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1. Introduction

In this paper we investigate iterative methods for the numerical solution of an elliptic partial differential
equation (PDE) with gradient constraints. In particular, we consider

max{−Δu− f, |∇u| − g} = 0 a.e. in Ω,
u = 0 on Γ = ∂Ω,

(1.1)

where Ω ⊂ R
d is a bounded domain with smooth boundary Γ.

This problem was originally studied in [5], where sufficient conditions for existence, uniqueness and regularity
results of the type u ∈ W 1,∞(Ω) and u ∈ W 2,p

loc (Ω) were obtained. These results were refined in [17], where
sufficient conditions for u ∈ C1,1(Ω) were given, and in [9] where among other aspects, more general first order
constraints are admitted.

In the present work we aim for the efficient numerical treatment of (1.1). We shall analyze semi-smooth
Newton methods for an appropriately defined family of approximating problems. It will be verified that this
approximation is consistent in the sense that the solutions to this family of approximating problems converge
to the solution of (1.1) and that the semi-smooth Newton method converges super-linearly for each member
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of the family. We recall here that semi-smooth Newton methods in a function space setting were successfully
applied to diverse variational problems, including optimal control problems with constraints, for example. We
refer to [8] and the references give there. Differently from previous applications of semi-smooth Newton methods,
(1.1) does not directly arise from a variational setting. This will require us to use techniques different from
those in [8] to analyze the proposed methods.

In special cases, however, (1.1) is equivalent to variational problems. In particular, if f and g are constant
then (1.1) is equivalent to the elasto-plastic torsion problem, with u representing the stress function and Ω the
cross section of an elasto-plastic beam. In [5] it is also pointed out that the solution u of (1.1) can be related
to the minimal expected cost in stochastic optimal control problems.

Our motivation for investigating (1.1) is in part intrinsic and to the other part related to the fact that certain
portfolio optimization problems have a structure related to (1.1). To explain the latter consider the system of
stochastic differential equations

dX0(t) = rX0(t) dt− (1 + γ) dL(t) + (1 − γ) dM(t)

dX1(t) = μX1(t) dt+ σX1(t) dW (t) + dL(t) − dM(t)

where X0, X1 denote wealth processes for the bank account and stock respectively, where further r, μ, σ, γ stand
for the interest rate, trend, volatility, trading costs and L,M are the cumulative processes describing purchases
and sales of stock.

Maximizing the expected utility U(x) = xα/α for the terminal wealth after liquidating the position in the
stocks requires us to consider the stochastic optimization problem

J(t, x0, x1) = supL,M E[ 1
α (X0(T ) + (1 − γ)X1(T ))α |X0(t) = x0, X1(t) = x1],

where E stands for expectation and α ∈ (0, 1).

Then, without entering into details, it can be shown [14] that J is a concave, continuous, viscosity solution of

max { Jt + AJ, −(1 + γ)Jx0 + Jx1 , (1 − γ)Jx0 − Jx1 } = 0 (1.2)

on [0, T )× D with J(T, x0, x1) = 1
α (x0 + (1 − γ)x1)α, where

Ah(x0, x1) = rx0hx0(x0, x1) + μhx1(x0, x1) +
1
2
σ2x2

1 hx1,x1(x0, x1),

and D is the solvency region. If the cost-functional is of infinite horizon type, i.e. if it extends over [0,∞), then
the resulting Hamilton Jacobi Bellman equation corresponding to (1.2) is time independent. Using the so-called
homotheticity property of (1.2), this equation can be reduced to a one-dimensional equation for the ‘spatial’
variable x0

x0+x1
, known as the risky fraction. The resulting one-dimensional equation has similar structure max-

structure as (1.2). Clearly (1.2) is significantly more challenging to analyze than (1.1). But it is a worthwhile
challenge to analyze (1.1) before (1.2). The numerical feasibility for solving one-dimensional portfolio problems
was already established in earlier work [12].

Let us briefly comment on the following sections. In Section 2 we consider the one dimensional version
of (1.1). It is distinctly different from the multi-dimensional one for two reasons. First in this case the nonlinear
constraint |∇u| ≤ g is equivalent to the bilateral affine constraint −g ≤ ux ≤ g, and secondly open sets in
dimension one can be expressed as the countable union of open intervals. Both these structural properties have
no immediate counterpart in the multi-dimensional case. After giving sufficient conditions for existence and
uniqueness, a family of approximating problems is introduced and their asymptotic behavior is analyzed. Each
member of the family can be solved by a semi-smooth Newton method or, equivalently a primal-dual active
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set method, with super-linear convergence rate. In Section 3 we carry out essentially the same program for
dimension d ≥ 2, but now for the nonlinear constraint term |∇u| ≤ g, which requires a significantly different
treatment as the affine case. Concerning existence and uniqueness, we can quote [5]. Nevertheless we give an
independent treatment here. In part this is done for the sake of completeness and to the other part, that we
base the existence proof on the same family of non-differentiable approximating problems, as is used for the
numerical treatment. Earlier work relies on smooth families of approximating problems. Section 4 is devoted
to reporting on numerical experiments with the proposed algorithms. In a short final section we point out some
open problems related to (1.1), of which there are, of course, many.

We recall here the weak maximum principle for the equation

Lu := −Δu+ b · ∇u in Ω, u = 0 on Γ

with b ∈ (Ld(Ω))d. If u ∈ H1
0 (Ω) as well as Lu ≤ 0 in H−1(Ω) and u ≤ 0 on Γ holds, then u ≤ 0. The proof

in [16], Theorem 2.4, requires that b ∈ (L∞(Ω))d, but can be modified to the case b ∈ (Ld(Ω))d.

Notation. Throughout, c denotes a generic positive constant which can change it meaning in every occurrence.

2. Analysis of the one-dimensional case

In the one-dimensional case we choose Ω = (0, 1) and utilize the following assumption.

Assumption 2.1. We assume f ∈ C(Ω) and f > 0 as well as g ∈ H1(Ω) and g ≥ 0 in Ω.

Our approach is motivated by the following equivalent reformulation of (1.1) as a complementarity system:

−u′′ + λ+ + λ− = f a.e. in Ω

λ+ ≥ 0, u′ − g ≤ 0, λ+(u′ − g) = 0 a.e. in Ω

λ− ≥ 0, −u′ − g ≤ 0, λ−(−u′ − g) = 0 a.e. in Ω.

(2.1)

2.1. Regularization

Instead of (2.1), we solve a sequence of regularized problems for an increasing sequence of parameters γ ≥ 0:

− u′′ + γ max{0, u′ − g} + γ max{0,−u′ − g} = f in Ω, u = 0 on Γ. (2.2)

The justification of calling (2.2) a regularization of (1.1) is due to the fact that diffusion is added on the active
set {|u′| = g}.
Proposition 2.2. Problem (2.2) has a unique solution u ∈ H2(Ω) ∩H1

0 (Ω).

Proof. Existence. We define T : H1
0 (Ω) → H1

0 (Ω) by the relation v = Tu and

−v′′ + γ max{0, u′ − g} + γ max{0,−u′ − g} = f in Ω, v = 0 on Γ.

Let S be a bounded set in H1
0 (Ω). Then

{
γ max{0, u′ − g} + γ max{0,−u′ − g} : u ∈ S

}
is a bounded set in

L2(Ω). Consequently, T (S) is a bounded set in H2(Ω) ∩H1
0 (Ω) and thus T (S) is precompact in H1

0 (Ω). This
shows that T is compact. Suppose that s ∈ [0, 1] and v solves v = s T (v), i.e.,

−v′′ + s γ max{0, v′ − g} + s γ max{0,−v′ − g} = s f in Ω, v = 0 on Γ.



212 R. GRIESSE AND K. KUNISCH

By the maximum principle, 0 ≤ v ≤ (−Δ)−1f . Testing the equation with v yields

‖∇v‖2
L2(Ω) ≤ ‖f‖L2(Ω)‖v‖L2(Ω).

Using Poincaré’s and Young’s inequalities, we derive the bound ‖v‖H1(Ω) ≤ c ‖f‖L2(Ω), independent of s ∈ [0, 1].
The existence of a solution u ∈ H1

0 (Ω) of (2.2), i.e., of a fixed point of T , now follows from the Leray-Schauder
fixed point theorem (see Appendix 5). By regularity of the data, u ∈ H2(Ω) holds.

Uniqueness. Suppose that u �= v are solutions of (2.2). Using their continuity, one shows as in [5], p. 563,
that there exists ε > 0 and x1 ∈ Ω such that u− v − ε u assumes a positive maximum in x1, hence

(1 − ε)u′(x1) = v′(x1). (2.3)

Moreover, we have
−(1 − ε)u′′ + v′′ − C(x) = −ε f a.e. in Ω,

where

−C(x) = (1 − ε) γ max{0, u′ − g} − γ max{0, v′ − g}
+ (1 − ε)γ max{0,−u′ − g} − γ max{0,−v′ − g}·

By Bony’s maximum principle [1], see Appendix 5, we conclude that

0 ≤ lim ess supx→x1
(−(1 − ε)u′′ + v′′)

holds, and hence
0 ≤ lim ess supx→x1

(C(x) − ε f(x)) = C(x1) − ε f(x1), (2.4)
due to continuity of C and f . We now distinguish cases and derive a contradiction to (2.4) in each case. All
functions are evaluated at x1.

