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Convex duality is a powerful framework for solving non-smooth op-
timal control problems. However, for problems set in non-reflexive Ba-
nach spaces such as L1(Ω) or BV(Ω), the dual problem is formulated in a
space which has difficult measure theoretic structure. The predual prob-
lem, on the other hand, can be formulated in a Hilbert space and entails
the minimization of a smooth functional with box constraints, for which
efficient numerical methods exist. In this work, elliptic control problems
with measures and functions of bounded variation as controls are consid-
ered. Existence and uniqueness of the corresponding predual problems
are discussed, as is the solution of the optimality systems by a semismooth
Newton method. Numerical examples illustrate the structural differences
in the optimal controls in these Banach spaces, compared to those obtained
in corresponding Hilbert space settings.

1. Introduction

This work is concerned with the study of the optimal control problem

(P)

 min
u∈X

1
2
‖y− z‖2

L2(Ω) + α ‖u‖X
s.t. Ay = u

where Ω ⊂ Rn, n ∈ {2, 3}, is a simply connected bounded domain with Lipschitz
boundary ∂Ω, X is a non-reflexive Banach space, and α > 0 and z ∈ L2(Ω) are
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given. Furthermore, A is a linear second order elliptic differential operator, taking
appropriate boundary conditions. Throughout, we assume that:

(A) ‖A·‖L2 and ‖A∗·‖L2 are equivalent norms on H2(Ω) ∩H1
0(Ω),

where A∗ denotes the adjoint of A with respect to the inner product in L2(Ω).
If X = L1(Ω), this setting applies to optimal control problems where the cost of the

control is a linear function of its magnitude (cf. [15]); the case X = BV(Ω) corresponds
to settings where the cost is proportional to changes in the control. Of particular inter-
est is how the structure of optimal controls in such Banach spaces differs from that of
controls obtained in Hilbert spaces such as L2(Ω) or H1

0(Ω). For example, it is known
that L1(Ω)-type costs promote sparsity, whereas BV(Ω)-type penalties favor piece-
wise constant functions (cf. [11, 10], respectively). Note that for X = L1(Ω), problem
(P) is not well-posed: It need not have a minimizer in L1(Ω), since the conditions
of the Dunford-Pettis theorem are not satisfied (boundedness in L1(Ω) is not a suf-
ficient condition for the existence of a weakly converging subsequence). The natural
functional-analytic framework for problems of this type is the space of bounded mea-
sures (cf. Remark 2.8). In the current paper, we will focus on optimal control problems
in the space of measures and in the space of functions of bounded variation, and on
their numerical treatment.

For the direct solution of (P), one would need to address the problem of the dis-
cretization of measures. We therefore propose an alternative approach that, roughly
speaking, consists in interpreting the optimality conditions for problem (P) as an op-
timality system for the Lagrange multiplier associated with the equality constraint,
which by a density argument can then be taken in an appropriate Hilbert space. This
can be justified rigorously using Fenchel duality. This, together with the numerical
results for simple model problems which highlight the significant difference of the
controls in dependence of the chosen norm, constitutes the main contribution of the
current paper.

This work is organized as follows: In the remainder of this section, we fix notations
and recall some necessary background. In section 2, we derive predual formulations
for the optimal control problem (P) with measures and functions of bounded variation
as controls (in § 2.1 and § 2.2, respectively), discuss the existence and uniqueness of
their solutions, and derive optimality systems. Section 3 is concerned with the solution
of the optimality systems by a semismooth Newton method, for which it is necessary
to consider a regularization of the problem (§ 3.1). We can then show superlinear
convergence of the method (§ 3.2). Here, we focus first on the case of measures, and
discuss the corresponding issues for functions of bounded variation in § 3.3. Finally,
we present numerical examples in section 4.

1.1. Notations and Background

For the reader’s convenience, we give here the definitions and results on measure
theory, functions of bounded variation, and convex duality relevant to this work. For
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more details and proofs, we refer to, e.g., [1, 3] (our notation follows the latter). In
the following, Hilbert spaces of vector valued functions are denoted by a bold letter
corresponding to their scalar equivalent, e.g. L2(Ω) := (L2(Ω))n.

Measure theory LetM(Ω) denote the vector space of all bounded Borel measures
on Ω, that is of all bounded σ-additive set functions µ : B(Ω) → R defined on the
Borel algebra B(Ω) satisfying µ(∅) = 0. The total variation of µ ∈ M(Ω) is defined
for all B ∈ B(Ω) by

(1.1) |µ|(B) := sup

{
∞

∑
i=0
|µ(Bi)| :

∞⋃
i=0

Bi = B

}
,

where the supremum is taken over all partitions of B. Endowed with the norm
‖µ‖M = |µ|(Ω), M(Ω) is a Banach space. By the Riesz representation theorem,
M(Ω) can be isometrically identified with the topological dual of C0(Ω), the space
of all continuous functions with compact support in Ω, endowed with the norm
‖v‖C0

= supx∈Ω |v(x)|∞. This leads to the following equivalent characterization of
the norm onM(Ω):

(1.2) ‖µ‖M = sup
ϕ∈C0(Ω),
‖ϕ‖C0

≤1

∫
Ω

ϕ dµ.

Functions of bounded variation We recall that BV(Ω), the space of functions of
bounded variation, consists of all u ∈ L1(Ω) for which the distributional gradient Du
belongs to (M(Ω))n. Furthermore, the mapping u 7→ ‖u‖BV,

(1.3) ‖u‖BV :=
∫

Ω
|Du| dx = sup

{∫
Ω

u div v dx : v ∈ (C∞
0 (Ω))n, ‖v‖(C0)n ≤ 1

}
(which can be infinite) is lower semicontinuous in the topology of L1(Ω), and u ∈
L1(Ω) is in BV(Ω) if and only if ‖u‖BV is finite. (If v ∈ H1(Ω), then ‖u‖BV =∫

Ω |∇u| dx.) Endowed with the norm ‖·‖L1 + ‖·‖BV, BV(Ω) is a non-reflexive Banach
space.

One of the main features of BV(Ω) in comparison to Sobolev spaces is that it in-
cludes characteristic functions of sufficiently regular sets and piecewise smooth func-
tions. In image reconstruction, BV(Ω)-regularization is known to preserve edges bet-
ter than regularization with ‖∇u‖2

L2 .

Fenchel duality in convex optimization A complete discussion can be found in
[6]. Let V and Y be Banach spaces with topological duals V∗ and Y∗, respectively, and
let Λ : V → Y be a continuous linear operator. Setting R = R ∪ {∞}, let F : V → R,
G : Y → R be convex lower semicontinuous functionals which are not identically
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equal ∞ and for which there exists a v0 ∈ V such that F (v0) < ∞, G(Λv0) < ∞, and G
is continuous at Λv0. Let F ∗ : V∗ → R denote the Fenchel conjugate of F defined by

(1.4) F ∗(q) = sup
v∈V
〈q, v〉V∗,V −F (v),

which we will frequently calculate using the fact that

(1.5) F ∗(q) = 〈q, v〉V∗,V −F (v) if and only if q ∈ ∂F (v).

Here, ∂F denotes the subdifferential of the convex function F , which reduces to the
Gâteaux-derivative if it exists.

