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Abstract Control of quantum systems described by the linear Schrödinger

equation are considered. Control inputs enter through coupling operators and

results in a bilinear control system. Feedback control laws are developed for

orbit tracking. The sysmptotic properties of the feedback laws are analyzed

by the LaSalle-type invariance principle. Numerical integrations via time-

splitting is also investigated and used to demonstrate the feasibility of the

proposed feedback laws and to compare their performance.

1 Introduction

Consider a quantum system with internal Hamiltonian H0 prepared in the

initial state Ψ0(x), where x denotes the relevant spatial coordinate. The state

Ψ(x, t) satisfies the time-dependent Schrödinger equation. In the presence

of an external interaction taken as an electric field modeled by a coupling

operator with amplitude ε(t) ∈ R and a time independent dipole moment

operator µ results in the controlled Hamiltonian H = H0 + ε(t)µ and the

following dynamical system:

(1.1) i
∂

∂t
Ψ(x, t) = (H0 + ε(t)µ)Ψ(x, t), Ψ(x, 0) = Ψ0(x).

where H0 is a positive, closed, self-adjoint operator in the Hilbert space H,

µ ∈ L(H) is self-adjoint, and ε ∈ L1(0,∞) is the control input. Let X be the

complexified Hilbert space corresponding to H, so that the inner product of

X is defined by

(Φ, Ψ)X = (Φ1, Ψ1)H + (Φ2, Ψ2)H + i
(
(Φ2, Ψ1)H − (Φ1, Ψ2)H

)
,

where Φ = (Φ1, Φ2), Ψ = (Ψ1, Ψ2). Throughout we normalize the initial state

by |Ψ0|X = 1.

We consider the control problem of driving the state Ψ(t) of (1.1) to an

orbit O(t) of the uncontrolled dynamics

(1.2) i
d

dt
O(t) = H0O(t),
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specifically to the one that corresponds to an eigen-state or the manifold

spanned by finite many eigen-states. An element ψ ∈ dom (H0) is an eigen-

state of H0 if H0ψ = λψ for λ > 0. Then, the corresponding orbit is given

by

(1.3) O(t) = e−i(λt−θ)ψ,

where θ ∈ [0, 2π) is the phase factor. We have |O(t)|X = 1 if ψ is normalized

as |ψ|H = 1. We consider the discrete spectrum case: i.e. assume H0 only

has discrete eigenvalues {λk}, the family of eigenfunctions {ψk}∞k=1 forms an

orthonormal basis of X and that {λk} are arranged in increasing order.

We employ a variational approach based on the Lyapunov functional

(1.4) V (t) = V (Ψ(t),O(t)) =
1

2
|Ψ(t)−O(t)|2X .

The variational approaches were previously discussed in [BCMR, MRT, IK],

for example. In general we shall consider the case

(1.5) O(t) =
N∑

k=1

Ake
−i(λkt−θk)ψk,

where {(λk, ψk)}N
k=1 are the first N eigen-pairs of H0 and

∑N
k=1 A2

k = 1. But

we refer [IK2] for analyzing the general case.

We shall see in Section 2 that |Ψ(t)|X = 1 for all t ≥ 0. Together with

|O(t)|X = 1 this implies that the functional V can equivalently be expressed

as

(1.6) V (Ψ(t),O(t)) = 1− Re (O(t), Ψ(t))X .

It will be shown that

(1.7)
d

dt
V (Ψ(t),O(t)) = ε(t) Im (O(t), µΨ(t))X .

We propose the feedback law

(1.8)
ε(t) = − 1

α
(u(t) + β sign(u(t))V (t)γ) = F (Ψ(t),O(t)),

u(t) = Im (O(t), µΨ(t))X , V (t) = V (Ψ(t),O(t)),
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for α > 0, β ≥ 0, γ ∈ (0, 1]. The case β = 0 is analyzed in [IK]. From (1.7)

(1.9)
d

dt
V (Ψ(t),O(t)) = − 1

α
(|u(t)|2 + β |u(t)|V (t)γ).

