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FEASIBLE AND NONINTERIOR PATH-FOLLOWING IN
CONSTRAINED MINIMIZATION WITH LOW MULTIPLIER

REGULARITY∗
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Abstract. Primal-dual path-following methods for constrained minimization problems in func-
tion space with low multiplier regularity are introduced and analyzed. Regularity properties of the
path are proved. The path structure allows us to define approximating models, which are used for
controlling the path parameter in an iterative process for computing a solution of the original prob-
lem. The Moreau–Yosida regularized subproblems of the new path-following technique are solved
efficiently by semismooth Newton methods. The overall algorithmic concept is provided, and numer-
ical tests (including a comparison with primal-dual path-following interior point methods) for state
constrained optimal control problems show the efficiency of the new concept.
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1. Introduction. The efficient numerical solution of inequality constrained min-
imization problems in function space with low Lagrange multiplier regularity is still
a significant challenge. Prototype problems include optimal control problems with
pointwise state constraints, boundary control problems in which the control has to
satisfy pointwise constraints on the boundary, and classes of control problems with
“solutions très faibles” (that is, “very weak solutions” in the sense of Lions). The
common feature is low regularity of the Lagrange multipliers associated with the
pointwise constraints. This has an immediate effect when characterizing optimality
of solutions. Indeed, in the presence of inequality constraints, first order optimality
conditions typically involve a so-called complementarity system (see, e.g., [10]), which
in turn is influenced by the regularity of the Lagrange multiplier associated with the
inequality constraint. To be specific, let us assume that x1 ∈ X1 has to satisfy the
pointwise (almost everywhere) constraint

x1 ≤ ψ,(1.1)

where X1 denotes a Hilbert space continuously embedded into L2(ω) and ω ⊂ R
m

is a bounded domain. Further ψ ∈ L2(ω), and ≤ represents the natural ordering in
L2(ω). Let λ ∈ X∗

1 denote the Lagrange multiplier associated with constraint (1.1),
where X∗

1 is the topological dual space of X1. First order optimality characterizations
include the complementarity condition

x1 ≤ ψ, 〈λ, x1 − ξ〉X∗
1 ,X1 ≥ 0 for all ξ ≤ ψ, ξ ∈ X1(1.2)

at an optimal solution x1 with associated Lagrange multiplier λ. Without additional
regularity, system (1.2) does not admit a pointwise interpretation, which is frequently
crucial for numerical algorithms.

∗Received by the editors August 3, 2005; accepted for publication (in revised form) April 26, 2006;
published electronically September 12, 2006.

http://www.siam.org/journals/sicon/45-4/63748.html
†Department of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36,

A-8010 Graz, Austria (michael.hintermueller@uni-graz.at, karl.kunisch@uni-graz.at).

1198

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PATH-FOLLOWING METHODS 1199

In fact, solution techniques and their (local) convergence behavior often hinge on
the multiplier regularity. Classical active set methods, for instance, require a pointwise
(almost everywhere) interpretation of λ for the active set estimation. In the case of
pointwise constraints, techniques like the projected gradient methods will not work
without modification since the sum of the iteration variable and the gradient of the
objective, which coincides with the negative multiplier, is needed for the update. Since
the iteration variable and the gradient have different regularity properties, this is not
feasible in general. An analogous comment applies for projected Newton techniques.
Recently it was found that semi smooth Newton methods are highly efficient in solving
certain classes of constrained optimization problems in function space [4, 5, 9, 10,
11, 21]. These methods rely on a pointwise almost everywhere interpretation of the
complementarity system (1.2) and smoothing properties of the control-to-adjoint-state
mapping. In fact, the pointwise interpretation allows us to express (1.2) equivalently
as

λ− max (0, λ + c(x1 − ψ)) = 0,(1.3)

for some arbitrarily fixed c > 0, and the smoothing of the control-to-adjoint-state
operator typically implies that the mapping

θ : x1 �→ λ(x1) + c(x1 − ψ)

can be considered as θ : X1 → Lq(ω) with q > 2. The norm gap between Lq(ω) and
the space L2(ω), in which inequality (1.1) is posed, is crucial in proving generalized
differentiability of

x1 �→ max(0, θ(x1)),

and in arguing well-definedness and locally superlinear convergence of the general-
ized (semismooth) Newton method for solving the underlying nonsmooth first order
optimality system; see [10] for details. Again, the low multiplier regularity may pre-
vent the pointwise interpretation and/or the smoothing of the control-to-adjoint-state
mapping.