The Fenchel duality theorem states that under the assumptions given above,

(1.6) inf
v∈V
F (v) + G(Λv) = sup

q∈Y∗
−F ∗(Λ∗q)− G∗(−q) ,

holds, and that the right hand side of (1.6) has at least one solution. Furthermore, the
equality in (1.6) is attained at (v∗, q∗) if and only if

(1.7)

{
Λ∗q∗ ∈ ∂F (v∗),
−q∗ ∈ ∂G(Λv∗).

2. Existence and optimality conditions

This section is concerned with the predual problem of (P), discussing the existence
and uniqueness of its solution and deriving the first order optimality system. We first
consider the case X =M(Ω), and then treat the case X = BV(Ω) in § 2.2.

2.1. Controls inM(Ω)

We consider the optimal control problem

(PM)

 min
u∈M(Ω)

1
2
‖y− z‖2

L2 + α ‖u‖M

s.t. Ay = u.

First, we have to address the well-posedness of the constraint for measure-valued
data. We call y ∈ L1(Ω) a very weak solution of Ay = u ∈ M(Ω) if

(2.1)
∫

Ω
yA∗ϕ dx =

∫
Ω

ϕ du

holds for all ϕ ∈ C0(Ω) such that A∗ϕ ∈ C0(Ω). Then, we have the following result
[12, Th. 9.1]:
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Proposition 2.1. For u ∈ M(Ω), the equation Ay = u has a unique weak solution which
satisfies y ∈ W1,p

0 (Ω) for all 1 ≤ p < n
n−1 . Furthermore, there exists a constant C > 0 such

that

(2.2) ‖y‖W1,p
0
≤ C ‖u‖M

holds.

Since W1,p
0 (Ω) is compactly embedded in L2(Ω), (PM) is well-defined, and we can

show existence of a minimizer:

Proposition 2.2. Problem (PM) has a unique solution (y∗, u∗) ∈ L2(Ω)×M(Ω).

Proof. We consider a minimizing sequence (un)n∈N ⊂ M(Ω) of (PM). Since the pair
(y, u) = (0, 0) is feasible, 1

2α ‖z‖
2
L2 is an upper bound for ‖un‖M. We can therefore

extract a subsequence converging in the weak topology σ(M(Ω), C0(Ω)) to a u∗ ∈
M(Ω).

Setting yn := y(un) ∈ W1,p
0 (Ω), i.e., the solution of (2.1) with µ = un, we therefore

can pass to the limit and obtain (by the density of C0(Ω) in L2(Ω)) a y∗ ∈ W1,p
0 (Ω) ⊂

L2(Ω) solving (2.1) for u∗. From the weak lower semicontinuity of the norms in L2(Ω)
andM(Ω), we conclude that (y∗, u∗) is a minimizer of (PM).

Finally, uniqueness of a minimizer follows directly from strict convexity of the
norms and the assumption on A.

In a slight abuse of notation, we set H2
0(Ω) := H2(Ω) ∩H1

0(Ω) and consider the
problem

(P∗M)


min

p∈H2
0(Ω)

1
2
‖A∗p + z‖2

L2 −
1
2
‖z‖2

L2

s.t. ‖p‖C0
≤ α,

which we will show below to be the predual of (PM). Due to the embedding of H2
0(Ω)

in C0(Ω), the constraint is well-defined, and problem (P∗M) has a unique solution:

Theorem 2.3. Problem (P∗M) has a unique solution p∗ ∈ H2
0(Ω).

Proof. Let again {pn}n∈N be a minimizing sequence which is bounded in H2
0(Ω) by

2 ‖z‖2
L2 . We can thus extract a subsequence {pnk}k∈N of feasible functions weakly

converging to a p∗ ∈ H2
0(Ω), which is again feasible. By the weak lower semicontinuity

of the norm, we deduce

(2.3) lim inf
k→∞

1
2
‖A∗pnk + z‖2

L2 ≥
1
2
‖A∗p∗ + z‖2

L2 .

Hence, p∗ is a minimizer of (P∗M).
By the assumption on A∗, the mapping p 7→ 1

2 ‖A∗p + z‖2
L2 is strictly convex, and

the minimizer is unique.
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Theorem 2.4. The dual of (P∗M) is (PM), and the solutions u∗ ∈ M(Ω) of (PM) and
p∗ ∈ H2

0(Ω) of (P∗M) are related by

(2.4)

{
u∗ = AA∗p∗ + Az,

0 ≥ 〈−u∗, p− p∗〉H2
0
∗,H2

0
,

for all p ∈ H2
0(Ω) with ‖p‖C0

≤ α.

Proof. We apply Fenchel duality for problem (P∗M). Set

F : H2
0(Ω)→ R, F (q) =

1
2
‖A∗q + z‖2

L2 −
1
2
‖z‖2

L2 ,(2.5)

G : C0(Ω)→ R, G(q) = I{‖q‖C0
≤α} :=

{
0 if ‖q‖C0

≤ α,
∞ if ‖q‖C0

> α,
(2.6)

and Λ : H2
0(Ω) → C0(Ω) the injection given by the continuous embedding. The

Fenchel conjugate of F is given by

(2.7) F ∗ : H2
0(Ω)∗ → R, F ∗(u) =

1
2

∥∥∥A−1u− z
∥∥∥2

L2
.

The conjugate of G can be calculated as

G∗(u) = sup
q∈C0(Ω)

〈u, q〉C∗0 ,C0
− I{‖q‖C0

≤α} = sup
q∈C0(Ω),
‖q‖C0

≤α

〈u, q〉C∗0 ,C0
(2.8)

= α sup
q∈C0(Ω),
‖q‖C0

≤1

〈u, q〉C∗0 ,C0
= α ‖u‖M ,

and Λ∗ :M(Ω)→ H2
0(Ω)∗ is again the injection from the dual of C0(Ω) in H2

0(Ω)∗.
It remains to verify the conditions of the Fenchel duality theorem. Since the norms in

L2(Ω) and C0(Ω) are convex and lower semicontinuous, so are F and G (as indicator
function of a convex set), which are also proper (e.g., for q = 0, at which point G is
continuous). In addition, Λ is a continuous linear operator, and so we have that

(2.9) min
p∈H2

0(Ω),
‖p‖C0

≤α

1
2
‖A∗p + z‖2

L2 −
1
2
‖z‖2

L2 = min
u∈M(Ω)

1
2

∥∥∥A−1u− z
∥∥∥2

L2
+ α ‖−u‖M .

Introducing y ∈ W1,p
0 (Ω) as the solution of Ay = u ∈ M(Ω), we recover problem

(PM), and the relation (2.4) follows from the extremality relation (1.7).

From this, we can derive the first order optimality conditions for problem (P∗M):
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Corollary 2.5. Let p∗ ∈ H2
0(Ω) be a solution of (P∗M). Then there exists λ∗ ∈ M(Ω) ⊂

H2
0(Ω)∗ such that

(2.10)

{
AA∗p∗ + Az + λ∗ = 0,
〈λ∗, p− p∗〉H2

0
∗,H2

0
≤ 0,

holds for all p ∈ H2
0(Ω) with ‖p‖C0

≤ α. Moreover, the solution (p∗, λ∗) of (2.10) is unique.