(1) If u′ > g and v′ > g, then (2.4) implies γ (1 − ε)(u′ − g) − γ (v′ − g) ≤ −ε f , and (2.3) yields the
contradiction γ g ≤ −f .

(2) If u′ > g and |v′| ≤ g, then (2.4) implies the contradiction γ (1 − ε)(u′ − g) ≤ −ε f .

(3) If u′ > g and v′ < −g, then (2.3) implies a contradiction.

(4) If |u′| ≤ g and v′ > g, then (2.4) implies −γ (v′−g) ≤ −ε f , and (2.3) yields −γ (1−ε)u′+γ g ≤ −ε f . In
case −g ≤ u′ ≤ 0, this implies the contradiction 0 ≤ −ε f . In case 0 ≤ u′ ≤ g, we infer the contradiction
γ ε u′ ≤ −ε f .

(5) If |u′| ≤ g and |v′| ≤ g, then (2.4) implies the contradiction 0 ≤ −ε f .

(6) If |u′| ≤ g and v′ < −g, then (2.3) implies a contradiction.

(7) If u′ < −g and v′ > g, then (2.3) implies a contradiction.

(8) If u′ < −g and |v′| ≤ g, then (2.4) implies the contradiction γ (1 − ε) (−u′ − g) ≤ −ε f .

(9) If u′ < −g and v′ < −g, then (2.3) and (2.4) imply the contradiction ε γ g ≤ −ε f .

Consequently, the solution of (2.2) is unique. �

For the subsequent discussion, we denote the unique solution of (2.2) by uγ . We also introduce the
abbreviations

λ+
γ := γ max{0, u′ − g}, λ−γ := γ max{0,−u′ − g}, λγ := λ+

γ + λ−γ . (2.5)



NEWTON METHOD FOR ELLIPTIC EQUATIONS WITH GRADIENT CONSTRAINTS 213

Lemma 2.3 (a priori estimates for uγ). The unique solution of (2.2) satisfies the following a priori bounds:

‖uγ‖L∞(Ω) ≤ c ‖f‖L2(Ω) and 0 ≤ uγ ≤ (−Δ)−1f (2.6)

‖uγ‖H1(Ω) ≤ c ‖f‖L2(Ω) (2.7)

‖λγ‖L2(Ω) ≤ ‖f‖L2(Ω) + ‖g′‖L2(Ω) (2.8)

where all constants are independent of γ.

Proof. The pointwise inequality 0 ≤ uγ ≤ (−Δ)−1f in (2.6) is a consequence of the maximum principle.
The first inequality in (2.6) then follows from the embedding H2(Ω) ↪→ L∞(Ω) and the a priori estimate
‖(−Δ)−1f‖H2(Ω) ≤ c ‖f‖L2(Ω). The bound (2.7) was already shown in the proof of Proposition 2.2.

We now define the disjoint sets A+ := {x ∈ Ω : λ+
γ > 0} and A− := {x ∈ Ω : λ−γ > 0} and discuss A+ to get

an estimate for λ+
γ . Owing to the continuity of u′ and g, A+ is an open set and thus it can be written as the

countable union of pairwise disjoint open intervals In = (ln, rn), i.e., A+ =
⋃∞

n=1 In, see [15], p. 98. We write
(2.2) as

−u′′ + g′ + λ+
γ + λ−γ = f + g′ in Ω, u(0) = u(1) = 0,

multiply with u′ − g and integrate over In to obtain

−
∫

In

(u′′ − g′)(u′ − g) dx+ γ

∫
In

|u′ − g|2 dx =
∫

In

(f + g′)(u′ − g) dx.

This implies

−1
2
|u′ − g|2

∣∣∣rn

ln
+ γ ‖u′ − g‖2

L2(In) ≤ ‖f + g′‖L2(In)‖u′ − g‖L2(In).

For the first term, we distinguish cases:

(1) ln = 0. The contribution from the lower bound is 1
2 |u′ − g|2(ln) ≥ 0 and thus can be left out.

(2) ln > 0. By continuity of u′ and g, u′(ln) − g(ln) = 0 holds and the contribution from the lower bound
vanishes.

(3) rn < 1. As above, u′(rn) − g(rn) = 0 holds.

(4) rn = 1. This implies u′(1) ≥ g(1) ≥ 0. However, from the maximum principle we know that u′(1) ≤ 0
holds. Hence u′(rn) = g(rn) = 0 and the contribution from the upper bound vanishes.

We thus obtain
‖λ+

γ ‖L2(In) = γ ‖u′ − g‖L2(In) ≤ ‖f + g′‖L2(In)

and summation over the intervals In yields the desired estimate

‖λ+
γ ‖L2(Ω) ≤ ‖f + g′‖L2(Ω).

For the discussion of A− and λ−γ , we use

−u′′ − g′ + λ+
γ + λ−γ = f − g′ in Ω, u(0) = u(1) = 0,

multiply by −(u′ + g) and proceed in the same way. We arrive at

‖λ−γ ‖L2(Ω) = γ ‖u′ + g‖L2(Ω) ≤ ‖f − g′‖L2(Ω).

From here, (2.8) follows immediately since λ−γ and λ+
γ are orthogonal in L2(Ω). �



214 R. GRIESSE AND K. KUNISCH

Theorem 2.4 (convergence as γ → ∞). The unique solutions uγ of (2.2) converge strongly in H1(Ω) to the
unique solution u of (1.1).

Proof. Let γn be a sequence tending to ∞, and let un be the unique solution of (2.2) for γn. Moreover, let
λ+

n and λ−n be defined as in (2.5), and recall that −u′′n + λ+
n + λ−n = f holds in Ω. Lemma 2.3 thus implies

boundedness of {un} in H2(Ω), and hence there exists a subsequence (denoted by index n′) such that

un′ ⇀ u in H2(Ω), un′ → u in C1(Ω),

λ+
n ⇀ λ

+
in L2(Ω), λ−n ⇀ λ

−
in L2(Ω).

We immediately have −u′′ + λ
+

+ λ
−

= f and λ
+ ≥ 0 and λ

− ≥ 0. It remains to verify the complementarity
conditions in (2.1). In view of the boundedness of λ+

n′ in L2(Ω), we obtain∫ 1

0

|max{0, u′n′ − g}|2 dx ≤ c

γ2
n′

n′→∞−→ 0.

Moreover, the integrand converges uniformly to |max{0, u′ − g}|2 and hence u′ − g ≤ 0 holds in Ω. Next we
consider ∫ 1

0

λ+
n′(u′n′ − g) dx =

1
γn′

∫ 1

0

|λ+
n′ |2 dx ≤ c

γn′

n′→∞−→ 0.

Weak convergence of λ+
n′ and strong convergence of u′n′ in L2(Ω) imply that the integral converges to∫ 1

0
λ

+
(u′ − g) dx. The integrand is ≤ 0 a.e. and hence λ

+
(u′ − g) = 0 holds in Ω. The remaining com-

plementarity condition which involves λ
−

follows alike. �

2.2. Semi-smooth Newton method

The considerations above motivate the solution of (2.1) by solving a sequence of regularized problems (2.2)
for increasing parameters γ. For every fixed γ > 0, we propose to solve (2.2) by a semi-smooth Newton
method, formulated in terms of an active set strategy. The complete algorithm, together with an update of
the regularization parameter γ as justified by Theorem 2.4, is provided below. In the numerical examples, we
observed an increase of γ by a factor of 10 to be a suitable choice.

Algorithm 2.1 Semi-smooth Newton method in the one-dimensional case.
1: Choose initial u0 and γ ≥ 0 and set n = 0
2: while not converged do
3: while not converged do
4: Set

A+
n = {x ∈ Ω : u′n − g > 0} and A−

n = {x ∈ Ω : −u′n − g > 0}
5: Solve for un+1

−u′′ + γ χA+
n
(u′n+1 − g) + γ χA−

n
(−u′n+1 − g) = f in Ω, u = 0 on Γ

6: Increase n
7: end while
8: Increase γ
9: end while
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Lemma 2.5 (well-posedness of Step 5). Let A+, A− be measurable subsets of Ω and γ ≥ 0. Then the problem
in Step 5 has a unique solution u ∈ H2(Ω) ∩H1

0 (Ω).

Proof. The existence of a solution can be proved as in Proposition 2.2 where now v = Tu is defined by

−v′′ + γ χA+(u′ − g) + γ χA−(−u′ − g) = f in Ω, v = 0 on Γ.

Existence and uniqueness also follow directly from [16], Theorem 2.4 and Corollary. �

Proposition 2.6 (superlinear convergence of the active set loop for fixed γ). For fixed γ, the inner loop
(Steps 3–7 in Algorithm 2.1 converges locally superlinearly in H2(Ω) ∩H1

0 (Ω)).

