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Summary. In the Black-Scholes model optimal trading for maximizing expected
power utility under proportional transaction costs can be described by three intervals
B, NT , S: If the proportion of wealth invested in the stocks lies in B, NT , S,
then buying, not trading and selling, respectively, are optimal. For a finite time
horizon, the boundaries of these trading regions depend on time and on the terminal
condition (liquidation or not). Following a stochastic control approach, one can
derive parabolic variational inequalities whose solution is the value function of the
problem. The boundaries of the active sets for the different inequalities then provide
the boundaries of the trading regions. We use a duality based semi-smooth Newton
method to derive an efficient algorithm to find the boundaries numerically.

1 Trading Without Transaction Costs

The continuous-time Black Scholes model consists of one bond or bank account
and one stock with prices (P0(t))t∈[0,T ] and (P1(t))t∈[0,T ] which for interest
rate r ≥ 0, trend µ ∈ R, and volatility σ > 0 evolve according to

dP0(t) = P0(t) r dt , dP1(t) = P1(t) (µ dt + σ dW (t)) , P0(0) = P1(0) = 1 ,

where W = (W (t))t∈[0,T ] is a Brownian motion on a probability space
(Ω,A, P ). Let F = (Ft)t∈[0,T ] denote the augmented filtration generated by
W .

Without transaction costs the trading of an investor may be described by
initial capital x > 0 and risky fraction process (η(t))t∈[0,T ], where η(t) is the
fraction of the portfolio value (wealth) which is held in the stocks at time t.
The corresponding wealth process (X(t))t∈[0,T ] is defined self-financing by

dX(t) = (1 − η(t))X(t)r dt + η(t) X(t) (µ dt + σ dW (t)) , X(0) = x .

The utility of terminal wealth x > 0 is given by power utility 1
α

xα for any
α < 1, α 6= 0. The parameter α models the preferences of an investor. The
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limiting case α → 0 corresponds to logarithmic utility i.e. maximizing the
expected rate of return, α > 0 corresponds to less risk averse and α < 0 to
more risk averse utility functions. Merton showed that for logarithmic (α = 0)
and power utility the optimal trading strategy is given by a constant optimal
risky fraction

η(t) = η̂ , t ∈ [0, T ], where η̂ =
1

1 − α

µ − r

σ2
. (1)

2 Proportional Transaction Costs

To keep the risky fraction constant like in (1) involves continuous trading
which, under transaction costs, is no longer adequate. For possible cost struc-
tures see e.g. [5, 7, 8]. We consider proportional costs γ ∈ (0, 1) corresponding
to the proportion of the traded volume which has to be paid as fees.

For suitable infinite horizon criteria solution of the corresponding Hamilton-
Jacobi-Bellmann equation (HJB) leads to a characterization of the optimal
wealth process as a diffusion reflected at the boundaries of a cone, see [3, 9].
When reaching the boundaries of the cone, infinitesimal trading occurs in such
a way that the wealth process just stays in the cone. The cone corresponds to
an interval for the risky fraction process. The existence of a viscosity solution
for the HJB equation for finite time horizon is shown in [1] and numerically
treated in [10] using a finite difference method.

Now let us fix costs γ ∈ (0, 1) and parameters α < 1, α 6= 0, r, µ, σ
such that η̂ ∈ (0, 1). The trading policy can be described by two increasing
processes (L(t))t∈[0,T ] and (M(t))t∈[0,T ] representing the cumulative purchases
and sales of the stock. We require that these are right-continuous, F-adapted,
and start with L(0−) = M(0−) = 0. Transaction fees are paid from the bank
account. Thus the dynamics of the controlled wealth processes (X1(t))t∈[0,T ]

and (X0(t))t∈[0,T ], corresponding to the amount of money on the bank account
and the amount invested in the stocks, are

dX0(t) = rX0(t) dt − (1 + γ) dL(t) + (1 − γ) dM(t) ,

dX1(t) = µX1(t) dt + σX1(t) dW (t) + dL(t) − dM(t) .

The objective is the maximization of expected utility at the terminal trading
time T , now over all control processes (L(t))t∈[0,T ] and (M(t))t∈[0,T ] which
satisfy the conditions above and for which the wealth processes X0 and X1

stay positive and the total wealth strictly positive i.e. (X0(t), X1(t)) ∈ D :=
R

2
+ \ {(0, 0)}, t ∈ [0, T ]. So suppose (x0, x1) = (X0(0−), X1(0−)) ∈ D. We

distinguish the maximization of expected utility for the terminal total wealth,

J̃(t, x0, x1) = sup
(L,M)

E[ 1
α

(X0(T ) + X1(T ))α |X0(t) = x0, X1(t) = x1] ,

and of the terminal wealth after liquidating the position in the stocks,
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J(t, x0, x1) = sup
(L,M)

E[ 1
α

(X0(T ) + (1 − γ)X1(T ))α |X0(t) = x0, X1(t) = x1] .