Proof. By setting λ∗ = −u∗ in the extremality relations (2.4), we immediately obtain
(2.10) and existence of the Lagrange multiplier. Let (p1, λ1) and (p2, λ2) be two solu-
tions of (2.10), and set δp = p1 − p2, δλ = λ1 − λ2. Then we have

AA∗δp + δλ = 0,(2.11)
〈δλ, δp〉H2

0
∗,H2

0
≥ 0.(2.12)

Multiplying (2.11) with δp and integrating by parts, we obtain that

(2.13) ‖A∗δp‖2
L2 = − 〈δλ, δp〉H2

0
∗,H2

0
≤ 0.

This implies that δp = 0 and, by assumptions on A and A∗, that δλ = 0.

Splitting the first equation of (2.4) by introducing y∗ = A∗p + z yields

(2.14)


Ay∗ = u∗,

A∗p∗ = y∗ − z,

0 ≥ 〈u∗, p∗ − p〉H2
0
∗,H2

0
for all p ∈ H2

0(Ω), ‖p‖C0
≤ α.

Formally, this is the optimality system for (PM), where −p is the Lagrange multiplier
for the constraint Ay = u, except that the non-reflexive Banach spaces M(Ω) and
M(Ω)∗ have been replaced by the Hilbert spaces H2

0(Ω)∗ and H2
0(Ω), respectively.

From (2.14), we can deduce extra regularity for the Lagrange multiplier and the
solution of problem (PM) (and, by the relation λ∗ = −u∗, for problem (P∗M)):

Corollary 2.6. Let 1 ≤ p < n
n−1 . If z ∈ W1,p(Ω), the optimal Lagrange multiplier for the

state constraint in (PM) satisfies p∗ ∈ H2
0(Ω) ∩W3,p

0 (Ω), and the corresponding optimal
control satisfies u∗ ∈ M(Ω) ∩W−1,p

0 (Ω).

Proof. From Proposition 2.1 and u∗ ∈ M(Ω), we obtain that the optimal state satisfies
y∗ ∈ W1,p

0 (Ω) for all 1 ≤ p < n
n−1 . Hence, A∗p∗ = y∗ − z yields p∗ ∈ W3,p

0 (Ω), and

Ay∗ = u∗ yields u∗ ∈W−1,p
0 (Ω).

We can also give the following structural information for the solution of problem
(PM):
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Corollary 2.7. Let u∗ be the minimizer of (PM). Then the following holds for any p ∈ H2
0(Ω),

p ≥ 0:

〈u∗, p〉H2
0
∗,H2

0
= 0 if supp p ⊂ {x : |p∗(x)| < α} ,(2.15)

〈u∗, p〉H2
0
∗,H2

0
≤ 0 if supp p ⊂ {x : p∗(x) = α} ,(2.16)

〈u∗, p〉H2
0
∗,H2

0
≥ 0 if supp p ⊂ {x : p∗(x) = −α} .(2.17)

This can be interpreted as a sparsity property: The optimal control u∗ will be
nonzero only on sets where the constraint on the dual variable p∗ is active; hence
the larger the penalty α, the smaller the support of the control.

Remark 2.8. If in addition, the minimizer satisfies u∗ ∈ L1(Ω), it is the solution of the
problem

(PL1)

 min
u∈L1(Ω)

1
2
‖y− z‖2

L2 + α ‖u‖L1

s.t. Ay = u

This follows from the embedding of L1(Ω) intoM(Ω) and the fact that ‖v‖M = ‖v‖L1

for v ∈ L1(Ω) (cf. [4, Ch. IV]).

Regularization of (PM) If we wish to avoid measures, we have to look for the
minimizer in a stronger space than L1(Ω), e.g., L2(Ω). Consider then the following
regularized problem:

(PL1,L2)

 min
u∈L2(Ω)

1
2
‖y− z‖2

L2 + α ‖u‖L1 +
β

2
‖u‖2

L2

s.t. Ay = u

Existence and uniqueness of a minimizer follows from standard arguments. Since
L2(Ω) is reflexive, we can directly calculate the dual problem: Set

F : L2(Ω)→ R, F (u) = α ‖u‖L1 ,(2.18)

G : L2(Ω)× L2(Ω)→ R, G(u, y) =
1
2
‖y− z‖2

L2 +
β

2
‖u‖2

L2 ,(2.19)

Λ : L2(Ω)→ L2(Ω)× L2(Ω), Λu = (u, A−1u).(2.20)

The Fenchel conjugate of F is again given by

(2.21) F ∗ : L2(Ω)→ R, F (u) = I{‖u‖L∞≤α},

and we can calculate

(2.22)


G∗ : L2(Ω)× L2(Ω)→ R,

G∗(u, y) =
1
2
‖y + z‖2

L2 −
1
2
‖z‖2

L2 +
1

2β
‖u‖2

L2 ,

8



as well as

(2.23) Λ∗ : L2(Ω)× L2(Ω)→ L2(Ω), Λ∗(u, y) = u + A−∗y.

Since F and G are convex and continuous operators (due to the continuous em-
bedding of L2(Ω) into L1(Ω)), and Λ is a continuous linear operator due to the well-
posedness of the equality constraint, the Fenchel duality theorem yields the existence
of a minimizer (u∗, y∗) ∈ L2(Ω)× L2(Ω) of the dual problem

(2.24)

 min
(u,y)∈L2×L2

1
2
‖−y + z‖2

L2 −
1
2
‖z‖2

L2 +
1

2β
‖−u‖2

L2

s.t.
∥∥u + A−∗y

∥∥
L∞ ≤ α,

where we can substitute p = −A−∗y ∈ H2
0(Ω) and q = u− p ∈ L2(Ω) to arrive at

(P∗L1,L2)


min

(p,q)∈H2
0×L2

1
2
‖A∗p + z‖2

L2 −
1
2
‖z‖2

L2 +
1

2β
‖p + q‖2

L2

s.t. ‖q‖L∞ ≤ α.

In terms of p, the extremality relations linking the primal and dual minimizers u∗ and
(p∗, q∗) can be given as

(2.25)


u∗ = AA∗p∗ + Az,

u∗ =
1
β
(q∗ + p∗),

0 ≥ 〈u∗, q∗ − q〉L2 ,

for all q ∈ L2(Ω) with ‖q‖L∞ ≤ α.
Note that now the Lagrange multiplier corresponding to the box constraint is in

L2(Ω) (as opposed to H2
0(Ω)∗). Problem (P∗L1,L2) therefore can be seen as a regu-

larization of (P∗M) by introducing a new variable q = −p and treating this equality
constraint by penalization (cf. also [11]).

2.2. Controls in BV(Ω)

We now consider the optimal control problem

(PBV)

 min
u∈BV(Ω)

1
2
‖y− z‖2

L2 + α ‖u‖BV

s.t. Ay = u

Since the linear operator A−1 is injective on BV(Ω) ⊂ L1(Ω) by Proposition 2.1, the
existence of a minimizer follows directly from [5, Th. 2.1]:

Proposition 2.9. If n = 2, problem (PBV) has a unique solution (y∗, u∗) ∈ L2(Ω)× BV(Ω).
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Now let

(2.26) H2
div(Ω) :=

{
v ∈ L2(Ω) : div v ∈ H2

0(Ω), v · ν = 0 on ∂Ω
}

,

endowed with the norm ‖v‖2
H2

div
:= ‖v‖2

L2 + ‖div v‖2
H2

0
, and consider

(P∗BV)


min

p∈H2
div(Ω)

1
2
‖A∗ div p + z‖2

L2 −
1
2
‖z‖2

L2

s.t. ‖p‖L∞ ≤ α.