An approach for solving state constrained optimal control problems that does
not rely on the use of multipliers was introduced in [13]. This method operates
with the interface (boundary) between the active set {x1 = ψ} and the inactive set
{x1 < ψ} as the optimization variable, and the constrained minimization problem is
transformed into a shape optimization problem. Since the interface allows for a unique
identification of the inactive region, the multiplier itself is not an issue. While this
technique is appealing due to its favorable analytical properties, the implementation
is rather technical.

Based on recent work [12], in this paper we propose a primal-dual path-following
concept for solving the aforementioned constrained minimization problems. It relies
on a (generalized) Moreau–Yosida-type regularization of the max-operation involving
a scalar parameter. The resulting regular subproblems can be solved efficiently by,
e.g., semismooth Newton methods. The relaxation parameter induces a primal-dual
path and a path value functional, for which good low-parametric models can be found
based on the structure of the relaxation term. These models are subsequently used
for driving the path parameter to its limit, i.e., to find a solution of the original (less
regular) problem. This procedure has several analytical as well as numerical benefits
as follows:

• sufficiently regular subproblems for which standard methods (like semi-
smooth Newton algorithms) converge rapidly in function space setting;
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1200 M. HINTERMÜLLER AND K. KUNISCH

• simple path structure such that one can find good approximating models for
the primal-dual path value functional;

• controlled path-parameter updates based on model functions to avoid ill-
conditioning;

• wide applicability.
Compared to other path-following concepts, like primal-dual path-following interior
point methods (see, e.g., [6, 22, 25, 26] for finite dimensional versions and [20, 23] for
function space treatments), the numerical implementation of our technique is rather
user-friendly. In fact, in many cases (see, e.g., [1, 25]) competitive primal-dual path-
following interior point methods require the addition of slack variables, which increases
the problem size, and then appropriate pivot choices for reducing the indefinite sys-
tem, which has to be solved in every iteration, in order to make the method feasible for
large scale optimization. Additionally, within our path-following framework existing
subproblem solvers can readily be used. In contrast to our approach, the successful
analysis of interior point methods in function space [20, 23, 24] requires sufficient
regularity of the multipliers, which prevents an immediate application of these con-
cepts to the problem class considered in this paper. For an alternative regularization
concept for state constrained optimal control problems, we refer to [19].

In the case of regular Lagrange multipliers, our earlier work [1, 10] indicates that
semismooth Newton and primal-dual active set methods are superior to path-following
strategies. This includes a wide class of pointwise control constraints in the optimal
control of partial differential equations.

The rest of the paper is organized as follows. In the next section we introduce
the problem class under consideration, specify the relaxed path-problems, and analyze
properties of the primal-dual path. In section 3 we discuss several constrained optimal
control problems which are covered by our model problem. Among these we consider
state constrained optimal control problems and Dirichlet boundary control problems.
The primal-dual path value function, its differentiability properties, and the definition
of approximating models are the contents of section 4. The algorithm is introduced
in section 5. A report on test runs, including a comparison of the new method with
primal-dual path-following interior point and primal-dual active set techniques, is also
given.

2. Problem formulation and properties of the path. Let X1, X2, and W
be real Hilbert spaces with

X1 ↪→ L2(ω) ↪→ X∗
1 ,

where X∗
1 denotes the dual of X1 and ω a bounded domain in R

m. Further set
X = X1 ×X2 and let x = (x1, x2) denote a generic element in X.

