(~q2, q̃)

> |~q2|2 + 4(λ2 − λ1)((αD + 2λ1I)q̃, q̃) > |~q2|2,
which implies the strict monotonicity. The last claim limλ→∞ h~p(λ) = 0 is straight-
forward. ¤

If h~p(0) = |(αD)−1B−T ~p| ≥ 1, then there exists by Lemma 4.1 a unique λ ≥ 0,
such that h~p(λ) = 1. With the help of this fact, we can define a mapping g : ~p 7→ λ
as
(4.6)

g(~p) =

{
0 if |(αD)−1B−T ~p| < 1,

the unique nonnegative solution to h~p(λ) = 1 if |(αD)−1B−T ~p| ≥ 1.

Lemma 4.2. Using the function g(~p) as above, we can rewrite the optimality and
the complementary conditions (4.2) - (4.3) in one equation:

~p∗(x) = α~u∗(x) + 2g(~p∗(x))BT B~u∗(x), a.e.x ∈ Ω.

Proof. Throughout the proof we evaluate the operators at a fixed point x ∈ Ω
which is not indicated in the notation. We first assume that (4.2) - (4.3) hold. If
h~p∗(0) = |(αD)−1B−T ~p∗| < 1, we have |B~u∗| = h~p∗(λ∗) ≤ h~p∗(0) < 1 and hence
λ∗ = 0 = g(~p∗). On the other hand, if h~p∗(0) = |(αD)−1B−T ~p∗| ≥ 1, then a proof
by contradiction implies that it must be an active point, i.e., |B~u∗| = 1. In this
case, λ∗ satisfies h~p∗(λ∗) = 1, this implies λ∗ = g(~p∗).

Conversely, if
~p∗ = α~u∗ + 2g(~p∗)BT B~u∗,
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we can then define λ∗ = g(~p∗). Equation (4.2) is clearly satisfied. For the com-
plementary condition (4.3), we only need to check λ∗(|B~u∗| − 1) = 0. Suppose
λ∗ = g(~p∗) > 0. From (4.6) we have

|(αD)−1B−T ~p∗| ≥ 1 and h~p∗(λ∗) = 1.

The later equality implies by (4.4) that

1 = h~p∗(λ∗) = |(αD + 2λ∗I)−1B−T ~p∗| = |B~u∗|.
¤

By singular value decomposition, we can express D as

D = Q−1D̂Q,

where Q is an orthonormal matrix and D̂ is a diagonal matrix of the form diag(ξ1, ξ2, ..., ξm).
Then the equation

|(αD + 2λI)−1B−T ~p| = 1
can be simplified as

|(αD̂ + 2λI)−1QB−T ~p| = 1.

Let
p̂ = QB−T ~p = (p̂1, ..., p̂m).

Then equation |(αD̂ + 2λI)−1QB−T ~p| = 1 becomes

p̂2
1

(αξ1 + 2λ)2
+ · · ·+ p̂2

m

(αξm + 2λ)2
= 1.

We define two sets:

Oλ = {λ : −α

2
ξ1 < λ < ∞}, Op = {~q ∈ Rm : |(αD̂+2λI)−1~q| = 1, for some λ ∈ Oλ},

and the mapping F : Op 7→ Oλ by

λ ∈ F(~q) ⇔ |(αD̂ + 2λI)−1~q| = 1.

Lemma 4.3. The following properties hold.
(1) The map F is a well defined single valued function.
(2) Op is open, and the function F is continuously differentiable in Op.

Proof. (1): By definition of Op, for any ~p ∈ Op, F(~p) is not empty. We notice
~0 /∈ Op. Applying the same argument as in Lemma 4.1, for any ~p ∈ Op, the
function λ 7→ |(αD̂ + 2λI)−1~p| is strictly monotonically decreasing from Oλ to R,
and F is a single valued.
(2): Let G : Rm ×Oλ 7→ R be given by

G(q1, ..., qm, λ) =
q2
1

(αξ1 + 2λ)2
+ · · ·+ q2

m

(αξm + 2λ)2
− 1.

Then G is a smooth function in the domain Rm×Oλ. At any point ~p = (p1, ..., pm) ∈
Op, there existes a unique λ ∈ Oλ, such that λ = F(~p). This implies that
G(p1, ..., pm, λ) = 0, and

∂G

∂λ
= −4

(
p2
1

(αξ1 + 2λ)3
+ · · ·+ p2

m

(αξm + 2λ)3

)
≤ −4

(αξm + 2λ)3
|~p|2 6= 0.