Proof. We define the linear solution operator Sf = (−Δ)−1f , which maps L2(Ω) to H2(Ω) ∩H1
0 (Ω), and

Gf = (Sf)′,

which maps L2(Ω) to H1(Ω). Setting λ := λ+ + λ− as in (2.5), we see that (2.2) is equivalent to u = S(f − λ),
and thus equivalent to

λ = γmax{0, G(f − λ) − g} + γmax{0,−G(f − λ) − g}· (2.9)

Let F : L2(Ω) → L2(Ω) be defined by

F (λ) = λ− γmax{0, G(f − λ) − g} − γmax{0,−G(f − λ) − g}·

The max{0, ·} operator is well-known to be Newton (slantly) differentiable from Lp(Ω) → L2(Ω) for any p > 2,
see, e.g., [8], Proposition 4.1. The necessary smoothing is provided here by the operator G, which maps L2(Ω)
to L∞(Ω) in our one-dimensional setting. A generalized derivative (slanting function) is given by

(DF )(λ) = I + γ χA+G− γ χA−G,

where the active sets are

A+ := {x ∈ Ω : G(f − λ) − g > 0}, A− := {x ∈ Ω : −G(f − λ) − g > 0}·

A semi-smooth Newton step towards F (λ) = 0 is given by F (λn)+ (DF )(λn) δλ = 0 and λn+1 := λn + δλ. This
is equivalent to

λn+1 − γ χA+ (G(f − λn+1) − g) − γ χA− (−G(f − λn+1) − g) = 0 (2.10)

with A± determined from λn. Setting (for all n)

un+1 = S(f − λn+1),

i.e., −u′′n+1 + λn+1 = f , we obtain the following equivalent equation to (2.10):

−u′′n+1 + γ χA+
n
(u′n+1 − g) + γ χA−

n
(−u′n+1 − g) = f in Ω, un+1 = 0 on Γ.

This is the iteration Step 5 of our Algorithm 2.1, and the active sets are determined as in Step 4. Hence analyzing
the convergence for Algorithm 2.1 with u ∈ H2(Ω)∩H1

0 (Ω) is equivalent to analyzing the semi-smooth Newton
iteration applied to F (λ) = 0 in L2(Ω).

Lemma 2.5 shows that Step 5, or equivalently (2.10), admits a unique solution at every iterate. Lemma 2.7,
which is provided below, proves that ‖(DF )(λ)−1‖L(L2(Ω)) is uniformly bounded with respect to λ ∈ L2(Ω).
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To see this, note that y = (DF )(λ)−1z is equivalent to y + γ χA+Gy − γ χA−Gy = z. Letting v = Sy, we see
that this is in turn equivalent to

−v′′ + γ χA+v′ − γ χA−v′ = z in Ω, v = 0 on Γ.

We obtain ‖y‖L2(Ω) = ‖Δv‖L2(Ω) ≤ ‖v‖H2(Ω) ≤ c ‖z‖L2(Ω) by Lemma 2.7, with c independent of A±. The local
superlinear convergence is then a standard conclusion for generalized Newton methods, see [3], Remark 2.7,
or [8], Theorem 1.1. �

Lemma 2.7 (uniform boundedness). The solution of Step 5 satisfies

‖u‖H2(Ω) ≤ c
(‖f‖L2(Ω) + ‖g‖L2(Ω)

)
,

where c does not depend on A±.

Proof. We abbreviate w = f + χA+g + χA−g. By Lemma 2.5, the unique solution u of Step 5 is of class C1.
Define z = u′ and consider

− z′ + γ χA+ z − γ χA− z = w on (0, 1). (2.11)
By the intermediate value theorem, there exists m ∈ (0, 1) such that u′(m) = z(m) = 0. Multiplication of (2.11)
by z yields

1
2

d
dx

(z2) = γ χA+ z2 − γ χA− z2 − z w ≤ γ z2 +
z2

2
+
w2

2
on (0, 1).

By integration over [m,x] for m ≤ x ≤ 1, we obtain

z2(x) ≤ (2γ + 1)
∫ x

m

z2(s) ds+ ‖w‖2
L2 .

Gronwalls’s lemma implies that

z2(x) ≤ ‖w‖2
L2 e(2γ+1)(x−m) for all x ∈ [m, 1].

Similarly, the application of Gronwall’s lemma on [x,m] yields

z2(x) ≤ ‖w‖2
L2 e(2γ+1)(m−x) for all x ∈ [0,m].

The number m varies only in (0, 1), so we finally get

z2(x) ≤ ‖w‖2
L2 e(2γ+1)x+1 for all x ∈ [0, 1],

which implies that
‖u′‖L∞ ≤ c ‖w‖L2 ,

where c is independent of A±. Integration over [0, 1] yields the estimate

‖u‖W 1,∞(Ω) ≤ c
(‖f‖L2(Ω) + ‖g‖L2(Ω)

)
.

Our claim follows by considering

−u′′ = −γ χA+(u′ − g) − γ χA−(−u′ − g) + f in Ω, u = 0 on Γ

and applying a standard a priori estimate. �
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�

0 l r 1

A+ I A−

Figure 1. Assumed structure of the active and inactive sets for the primal-dual active set
method (Algorithm 4.1).

2.3. An active set approach without regularization

Here we briefly discuss an alternative active set approach without regularization. We begin with the obser-
vation that (2.1) can be equivalently formulated in the following form:

− u′′ + λ+ + λ− = f a.e. in Ω,

λ+ = max{0, λ+ + γ (u′ − g)} a.e. in Ω,

λ− = max{0, λ− + γ (−u′ − g)} a.e. in Ω,

(2.12)

where γ is an arbitrary positive constant. When the active sets at the solution

A+ = {x ∈ Ω : u′ − g > 0} and A− = {x ∈ Ω : −u′ − g > 0}

are known, problem (2.12) reduces to the solution of −u′′ = f on the inactive set with suitable boundary
conditions. Here we assume the structure of the active and inactive sets depicted in Figure 1, which is typical
for portfolio optimization problems. On the active sets, the solution is given by

u+(x) = G̃(x) − G̃(0) in A+, u−(x) = −G̃(x) + G̃(1) in A−, (2.13)

where G̃ is any anti-derivative of g. In order to enforce continuity of u and u′ at x ∈ {l, r}, we impose boundary
conditions of Robin type there:

−κu′(l) + u(l) = −κ g(l) + G̃(l) − G̃(0),

κ u′(r) + u(r) = −κ g(r) − G̃(r) + G̃(1),

with some κ > 0. If the structure in Figure 1 is not assumed and one connected component of A lies strictly in
the interior of Ω, the solution on this component involves unknown integration constants.

Numerical experience shows that the method based on regularization (Algorithm 2.1) is superior to the ap-
proach described here. Moreover, the regularization technique can be directly extended to the multi-dimensional
case. In Section 4, we provide a comparison between the two approaches.

3. Analysis of the multi-dimensional case

Assumption 3.1. Suppose that Ω ⊂ R
d, d ≥ 2 is a bounded domain with a smooth boundary Γ. We assume

that f ∈ C1(Ω), f > 0 and g ∈ C2(Ω), g ≥ 0.

3.1. Regularization

Similarly as before, we consider instead of (1.1) the regularized formulation

− Δu+ γ max{0, |∇u|2 − g2} = f in Ω, u = 0 on Γ (3.1)

for an increasing sequence of parameters γ ≥ 0.
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Proposition 3.2. Problem (3.1) has a unique solution u ∈W 3,q(Ω) ∩H1
0 (Ω), 1 ≤ q <∞.

Proof. Existence. Let q > 2d. We use again Leray-Schauder theory and define T : W 1,4q
0 (Ω) → W 1,4q

0 (Ω) by
the relation v = Tu iff

−Δv + γmax{0, |∇u|2 − g2} = f in Ω, v = 0 on Γ.
For u ∈ W 1,4q

0 (Ω), we have |∇u|2 ∈ L2q(Ω), and the same regularity holds for f − γmax{0, |∇u|2 − g2}. Thus
v ∈ W 2,2q(Ω), which embeds compactly into W 1,4q(Ω), hence T is compact. Suppose now that s ∈ [0, 1] and
that u solves u = s T (u), i.e.,

−Δu+ s γmax{0, |∇u|2 − g2} = s f in Ω, u = 0 on Γ.

By the maximum principle, 0 ≤ u ≤ (−Δ)−1f holds, which implies

‖u‖L∞(Ω) ≤ c ‖f‖C1(Ω),

independent of s. Testing the equation with u yields the a priori estimate ‖u‖H1(Ω) ≤ c ‖f‖L2(Ω) like in the
one-dimensional case, but this is not strong enough for our purpose. Instead, we shall now derive a bound for
‖∇u‖L∞(Ω), independent of s.

We observe that −Δu = sf − s γ max{0, |∇u|2 − g2} ∈ L2q(Ω), hence u ∈ W 2,2q(Ω). This implies that the
right hand side is even in W 1,q(Ω) and hence u ∈ W 3,q(Ω) and u ∈ C2(Ω) hold. We define the auxiliary function

z = |∇u|2 − 3u,

which is of class W 2,q/2(Ω) and thus C1(Ω). Once a pointwise upper bound for z is established which depends
only on the data, we obtain a bound for ‖∇u‖L∞(Ω). We therefore define x to be the global maximum of z on Ω
and distinguish three cases:

(1) If x ∈ I = {x ∈ Ω : |∇u| ≤ g}, then

z(x) = |∇u(x)|2 − 3u(x) ≤ g(x)2

and thus ‖∇u‖2
L∞(Ω) ≤ ‖g‖2

L∞(Ω) + 3‖u‖L∞(Ω) holds.