Let E ∈ L(X,W ), f ∈ W , and ψ ∈ X1. Further let J : X → R denote a quadratic
functional satisfying the following assumption.

Assumption 2.1. There exists a constant α > 0 such that

〈J ′(x) − J ′(y), x− y〉X∗,X ≥ α|x− y|2X(2.1)

whenever E(x− y) = 0 for x, y ∈ X.
Here 〈·, ·〉X∗,X , at times denoted by 〈·, ·〉, stands for the duality pairing between

X and X∗. We set

C :=

(
E

(I, 0)

)
: X → W ×X1
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PATH-FOLLOWING METHODS 1201

and assume that

C is surjective.(2.2)

The problem under consideration is

minimize J(x) over x ∈ X

subject to Ex = f,

x1 ≤ ψ,

(P)

where ≤ denotes the ordering in L2(ω). By Assumption 2.1 and (2.2) there exists a
unique solution x∗ ∈ X to (P). Further by (2.2) there exists [17] a unique Lagrange
multiplier pair (p∗, λ∗) ∈ W ∗ ×X∗

1 such that

J ′(x∗) + E∗p∗ + (λ∗, 0) = 0 in X∗,

λ∗ ≥ 0, x∗
1 − ψ ≤ 0, 〈λ∗, x∗

1 − ψ〉X∗
1 ,X1 = 0,

(2.3)

where λ∗ ≥ 0 stands for 〈λ∗, φ〉X∗
1 ,X1 ≥ 0 for all φ ∈ X1 with φ ≥ 0. In section 3

we give examples from optimal control with control or state constraints which are
covered by our general framework.

We also consider the following problem without inequality constraints:

minimize J(x) over x ∈ X

subject to Ex = f,
(P̃)

as well as the regularized problems

minimize J(x, γ) := J(x) +
1

2γ

∫
ω

|
(
λ̄ + γ(x1 − ψ)

)+ |2dw over x ∈ X

subject to Ex = f,

(Pγ)

where γ > 0 represents a relaxation (or regularization) parameter and λ̄ ∈ L2(ω) is
an optional shift-parameter. For every γ > 0 there exists a unique solution xγ =
(x1,γ , x2,γ) to (Pγ) satisfying

Exγ = f,

J ′(xγ) + E∗pγ + (λγ , 0) = 0 in X∗,

λγ =
(
λ̄ + γ(x1,γ − ψ)

)+
in L2(ω).

(2.4)

In view of (1.3), the last equation in (2.4) suggests that λ̄ acts as a regular approxi-
mation of the Lagrange multiplier corresponding to x1 ≤ ψ. Further, in section 3 we
find that in some cases, λ̄ can be chosen such that x1,γ ≤ ψ for γ sufficiently large.

We refer to

C = {(xγ , pγ , λγ) ∈ X ×W ∗ ×X∗
1 : γ ∈ (0,∞)}

as the primal-dual path associated with (P). For r > 0 we further set

Cr = {(xγ , pγ , λγ) : γ ∈ [r,∞)}.

Proposition 2.1. For every r > 0, the path Cr is bounded and, as γ → ∞, we
have (xγ , pγ , λγ) ⇀ (x∗, p∗, λ∗) in X ×W ∗ ×X∗

1 . Moreover xγ → x∗ in X.
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1202 M. HINTERMÜLLER AND K. KUNISCH

Proof. From (2.4) we have

〈J ′(xγ) − J ′(x∗), xγ − x∗〉X∗,X + (λγ , x1,γ − x∗
1)L2 = 〈J ′(x∗), x∗ − xγ〉X∗,X ,

and by (2.1),

α|xγ − x∗|2X + (λγ , x1,γ − x∗
1)L2 ≤ 〈J ′(x∗), x∗ − xγ〉X∗,X .(2.5)