By the implicit function theorem, (c.f. pp.224 in [11]): there exists an open neigh-
borhood U(~p) ⊂ Rm, such that for any ~q ∈ U(~p), we can find a unique τ ∈ Oλ,
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such that G(~q, τ) = 0. This defines a smooth map τ = τ(~q) from U(~p) to R.
From this result, we conclude that U(~p) ⊂ Op, which implies that the setOp is open.
By local uniqueness of the implicit function, we find τ = F(~q) for any ~q ∈ U(~p).
Therefore, the function F is continuously differentiable in Op. ¤

Now we define

Op,1 = {~p ∈ Rm : QB−T ~p ∈ Op}, Op,2 = {~p ∈ Rm : |(αD)−1B−T ~p| < 1}.
Lemma 4.4. The two sets Op,i, i = 1, 2 are both open. Moreover Op,1∪Op,2 = Rm.

Proof. Since Op is open, the set Op,1 = BT Q−1Op is open as well. A similar
argument implies that Op,2 is also open. Now assume ~p /∈ Op,2, which gives
|(αD)−1B−T p̄| ≥ 1. Then there exists a unique λ ≥ 0, such that

|(αD + 2λI)−1B−T ~p| = 1.

Since
|(αD + 2λI)−1B−T ~p| = |(αD̂ + 2λI)−1QB−T ~p|,

we have ~p ∈ Op,1. ¤
Now we can characterize the map g(~p) : ~p 7→ λ by

(4.7) λ = g(~p) =

{
0 ~p ∈ Op,2

max(0,F(QB−T ~p)) ~p ∈ Op,1,

where F is defined in Lemma 4.3.

Proposition 4.5. The Lagrange multiplier λ∗ = g(~p∗) and control variable ~u∗ are
continuous functions in Ω.

Proof. Since the adjoint state ~p∗ ∈ C(Ω), the following two subsets in the domain
Ω are also open:

O1 = {x : ~p∗(x) ∈ Op,1}, O2 = {x : ~p∗(x) ∈ Op,2}.
And these two open sets cover the whole domain Ω, hence the composite function
λ∗ = g(~p∗) is also continuous. The continuity of ~u∗ follows from (4.2) and the fact
that BT B is positive definite. ¤
Proposition 4.6. The map g(~p) : ~p 7→ λ is Newton differentiable from L∞ to Lq.

Proof. Newton differentiability of g(~p) : ~p 7→ λ follows from Lemma 4.3, Newton
differentiability for u 7→ max(0, u) (c.f. [4]) and the chain rule. ¤

The optimality and the complementary conditions in this case can be expressed
as

~p∗ = α~u∗ + 2g(~p∗)BT B~u∗,
where the Newton differentiable function g(~p) is defined as in (4.7). Even though
the function g(~p) is well defined and serves for verifying the local superlinear con-
vergence of the semismooth Newton method, it may be difficult to realize it in
practice since we need to solve the 2m-order polynomial equation in the algorithm,

p2
1

(ξ1 + λ)2
+ · · ·+ p2

m

(ξm + λ)2
= 1.

When m = 2, this can be solved explicitly. If m ≥ 3, the explicit solution does not
exist in general. Therefore the implementation is still a challenge problem.



16 KUNISCH KARL AND XILIANG LU

Table 5.1. super-linear convergence

iter. number 1 2 3 4 5 6

‖yk − y∗‖ 1.981617 0.41951 0.05183 0.00537 0.0000002 0

‖yk−y∗‖
‖yk−1−y∗‖ 0.2117 0.12356 0.10366 0.000039 0

‖pk − p∗‖ 3.575191 0.387668 0.025340 0.003437 0.00000006 0

‖pk−p∗‖
‖pk−1−p∗‖ 0.10843 0.065367 0.135646 0.000019 0

‖βk − β∗‖ 0.198249 0.309420 0.162607 0.001718 0.0000004 0

‖βk−β∗‖
‖βk−1−β∗‖ 1.56076 0.52552 0.010568 0.000258 0

5. Numerical test

Here we validate the superlinear convergence for a simple test problem involving
the vector Laplace equations on the unit square [0, 1] × [0, 1] with homogenous
Dirichlet boundary condition. The optimality system from section 2 is given by





−4~y∗ = ~u∗, ~y∗|∂Ω = ~0,

−4~p∗ = ~yd − ~y∗, ~p∗|∂Ω = ~0,

~p∗ = β∗~u∗, β∗ = max(α, |~p∗|).
Our first example involves the construction of an the exact solution as follows:
given a function ~p∗ with enough regularity, define β∗ = max(α, |~p∗|), ~u∗ = 1

β∗ ~p∗,
~y∗ = (−4)−1~u∗ and let ~yd = ~y∗ − 4~p∗. Then for any given initial guess ~p0, β0,
we can apply Algorithm 1 to find the solution to this problem, and we choose the
residual level as a stop criterion.