This problem has a solution, which, however, may not be unique. Set

(2.27) H2
div,0(Ω) =

{
v ∈H2

div(Ω) : div v = 0
}

and let H2
div,0(Ω)⊥ the orthogonal complement in H2

div(Ω). Then we can show the
following:

Theorem 2.10. Problem (P∗BV) has a solution p∗ ∈H2
div(Ω). Moreover, there exists a unique

q∗ ∈H2
div,0(Ω)⊥ such that all such solutions satisfy p∗ ∈ {q∗}+ H2

div,0(Ω).

Proof. Consider again a minimizing sequence {pn}n∈N ⊂ H2
div(Ω). The L2(Ω)-norm

of pn is bounded via the box constraints, and the data fit term gives a bound on the
H2

0(Ω)-norm of (div pn); together, this yields that the H2
div(Ω)-norm of pn is bounded.

We can therefore extract a subsequence weakly converging in H2
div(Ω), and existence

of the minimizer follows from the same arguments as in the proof of Theorem 2.3.
Since H2

div,0(Ω) is a closed subspace of H2
div(Ω), it holds that

(2.28) H2
div(Ω) = H2

div,0(Ω)⊥ ⊕H2
div,0(Ω),

and that div is injective on H2
div,0(Ω)⊥ by construction. Therefore, 1

2 ‖A∗ div p + z‖2
L2 is

strictly convex on H2
div,0(Ω)⊥, so that (P∗BV) has a unique minimizer q∗ ∈ H2

div,0(Ω)⊥

there. On the other hand, given p ∈ H2
div,0(Ω) with ‖q∗ + p‖L∞ ≤ α, we find that

q∗ + p ∈H2
div(Ω) is also a minimizer.

Theorem 2.11. The dual of (P∗BV) is (PBV), and the solutions u∗ ∈ BV(Ω) of (PBV) and
p∗ ∈H2

div(Ω) of (P∗BV) are related by

(2.29)

{
−u∗ = −AA∗ div p∗ + Az,

0 ≥ 〈(−div)∗u∗, p− p∗〉H2
div
∗,H2

div
,

for all p ∈H2
div(Ω) with ‖p‖L∞ ≤ α.

Proof. We apply Fenchel duality. Setting

F : H2
div(Ω)→ R, F (q) = I{‖q‖L∞≤α},(2.30)

G : H2
0(Ω)→ R, G(q) =

1
2
‖A∗q− z‖2

L2 −
1
2
‖z‖2

L2 ,(2.31)

Λ : H2
div(Ω)→ H2

0(Ω), Λq = −div q,(2.32)
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problem (P∗BV) can be written as

(2.33) min
p∈H2

div(Ω)
F (p) + G(Λp).

The Fenchel conjugate of G is given by

(2.34) G∗ : H2
div(Ω)∗ → R, G∗(v) =

1
2

∥∥∥A−1v + z
∥∥∥2

L2
,

and the adjoint of Λ is

(2.35) Λ∗ : H2
0(Ω)∗ →H2

div(Ω)∗, Λ∗v = (−div)∗v.

It remains to calculate F ∗ : H2
div(Ω)∗ → R. We have, as in (2.8), that

(2.36) F ∗(v) = α sup
q∈H2

div(Ω),
‖q‖L∞≤1

〈v, q〉H2
div
∗,H2

div
.

By standard arguments, we can show that (C∞
0 (Ω))n is dense in H2

div(Ω) (cf. [13,
p. 26], [2]), so that we can equivalently write

(2.37) F ∗(v) = α sup
q∈(C∞

0 (Ω))n,
‖q‖(C0)n≤1

〈v, q〉H2
div
∗,H2

div
,

and thus

(2.38) F ∗((−div)∗u) = α sup
q∈(C∞

0 (Ω))n,
‖q‖(C0)n≤1

〈u,−div q〉H2
0
∗,H2

0
= α ‖u‖BV ,

which is finite if and only if u ∈ BV(Ω).
Again, F is convex and lower semicontinuous, G is convex and continuous on

H2
0(Ω), and Λ is a continuous linear operator. The Fenchel duality theorem thus

yields the duality of (P∗BV) and

(2.39) max
u∈H2

0(Ω)∗
−F ∗(Λ∗u)− G∗(−u) = − inf

u∈BV(Ω)
α ‖u‖BV +

1
2

∥∥∥A−1u− z
∥∥∥2

L2
,

by which we recover (PBV). The relations (2.29) are once more the explicit form of the
extremality relations (1.7).

From this, we also obtain the first order necessary optimality conditions:

Corollary 2.12. Let p∗ ∈H2
div(Ω) be a solution of (P∗BV). Then there exists λ∗ ∈H2

div(Ω)∗

such that

(2.40)

{
(−div)∗AA∗(−div)p∗ + (−div)∗Az + λ∗ = 0,
〈λ∗, p− p∗〉H2

div
∗,H2

div
≤ 0,

holds for all p ∈ H2
div(Ω) with ‖p‖L∞ ≤ α. Moreover, the solution (p∗, λ∗) of (2.10) is

unique in H2
div,0(Ω)⊥ ×H2

div(Ω)∗.
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Proof. We apply (−div)∗ to the first relation of (2.29) and set λ∗ := (−div)∗u∗ ∈
H2

div(Ω)∗. Proceeding as in the proof of Corollary 2.5, we deduce that λ∗ solving
(2.40) is unique. Since the operator (−div)∗AA∗(−div) is invertible on H2

div,0(Ω)⊥ by
construction, we obtain a unique q∗ ∈ H2

div,0(Ω)⊥ such that all solutions p∗ of (2.29)
satisfy p∗ ∈ {q∗}+ H2

div,0(Ω).

Note that this implies that any solution p∗ of problem (P∗BV) will yield the same
(unique) solution u∗ of (PBV) when calculated via the extremality relation (2.29).
Remark 2.13. In order to obtain a unique solution for problem (P∗BV), we can consider
the following regularized problem for β > 0:

(P∗BV,L2)


min

p∈H2
div(Ω)

1
2
‖A∗ div p + z‖2

L2 −
1
2
‖z‖2

L2 +
β

2
‖p‖2

L2

s.t. ‖p‖L∞ ≤ α.

This can be expressed as a regularization of the primal problem (PBV) as well: Setting

(2.41) F (q) = I{‖q‖L∞≤α} +
β

2
‖q‖2

L2

and Λ as in Theorem 2.11, we find that

(2.42) F ∗(Λ∗u) =
∫

Ω
ϕ(∇u) dx,

where

(2.43) ϕ(~v)(x) =

{
1

2β |~v(x)|2 if |~v(x)| < αβ,

α|~v(x)| − αβ
2 if |~v(x)| ≥ αβ.