As in [14],

(λγ , x1,γ − x∗
1)L2 ≥ 1

γ
|λγ |2L2 −

1

γ
(λγ , λ̄)L2 ,(2.6)

and hence,

α|xγ − x∗|2X +
1

2γ
|λγ |2L2 ≤ |J ′(x∗)|X∗ |x∗ − xγ |X +

1

2γ
|λ̄|2L2 .(2.7)

In particular we have that {xγ}γ≥r is bounded for every r > 0. By (2.2),

C∗(pγ , λγ) = −J ′(xγ),

and since C is surjective it follows that {(pγ , λγ)} is bounded in W ∗ × X∗
1 . Hence,

there exists (x̂, p̂, λ̂) such that for a subsequence, (xγ , pγ , λγ) ⇀ (x̂, p̂, λ̂). Since λγ ≥ 0

for all γ > 0, we find 〈λ̂, φ〉X∗
1 ,X1

≥ 0 for all φ ∈ X1 with φ ≥ 0. As in [14, section 3],
one argues that x̂ ≤ ψ. By (2.3) and (2.4),

〈J ′(xγ) − J ′(x∗), xγ − x∗〉X∗,X + 〈λγ − λ∗, x1,γ − x∗
1〉X∗

1 ,X1
= 0,(2.8)

and from (2.6) we have (λγ , x1,γ −x∗
1) ≥ − 1

2γ |λ̄|2L2 . Further, from (2.8) with Assump-
tion 2.1 holding we arrive at

0 ≤ α|xγ − x∗|2X ≤ 1

2γ
|λ̄|2L2 + 〈λ∗, x1,γ − x∗〉X∗

1 ,X1
.

Passing to the limit as γ → ∞ yields

0 ≤ α lim sup
γ→∞

|xγ − x∗|2X = 〈λ∗, x̂1 − x∗
1〉X∗

1 ,X1 = 〈λ∗, x̂1 − ψ〉X∗
1 ,X1 ≤ 0,

and therefore limγ→∞ xγ = x∗. Taking the limit in (2.4), we find

〈J ′(x∗), φ〉X∗,X + 〈E∗p̂, φ〉X∗,X + 〈λ̂, φ1〉X∗
1 ,X1

= 0

for all φ = (φ1, φ2) ∈ X. This equation also holds with (p̂, λ̂) replaced by (p∗, λ∗).

Since C∗ is injective, we have (p̂, λ̂) = (p∗, λ∗). Since the accumulation point of every
weakly convergent subsequence of {(xγ , pγ , λγ)} is (x∗, p∗, λ∗), the whole sequence
converges weakly.

We point out that condition (2.2) is a convenient sufficient condition, which is
used for the existence of a Lagrange multiplier and for the a priori estimate just below
(2.7). It holds for a reasonably wide class of interesting applications, as will be shown
in section 3. In more involved applications, these two consequences of (2.2) must be
argued by utilizing the specific properties of the underlying problem.

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



PATH-FOLLOWING METHODS 1203

Next we treat the case λ̄ = 0 and γ → 0+, i.e., convergence towards the problem
without inequality constraints.

Proposition 2.2. If λ̄ = 0, then the path C0 is bounded in X ×W ∗ ×X∗
1 and

limγ→0+(xγ , pγ , λγ) = (x̃, p̃, 0), where x̃ is the solution to (P̃) with Lagrange multiplier
p̃ associated with the constraint Ex = f .

Proof. By (2.4) and (2.7), the family {(xγ , pγ , λγ)}γ>0 is bounded. Moreover
limγ→0+ λγ = 0 in L2(ω) by (2.7). Taking the limit γ → 0+ in (2.4), we find that
each accumulation point of {(xγ , pγ , λγ)}γ>0 must satisfy

J ′(x̃) + E∗p̃ = 0, Ex̃ = f.