We always assume J̃(0, x0, x1) < ∞ for all (x0, x1) ∈ D.

Theorem 1. J is concave, continuous, and a viscosity solution of

max{Jt + AJ,−(1 + γ)Jx0
+ Jx1

, (1 − γ)Jx0
− Jx1

} = 0 (2)

on [0, T ) × D with J(T, x0, x1) = 1
α
(x0 + (1 − γ)x1)

α. Jt, Jx0
, Jx1

, Jx1,x1
de-

note the partial derivatives of J = J(t, x0, x1) and the differential operator A
(generator of (X0, X1)) is defined by

Ah(x0, x1) = r x0hx0
(x0, x1) + µ x1hx1

(x0, x1) + 1
2σ2x2

1hx1,x1
(x0, x1)

for all smooth functions h. Further J is unique in the class of continuous
functions satisfying |h(t, x0, x1)| ≤ K(1 + (x2

0 + x2
1)

α) for all (x0, x1) ∈ D,
t ∈ [0, T ], and some constant K.

The proof in [1] is based on the derivation of a weak dynamic programming
principle leading to the HJB (2). The uniqueness is shown following the Ishii
technique, see [2]. Using J̃(T, x0, x1) = 1

α
, the argument is the same for J̃ .

The variational inequalities in (2) are active, if it is optimal not to trade,
to buy stocks, and to sell stocks, respectively. At time t, D can be split into
the buy region B′(t), the sell region S′(t), and the no trading region NT ′(t),

B′(t) = {(x0, x1) ∈ D : −(1 + γ)Jx0
(t, x0, x1) + Jx1

(t, x0, x1) = 0} ,

S′(t) = {(x0, x1) ∈ D : (1 − γ)Jx0
(t, x0, x1) − Jx1

(t, x0, x1) = 0} ,

NT ′(t) = D \ (B′(t) ∪ S′(t)) .

If x0 = 0 (x1 = 0) we should exclude the second (third) inequality in (2) since
buying (selling) is not admissible. But due to the η̂ ∈ (0, 1) we expect that
(x0, x1) lies for all t in NT ′(t)∪S′(t) if x0 = 0 and in NT ′(t)∪B′(t) if x1 = 0,
cf. [9]. Thus we did not specify the different cases in Theorem 1.

3 Reduction to a One-Dimensional Problem

We use a transformation to the risky fractions, different to e.g. [10] where the
fractions modified by the transaction costs are used. From the definition of J
and J̃ one verifies directly that on [0, T ]×D

J(t, x0, x1) = xαJ(t, x0

x
, x1

x
) , J̃(t, x0, x1) = xαJ̃(t, x0

x
, x1

x
) , x = x0 + x1 .

So it is enough to look at the risky fractions y = x1

x
. Introducing

V (t, y) = J(t, 1 − y, y) , Ṽ (t, y) = J̃(t, 1 − y, y) , y ∈ [0, 1]
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we get for J(t, x0, x1) = (x0 + x1)
αV (t, x1

x0+x1

) (writing x = x0 + x1)

Jt = xαVt , Jx0
= xα−1 (αV − y Vy) , Jx1

= xα−1 (αV + (1 − y) Vy) ,

Jx1,x1
= xα−2

(

(1 − y)2Vy,y − 2(1 − y)(1 − α)Vy − α(1 − α)V
)

.

Plugging this into (2) we have to solve

max{Vt + LV, LBV, LSV } = 0 (3)

with V (T, y) = 1
α
(1 − γ y)α, y ∈ [0, 1], and operators

Lh(y) = α
(

r + (µ − r)y − 1
2 (1 − α)σ2y2

)

+
(

(µ − r)(1 − y) − (1 − α)σ2y(1 − y)
)

yhy(y) + 1
2σ2y2(1 − y)2hy,y(y) ,

LBh(y) = (1 + γy)hy − αγh , LSh(y) = −(1 − γy)hy − αγh .