In the primal problem, the additional predual L2(Ω)-regularization essentially results
in locally replacing the BV(Ω)-term with a H1(Ω)-penalty in a small neighborhood of
the origin (cf. [8]).

We can finally give some structural information on the optimal control in BV(Ω):

Corollary 2.14. Let u∗ be a minimizer of (PBV). Then the following holds for any p ∈
H2

div(Ω), p ≥ 0:

〈(−div)∗u∗, p〉H2
div
∗,H2

div
= 0 if supp p ⊂

n⋂
i=1

{x : |p∗i (x)| < α} ,(2.44)

〈(−div)∗u∗, p〉H2
div
∗,H2

div
≥ 0 if supp p ⊂

n⋃
i=1

{x : p∗i (x) = α} ,(2.45)

〈(−div)∗u∗, p〉H2
div
∗,H2

div
≤ 0 if supp p ⊂

n⋃
i=1

{x : p∗i (x) = −α} .(2.46)

Again, this can be interpreted as a sparsity condition on the gradient of the control:
The optimal control u∗ will be piecewise constant on sets where the constraints on the
dual variable p∗ are inactive.
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3. Solution of the optimality systems

This section, we present a method for the numerical solution of the optimality systems
(2.10) and (2.40). For this, we need to deal with the fact that the Lagrange multiplier
corresponding to the box constraints is in general only in H2

0(Ω)∗ (and H2
div(Ω)∗,

respectively). We introduce therefore regularized versions of (2.10) and (2.40) which
can be solved using a semismooth Newton method having superlinear convergence.

Again, we first treat the solution of (2.10), and discuss the corresponding results and
algorithm for problem (2.40) more briefly in § 3.3.

3.1. Regularization of box constraints

In order to obtain Lagrange multipliers in L2(Ω), we introduce the Moreau-Yosida
regularization of problem (P∗M) for c > 0:

(P∗M,c) min
p∈H2

0(Ω)

1
2
‖A∗p + z‖2

L2 −
1
2
‖z‖2

L2

+
1
2c
‖max(0, c(p− α))‖2

L2 +
1
2c
‖min(0, c(p + α))‖2

L2 ,

where the max and min are taken pointwise in Ω. This is equivalent to the regular-
ization in problem (P∗L1,L2) (cf. Remark 3.2) but more amenable to solution by a semis-
mooth Newton method. Existence and uniqueness of a minimizer is directly deduced
from lower semicontinuity and strict convexity of the functional. The corresponding
optimality system is given by

(3.1)

{
AA∗pc + Az + λc = 0,
λc = max(0, c(pc − α)) + min(0, c(pc + α)),

where the Lagrange multiplier satisfies λc ∈W1,∞(Ω).
First, we address the convergence of the solutions of (3.1) as c tends to infinity:

Theorem 3.1. Let (pc, λc) ∈ H2
0(Ω)×H2

0(Ω)∗ be the solution of (3.1) for given c > 0, and
(p∗, λ∗) ∈ H2

0(Ω)×H2
0(Ω)∗ be the unique solution of (2.10). Then we have as c→ ∞:

pc −→ p∗ in H2
0(Ω),(3.2)

λc −⇀ λ∗ in H2
0(Ω)∗.(3.3)

Proof. From the optimality conditions (3.1), we have that pointwise in x ∈ Ω

(3.4) λc pc = max(0, c(pc − α))pc + min(0, c(pc + α))pc =


c(pc − α)pc, pc ≥ α,
0, |pc| < α,
c(pc + α)pc, pc ≤ −α,

and hence that

(3.5) 〈λc, pc〉L2 ≥
1
c
‖λc‖2

L2 .
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Inserting pc in the variational form of (3.1),

(3.6) 〈A∗pc, A∗v〉L2 + 〈z, A∗v〉L2 + 〈λc, v〉H2
0
∗,H2

0
= 0 for all v ∈ H2

0(Ω),

yields

(3.7) ‖A∗pc‖2
L2 +

1
c
‖λc‖2

L2 ≤ ‖A∗pc‖L2 ‖z‖L2 ,

and we deduce that ‖A∗pc‖L2 ≤ ‖z‖L2 , as well as

‖λc‖H2
0(Ω)∗ = sup

v∈H2
0(Ω),

‖v‖H2
0
≤1

〈λc, v〉H2
0
∗,H2

0
≤ sup

v∈H2
0(Ω),

‖v‖H2
0
≤1

[〈A∗pc, A∗v〉L2 + 〈z, A∗v〉L2 ](3.8)

≤ 2 sup
v∈H2

0(Ω),
‖v‖H2

0
≤1

‖A∗v‖L2 ‖z‖L2 =: K < ∞.

Thus, (pc, λc) is uniformly bounded in H2
0(Ω)×H2

0(Ω)∗, so that we can deduce the
existence of a ( p̃, λ̃) ∈ H2

0(Ω)×H2
0(Ω)∗ such that

(3.9) (pc, λc) ⇀ ( p̃, λ̃) in H2
0(Ω)×H2

0(Ω)∗.

Passing to the limit in (3.6), we obtain

(3.10) 〈A∗ p̃, A∗v〉L2 + 〈z, A∗v〉L2 +
〈
λ̃, v
〉

H2
0
∗,H2

0
= 0 for all v ∈ H2

0(Ω).

We next verify the feasibility of p̃. By pointwise inspection similar to (3.5), we obtain
that

(3.11)
1
c
‖λc‖2

L2 = c ‖max(0, pc − α)‖2
L2 + c ‖min(0, pc + α)‖2

L2 .

From (3.7), we have that 1
c ‖λc‖2

L2 ≤ ‖z‖2
L2 , so that

‖max(0, pc − α)‖2
L2 ≤

1
c
‖z‖2

L2 → 0,(3.12)

‖min(0, pc + α)‖2
L2 ≤

1
c
‖z‖2

L2 → 0(3.13)

holds for c→ ∞. Since pc → p̃ strongly in L2(Ω), this implies that

(3.14) −α ≤ p̃(x) ≤ α for all x ∈ Ω.

It remains to pass to the limit in the second equation of (2.10). First, optimality of
pc yields that

(3.15)
1
2
‖A∗pc + z‖2

L2 ≤
1
2
‖A∗p + z‖2

L2
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holds for all feasible p ∈ H2
0(Ω). Therefore, we have that

(3.16) lim sup
c→∞

1
2
‖A∗pc + z‖2

L2 ≤
1
2
‖A∗ p̃ + z‖2

L2

and thus pc → p̃ strongly in H2
0(Ω). Now observe that

(3.17) 〈λc, p− pc〉H2
0
∗,H2

0
= 〈max(0, c(pc − α)), p− pc〉H2

0
∗,H2

0

+ 〈min(0, c(pc + α)), p− pc〉H2
0
∗,H2

0
≤ 0

holds for all p ∈ H2
0(Ω) with ‖p‖C0

≤ α, and thus

(3.18)
〈
λ̃, p− p̃

〉
H2

0
∗,H2

0
≤ 0

is satisfied for all p ∈ H2
0(Ω) with ‖p‖C0

≤ α. Therefore, ( p̃, λ̃) ∈ H2
0(Ω)×H2

0(Ω)∗

satisfies (2.10), and since the solution of (2.10) is unique, p̃ = p∗ and λ̃ = λ∗ follows.