Note that u(t) is a linear in Ψ(t). It will be shown that the performance of

feedback laws significantly increases by incorporating the switching control

term with β > 0.

In this paper we establish the wellposed-ness of the feedback law (1.8)

and analyze its asymptotic tracking properties. Sufficient conditions will be

obtained which guarantee orbit tracking.

In order to obtain improved tracking capability we shall also analyze

multiple control potentials of the form

(1.10) µ(t) =
m∑

j=1

εj(t) µj

and the corresponding feedback law

εj(t) = − 1

α
(uj(t) + β sign(uj(t))V (t)γ), uj(t) = Im (O(t), µjΨ(t))X .

Section 2 is devoted to wellposedness of the dynamical system in open

and closed loop form. In Section 3 it is shown that the feedback law F is

optimal in the sense that ε(t) = F (Ψ(t),O(t)) minimizes

∫ T

0

α

2
(|ε +

β

α
sign(u(t))|2 +

1

α
(
1

2
|u(t)|2 + β |u(t)|V (t)γ) dt + V (Ψ(T ),O(T ))

u(t) = Im (O(t), µΨ(t))X .

An operator splitting method for solving (1.1) is discussed in Section 4. Sec-

tion 5 is devoted to analyzing the asymptotic tracking properties of the feed-

back control laws. Section 6 contains numerical experiments that demon-

strates the feasibility of the proposed feedback laws. The nonlinear feedback

law (β > 0) significantly improves the tracking performance compared to the

linear one (β = 0).
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2 Wellposedness

Associated to the closed, positive, self-adjoint operator H0 densely defined

in the Hilbert space H, we define the closed linear operator A0 in H ×H by

A0 =




0 H0

−H0 0




with dom (A0) = dom (H0) × dom (H0). Here Ψ = (Ψ1, Ψ2) ∈ H × H is

identified with Ψ = Ψ1 + i Ψ2 ∈ X. We note that

|(Ψ1, Ψ2)|H×H = |Ψ|X , and (Φ, Ψ)H×H = Re(Φ, Ψ)X ,

and that A0 is skew-adjoint, i.e.,

(A0Ψ, Ψ̂)H×H = −(A0Ψ̂, Ψ)H×H for all Ψ, Ψ̂ ∈ dom (A0).

Thus by Stone’s theorem [P], A0 generates C0-group on X and |S(t)Ψ0|X =

|Ψ0|X . Let V = dom (H
1
2
0 ) and X2 = V × V . Then H0 ∈ L(V, V ∗) with

V ∗ = dom (H− 1
2

0 ) and V is equipped with

|φ|2V = 〈H0φ, φ〉V ∗×V

as norm. The restriction of S(t) to X2 defines a C0 group.

Associated to the self-adjoint operator µ ∈ L(H) we define the skew-

adjoint operator

B =




0 µ

−µ 0




Then for ε ∈ L2(0, T ) there exists a unique mild solution Ψ(t) ∈ C(0, T ; X)

to

(2.1) Ψ(t) = S(t)Ψ0 +

∫ t

0

S(t− s)ε(s) BΨ(s) ds, t ∈ [0, T ],

and

(2.2)
d

dt
Ψ = A0Ψ(t) + ε(t)BΨ(t) in (dom (A0))

∗,
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where

(dom (A0))
∗ = dom (H−1

0 )× dom (H−1
0 ),

[IK], Chapter2, [P], Chapter 4. Equivalently

d

dt
Ψ(t) = −i (H0Ψ(t) + ε(t)µΨ(t)) in dom(H−1

0 )

Since O(t) ∈ C(0, T ; dom (A0)) ∩ C1(0, T ; X), we have

(2.3)
d

dt
O(t) = −iH0O(t) in H.