The same applies to Ṽ using the terminal condition Ṽ (T, y) = 1
α

instead.
The trading regions are now given by B(t) = {y ∈ [0, 1] : LBV (t, y) = 0},
S(t) = {y ∈ [0, 1] : LSV (t, y) = 0} and NT (t) = [0, 1] \ (B(t) ∪ S(t))
corresponding to buying, selling and not trading, respectively. On B(t) and
S(t) we hence know that V satisfies as a solution of LBV = 0 and LSV = 0

V (t, y) = CB(t)(1 + γy)α and V (t, y) = CS(t)(1 − γy)α . (4)

As proven in many cases we assume that B(t), N(t), S(t) are intervals. So
they can be described by their boundaries

a(t) = inf NT (t) , b(t) = sup NT (t) . (5)

From the condition η̂ ∈ (0, 1) it is reasonable to expect that NT (t) 6= ∅ for all
t ∈ [0, T ). But since borrowing and short selling are not allowed, this might
not be true for all B(t) and S(t). If that happens we need boundary conditions
different from (4) to solve for V on NT (t). These are

Vt(t, 0) + α rV (t, 0) = 0 , if 0 ∈ NT (t) , (6)

Vt(t, 1) + α(µ − 1
2 (1 − α)σ2)V (t, 1) = 0 , if 1 ∈ NT (t) . (7)

4 A Semi-Smooth Newton Method

The algorithm we present to solve (3) is based on a primal-dual active set
strategy, see e.g. [4] where the relationship to semismooth Newton methods is
explored, or for its parabolic version cf. [6] where it is also applied to find the
exercise boundary for an American option. Here we face two free boundaries
and a different type of constraints and hence have to adapt the algorithm. A
more detailed analysis including convergence and existence of the Lagrange
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multipliers is work in progress and deferred to a future publication. However,
Example 1 below shows that the algorithm can work efficiently.

Problem (3) is equivalent to solving

Vt + LV + λB + λS = 0 , (8)

LBV ≤ 0, λB ≥ 0, λBLBV = 0 , LSV ≤ 0, λS ≥ 0, λSLSV = 0 . (9)

The two complementarity problems in (9) can be written as

λB = max{0, λB + cLBV } , λS = max{0, λS + cLSV } (10)

for any constant c > 0. So we have to solve (8), (10). At T the trading regions
are given by S(T ) = [0, 1] for V and NT (T ) = [0, 1] for Ṽ . We split [0, T ]
in N intervals and go backwards in time with tN = T , tn = tn+1 − ∆t,
∆t = T/N . Having computed V (tn+1, ·) and the corresponding regions we
use the following algorithm to compute v = V (tn, ·) and NT (tn):

0. Set v = V (tn+1, ·), k = 0, choose an interval NT0 in [0, 1], constant c > 0.
1. Define the boundaries ak and bk of NTk as in (5).
2. On [ak, bk] solve the elliptic problem 1

∆t
(v − v) + Lv = 0 using the boundary

conditions LBv = 0 if ak 6∈ NTk, (6) if ak ∈ NTk (implying ak = 0) and LSv = 0
if bk 6∈ NTk, (7) if bk ∈ NTk (implying bk = 1).

3. If ak 6= 0 define v on [0, ak) by the first equation in (4). If bk 6= 1 define v

on (bk, 1] by the second equation in (4). Choose CB and CS such that v is
continuous in ak and bk. So vk+1 = v is continuously differentiable.

4. Set λk+1

B
= − 1

∆t
(v−vk+1)−Lvk+1 on [0, ak] and λk+1

S
= − 1

∆t
(v−vk+1)−Lvk+1

on [bk, 1] and set them to 0 otherwise.
5. Introduce the active sets

Bk+1 = {y ∈ [0, 1] : λ
k+1

B (y) + cLBvk+1(y) > 0} ,

Sk+1 = {y ∈ [0, 1] : λ
k+1

S (y) + cLSvk+1(y) > 0}

and set NTk+1 = [0, 1] \ (Bk+1 ∪ Sk+1). Verify that the interval structure holds
and define the boundaries ak+1 and bk+1 by (5).

6. If ak+1 = ak and bk+1 = bk then STOP; otherwise increase k by 1 and continue
with step 1.

Example 1. We consider a money market and a stock with parameters r = 0,
µ = 0.096, σ = 0.4, and horizon T = 1. We use mesh sizes ∆t = 0.01 and
∆y = 0.001, choose c = 1, and at tN−1 use NT0 = (0.1, 0.8), and at all other
time steps tn use NT0 = NT (tn+1). For the utility function we consider both
α = 0.1 and the more risk averse parameter α = −1. These yield without
transaction costs optimal risky fractions 0.667 and 0.3 (dotted lines in Figs. 1
and 2). We consider proportional costs γ = 0.01. In Fig. 1 we look at α = 0.1,
left-hand at V with liquidation at the end, right-hand at Ṽ . We see that the
liquidation costs we have to pay at T imply that we also trade close to the
terminal time, while without liquidation this is never optimal. In Fig. 2 we
plotted the trading regions for the more risk averse parameter α = −1, which
leads to less holdings in the stock.
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Fig. 1. Trading regions for α = 0.1 for V and Ṽ
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Fig. 2. Trading regions for α = −1 for V and Ṽ
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