Remark 3.2. We can also relate the Moreau-Yosida regularization to the regularized
problem (P∗L1,L2) via the primal problem: We proceed by calculating the dual of (P∗M,c)
as in the proof of Theorem 2.4, defining G : C0(Ω)→ R,

(3.19) G(q) =
1
2c
‖max(0, c(q− α))‖2

L2 +
1
2c
‖min(0, c(q + α))‖2

L2 .

To calculate the Fenchel conjugate, we use (1.5), which in this case implies that

(3.20) u = max(0, c(q− α)) + min(0, c(q + α))

has to hold for the primal variable u ∈ M. If u(x) > 0, the right hand side has to
be positive as well, which implies u(x) = c(q(x) − α) and hence q(x) = 1

c u(x) + α.
Similarly, u(x) < 0 yields q(x) = u

c (x) − α. For u(x) = 0, −α < p(x) < α holds.
Substituting in the definition of G∗, we have that

G∗(u) =
∫
{u>0}

u(x)
(

1
c

u(x) + α

)
− 1

2c
max(0, u(x))2 dx(3.21)

+
∫
{u<0}

u(x)
(

1
c

u(x)− α

)
− 1

2c
min(0, u(x))2 dx

=
1
2c
‖u‖2

L2 + α ‖u‖L1 ,

which is finite if and only if u ∈ L2(Ω). Setting β := 1
c , we arrive at problem (PL1,L2).

Since both regularized problems are posed in reflexive Hilbert spaces, they are equiv-
alent.
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3.2. Semismooth Newton method

The regularized optimality system (3.1) can be solved efficiently using a semismooth
Newton method (cf. [7, 14]), which is superlinearly convergent. For this purpose, we
consider (3.1) as a nonlinear equation F(p) = 0 for F : H2

0(Ω)→ H2
0(Ω)∗,

(3.22) F(p) := AA∗p + max(0, c(p− α)) + min(0, c(p + α)) + Az.

It is known (cf., e.g., [9, Ex. 8.14]) that the projection operator

(3.23) Pα(p) := max(0, (p− α)) + min(0, (p + α))

is semismooth from Lq(Ω) to Lp(Ω), if and only if q > p, and has as Newton-derivative

(3.24) ∂N Pα(p)h := hχ{|p|>α} =

{
h(x) if |p(x)| > α,
0 if |p(x)| ≤ α.

Since Frechét-differentiable functions and sums of semismooth functions are semis-
mooth (with canonical Newton-derivatives), we find that F is semismooth, and that its
Newton-derivative is

(3.25) ∂N F(p)h = AA∗h + chχ{|p|>α}.

A semismooth Newton step consists in solving for pk+1 the equation

(3.26) ∂N F(pk)(pk+1 − pk) = −F(pk).

Defining the active and inactive sets

(3.27) A+
k :=

{
x : pk(x) > α

}
, A−k :=

{
x : pk(x) < −α

}
, Ak := A+

k ∪A
−
k ,

the weak form of (3.26) can be written explicitly as finding pk+1 ∈ H2
0(Ω) such that

(3.28)
〈

A∗pk+1, A∗v
〉

L2
+ c

〈
pk+1χAk , v

〉
L2

= − 〈z, A∗v〉L2 + cα
〈

χA+
k
− χA−k

, v
〉

L2

for all v ∈ H2
0(Ω). The resulting semismooth Newton method is given as Algorithm 1.

Theorem 3.3. If
∥∥pc − p0

∥∥
H2

0
is sufficiently small, the iterates pk of Algorithm 1 converge

superlinearly in H2
0(Ω) to the solution pc of (3.1) as k→ ∞.

Proof. Since F is semismooth, it suffices to show that (∂N F)−1 is uniformly bounded.
Let g ∈ H2

0(Ω)∗ be given. Due to the assumptions on A∗, the Riesz representation
theorem ensures the existence of a unique ϕ ∈ H2

0(Ω) such that

(3.29) 〈A∗ϕ, A∗v〉L2 + c 〈χAϕ, v〉L2 = 〈g, v〉H2
0
∗,H2

0

holds for all v ∈ H2
0(Ω), independent of A. Furthermore, ϕ satisfies

(3.30) ‖ϕ‖2
H2

0
≤ C ‖g‖2

H2
0
∗ ,

with a constant C depending only on A and Ω, giving the desired uniform bound. The
superlinear convergence now follows from standard results (e.g., [9, Th. 8.16]).
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Algorithm 1 Semismooth Newton method for (3.1)

1: Set k = 0, Choose p0 ∈ H2
0(Ω)

2: repeat
3: Set

A+
k =

{
x : pk(x) > α

}
,

A−k =
{

x : pk(x) < −α
}

,

Ak = A+
k ∪A

−
k

4: Solve for pk+1 ∈ H2
0(Ω):〈

A∗pk+1, A∗v
〉

L2
+ c

〈
pk+1χAk , v

〉
L2

= − 〈z, A∗v〉L2 + cα
〈

χA+
k
− χA−k

, v
〉

L2

for all v ∈ H2
0(Ω)

5: Set k = k + 1
6: until (A+

k = A+
k−1) and (A−k = A−k−1)

The termination criterion in Algorithm 1, step 6, can be justified as follows:

Proposition 3.4. If A+
k+1 = A+

k and A−k+1 = A−k holds, then pk+1 satisfies F(pk+1) = 0.

Proof. Since the solution of (3.28) is unique for fixed A+
k ,A−k , we have that pk+1 = pk.

Thus, setting A+
k+1 = A+

k and A−k+1 = A−k in (3.28) and noting that

(3.31) cχA+
k+1

pk+1 − cαχA+
k+1

= max(0, c(pk+1 − α)),

we see that (3.28) is equivalent to F(pk+1) = 0. It follows that pk+1 is a solution of
(3.1).

3.3. Controls in BV(Ω)

The arguments above rely on the fact that the term ‖A∗p‖L2 in the functional is an
equivalent norm on H2

0(Ω). For the problem in BV(Ω), the corresponding term
‖A∗ div p‖L2 is only a seminorm on H2

div(Ω), and we need to add additional reg-
ularization. Since furthermore H2

div(Ω) does not embed into Lq for q > 2, we set
H := H2

div(Ω) ∩H2
0(Ω) and consider

(P∗BV,c) min
p∈H

1
2
‖A∗ div p + z‖2

L2 +
β

2
‖p‖2

H2
0
− 1

2
‖z‖2

L2

+
1
2c
‖max(0, c(p− α))‖2

L2 +
1
2c
‖min(0, c(p + α))‖2

L2
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with the corresponding optimality system

(3.32)

{
(−div)∗AA∗(−div)pc + β∆2 pc + (−div)∗Az + λc = 0,
λc = max(0, c(pc − α)) + min(0, c(pc + α)),

where ∆ denotes the componentwise Laplacian with homogeneous Dirichlet boundary
conditions, and the max, min are understood to act componentwise. (Here and below,
α stands for the vector (α, . . . , α) ∈ Rn.)

The convergence for β → 0 is impeded by the fact that no unique candidate for the
limit exists. We can, however, show convergence for the corresponding regularization
of problem (P∗BV,L2), and the proof is given in the appendix. In the following, we will
consider only the solution of problem (P∗BV,c).