Thus,

d

dt
Re (O(t), Ψ(t))X = Re

(
(−iH0O(t), Ψ(t))X + (O(t),−i(H0Ψ(t) + ε(t)µΨ(t))X

)

= Re
(
i ε(t) (O(t), µΨ(t))

)
X

= −ε(t) Im (O(t), µΨ(t))X ,

which proves (1.7). Thus, we obtain the closed loop system of the form

(2.4) Ψ(t) = S(t)Ψ0 +

∫ t

0

S(t− s)F (Ψ(s),O(s))BΨ(s) ds

We show that (2.4) has a solution. Let sign(u) be the maximal monotone

function

sign(u) =





[−1 1] u = 0

u

|u| |u| > 0

and signδ(u) be the Yosida approximation of sign(u) for δ > 0:

signδ(u) =





u

δ
|u| ≤ δ

u

|u| |u| ≥ δ.

Define the Fδ by

(2.5) Fδ(Ψ,O) = − 1

α
(u + β signδ(u)V γ), u = Im (O(t), µΨ).
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Then assuming V ≥ c > 0 Fδ is Lipschitz continuous and |Fδ| ≤ M for all

|Ψ|X = |O|X = 1. Thus, it can be proved [IK],[IK2] that

Ψ(t) = S(t)Ψ0 +

∫ t

0

S(t− s)Fδ(Ψ(s),O(s)) ds

has the unique solution Ψδ ∈ C(0, T ; X) and

Vδ(t) = V (0)−
∫ t

0

1

α
(|uδ(s)|2 + β signδ(uδ)(s)Vδ(s)

γ)uδ(s) ds

where

Vδ(s) = 1− Re (Ψδ(s),O(s)), uδ(s) = Im (O(s), µΨδ(s))

It follows from [BMS], Theorem 3.6 that there exists a subsequence δ for

which Ψδ converges Ψ in C(0, T ; X). Thus uδ(t) → u(t) = Im (O(t))(t), µΨ(t))

strongly in L2(0, T ; R). Since signδ(uδ(t)) ∈ L2(0, T ; R) there exists a sub-

sequence of δ such that signδ(t) → z(t) weakly in L2(0, T ; R). Since sign is

maximal monotone z(t) = sign(u(t)) and since Vδ(t) → V (t) in C(0, T ; R),

εδ(t) → ε(t) = u(t) + sign(u(t))V (t)γ weakly in L2(0, T ; R). For all φ ∈ X

(Ψδ(t), φ) = (S(t)Ψ0, φ) +

∫ t

0

εδ(t)(S(t− s)BΨδ(s), φ) ds

and letting δ → 0+ we have

(Ψ(t), φ) = (S(t)Ψ0, φ) +

∫ t

0

ε(t)(S(t− s)BΨ(s), φ) ds

which implies Ψ is the mild solution to (2.1) that corresponds to ε. Moreover,

we have

(2.6) V (t) = V (0)−
∫ t

0

1

α
(|u(s)|2 + β |u(s)|V (s)γ) ds.
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3 Optimality

We argue that

V (t, Ψ) = 1− (O(t), Ψ)H×H

satisfies the Hamilton Jacobi equation

(3.1)

∂V

∂t
+ min

ε
[VΨ(A0Ψ + εBΨ)]

+
α

2
|ε +

β

α
sign(u(t))V γ|2 +

1

α
(
1

2
|u(t)|2 + |u(t)|V γ) = 0

u(t) = Im (O(t), µΨ) = −(O(t), BΨ)H×H

where

VΨ(Φ) = −(O(t), Φ)H×H .

In fact,

(3.2)

α

2
|ε +

β

α
sign(u(t))V γ|2 + u(t)(ε +

β

α
sign(u(t))V γ) +

1

2α
|u(t)|2

=
α

2
|ε +

1

α
(u(t) + β sign(u(t))V γ)|2,

and thus ε∗(t) minimizes

α

2
|ε +

β

α
sign(u(t))V γ|2 + u(t)(ε +

β

α
sign(u(t))V γ) +

1

2α
|u(t)|2.