(2) Suppose that x ∈ A = {x ∈ Ω : |∇u| > g}. Since A is open, we infer from the Bony maximum principle
and the definition of z that

0 ≤ lim ess supx→x (−Δz)

= lim ess supx→x

⎛⎝−2
d∑

i,k=1

(
(uxkxi)

2 + uxk
uxkxixi

)
+ 3 Δu

⎞⎠
≤ lim ess supx→x

(
−2

d∑
k=1

uxk
Δ(uxk

) + 3 Δu

)

holds. On the open set A, we have the equation

−Δu+ s γ
(|∇u|2 − g2

)
= s f in A.

Plugging in and using the continuity of the expression obtained, we get

0 ≤ −2
d∑

k=1

uxk

[
s γ
(|∇u|2 − g2

)
xk
− s fxk

]
+ 3

[
s γ
(|∇u|2 − g2

)− s f
]
,
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where everything is evaluated at x, and we omit this argument throughout. We may cancel s since for
s = 0, u ≡ 0 holds, and omit −3 γ g2 − 3 f ≤ 0 to obtain

0 ≤ −2 γ (∇u) · [∇ (|∇u|2)−∇(g2)
]
+ 2 (∇u) · (∇f) + 3 γ |∇u|2.

Since z attains its maximum at x, ∇z = 0 holds, and thus

∇ (|∇u|2)− 3∇u = 0.

This yields
0 ≤ −3 γ |∇u|2 + 2 γ (∇u) · ∇(g2) + 2 (∇u) · (∇f)

≤ −3 γ |∇u|2 + γ |∇u|2 + γ |∇(g2)|2 + |∇u|2 + |∇f |2.
For γ ≥ 1, this implies

|∇u(x)|2 ≤ ‖g‖4
W 1,∞(Ω) + ‖f‖2

W 1,∞(Ω).

Finally,
|∇u(x)|2 − 3u(x) = z(x) ≤ z(x) = |∇u(x)|2 − 3u(x)

yields the desired pointwise bound for |∇u(x)| on Ω.

(3) If x ∈ Γ, we consider
−Δw = f in Ω, w = 0 on Γ.

Since −Δu ≤ s f ≤ f holds in Ω, the maximum principle implies that 0 ≤ u ≤ w in Ω. Therefore, we
obtain

∂w

∂n
≤ ∂u

∂n
≤ 0 on Γ.

Choose p > d. The a priori estimate ‖w‖W 2,p(Ω) ≤ c ‖f‖L∞(Ω), the continuity of the normal trace
operator from W 2,p(Ω) into W 1−1/p,p(Γ) and the continuity of the embedding of the latter space into
L∞(Γ) imply ‖ ∂u

∂n‖L∞(Γ) ≤ ‖∂w
∂n ‖L∞(Γ) ≤ c ‖f‖L∞(Ω). In tangential directions, we have ∂u

∂τ = 0 on Γ,
thus |∇u| ≤ c ‖f‖L∞(Ω) holds on Γ.

Altogether, we obtain a bound

‖u‖W 1,∞(Ω) ≤ c
(
‖f‖W 1,∞(Ω) + ‖f‖1/2

L∞(Ω) + ‖g‖L∞(Ω) + ‖g‖2
W 1,∞(Ω)

)
,

where c does not depend on s nor γ. The Leray-Schauder theorem now implies the existence of a solution
u ∈W 1,4q

0 (Ω) of (3.1). From the above bootstrapping argument, moreover u ∈W 3,q(Ω) and u ∈ C2(Ω) follow.

Uniqueness. We employ a similar argument as in the proof of Proposition 2.2. Suppose that u �= v are
two solutions of (3.1). Without loss of generality, u − v attains a positive maximum in Ω. Hence there exists
ε ∈ (0, 1) and x1 ∈ Ω such that u− v − ε u assumes a positive maximum in x1, which implies

(1 − ε)∇u(x1) = ∇v(x1). (3.2)

Moreover, the maximum principle implies

0 ≤ −Δ(u− v − ε u)(x1) = C(x1) − ε f(x1), (3.3)

where −C(x) = (1− ε) γ max{0, |∇u|2 − g2} − γ max{0, |∇v|2 − g2}. We distinguish cases, where all functions
are evaluated at x1.

(1) If |∇u| ≤ g, then by (3.2) also |∇v| ≤ g holds, and (3.3) yields the contradiction 0 ≤ −ε f .

(2) If |∇u| > g and |∇v| ≤ g, then (3.3) yields the contradiction 0 ≤ (1 − ε) γ (|∇u|2 − g2) ≤ −ε f .
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(3) The case |∇u| ≤ g and |∇v| > g violates (3.2).

(4) If |∇u| > g and |∇v| > g, then (3.3) yields

(1 − ε) γ (|∇u|2 − g2) − γ (|∇v|2 − g2) ≤ −ε f.

As (1 − ε)2 < 1 − ε holds, we infer from (3.2)

γ|∇v|2 − (1 − ε) γ g2 − γ |∇v|2 + γ g2 ≤ −ε f,

which leads to the contradiction ε γ g2 ≤ −ε f .

Hence the solution u of (3.1) must be unique. �

We may note that for the previous proposition, we only require g ∈W 1,∞(Ω). For the subsequent discussion,
we denote the unique solution of (3.1) by uγ . Similarly to the one-dimensional case, we introduce

λγ := γ max{0, |∇uγ|2 − g2}· (3.4)

Lemma 3.3 (a priori estimates for uγ). The unique solution of (3.1) satisfies the following a priori bounds:

‖uγ‖W 1,∞(Ω) ≤ c
(
‖f‖C1(Ω) + ‖f‖1/2

C(Ω) + ‖g‖C(Ω) + ‖g‖2
C1(Ω)

)
(3.5)

0 ≤ uγ ≤ (−Δ)−1f (3.6)

‖uγ‖W 2,p(Ω′) ≤ C1(p,Ω′) for all 1 ≤ p <∞ and all Ω′ ⊂⊂ Ω (3.7)

‖λγ‖L∞(Ω′) ≤ C2(Ω′). (3.8)

All constants are independent of γ, and C1 and C2 depend on ‖uγ‖C1(Ω), ‖f‖C1(Ω) and ‖g‖C2(Ω).

Proof. The bounds (3.5)–(3.6) were shown in the proof of Proposition 3.2. To show (3.7), we begin by proving
a bound for ‖Δu‖L∞(Ω). (We omit the index γ throughout the proof.) We distinguish between

A = {x ∈ Ω : |∇u| > g} and I = {x ∈ Ω : |∇u| ≤ g}·

On the inactive set, (3.1) immediately implies

‖Δu‖L∞(I) ≤ ‖f‖L∞(I). (3.9)

Now let Ω′ ⊂⊂ Ω and let ζ be a smooth function on Ω satisfying ζ = 0 on Γ, ζ = 1 on Ω′. We consider the
function

v = ζ2 γ
(|∇u|2 − g2

)
in A.

Note that v ≥ 0 and v ∈ W 2,q(Ω) for 1 ≤ q < ∞, thus v ∈ C1(Ω) hold. Suppose that v attains its global
maximum in x1 ∈ A. By construction, v = 0 on ∂A ∪ Γ, and thus x1 ∈ A \ Γ, and we infer

∇v(x1) = 0 and lim ess supx→x1
Δv(x) ≤ 0 (3.10)

from Bony’s maximum principle. (Here we use the W 2,∞ regularity of g.) We also have

−ζ2 Δu+ v = ζ2 f a.e. in A.

Differentiation implies that

− ζ2Δuγ,xk
= (ζ2 f)xk

+ 2 ζ ζxk
Δu− vxk

a.e. in A. (3.11)
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From the definition of v we infer

vxi = ζ2γ

(
2
∑

k

uxk
uxkxi − (g2)xi

)
+ 2 ζ ζxiγ

(|∇u|2 − g2
)

vxixi = ζ2γ

(
2
∑

k

(uxkxi)
2 + 2

∑
k

uxk
uxkxixi − (g2)xixi

)

+ 4 ζ ζxiγ

(
2
∑

k

uxk
uxkxi − (g2)xi

)
+ 2 γ

(
ζ2
xi

+ ζ ζxixi

) (|∇u|2 − g2
)

a.e. in A. We calculate

Δv = ζ2γ

(
2 |D2u|2 + 2

∑
k

uxk
Δuxk

− Δ(g2)

)

+ 4 ζ
∑

i

ζxiγ

(
2
∑

k

uxk
uxkxi − (g2)xi

)
+ 2 γ

(∑
i

ζ2
xi

+ ζΔζ

)(|∇u|2 − g2
)
,

where we used the abbreviation |D2u|2 :=
∑

i,k(uxixk
)2. By (3.11), we find

Δv = γ

(
2 ζ2 |D2u|2 − 2

∑
k

uxk

(
ζ2f
)
xk

− 4 ζ
∑

k

ζxk
uxk

Δu+
∑

k

vxk
uxk

− ζ2 Δ(g2)

)

+ 4 ζ
∑

i

ζxiγ

(
2
∑

k

uxk
uxkxi − (g2)xi

)
+ 2 γ

(∑
i

ζ2
xi

+ ζΔζ

)(|∇u|2 − g2
)
.