This implies the claim.
Now we study smoothness properties of the primal-dual path.
Proposition 2.3. The primal-dual path Cr is globally Lipschitz continuous for

every r > 0, and γ �→ λγ is locally Lipschitz continuous in L2(ω). If λ̄ = 0, then C0

is globally Lipschitz continuous.
Proof. Let γ, γ̄ ∈ [r,∞). Then

J ′(xγ) − J ′(xγ̄) + E∗(pγ − pγ̄) +
(
λ̄ + γ(x1,γ − ψ)

)+ −
(
λ̄ + γ̄(x1,γ̄ − ψ)

)+
= 0,

(2.9)

and hence with Assumption 2.1 holding,

α|xγ − x̄γ |2X +
( (

λ̄ + γ(x1,γ − ψ)
)+ −

(
λ̄ + γ̄(x1,γ − ψ)

)+
+

(
λ̄ + γ̄(x1,γ − ψ)

)+ −
(
λ̄ + γ̄(x1,γ̄ − ψ)

)+
, x1,γ − x1,γ̄

)
L2

≤ 0.

Since x �→ (z + x)+ is monotone, we have

α|xγ − xγ̄ |2X ≤ |γ − γ̄| |x1,γ − ψ|L2 |x1,γ − x1,γ̄ |L2 .

Boundedness of {x1,γ}γ≥r implies Lipschitz continuity of γ �→ xγ for γ ≥ r.
From (2.9) we deduce that

C∗(pγ − pγ̄ , λγ − λγ̄) = J ′(xγ̄) − J ′(xγ).

Therefore surjectivity of C implies that γ �→ (pγ , λγ) is Lipschitz continuous on [r,∞).
For λ̄ = 0 we have that {xγ}γ>0 is bounded, and global Lipschitz continuity of C0

follows as before.
Local Lipschitz continuity of γ �→ λγ in L2(ω) results from

|λγ − λγ̄ |L2 =
∣∣∣ (λ̄ + γ(x1,γ − ψ)

)+ −
(
λ̄ + γ̄(x1,γ̄ − ψ)

)+ |L2

≤ |(γ − γ̄)x1,γ |L2 + |γ̄(x1,γ − x1,γ̄)|L2 + |γ − γ̄||ψ|L2 .

Henceforth we set for γ > 0

Sγ = {z ∈ ω : λ̄(z) + γ(x1,γ − ψ)(z) > 0}

and

g(γ) = λ̄ + γ(x1,γ − ψ).
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1204 M. HINTERMÜLLER AND K. KUNISCH

Below we shall assume that X1 embeds compactly into L2(ω). Since γ �→ (xγ , pγ) is
Lipschitz continuous, (

1

γ̄ − γ
(xγ̄ − xγ),

1

γ̄ − γ
(pγ̄ − pγ)

)

admits a weak accumulation point (ẋ+
γ , ṗ

+
γ ) in X ×W ∗ as γ̄ → γ. Further,

1

γ̄ − γ
(g(γ̄) − g(γ))

has ġ(γ) = x1,γ − ψ + γẋ+
1,γ as a strong accumulation point in L2(ω).

Since J is quadratic, J ′′(xγ) is independent of xγ and we henceforth simply use
J ′′ for the bounded linear operator from X to X∗.

Proposition 2.4. Assume that X1 ↪→ L2(ω) is compact, and set

S+
γ = Sγ ∪ {z : λ̄(z) + γ(x1,γ − ψ)(z) = 0 ∧ ġ(γ)(z) ≥ 0}.

Then (ẋγ , ṗγ) satisfies

〈J ′′(ẋγ), v〉X∗,X + 〈E∗ṗγ , v〉X∗,X +
(
(x1,γ − ψ + γẋ+

1,γ)χS+
γ
, v1

)
= 0

for all v = (v1, v2) ∈ X.
For the proof we refer to [12]. We now set

S0
γ = {z ∈ ω : λ̄(z) + γ(x1,γ − ψ)(z) = 0}.