This implies

∂V

∂t
+ VΨ(A0Ψ + ε∗BΨ)

+
α

2
|ε∗(t) +

β

α
sign(u(t))V γ|2 + +u(t)(

β

α
sign(u(t))V γ|2 +

1

2α
|u(t)|2

= −(A0O(t), Ψ)H×H − (O(t), A0Ψ + ε∗(t)BΨ)H×H

+
α

2
|ε∗(t) +

β

α
sign(u(t))V γ|2 + u(t)(ε∗(t) +

β

α
sign(u(t))V γ)|2 +

1

2α
|u(t)|2 = 0
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as desired.

We next show that ε∗ minimizes

J(ε) =

∫ T

0

(
α

2
|ε(t)+β

α
sign(u(t))V (t)γ|2+ 1

α
(
1

2
|u(t)|2+β |u(t)|) dt+V (Ψ(t),O(T ),

over ε ∈ L2(0, T ). To this end choose any ε ∈ L2(0, T ) and let Ψ(t) ∈
C(0, T ; X) be the solution to (2.1)-(2.2). SinceO(t) ∈ C1(0, T ; X)∩C(0, T ; dom(A0)

we have

d

dt
V (O(t), Ψ(t)) = −(A0O(t), Ψ(t))H×H − (O(t), A0Ψ(t) + ε(t)BΨ(t))H×H .

Integrating this over (0, T ) and using (3.2) we find

V (Ψ(T ),O(T )) +

∫ T

0

(
α

2
|ε(t) +

β

α
sign(u(t))V (t)γ|2 +

1

α
(
1

2
|u(t)|2 + β |u(t)|V (t)γ) dt

= V (Ψ(0),O(0)) +

∫ T

0

α

2
|ε(t) +

1

α
(u(t) + β sign(u(t))V (t)γ|2 dt

u(t) = −(O(t), BΨ(t))H×H

Hence

ε∗(t) = F (Ψ∗(t),O(t)).

where Ψ∗(t) is the trajectory corresponding to ε∗(t) minimizes J(ε) over

L2(0, T ).

4 Operator Splitting and Numerical Meth-

ods

Since the Hamiltonian is the sum ofH0 and ε(t)µ it is very natural to consider

time integration based on the operator splitting method. For the stepsize

h > 0 consider the Strang splitting method:

(4.1)

Ψ̂k+1 − Ψ̂k

h
= εk B

Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S(

h

2
)Ψk,

Ψk+1 = S(h
2
)Ψ̂k+1,
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where

εk =
1

h

∫ (k+1)h

kh

ε(s) ds.

For time integration of the controlled Hamiltonian we employ the Crank-

Nicolson scheme since it is a norm preserving scheme. In fact, since B is

skew adjoint

(
Ψk+1 − Ψ̂k

h
, Ψk+1 + Ψ̂k)X = 0,

and thus |Ψk+1|2X = |Ψ̂k|2X . The Strang splitting is of second order as time-

integration. We have the convergence of (4.1);

Theorem 4.1 If we define Ψh(t) = Ψk on [kh, (k + 1)h), then

|Ψh(t)−Ψ(t)|X → 0 uniformly in t ∈ [0, T ]

where Ψ(t), t ≥ 0, satisfies

Ψ(t) = S(t)Ψ0 +

∫ t

0

S(t− s)ε(s)BΨ(s) ds.

Proof. Define the one step transition operator

Ψk+1 = Th(t)Ψk

by

Th(t) = S(
h

2
)(I − εkh

2
B)−1(I +

εkh

2
B)S(

h

2
)Ψ.