Realizing that all terms on the right hand side are continuous functions on A, we can evaluate (3.10) and obtain

0 ≥ Δv(x1)

= γ

(
2 ζ2 |D2u|2 − 2

∑
k

uxk

(
ζ2f
)
xk

− 4 ζ
∑

k

ζxk
uxk

Δu− ζ2 Δ(g2)

)

+ 4 ζ
∑

i

ζxiγ

(
2
∑

k

uxk
uxkxi − (g2)xi

)
+ 2 γ

(∑
i

ζ2
xi

+ ζΔζ

)(|∇u|2 − g2
)
,

where everything is evaluated at x1. Consequently, there exist C1, C2, depending on ‖ζ‖C2(Ω), ‖f‖C1(Ω),
‖g‖C2(Ω), ‖u‖W 1,∞(Ω), such that

ζ2 |D2u|2 ≤ c1 + c2 ζ |D2u| in x1

and thus
ζ |D2u| ≤ c in x1.

Using the estimate |Δu|2 ≤ d |D2u|2, we derive

ζ |Δu| ≤ c
√
d in x1.

Finally, we conclude

0 ≤ v(x) = ζ2(f + Δu)(x) ≤ v1(x) = ζ2(f + Δu)(x1) for a.a. x ∈ A,
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and thus
|ζΔu(x)| ≤ ‖f‖L∞(Ω) + ‖ζ‖C(Ω) c

√
d for a.a. x ∈ A

and
‖Δu‖L∞(Ω′∩A) ≤ c.

Together with (3.9) this implies that
‖Δu‖L∞(Ω′) ≤ c.

By interior estimates for elliptic equations [13], Chapters III.7 and III.8, the final estimate (3.7) follows. (3.8)
follows from λ = f + Δu. �

Theorem 3.4 (convergence as γ → ∞). The unique solutions uγ of (3.1) converge to the unique solution
u ∈W 1,∞(Ω) ∩W 2,p

loc (Ω) of (1.1) in the following sense:

uγ → u in C(Ω) (3.12)

∇uγ → ∇u in W 1,p(Ω′) for all 1 ≤ p <∞, and in C(Ω′) (3.13)

Δuγ ⇀ Δu in Lp(Ω′) for all 1 ≤ p <∞, (3.14)

for every Ω′ ⊂⊂ Ω.

Proof. Let γn be a sequence tending to ∞, and let un ∈ W 1,∞(Ω) ∩W 2,p
loc (Ω) be the unique solution of (3.1)

for γn. Moreover, let Ω′ ⊂⊂ Ω and choose p > d. By (3.5), there exists a subsequence satisfying un′ ⇀ u
in W 1,p(Ω) for some p > d. By compactness of the embedding, un′ → u in C(Ω) follows. From (3.7) and
the compact embedding of W 2,p(Ω′) into W 1,p(Ω′), we get ∇un′ → ∇u in W 1,p(Ω′) and thus in C(Ω′), and
moreover ∇un′ ⇀∗ ∇u in W 1,∞(Ω). (For convenience, we denote sub-subsequences by the same index n′.)
Finally, (3.7) also implies Δun′ ⇀ Δu in Lp(Ω′), thus we have (3.12)–(3.14) for subsequences.

We proceed to show that u satisfies (1.1). From (3.1) we obtain∫
Ω

(−Δun′ − f)ϕdx ≤ 0 for all ϕ ∈ L2(Ω), ϕ ≥ 0.

Weak convergence implies that∫
Ω

(−Δu− f)ϕdx ≤ 0 for all ϕ ∈ L2(Ω), ϕ ≥ 0

and thus
−Δu ≤ f a.e. in Ω.

Moreover, by (3.8) and the definition λγ = γ max{0, |∇uγ |2 − g2}, we get

max{0, |∇un′ |2 − g2} ≤ C2(Ω′)
γn′

n′→∞−→ 0 on Ω′.

Since ∇un′ → ∇u in C(Ω′), the left hand side converges to max{0, |∇u|2 − g2} and we obtain

max{0, |∇u|2 − g2} ≤ 0.

This implies that
max{−Δu− f, |∇u| − g} ≤ 0 a.e. in Ω,
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To prove that equality holds, assume that |∇u(x0)| < g(x0) for some x0 ∈ intΩ′ and indeed in a neighborhood
N(x0) ⊂ Ω′. In view of ∇un′ → ∇u uniformly in Ω′, we have |∇un′(x)| < g(x) for all x ∈ N(x0) and sufficiently
large n′. Hence (3.1) implies that

−Δun′ = f in N(x0)
holds for sufficiently large n′. Passing to the weak limit in L2(N(x0)), we get

−Δu = f in N(x0).

To summarize, the limit u ∈ W 1,∞(Ω) ∩W 2,p
loc (Ω) of the subsequence un′ solves (1.1). As the solution of (1.1)

is unique [5], the convergence extends to the whole sequence. �

3.2. Semi-smooth Newton method

This section is devoted to the analysis of the semi-smooth Newton method for solving (3.1). We start with
a technical lemma which is used repeatedly throughout this section.

Lemma 3.5. Consider
− Δy + b · ∇y = f in Ω, y = 0 on Γ (3.15)

in a bounded domain Ω ⊂ R
d with sufficiently regular boundary Γ such that (−Δ) is a homeomorphism from

H2(Ω)∩H1
0 (Ω) to L2(Ω). If b ∈ [Lq(Ω)]d with q > d, then for every f ∈ L2(Ω), there exists a unique solution y

to (3.15). Moreover, there exists K = K(b) such that

‖y‖H2(Ω) ≤ K(b) ‖f‖L2(Ω) (3.16)

holds for all f ∈ L2(Ω).

Proof. The verification is quite standard and is included for the sake of completeness. Consider the operator
T : L2(Ω) → L2(Ω), defined by

Tw = w + b · ∇(−Δ)−1w.

Since w �→ ∇(−Δ)−1w is compact from H1(Ω) to [Lp(Ω)]d, for every p ∈ [1, 2d
d−2), and since for b ∈ [Lq(Ω)]d,

q > d, the mapping v �→ b v is bounded from [Lp̃(Ω)]d to L2(Ω) for some p̃ ∈ [1, 2d
d−2), it follows that T

is a compact perturbation of the identity from L2(Ω) to itself. Moreover, T is injective. In fact, setting
v = (−Δ)−1w, the equation Tw = 0 is equivalent to

−Δv + b · ∇v = 0 in Ω, v = 0 on Γ.

This implies that v = 0 by a corollary to the maximum principle [16], Theorem 2.4 and Corollary, and hence
w = 0. By Fredholm’s alternative, T is continuously invertible from L2(Ω) to itself, and (3.16) follows. �

Turning to (3.1), note that this equation is equivalent to

F (λ) = λ− γ max{0, |∇S(f − λ)|2 − g2} = 0.

Here S = (−Δ)−1 : L2(Ω) → H2(Ω)∩H1
0 (Ω), and F maps L2(Ω) into itself. The relationship between λ and u

is given by
u = S(f − λ).

The semi-smooth Newton step towards F (λ) = 0 reads

δλ+ 2 γ χAn∇S(f − λn)∇S δλ = −λn + γ max{0, |∇S(f − λn)|2 − g2}, (3.17)
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or, in terms of the variable u,

−Δδu+ 2 γ χAn∇un · ∇δu = Δun − γ max{0, |∇un|2 − g2} + f in Ω
δu = 0 on Γ.

(3.18)

Let us henceforth assume d ≤ 3. Then H1(Ω) ↪→ L6(Ω) and χ∇un ∈ [L2(Ω)]d if un ∈ H2(Ω) ∩ H1
0 (Ω).

Lemma 3.5 implies the well-posedness of the Newton step and the H2 regularity of the iterate un+1 = un + δu.
We are now prepared to define the semi-smooth Newton algorithm for the solution of (3.1) in the multi-
dimensional case. As in the one-dimensional setting, we embed it into an update loop for the regularization
parameter γ, see Algorithm 3.1.

Algorithm 3.1 Semi-smooth Newton method in the multi-dimensional case.

1: Choose initial u and γ ≥ 0 and set n = 0
2: while not converged do
3: while not converged do
4: Set

An = {x ∈ Ω : |∇un| > g}
5: Solve for δu ∈ H2(Ω) ∩H1

0 (Ω)

−Δδu+ 2 γ χAn∇un · ∇δu = Δun − γ max{0, |∇un|2 − g2} + f in Ω
δu = 0 on Γ.

6: Update un+1 = un + δu and increase n
7: end while
8: Increase γ
9: end while

Before we turn to the convergence analysis of Algorithm 3.1, we need to introduce a technical assumption.
We consider the following equation which corresponds to the formal linearization of (3.1) at uγ :

−Δv + 2 γ χAγ∇uγ · ∇v = h in Ω, v = 0 on Γ.