In the numerical test, we choose ~p∗ = α(sin(4πxy), sin(8πxy)+x(1−x)y(1−y)),
and compute β∗, ~u∗, ~y∗ and ~yd accordingly. For this example, we observe superlinear
convergence in Table 5.1 for α = 0.001 and random initial guess ~p0, β0. It is also
noted from Table 5.2, that for a decreasing sequence of α values and large random
initial guesses, the algorithm always convergence in a few steps except in the most
extreme case.

Our second example is slightly different. This time we do not construct an exact
solution to compare with our approximation. Instead we let ~yd = cα(sin(πxy) +
x + 3y, sin(2πx) + cos(2πy)), where c is a constant between 10 to 100 to make the
constraint active at the optimal solution. We observe that for a relatively large α
(α > 0.02), the convergence is not sensitive to the initial guess. After decreasing
α, the convergence region becomes smaller. With randomly chosen initial data
the algorithm may not converge. We therefore introduce a continuation technique
which is explained in Algorithm 2. With this procedure the algorithm is robust.
We use it with α0 = 0.1 and ρ = 0.1 for the following two test problems:

(1) α = 0.001, c = 30, i.e., ~yd = 0.03(sin(πxy) + x + 3y, sin(2πx) + cos(2πy)).
(2) α = 0.0001, c = 80, i.e., ~yd = 0.008(sin(πxy)+x+3y, sin(2πx)+cos(2πy)).
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Table 5.2. number of iteration for Algorithm 1

α =0.1 0.01 0.001 0.0001

p0 = 0.1α rand 5 6 6 7

p0 = 1α rand 5 6 6 8

p0 = 10αrand 5 7 8 26

p0 = 100α rand 6 7 9 37

p0 = 1000α rand 6 8 12 NA

Table 5.3. number of iteration for Algorithm 2

αk 0.1 0.01 0.001 0.0001

α = 0.001 3 3 10

α = 0.0001 3 3 4 9

In Table 5.3, we record the number of iterations at each sub-problem as αk becomes
small with (~pk, βk) as the initial guess. The total number of iterations is less than
20. Figure 5.1 depicts the Lagrange multiplier for each of the two cases (we plot
β = α + 2λ). As expected these quantities are W 1,p regular.

Algorithm 2 Continuation Algorithm

1: Choose a large α0 (e.g. α0 = 0.1), and random initial guess (~p0, β0), apply
Algorithm 1, let it converges to (~y1, ~p1, β1).

2: For k = 1, 2, ..., let αk = ραk−1, where ρ is a constant less than 1 (e.g. ρ = 1
3 ).

3: Apply algorithm 1 for αk, with (~pk, βk) as our initial guess, let the algorithm
converges to (~yk+1, ~pk+1, βk+1).

4: Stop (if the desired α value is achieved) or go to 2.

References

[1] R. Adams, J. Fournier, Sobolev Spaces, Academic Press, 2003.
[2] V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, Springer, 1986.

[3] M. Hintermüller, M. Hinze, A SQP-semismooth Newton-type algorithm applied to control
of the instationary Navier-Stokes system subject to control constraints, SIAM J. Optim. 16

(2006), pp. 1177-1200.

[4] M. Hintermüller, K. Ito, and K. Kunisch, The Primal-Dual Active Set Strategy as a Semi-
Smooth Newton Method, SIAM J. Optim., 13 (2003), 865-888.

[5] M. Hinze, A variational discretization concept in control constrained optimization: the linear-
quadratic case, Comput. Optim. Appl. 30 (2005), pp. 45-61.

[6] K. Ito, and K. Kunisch, The primal-dual active set method for nonlinear optimal control

problems with bilateral constraints, SIAM J. Control Optim. 43 (2004), pp. 357-376.
[7] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-

Verlag, Berlin, 2001.



18 KUNISCH KARL AND XILIANG LU

Figure 5.1. Lagrange multiplier
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