Then, |Th(t)Ψ|X = |Ψ|X and

Ah(t)Ψ =
Th(t)Ψ−Ψ

h
= S(

h

2
)
Jh/2(εkB)− I

h/2
S(

h

2
)Ψ +

S(h)Ψ−Ψ

h

where

Jh/2(εkB) = (I − εkh

2
B)−1.

Since for Ψ ∈ X

lim
h→0+

Jh/2(εkB)− I

h/2
Ψ = ε(t)BΨ
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and for Ψ ∈ dom (A)

lim
h→0+

S(h)Ψ−Ψ

h
= A0Ψ,

we have for Ψ ∈ dom (A) and ε ∈ C(0, T )

|Ah(t)Ψ− (A0Ψ + ε(t)B)Ψ)|X → 0 as h → 0+.

It thus follows from the Chernoff theorem [IK] that |Ψh(t) − Ψ(t)|X →
0 uniformly in t ∈ [0, T ].

Note that

Ψk+1 = S(h)Ψk + hS(
h

2
)εkJh/2(εkB)S(

h

2
)Ψk

and thus

Ψm = S(mh)Ψ0 +
m∑

k=1

h S((m− k)h)S(
h

2
)εkBJh/2(εkB)S(

h

2
)Ψk−1.

Thus, letting h → 0 in this expression, Ψ(t) ∈ C(0, T ; X) satisfies (2.1).

Suppose for (4.1) there exists an εk on [kh, (k+1)h) such that forOk+1/2 =

S(
h

2
)Ok

(4.2)

εk = F (Ψk+1/2,Ok+1/2) =
1

α
(uk+1/2 + β sign(uk+1/2)V

γ
k ),

uk+1/2 = (Ok+1/2, BΨk+1/2), Ψk+1/2 =
Ψ̂k+1 + Ψ̂k

2
.

Then Ψk satisfies closed loop system

(4.3)

Ψ̂k+1 − Ψ̂k

h
= εk B

Ψ̂k+1 + Ψ̂k

2
, Ψ̂k = S(

h

2
)Ψk,

εk = F (Ψk+1/2,Ok+1/2), Ψk+1 = S(
h

2
)Ψ̂k+1.

Since

V (S(
h

2
)Ψ̂k+1, S(

h

2
)Ok+1/2) = V (Ψ̂k+1,Ok+1/2),

10



the discrete analog of (2.6)

V (Ψk+1,Ok+1) = V (Ψk,Ok) +
1

α
(|uk|2 + β |uk|V (Psik,Ok))

γ.

holds for the closed loop (4.3).

Now, we show that there exists a unique εk that satisfies (4.2). Let

χ(u) = u + β sign(u)

Then, it is equivalent to find ε ∈ R that satisfies

(4.4) χ−1(α ε) = (BΨ̂(ε),Ok+1/2),

where Ψ̂(ε) is the solution to

Ψ̂− Ψ̂k

h
= εB

Ψ̂− Ψ̂k

2
.

Note that

Ψ̂− Ψ̂k = hεB(I − hε

2
B)−1Ψ̂k

and thus

(BΨ̂(ε),Ok+1/2) = (BΨ̂k,Ok+1/2) + hε(B2(I − hε

2
B)−1Ψ̂k,Ok+1/2)

Since

B2 =



−µ2 0

0 −µ2




one can assume that there exists c > 0 for all k

(B2Ψ̂k,Ok+1/2) ≤ −c

Thus,

(B2(I − hε

2
B)−1Ψ̂k,Ok+1/2) ≤ − c

2
,

for h > 0 is sufficiently small and hence (4.4) has a unique solution.
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5 Asymptotic Tracking

The objective of this section is to analyze the asymptotic properties of the

controlled system (1.1). Let is of the form

O(t) = e−i(λk0
t−θ̂)ψk0

for some eigenpair (λk0 , ψk0) of H0 and phase θ̂. We assume that

(5.1) µk
k0

= (ψk0 , µψk)X 6= 0 for all k = 1, 2, . . . ,

and that

(5.2) {S(t)Ψ0, ≥ 0} is compact in H ×H.