Here, Aγ = {x ∈ Ω : |∇uγ | > g}. Since uγ ∈ H2(Ω), the coefficient 2 γ χAγ∇uγ ∈ L2d/(d−2)(Ω) ⊂ Ld(Ω) for
d ≤ 3, and Lemma 3.5 implies the existence of a constant K such that

‖v‖H2(Ω) ≤ K

2
‖h‖L2(Ω)

holds for every h ∈ L2(Ω). Moreover, there exist neighborhoods

N(uγ) ⊂ H2(Ω), N(χAγ ) ⊂ L6(Ω)

of uγ and χAγ , such that the unique solution to

− Δv + 2 γ χ∇u · ∇v = h in Ω, v = 0 on Γ (3.19)

satisfies
‖v‖H2(Ω) ≤ K ‖h‖L2(Ω) (3.20)



NEWTON METHOD FOR ELLIPTIC EQUATIONS WITH GRADIENT CONSTRAINTS 225

for every h ∈ L2(Ω) and all u ∈ N(uγ), χ ∈ N(χAγ ). In fact, defining for (χ, u) ∈ L6(Ω) ×H2(Ω) the operator
B(χ, u) : H2(Ω) ∩H1

0 (Ω) → L2(Ω) by the left hand side of (3.19), we have

‖B(χ, u)−1‖L(L2(Ω),H2(Ω)) ≤ K/2

and

‖B(χAγ , uγ) v − B(χ, u) v‖L2(Ω) ≤ 2 γ
(‖χAγ − χA‖L6(Ω)‖∇uγ‖L6(Ω) + ‖χ‖L6(Ω)‖∇uγ −∇u‖L6(Ω)

) ‖∇v‖L6(Ω)

≤ 2 γ κ2
6

(‖χAγ − χA‖L6(Ω)‖uγ‖H2(Ω) + ‖χ‖L6(Ω)‖uγ − u‖H2(Ω)

) ‖v‖H2(Ω),

where κ6 is the embedding constant of H2(Ω) ↪→W 1,6(Ω). A perturbation argument now implies (3.20).

Theorem 3.6 (superlinear convergence of the active set loop for fixed γ). Suppose that d ≤ 3 holds and that the
active sets An belonging to the iterates {un} of the inner loop (Steps 3–7) of Algorithm 3.1 satisfy χAn ∈ N(χAγ )
for all n. Then the inner loop converges locally superlinearly to uγ.

We shall discuss the assumption χAn ∈ N(χAγ ) further below.

Proof. Step 5 of the algorithm and (3.1) imply the error equation

− Δ(un+1 − uγ) + 2 γχAn∇un · ∇(un+1 − uγ) =

γ max{0, |∇uγ|2 − g2} − γ max{0, |∇un|2 − g2} + 2 γ χAn∇un · ∇(un+1 − uγ).

In terms of λ, this reads

λn+1 − λγ − 2 γ χAn∇(S(f − λn)) · ∇(S(λn+1 − λγ)) =

γ max{0, |∇S(f − λγ)|2 − g2} − γ max{0, |∇S(f − λn)|2 − g2} + 2 γ χAn∇S(f − λn) · ∇S(λγ − λn).

By assumption, χAn ∈ N(χAγ ) holds for all n. We carry out an induction argument and assume that un ∈
N(uγ). Then by u = S(f − λ) and (3.20),

‖λn+1 − λγ‖L2(Ω) ≤ K γ
∥∥max{0, |∇S(f − λn)|2 − g2} − max{0, |∇S(f − λγ)|2 − g2}

+ 2χAn∇S(f − λn) · ∇S(λγ − λn)
∥∥

L2(Ω)
. (3.21)

As already recalled in Section 2, the mapping v �→ max{0, v} is Newton differentiable from L3(Ω) to L2(Ω).
Moreover, λ �→ |∇S(f −λ)|2 is Fréchet differentiable with derivative −2∇S(f−λ) ·∇S(·) from L2(Ω) to L3(Ω).
In fact, at a.e. x ∈ Ω, we have for λ, λ ∈ L2(Ω)

|∇S(f − λ)|2
Rd − |∇S(f − λ)|2

Rd + 2∇S(λ− λ) · ∇S(f − λ) = |∇S(λ− λ)|2
Rd

and hence ∥∥|∇S(f − λ)|2
Rd − |∇S(f − λ)|2

Rd + 2∇S(λ− λ) · ∇S(f − λ)
∥∥

L3(Ω)
≤ κ3 ‖λ− λ‖2

L2(Ω),

where κ3 is the embedding constant of H1(Ω) ↪→ L3(Ω). The chain rule for Newton differentiable functions [10],
Lemma 7.2, implies that the composite function λ �→ max{0, |∇S(f − λ)|2 − g2} is Newton differentiable from
L2(Ω) into itself with Newton derivative given by −2χ{|∇S(f−λ)|>g}∇S(f − λ) · ∇S(·). It follows from (3.21)
that

‖λn+1 − λγ‖L2(Ω) = o
(‖λn − λγ‖L2(Ω)

)
.
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If ‖u0 − uγ‖H2(Ω), or equivalently ‖λ0 − λγ‖L2(Ω) is sufficiently small, then the next iterate is again in N(uγ),
and superlinear convergence of {un} to uγ in H2(Ω) ∩H1

0 (Ω) follows. �

Let us now turn to a discussion of the requirement that χAn ∈ N(χAγ ) for all n. The difficulty is due to
the fact that u �→ χ{|∇u|>g} ∈ Lq(Ω) for any q ∈ [1,∞] is not continuous, as can be seen by considering the
sequence un(x) = x/n and g = 0.

Assumption 3.7. Suppose that meas{x ∈ Ω : |∇uγ | = g} = 0.

Note that this is different from requiring that meas{x ∈ Ω : |∇u| = g} = 0, where u is the solution to (1.1),
which would exclude interesting cases. Rather, in view of the structure of (3.1), Assumption 3.7 is equivalent to

meas{x ∈ Ω : |∇uγ | = g and − Δuγ = f} = 0.

We can therefore interpret Assumption 3.7 as a strict complementarity condition for the regularized problem.

Lemma 3.8. With Assumption 3.7 holding, there exists a neighborhood N̂(uγ) ⊂W 1,1(Ω) such that u ∈ N̂(uγ)
implies that χA ∈ N(χAγ ), where A = {x ∈ Ω : |∇u| > g}.

Proof. In fact, if this is not the case, there exists a sequence un → uγ in W 1,1(Ω) such that χAn does not
converge to χAγ in L6(Ω), where An = {x ∈ Ω : |∇un| > g}. However, by Assumption 3.7, we have∫

Ω

|χAn − χAγ |6 dx = meas{x ∈ Ω : |∇uγ | > g, |∇un| ≤ g}
+ meas{x ∈ Ω : |∇uγ | < g, |∇un| > g}·

The expression on the right hand side converges to 0 as n→ ∞ by Lebesgue’s dominated convergence theorem.
This is a contradiction. �

Therefore, Assumption 3.7 implies the local superlinear convergence of the inner loop of Algorithm 3.1 in
case d ≤ 3.

We now develop an alternative to the requirement that χAn ∈ N(χAγ ) for all n, which uses a uniform
regularity assumption on the boundaries of An.

Definition 3.9. A bounded set D ⊂ R
d with nonempty boundary satisfies the uniform cone property if there

exist ϑ, h > 0 and r > 0 with the following property: For every x ∈ ∂D, there exists a cone C(ξx, ϑ, h) = {x ∈
R

d : x�ξx > |x| cosϑ, |x| > h} with |ξx| = 1, such that y + C(ξx, ϑ, h) ⊂ int D for all y ∈ Br(x) ∩ D, where
Br(x) is the open ball of radius r centered at x. Further we set

L(Ω, ϑ, h, r) = {D ∈ Ω : D satisfies the uniform cone property with (ϑ, h, r)}·

Theorem 3.10 (superlinear convergence of the active set loop for fixed γ). Suppose that d ≤ 3 holds and
that the active sets An belonging to the iterates {un} of the inner loop (Steps 3–7) of Algorithm 3.1 satisfy
An ∈ L(Ω, ϑ, h, r), independent of n. Then the inner loop converges locally superlinearly to uγ.

Proof. In view of the proof of Theorem 3.6, it suffices to establish the a priori bound

‖B(χAn, un)−1‖L(L2(Ω),H2(Ω)) ≤ K̂ (3.22)

for a constant K̂ independent of n. Let N(uγ) be an open neighborhood of uγ in H2(Ω) ∩H1
0 (Ω), and set

S = {(χA, u) : A ∈ L(Ω, ϑ, h, r), u ∈ N(uγ)}·
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By Lemma 3.5, the operator B(χA, u) is continuously invertible from H2(Ω) ∩ H1
0 (Ω) to L2(Ω) for every

(χA, u) ∈ S. Moreover, (χ, u) �→ B(χ, u) is continuous from L12(Ω) ×W 1,4(Ω) to L(H2(Ω) ∩ H1
0 (Ω), L2(Ω)).