We once more formulate the optimality system (3.32) as a semismooth operator
equation G(p) = 0 for G : H → H∗,

(3.33) G(p) := (−div)∗AA∗(−div)p + β∆2 p + (−div)∗Az
+ max(0, c(p− α)) + min(0, c(p + α))

with Newton derivative

(3.34) ∂NG(p)h = (−div)∗AA∗(−div)h + β∆2h + chχ{|p|>α},

where the term hχ{|p|>α} is evaluated componentwise, i.e.,

(3.35) (hχ{|p|>α})i =

{
hi(x) if |pi(x)| > α,
0 if |pi(x)| ≤ α.

for i = 1, . . . , n. One step of the semismooth Newton method consists thus in finding
pk+1 ∈ H such that

(3.36)
〈

A∗ div pk+1, A∗ div v
〉

L2
+ β

〈
∆pk+1, ∆v

〉
L2

+ c
〈

pk+1χAk , v
〉

L2
=

〈z, A∗ div v〉L2 + c
〈

αχA+
k
− αχA−k

, v
〉

L2

holds for all v ∈ H. The active sets A and their characteristic functions are defined
componentwise as in (3.35). The full Newton method is given as Algorithm 2.

Since the weak form of the Newton derivative (3.34) by construction defines an inner
product on H, the same argument used in Theorem 3.3 yields uniform boundedness
of (∂NG)−1. Hence Algorithm 2 converges locally superlinearly and terminates if the
active sets coincide:

Theorem 3.5. If
∥∥pc − p0

∥∥
H is sufficiently small, the iterates pk of Algorithm 2 converge

superlinearly in H to the solution pc of (3.32) as k → ∞. Additionally, if A+
i,k+1 = A+

i,k and
A−i,k+1 = A−i,k holds for all i = 1, . . . , N, then pk+1 = pc.

Finally, arguing as in Remark 3.2, we obtain that the Moreau-Yosida-regularization
of the predual problem is equivalent to adding the penalty term 1

2c ‖∇u‖2
L2 to the

primal problem (PBV) and minimizing over u ∈ H1(Ω).

18



Algorithm 2 Semismooth Newton method for (3.32)

1: Set k = 0, Choose p0 ∈ H
2: repeat
3: Set for i = 1, . . . , n

A+
i,k =

{
x : pk

i (x) > α
}

, A−i,k =
{

x : pk
i (x) < −α

}
, Ai,k = A+

i,k ∪A
−
i,k

4: Solve for pk+1 ∈ H:

〈
A∗ div pk+1, A∗ div v

〉
L2

+ β
n

∑
i=1

〈
∆pk+1

i , ∆vi

〉
L2

+ c
n

∑
i=1

〈
pk+1

i χAk,i , vi

〉
L2

=

〈z, A∗ div v〉L2 + cα
n

∑
i=1

〈
χA+

i,k
− χA−i,k

, vi

〉
L2

for all v ∈ H
5: Set k = k + 1
6: until (A+

i,k = A+
i,k−1) and (A−i,k = A−i,k−1) for all i = 1, . . . , n

4. Numerical results

Traditionally, optimal control problems for partial differential equations are formu-
lated with quadratic control costs. When the cost is proportional to the control (or its
gradient), it is of interest how this change affects the structure of the optimal controls.
The numerical results for a simple model problem presented in this section allow a
comparison. Specifically, we consider A = −∆, the Laplacian with homogeneous
Dirichlet conditions on the domain Ω = [−1, 1]2 ⊂ R2. The differential operators were
discretized using standard finite differences on a 128 by 128 grid. To ensure symmetry
of the system matrices, the adjoints of A and −div were taken as the transpose of the
corresponding discretization. The implementation was done in Matlab. We consider
the following two targets, shown in Figure 1:

za(x, y) = e−50[(x−0.2)2+(y+0.1)2)],(4.1)
zb(x, y) = χ{|x|< 1

2 ,|y|< 1
2 }

.(4.2)

The solutions of the predual problem for these targets will be denoted by p∗a and p∗b
respectively, and similarly for the resulting optimal controls u∗a , u∗b and corresponding
states y∗a , y∗b .

Controls in M(Ω) We set α = 10−3 and c = 107 and compute the solution of
(3.1) using Algorithm 1. The solution of problem (PM) is then obtained using the
first relation of (2.4). The resulting optimal control and corresponding optimal state

19



(a) za (b) zb

Figure 1: Test targets.

are shown in Figure 3. The sparsity of the optimal control can be seen (cf. Figure 2,
and also Corollary 2.7): The control is zero wherever the dual variable is inactive (i.e.,
−α < p∗ < α), negative on the set where the upper bound is active (i.e., p∗ ≥ α), and
positive where the lower bound is active (i.e., p∗ ≤ −α). Note that the solution p∗ of
the regularized problem is allowed to be infeasible, although this can be controlled
with larger c.

We compare the controls obtained inM(Ω) with the solution of the control problem
in L2(Ω):

(PL2)

 min
u∈L2(Ω)

1
2
‖y− z‖2

L2 +
α

2
‖u‖2

L2

s.t. Ay = u.

by solving the reduced optimality system

(4.3) u + αAA∗u = Az.

The corresponding optimal control and state for the same value of α = 10−3 are given
in Figure 4. We point out that a better approximation of the target is possible with
controls in M(Ω) (compare the height of the peaks for target za). Note also that the
optimal control in L2(Ω) is nonzero almost everywhere, while u∗ ∈ M(Ω) is sparse.

We illustrate the superlinear convergence of the Newton method for the case of
target za with the same parameters as given above. Table 1 gives the error quotients

(4.4) ek :=

∥∥pk+1 − p∗
∥∥

H2
0

‖pk − p∗‖H2
0
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(a) p∗a (b) p∗b

Figure 2: Solutions p∗ ∈ H2
0(Ω) of (P∗M,c) for α = 10−3, c = 107. Shown is the projec-

tion along x2.

for the final iterates pk in the semismooth Newton algorithm 1. The quotients decrease
monotonically, verifying the local superlinear convergence shown in Theorem 3.3.

Controls in BV(Ω) We repeat the computations for problem (P∗BV,c), setting α =
10−4, β = 10−1 and c = 107. Here, we compare with the optimal control in H1

0(Ω):

(PH1)


min

u∈H1
0(Ω)

1
2
‖y− z‖2

L2 +
α

2
‖u‖2

H1(Ω)

s.t. Ay = u.

solving the optimality system

(4.5) u− αAA∗∆u = Az.