Assumption (5.2) holds, for example if dom(H0) is compact in H and ψ0 ∈
V × V . In case Ω is unbounded we may assume that W = V ∩Lp(Ω), p > 2,

is compactly embedded in H = L2(Ω). Then, if Ψ0 ∈ W ×W and S(t) leaves

W ×W invariant [IK1], we have (5.2). V (t) ≥ 0, it follows from (2.6) that

either V (t) →∞ or
∫∞
0
|u(t)| de < ∞. We also assume that

(5.3)

∫ ∞
|ε(t)| dt < ∞

This assumption holds if either we use the regularized feedback law (2.5) for

arbitrary δ > 0 or β = 0. Thus,

lim
t→∞

∫ t

0

S(t− s)ε(s)BΨ(s) dsexists.

It follows that {∫ t

0
S(t−s)ε(s)Bψ(s) : t ≥ 0} is compact in H×H. Together

with (5.2) we conclude that {Ψ(t) : t ≥ 0} is compact. We shall proceed with

the asymptotic analysis utilizing assumptions (5.1)–(5.3) and summarize the

results in a theorem at the end.

Since {Ψ(t) : t ≥ 0} and {O(t) : t ≥ 0} are compact in X there exists a

sequence {tn} → ∞ and elements Ψ∞ ∈ X, O∞ ∈ X such that

(5.4) lim
n→∞

Ψ(tn) = Ψ∞ and lim
n→∞

O(tn) = O∞,
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in particular, Ψ∞,O∞ are in the ω− limit sets of (2.2) and (2.3), respectively.

Since ε ∈ L2(0,∞) it follows from (2.1) that Ψ(tn + τ) → S(τ)Ψ∞ and

analogously O(tn + τ) → S(τ)O∞ uniformly with respect to τ ∈ (0,∞).

Here S(τ)Ψ∞ and S(τ)O∞ are the mild solutions to

d

dt
Ψ∞(t) = A0Ψ∞(t), Ψ∞(0) = Ψ∞,

d

dt
O∞(t) = A0O∞(t), O∞(0) = O∞.

Moreover

Ψ∞(τ) =
∞∑

k=1

Ake
−i(λkτ−θk)ψk,

O∞(τ) = e−i(λk0
τ−θ̃ko )ψk0 ,

with 0 ≤ θk, θ̃k0 < π and
∑ |Ak|2 = 1. Since

u(tn + ·) = Im (O(tn + ·), µΨ(tn + ·) → 0 in L2(0,∞), as tn →∞,

we have

(5.5) u(τ) = Im (O∞(τ), µΨ∞(τ)) = 0, for τ ≥ 0.

It follows now that

(5.6)

u(τ) = Im (
∞∑

k=1

Ake
i((λk−λk0

)τ−θk+θ̃k0
))µk

k0
)

=
∞∑

k=1

µk
k0

Ak

(
cos(θk − θ̃k0) sin((λk − λk0)τ)− sin(θk − θ̃k0) cos((λk − λk0)τ)

)
= 0.

Suppose the family

(5.7) {cos((λk − λk0)τ), sin((λk − λk0)τ)} is ω− independent in L2(0, T ),

i.e., a family {ϕk}∞k=−∞ is called ω-independent if
∑∞

k=−∞ ckϕk = 0 implies

that ck = 0 for all k. Then, µk
k0

Ak = 0 for k 6= k0 and µk0
k0

Ak0−sin(θk− θ̃k0) =
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0, Thus, by (5.1) Ak = 0 for k 6= k0. Moreover, since |Ψ∞| = 1, we have

θk0 = θ̃k0 and Ak0 = 1. Here the case Ak0 = −1 can be excluded since it

implies that

V (Ψ∞(τ),O∞(τ)) = 1 + Re (e−i(λk0
τ−θk0

)ψk0 , e
−i(λk0

τ−θk0
)ψk0)X = 2,

and

V (Ψ0,O(0)) = 1− Re
(
eiθ̃k0ψk0 , Ψ0

)
X

= 1−Re
(
eiθ̃k0 (ψk0 , Ψ0)X

)
< 2,

since θ̃k0 ∈ [0, π). Hence, Ak0 = −1 is impossible since d
dt

V (Ψ(t),O(t)) ≤ 0.