Hence there exist neighborhoods U(χA)×U(u) ⊂ L12(Ω)×W 1,4(Ω) such that B(ψ, v) is uniformly continuously
invertible for all (ψ, v) ∈ U(χA) × U(u). The set

C = {U(χA) × U(u) : (χA, u) ∈ S}

is an open covering of S in L12(Ω)×W 1,4(Ω). Moreover, S is a precompact subset of L12(Ω)×W 1,4(Ω), see [4],
p. 253. Hence C contains a finite open subcovering and thus there exists K̂ such that

‖B(χA, u)−1‖L(L2(Ω),H2(Ω)) ≤ K̂

holds for all (χ, u) ∈ S. One now proceeds with an induction argument as in the proof of Theorem 3.6. At
every iteration level, un ∈ U(uγ) and An ∈ L(Ω, ϑ, h, r) by assumption, so that (3.22) is applicable. �

For numerical implementation, we note that the Newton step (3.18) is equivalent to solving the convection-
diffusion equation

−Δu+ 2 γ χAn∇un · ∇u = f + γ χAn

(|∇un|2 + g2
)

in Ω
u = 0 on Γ

(3.23)

for the next iterate un+1.

Remark 3.11. In Algorithm 3.1, both u and the active set are updated simultaneously in the inner loop. In the
remainder of this section, we briefly comment on an alternative approach (Algorithm 3.2), where u is updated
repeatedly until convergence, before an update of the active set is performed.

Algorithm 3.2 Partial semi-smooth Newton method in the multi-dimensional case.

1: Choose initial u and γ ≥ 0 and set n = 0
2: while not converged do
3: while not converged do
4: Set

An = {x ∈ Ω : |∇un| > g}
5: Solve by Newton’s method for un+1 (initial iterate un)

−Δu+ γ χAn

(|∇u|2 − g2
)

= f in Ω, u = 0 on Γ

6: Increase n
7: end while
8: Increase γ
9: end while

Note that the Newton iteration in Step 5 is given by an iteration over (3.23), but with fixed active set:

−Δuk+1 + 2 γ χAn∇uk · ∇uk+1 = f + γ χAn

(|∇uk|2 + g2
)

in Ω

uk+1 = 0 on Γ

and initial iterate u0 = un. We recover Algorithm 3.1 when only one Newton step is carried out.

We recall from Proposition 3.2 that the problem in Step 5 has a unique solution un+1 ∈ W 3,q(Ω) ∩H1
0 (Ω)

for all 1 ≤ q <∞. Concerning the Newton method, the Jacobian J(u) : H2(Ω) ∩H1
0 (Ω) → L2(Ω) is given by

J(u) v = −Δv + 2 γ χAn∇uγ · ∇v.
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Evaluating J at un+1, we find that J(uu+1) is a continuously invertible operator from H2(Ω)∩H1
0 (Ω) to L2(Ω).

Moreover, u �→ J(u) is continuous from H2(Ω) ∩ H1
0 (Ω) to L(H2(Ω) ∩ H1

0 (Ω), L2(Ω)), and hence J(u)−1 is
uniformly bounded in a neighborhood of un+1. Consequently, the Newton loop in Step 5 converges locally
quadratically.

We turn to a short discussion of the convergence of the partial semi-smooth Newton loop (Steps 3–7 in
Algorithm 3.2). In this case the error equation is given by

− Δ(un+1 − uγ) + γχAn∇(un+1 + uγ) · ∇(un+1 − uγ) =

γ max{0, |∇uγ|2 − g2} − γ max{0, |∇un|2 − g2} − γ χAn

(|∇uγ |2 − |∇un|2
)
.

One can proceed as in the proof of Theorem 3.6 to argue local superlinear convergence of un → uγ in H2(Ω) ∩
H1

0 (Ω), provided that χAn ∈ N(χAγ ) and that un+1 ∈ N(uγ) hold for all n. The assumption that un+1 ∈ N(uγ)
involving the new iterate of the state variable is an additional requirement compared to the assumptions of
Theorem 3.6. Again the condition χAn ∈ N(χAγ ) for all n can be replaced by the strict complementarity type
assumption (Assumption 3.7). We may conclude that if Assumption 3.7 holds, and if un → uγ , then it converges
locally superlinearly.

4. Numerical results

In this section we present numerical results for the proposed methods. We distinguish between the one- and
multi-dimensional settings.

4.1. Semi-smooth Newton method in 1D

We applied Algorithm 2.1 to problem (1.1) and provide two examples. We discretized each example using
the finite difference method on a uniform grid with mesh size h = 1/2000. The Laplacian was discretized by the
standard stencil [1 − 2 1]/h2. The convective terms in Step 5 of Algorithm 2.1 need to be stabilized, and we
used upwind differences for this purpose. That is, u′ on the set A+ was discretized using backward differences,
while u′ on the set A− was approximated by forward differences. The same upwind differences were used to
discretize u′ in Step 4, where the active indices are determined.

Example 4.1. We set the problem data to

f(x) = 1 + 15 x, g ≡ 2

on the domain Ω = (0, 1).

The unconstrained solution of (1.1), corresponding to g = ∞, is given by uunc(x) = − 5
2x

3 − 1
2x

2 + 3x. Since
u′unc(0) = 3 and u′unc(1) = − 11

2 , we expect active sets at both ends of the interval.

We started Algorithm 2.1 with γ = 1 and initial guess u = 0. The inner while loop (active set loop) was
terminated upon coincidence of the active sets in two consecutive iterations. Then the regularization parameter γ
was increased by a factor of 10. The final iteration was carried out for γ = 106. Table 1 and Figure 2 summarize
the convergence behavior of Algorithm 2.1 for this example. It should be noted that the method also converges
when the regularization parameter is fixed at γ = 106. However, it then takes 200 iterations to arrive at the
same solution and hence we conclude that homotopy significantly improves the convergence.

The final iterate is shown in Figure 3. It has a residual of

‖max{−Δu− f, |∇u| − g}‖L∞(Ω) = 1.60 × 10−5, (4.1)
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Table 1. Convergence history of Algorithm 2.1 for Example 4.1. |A±| and |I| denote the
cardinalities of the active and inactive grid points, and residual is the residual norm in (4.1).

Iter γ |A+| |A−| |I| Residual
1 1.00E+00 0 0 2001 3.50E+00
2 609 495 897 3.12E+00
3 604 497 900 3.12E+00
4 1.00E+01 604 497 900 1.37E+00
5 561 518 922 1.37E+00
6 556 518 927 1.37E+00
7 1.00E+02 556 518 927 2.66E+01
8 518 565 918 1.73E+01
9 486 565 950 9.56E+00

10 462 564 975 4.19E+00
11 448 564 989 1.22E+00
12 442 564 995 1.58E–01
13 1.00E+03 442 564 995 3.78E+01
14 436 573 992 2.92E+01
15 430 573 998 2.06E+01
16 425 573 1003 1.35E+01
17 421 573 1007 7.89E+00
18 418 573 1010 3.73E+00
19 416 573 1012 9.75E–01
20 415 573 1013 1.60E–02
21 1.00E+04 415 573 1013 9.14E+00
22 414 574 1013 5.72E+00
23 413 574 1014 2.30E+00
24 412 574 1015 1.60E–03
25 1.00E+05 412 574 1015 1.60E–04
26 1.00E+06 412 574 1015 1.44E–02
27 411 574 1016 1.60E–05

where the maximum is evaluated at all grid points. The active sets found are

A+ = [0, 0.2055], A− = [0.7130, 1],

see Figure 3.

Example 4.2. In our second example we set

f(x) = 1 + 15 x, g(x) =

⎧⎪⎨⎪⎩
1 on [0, 1/8]
0.1 on [3/8, 5/8]
2 elsewhere

and again Ω = (0, 1).

This example differs from the first one in that the active set has a component which is strictly contained
in the interior of Ω. We ran the algorithm up to and including γ = 108. Table 2 and Figure 4 show the
convergence history, and the final solution is displayed in Figure 5. Superlinear convergence can be observed
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for γ = 102, . . . , 104. The final residual is

max{−Δu− f, |∇u| − g} = 1.97 × 10−5,

and the active sets are

A+
1 = [0, 0.1250], A+

2 = [0.3750, 0.6250], A− = [0.8765, 1].

4.2. Active set approach without regularization in 1D

For comparison, we also applied Algorithm 4.1, which is based on the method outlined in Section 2.3,
to Example 4.1. Step 4 of this algorithm takes care that the assumed structure of the active sets at the
solution (Fig. 1) is preserved throughout the iteration. Differently from the regularized semi-smooth Newton
Algorithm 2.1, in this algorithm typically only very few indices migrate between the active and inactive sets
from one iteration to the next. This was observed for numerous parameter pairs (γ, κ) ∈ [10−2, 102]×[10−6, 102].
After more than 400 iterations, the same solution as before was obtained, see Figure 3. The choice κ = 0 leads
to Dirichlet conditions, which causes Algorithm 4.1 to produce a (false) solution with kinks.

Algorithm 4.1 Active set method without regularization in 1D.