The resulting controls in BV(Ω) and H1
0(Ω) and corresponding states are given in

Figure 5 and 6, respectively. It can be clearly seen that the BV(Ω) cost favors piece-
wise constant controls; this phenomenon is well-known in the mathematical imaging
community as staircasing (cf. [10]). Again, the target is better attained by controls in
BV(Ω) compared with H1

0(Ω).
To show the effect of the control cost in the case of BV(Ω), we increase α from 10−4

to 10−3 for the target zb. The optimal control and corresponding state are shown in
Figure 7). The control is now constant over a much larger region, at the cost of being
further from the target. For this example, we can easily illustrate Corollary 2.14: The
derivative with respect to x1 or x2 of the control u∗ is zero in regions where the box
constraint for the corresponding component of the predual solution p∗ = (p∗1 , p∗2) is
inactive (cf. Figure 8).
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(a) Optimal control u∗a ∈ M(Ω) (b) Optimal control u∗b ∈ M(Ω)

(c) Optimal state y∗a (d) Optimal state y∗b

Figure 3: Solutions of problem (PM) calculated via predual problem (α = 10−3, c =
107).
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(a) Optimal control u∗a ∈ L2(Ω) (b) Optimal control u∗b ∈ L2(Ω)

(c) Optimal state y∗a (d) Optimal state y∗b

Figure 4: Solutions of problem (PL2) for α = 10−3.
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(a) Optimal control u∗a ∈ BV(Ω) (b) Optimal control u∗b ∈ BV(Ω)

(c) Optimal state y∗a (d) Optimal state y∗b

Figure 5: Solutions of problem (PBV) calculated via predual problem (α = 10−4, β =
10−1, c = 107).
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(a) Optimal control u∗a ∈ H1
0(Ω) (b) Optimal control u∗b ∈ H1

0(Ω)

(c) Optimal state y∗a (d) Optimal state y∗b

Figure 6: Solutions of problem (PH1) for α = 10−4.
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(a) Optimal control u∗b ∈ BV(Ω) (b) Optimal state y∗b

Figure 7: Solution of problem (PBV) for target zb with α = 10−3.

(a) Projection of p∗1 along x2 (b) Projection of p∗2 along x1

Figure 8: Solution p∗b = (p∗1 , p∗2) ∈H2
div(Ω) of (P∗BV,c) with α = 10−3, c = 107.
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Table 1: Convergence of iterates pk in semismooth Newton method for problem (P∗M,c).
Given is the error quotient ek defined by (4.4) for the final iterates.

k 21 22 23 24 25 26 27
ek 0.9633 0.6766 0.6164 0.5099 0.3467 0.1048 0

5. Conclusion

We have presented a framework for the efficient solution of elliptic optimal control
problems in non-reflexive Banach spaces such as the space of bounded Radon mea-
sures or of functions of bounded variation. Specifically, the Fenchel duality theorem
allows the reformulation of these (non-differentiable) problems as smooth box con-
strained problems in a Hilbert space. The corresponding optimality systems can be
solved with a semismooth Newton method, which converges superlinearly after reg-
ularization. We also demonstrated the structural differences between the optimal con-
trols for these non-smooth problems and the solutions of the corresponding quadratic
formulations (i.e., L2(Ω) and H1

0(Ω)).
The proposed approach can be extended to time-dependent (e.g., parabolic) prob-

lems as well, which will be investigated in a subsequent work.

A. Convergence of Moreau-Yosida-regularization of

(P∗BV,L2)

In this appendix we consider the regularization of (P∗BV,L2):

(P∗BV,L2,c) min
p∈H

1
2
‖A∗ div p + z‖2

L2 +
β

2
‖p‖2

L2 +
1
2c
‖p‖2

H2
0
− 1

2
‖z‖2

L2

+
1
2c
‖max(0, c(p− α))‖2

L2 +
1
2c
‖min(0, c(p + α))‖2

L2 ,

β > 0 fixed. For the sake of presentation, we have used the same parameter for the
Moreau-Yosida regularization and the H2

0(Ω)-smoothing term, but the same result
holds if we replace 1

2c ‖p‖2
H2

0
by γ

2 ‖p‖2
H2

0
and take the limit as c→ ∞, γ→ 0.

The corresponding optimality system in weak form is

(A.1)


〈A∗ div pc, A∗ div v〉L2 + β 〈pc, v〉L2 +

1
c
〈∆pc, ∆v〉L2

− 〈z, A∗ div v〉L2 + 〈λc, v〉H∗,H = 0,

λc = max(0, c(pc − α)) + min(0, c(pc + α)),
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for all v ∈ H. This equation has a unique solution (λc, pc) ∈ H∗ ×H. We wish to
show convergence as c→ ∞ to the unique solution (λ∗, p∗) ∈ H2

div(Ω)∗ ×H2
div(Ω) of

the optimality system for (P∗BV,L2):

(A.2)

{ 〈A∗ div p∗, A∗ div v〉L2 + β 〈p∗, v〉L2 − 〈z, A∗ div v〉L2 + 〈λ∗, v〉H2
div
∗,H2

div
= 0,

〈λ∗, p∗ − p〉H2
div
∗,H2

div
≤ 0,

for all p ∈H2
div(Ω) with ‖p‖L∞ ≤ α.

The proof is similar to that of Theorem 3.1. Arguing as above, we have that

(A.3) 〈λc, pc〉L2 ≥
1
c
‖λc‖2

L2 .

and hence from (A.1) that

(A.4) ‖A∗ div pc‖2
L2 +

1
c
‖pc‖2

H2
0
+ β ‖pc‖2

L2 +
1
c
‖λc‖2

L2 ≤ ‖A∗ div pc‖L2 ‖z‖L2 .

This implies that the H2
div(Ω)-norm of pc is bounded uniformly in c by ‖z‖L2 , and that

(A.5) ‖λc‖H∗ ≤ 2 sup
v∈H,
‖v‖H≤1

‖A∗ div v‖L2 ‖z‖L2 < ∞.

It follows that (λc, pc) converges weakly subsequentially inH∗×H2
div(Ω) to a (λ̃, p̃) ∈

H∗ ×H2
div(Ω), which satisfies

(A.6) 〈A∗ div p̃, A∗ div v〉L2 + β 〈 p̃, v〉L2 − 〈z, A∗ div v〉L2 +
〈
λ̃, v
〉
H∗,H = 0

for all v ∈ H. By the density of H in H2
div(Ω) (via (C∞

0 (Ω))n ⊂ H), equation (A.6)
holds for all v ∈H2

div(Ω), and we can identify λ̃ with an element in H2
div(Ω)∗ (replac-

ing the duality pairing with the one in H2
div(Ω)).

The feasibility of p̃ follows exactly as in the proof of Theorem 3.1. Similarly, we
deduce from the optimality of pc and the density of H in H2

div(Ω) that

(A.7) lim sup
c→∞

1
2
‖A∗ div pc + z‖2

L2 +
β

2
‖pc‖2

L2 ≤
1
2
‖A∗ div p̃ + z‖2

L2 +
β

2
‖ p̃‖2

L2

holds. The convergence of pc to p̃ is therefore strong in H2
div(Ω), and we can pass to

the limit in

(A.8) 〈λc, p− pc〉H∗,H ≤ 0 for all feasible p ∈ H,

to obtain

(A.9)
〈
λ̃, p− p̃

〉
H∗,H ≤ 0 for all feasible p ∈ H.

Again, the density of H in H2
div(Ω) and the fact that λ̃ ∈ H2

div(Ω)∗ allows us to
conclude that

(A.10)
〈
λ̃, p− p̃

〉
H2

div
∗,H2

div
≤ 0

holds for all feasible p ∈ H2
div(Ω). Therefore, (λ̃, p̃) ∈ H2

div(Ω)∗ ×H2
div(Ω) satisfies

(A.2), and p̃ = p∗ and λ̃ = λ∗ follows from the uniqueness of its solution.
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