Since the ω-limit pair (Ψ∞,O∞) was arbitrary it follows from (1.4) that

limt→∞ V (Ψ(t),O(t)) = 0, i.e. Ψ(t) asymptotically approaches the orbit

O(t). We summarize the above discussion as;

Theorem 5.1. Assume that (5.1), (5.2) and (5.7) hold. Then limt→∞ V (Ψ(t),O(t)) =

0, for the feedback law F .

The following lemma addresses condition (5.7).

Lemma 5.1. If there exits a constant δ > 0 such that |λk +λ`−2λk0| ≥ δ for

all k, ` ≥ 1 with ` 6= k0, and |λk − λ`| ≥ δ for all k 6= `, then {ei(λk−λk0
)τ} ∪

{e−i(λk−λk0
)τ}k 6=k0 is ω− independent for sufficiently large T > 0.

Proof. Let {µ`}`∈I be a real number sequence defined by

µk = λk − λk0 , k ≥ 1, µ−k = −(λk − λk0) k 6= k0.

It follows from the assumption that

|µm − µ`| ≥ δ, m 6= `

From the Ingham’s theorem [I], if T > 2π
δ

, there exits a constant c, depending

on T and δ > 0 such that

c
∑
m∈I

|am|2 ≤
∫ T

0

f(τ)|2 dτ
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for

f(τ) =
∑
m∈I

ameiµmτ .

Remark 5.1. For the harmonic oscillator case we have

H0ψ = − d2

dx2
ψ + x2ψ, x ∈ R = Ω.

Then the eigen-pairs {(λk, ψk)}∞k=1 are given by

λk = 2k − 1, ψk(x) = ĉ Hk−1(x)e−
x2

2

where Hk is the Hermite polynomial of degree k and ĉ is a normalizing factor.

In this case we have

λk0−` − λk0 = −(λk0+` − λk0), 1 ≤ ` ≤ k0 − 1,

and the gap condition |λk+λ`−2λk0| > δ is not satisfied. Thus,

∫ T

0

|u(τ))|2 dτ =

0 implies

Im (Ak0+`e
i(λ`τ−θk0+`+θ̃k0

)µk0+`
k0

+ Ak0−`e
−i(λ`τ−θk0−`+θ̃k0

)µk0−`
k0

) = 0

for 1 ≤ ` < k0. That is, Ak0−` and Ak0−` are not necessary zero and thus

Ψ∞(τ) is distributed over energy levels 1 ≤ ` ≤ 2k0 − 1.

5.1 Degenerated Case

We now turn to the case when the gap condition |λk + λ` − 2λk0| > δ is

violated. Then more than one control operator µ is required and we consider

(1.10). Then for V (Ψ,O) = 1− Re (O, Ψ)X we find

d

dt
V (Ψ(t),O(t)) =

m∑
j=1

εjIm(O(t), µjΨ(t))X ,
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which suggests feedback laws of the form

(5.8) εj(t) = − 1

α
(uj(t) + β sign(uj(t))V (t)γ), uj(t) = Im (O(t), µjΨ(t)).

As shown above, we have

V (t)− V (0) = − 1

α

∫ t

0

m∑
j=1

(|uj(s)|2 + β |uj(s)|V (s)γ) ds.

In the following discussion we assume (5.2) i.e. that {S(t)Ψ0 : t ≥ 0} is

compact. Then using exactly the same arguments as above for all ω− limit

Ψ∞(τ) : tau ≥ 0}

uj(τ)) = Im
(O∞(τ), µjΨ∞(τ)

)
= 0, for τ ≥ 0, j = 1, . . . , m.

Thus,

Im
( ∞∑

k=1

Ake
i((λk−λk0

)τ−θk+θ̃k0
)(µj)

k
k0

)
= 0, for j = 1, . . . , m,

where

(µj)
k
k0

= (ψk0 , µjψk)X .