1: Choose initial u0, λ+
0 , λ−0 and parameters γ > 0 and κ > 0 and set n = 0

2: while not converged do
3: Set the preliminary active and inactive sets

Ã+
n = {x ∈ Ω : λ+

n + γ (u′n − g) > 0}, Ĩ = Ω \ (Ã+
n ∪ Ã−

n ),

Ã−
n = {x ∈ Ω : λ−n + γ (−u′n − g) > 0}

4: Set l = inf Ĩn, r = sup Ĩn and set the final active and inactive sets

I = (l, r), A+
n = (0, l], A−

n = [r, 1)

5: Solve for un+1

−u′′ = f in In, −κu′(l) + u(l) = −κ g(l) +G(l) −G(0),

κ u′(r) + u(r) = −κ g(r) −G(r) +G(1)

6: Set
un+1(x) = G(x) −G(0) in A+

n , un+1(x) = −G(x) +G(1) in A−
n

7: Set
λ+

n+1 = f + u′′n+1 in A+
n , λ+

n+1 = 0 elsewhere

λ−n+1 = f + u′′n+1 in A−
n , λ−n+1 = 0 elsewhere

8: Increase n
9: end while

4.3. Regularized active set method in 2D

In this section, we provide results for Algorithm 3.1, applied to two-dimensional problems. The discretization
was carried out by piecewise linear finite elements on triangular meshes.
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Figure 2. Convergence history (residual vs. iterate) of Algorithm 2.1 for Example 4.1. Values
belonging to one and the same parameter γ are shown connected.

Figure 3. The figure shows the final iterate uγ for Example 4.1. The active sets A+ (left) and
A− (right) are depicted in blue on the x-axis. The dashed red lines represent the constraint
envelope.
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Table 2. Convergence history of Algorithm 2.1 for Example 4.2. See Table 1 for a legend.

Iter γ |A+| |A−| |I| Residual
1 1.00E+00 0 0 2001 3.50E+00
2 977 587 437 3.07E+00
3 956 566 479 3.07E+00
4 1.00E+01 956 566 479 6.66E+00
5 850 446 705 2.51E+00
6 766 410 825 1.30E+00
7 733 406 862 1.30E+00
8 733 405 863 1.30E+00
9 1.00E+02 733 405 863 1.00E+02

10 751 360 890 6.72E+01
11 751 323 927 3.91E+01
12 751 295 955 1.91E+01
13 751 277 973 6.79E+00
14 751 268 982 8.09E–01
15 751 266 984 8.09E–01
16 1.00E+03 751 266 984 7.85E+01
17 751 261 989 5.45E+01
18 751 257 993 3.53E+01
19 751 253 997 1.63E+01
20 751 251 999 6.84E+00
21 751 250 1000 2.12E+00
22 751 249 1001 6.48E–01
23 1.00E+04 751 249 1001 1.40E+01
24 751 248 1002 2.20E+00
25 751 247 1003 1.64E–01
26 1.00E+05 751 247 1003 1.93E–02
27 1.00E+06 751 247 1003 1.97E–03
28 1.00E+07 751 247 1003 1.97E–04
29 1.00E+08 751 247 1003 1.97E–05

Each Newton step (3.23) requires the solution of a convection-diffusion equation which may be convection
dominated. Moreover, the convection coefficient is discontinuous, and the jump height increases with γ. Natu-
rally, we found the stabilization of the Newton step to be necessary for most examples. In our context, artificial
diffusion stabilization turned out to be inadequate and led to cyclic behavior of the active sets, even for small γ.
We thus employed a streamline upwind Petrov-Galerkin (SUPG) stabilization [2,11] in every Newton step.

For fixed γ, the residual norm of

− Δu+ γ max{0, |∇u|2 − g2} − f = 0 (4.2)

serves as a stopping criterion for the inner while loop of Algorithm 3.1. In our examples, we used a tolerance of
10−6 for the L2(Ω) norm of the weak form of the residual.

We recall that our original problem (1.1) is to solve

max{−Δu− f, |∇u| − g} = 0. (4.3)
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Figure 4. Convergence history (residual vs. iterate) of Algorithm 2.1 for Example 4.2. Values
belonging to one and the same parameter γ are shown connected.

At the end of Step 7 of Algorithm 3.1, the iterates satisfy (4.2) for the current value of γ and we obtain

−Δuγ − f = −γ max{0, |∇uγ|2 − g2} ≤ 0 in Ω.

On the inactive set I = {x ∈ Ω : |∇uγ | ≤ g}, this implies −Δuγ − f = 0 and (4.3) holds. The only violation
of (4.3) can occur on A = {x ∈ Ω : |∇uγ | > g}. Hence the constraint violation ‖max{0, |∇uγ| − g}‖L∞(Ω) can
serve as a stopping criterion for the outer while loop.

Example 4.3. We set Ω to the unit disk in R
2 and

f ≡ 1, g ≡ 0.3.

The unconstrained solution is uunc(r) = 1
4 (1 − r2) in terms of polar coordinates. Hence |∇u(r)| = r/2 holds,

and we expect the active set to be an annulus near the boundary of Ω.

The behavior of Algorithm 3.1 for this problem is reported in Figure 7. In Step 8, the regularization
parameter γ is increased by a factor of

√
10. Superlinear convergence can be observed for γ > 103 excluding

possibly the last iteration for fixed γ. The discretization was carried out on a regular mesh with 817 vertices
and 1536 triangles.

Indeed, it is easy to compute the exact solution of (1.1) as

u(r) =

{
1
4 (0.84 − r2), r ∈ [0, 0.6]
0.3 (1 − r), r ∈ [0.6, 1].

The boundary of the active set of the numerical solution numerical solution (Fig. 6) is within sub-grid accuracy
to r = 0.6 despite the smooth transit of u between the active and inactive sets.
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Figure 5. The figure shows the final iterate uγ for Example 4.2. The active sets are again
depicted in blue on the x-axis, and A+ (left and middle) is disconnected. The dashed red lines
represent the constraint envelope.

We observed that beyond the value of γ ≈ 106, the determination of the active sets became unreliable so
that no convergence of the inner while loop could be achieved for these values of γ. This is due to numerical
error which biases the sign of |∇u| − g.

We also tested the partial semi-smooth Newton method (Algorithm 3.2) and observed very similar convergence
behavior for Examples 4.3 and 4.4.

Example 4.4. The second example features a disconnected active set and a radially unsymmetric configuration,
again on the unit disk Ω in R

2. We set

f(x) = 0.9 + x1, g(x) =

{
0.1 for ‖x‖ ≤ 0.3
0.4 for ‖x‖ > 0.3.

We refer to Figure 8 for the solution and to Figure 10 for the convergence behavior of Algorithm 3.1. In this
case the iteration was stopped before γ = 105, where again the determination of the active set starts to become
unstable.

Finally, we illustrate Assumption 3.7 numerically. For this purpose, we plot the cross section of |∇uγ | − g
for γ = 102, see Figure 9 (right). This figure was obtained using P2 finite elements.
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Figure 6. The figure shows the final iterate uγ for Example 4.3. The constraint cone is
superimposed on the solution. The contour line marks the boundary of the active set.

Figure 7. Convergence history of Algorithm 3.1 for Example 4.3. The residual (shown with
stars) refers to the L2(Ω) norm of the residual of equation (4.2). The circles display the the
L∞(Ω) norm of the constraint violation max{0, |∇u| − g}. Values belonging to one and the
same parameter γ are shown connected. The values of γ range from 1 to 3.16 × 105.
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Figure 8. The figure shows the final iterate uγ for Example 4.4.

Figure 9. The figure shows the value of |∇uγ | − g for the final iterate of Example 4.4 on the
domain (left), and its cross section along the first median for γ = 102 (right).

5. Conclusion and outlook

This paper proposes the solution of elliptic equations with gradient constraints by semi-smooth Newton
methods. Many extensions and further investigations are possible. These may concern the efficient numerical
treatment of the convection dominated problems with discontinuous coefficients which arise in (3.23), or the
systematic increase of the parameter γ based, for example, on path following techniques as developed in [7] for a
class of variational problems with constraints. Further the extensions of the analysis of this paper to Hamilton
Jacobi Bellman equations which arise in portfolio optimization as pointed out in the introduction is of particular
interest.
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Figure 10. Convergence history of Algorithm 3.1 for Example 4.4. See Figure 7 for a legend.
The values of γ range from 1 to 3.16 × 104.

Appendix

A – Leray-Schauder fixed point theorem

Theorem 5.1 (Leray-Schauder [6]). Let T be a compact operator of a Banach space B into itself. Suppose that
for all s ∈ [0, 1], there exists a constant M > 0, independent of s, such that v = s T (v) implies that ‖v‖B ≤M .
Then T has a fixed-point.

B – Bony maximum principle

Theorem 5.2 (Bony [1], Thm. 1). Suppose that the differential operator

Lu =
d∑

i,j=1

aijuij +
d∑

i=1

aiui + au

has coefficients in L∞(Ω) satisfying
∑

i,j aij(x) ξi ξj ≥ 0 on Ω and a ≤ 0 almost everywhere. If u ∈ W 2,p(Ω)
with p > d attains a positive maximum in x0 ∈ Ω, then

lim ess infx→x0 Lu(x) ≤ 0

holds.

We apply the maximum principle to L = −Δ with a change of signs.
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