We henceforth consider the case m = 2. Suppose that λk̄ + λ¯̀− 2λk0 = 0 for

single pair (k̄, ¯̀), ¯̀ 6= k0, and that otherwise (5.7) holds. Then λk̄ − λk0 =

−(λ¯̀− λk0) and we have

(5.9) Im
(
Ak̄e

i((λk̄−λk0
)τ−θk̄+θ̃k0

)(µj)
k̄
k0

+ A¯̀ei(−(λk̄−λk0
)τ−θ¯̀+θ̃k0

)(µj)
¯̀

k0

)
= 0,

for j = 1, 2. If

(5.10) rank




(µ1)
k̄
k0

(µ1)
¯̀
k0

(µ2)
k̄
k0

(µ2)
¯̀
k0


 = 2,

then from (5.9), it follows that Ak̄ = A¯̀ = 0. If moreover

(5.11) for each k there exists j ∈ {1, 2} such that (µj)
k
k0
6= 0,
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then Ak = 0 for all k 6= k0, Ak0 = 1 and θk0 = θ̃k0 . As a consequence we have

limt→∞ V (Ψ(t),O(t)) = 0.

In general let

λki
+ λ`i

− 2λk0 = 0

for multiple pairs (ki, `i) with `i 6= k0. If we assume that

(5.12) rank




(µ1)
ki
k0

(µ1)
`i
k0

(µ2)
ki
k0

(µ2)
`i
k0


 = 2

for each i, then Aki
= A`i

= 0, and in particular Ak = 0 for all k. If in

addition (5.11) holds then, again limt→∞ V (Ψ(t),O(t)) = 0.

6 Numerical Tests

In this section we demonstrate the feasibility of our proposed feedback laws

using a test example. We set H = L2(0, 1) and

H0ψ =
∞∑

k=1

λk(ψ, ψk)H ψk,

where

ψk(x) =
√

2 sin(kπx) and λk = kπ.

The control Hamiltonians are given by

(µiΨ)(x) = bi(x)Ψ(x), x ∈ (0, 1),

with i = 1, 2. For computations we truncated the expansion ofH0 at N = 99,

so that

SN(h)Ψ0 =
N∑

k=1

e−iλk h(Ψ0, ψk) ψk.

To integrate the control Hamiltonian term the collocation method was used

in the form

(BN
i ψ)(xN

n ) = bi(x
N
n )ψ(xN

n ), i = 1, 2,
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where xN
n = n

N
, 1 ≤ n ≤ N − 1. Thus, we implemented the feedback law

based on the Strang splitting method in the form

Ψk+1 = SN(h
2
)FN(I − εk

1h

2
BN

1 − εk
2h

2
BN

2 )−1(I +
εk
1h

2
BN

1 +
εk
2h

2
BN

2 )SN(h
2
)

εk
i = Fi(Ψ

k+1/2,Ok+1/2), i = 1, 2,

where FN and F−1
N are the discrete Fourier sine transform and its inverse

transform, respectively and BN
i is the diagonal matrix with diagonal

(bi(x
N
1 ), · · · , bi(x

N
N−1) for each i = 1, 2.

This is an implicit method and its wellposed-ness is discussed in Section

for given β > 0 and γ ∈ [0, 1]. The numerical tests that we report on are

computed with h = 0.01, α = 1/500 and

b1(x) = (x− .5) + 1.75(x− .5)2, b2(x) = 2.5(x− .5)3 − 2.5(x− .5)4.

These control potentials satisfy the rank condition in Section 5 and are se-

lected by minimizing the tracking time by trial and error tests. Figure 1 shows

the orbit tracking performance V = 1
2
|Ψ(t)−O(t)|2X comparison between dif-

ferent β and different power γ of V . As β increases, the performance V is

significantly improved and the 10 % performance level is achieved in much

shorter horizon. By decreasing the power of V , the performance V improves

also and more rapidly in the beginning of the time horizon.
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