Corollary 2.1. If meas(S0
γ) = 0, then γ �→ (xγ , pγ) ∈ X × W ∗ is weakly

differentiable at γ and (ẋγ , ṗγ) satisfies

〈J ′′(ẋγ), v〉X∗,X + 〈E∗ṗγ , v〉X∗,X +
(
(x1,γ − ψ + γẋ1,γ)χSγ

, v1

)
= 0(2.10)

for all v = (v1, v2) ∈ X. Moreover γ �→ xγ is strongly differentiable at γ.
Proof. Every accumulation point (ẋγ , ṗγ) of(

1

γ̄ − γ
(xγ̄ − xγ),

1

γ̄ − γ
(pγ̄ − pγ)

)

as γ̄ → γ satisfies the conclusion of Proposition 2.4. If there are two weak accumula-
tion points, then their difference (x̄γ , p̄γ) satisfies Ex̄γ = 0 and

〈J ′′(x̄γ), v〉X∗,X + 〈p̄γ , Ev〉X∗,X + γ(x̄1,γχSγ , v1)L2 = 0(2.11)

for all v = (v1, v2) ∈ X. Setting v = x̄γ in (2.11), we have

〈J ′′(x̄γ), x̄γ〉X∗,X + γ(x̄1,γχSγ , x̄1,γ) = 0,

which implies that x̄γ = 0 by Assumption 2.1. Due to (2.2) and (2.11) we have p̄γ = 0,
and weak differentiability follows. From (2.4) and (2.11) we have〈

J ′′(ẋγ) − 1

γ̄ − γ
(J ′(xγ̄) − J ′(xγ)) , ẋγ − 1

γ̄ − γ
(xγ̄ − xγ)

〉
X∗,X

+ ε(γ̄, γ) = 0,
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PATH-FOLLOWING METHODS 1205

where

ε(γ̄, γ) =
(
(x1,γ − ψ + γẋ1,γ)χSγ

− 1

γ̄ − γ

[(
λ̄ + γ̄(x1,γ̄ − ψ)

)+
−

(
λ̄ + γ(x1,γ − ψ)

)+]
, ẋ1,γ − 1

γ̄ − γ
(x1,γ̄ − x1,γ)

)
L2
.

Since

lim
γ̄→γ

ε(γ̄, γ) = 0,

strong differentiability of γ �→ xγ at γ follows from Assumption 2.1.

3. Applications. In this section we discuss several classes of constrained optimal
control problems which are special instances of the general problem (P).

3.1. State constraints. The optimal control problem with state constraints,

minimize J(x) =
1

2
|y − yd|2L2(L2) +

β

2
|u|2L2(L2) over x ∈ X

subject to yt − Δy = u in (0, T ) × Ω,
y(0, ·) = 0, y = 0 on (0, T ) × Γ,
y ≤ ψ a.e. in (0, T ) × Ω,

with Γ = ∂Ω and x = (y, u) is a special case of (P), where

X1 = {y ∈ L2(0, T ;H1
0 (Ω) ∩H2(Ω)) : yt ∈ L2(0, T ;L2(Ω))},

X2 = W = L2(0, T ;L2(Ω)),

ω = (0, T ) × Ω,

E(y, u) = yt − Δy − u,

β > 0, T > 0, yd ∈ W , ψ ∈ X1, and Ω a bounded domain in R
n, is a special case

of (P) with Assumption 2.1 and (2.2) satisfied. The general framework of section 2
provides dual variables (p∗, λ∗) ∈ W ×X∗

1 . Additional regularity can be obtained by
using the optimality conditions; see, e.g., [2, 3].

3.2. Dirichlet control with control constraints. Consider that

minimize J(x) =
1

2
|y − yd|2L2(Ω) +

β

2
|u|2H1(Γ) over x ∈ X

subject to − Δy = f in Ω,

y = u on Γ,

u ≤ ψ a.e. in Γ,

(3.1)

is a special case of (P) with x = (u, y),

X = H1(Γ) ×H1(Ω), W = H1/2(Γ) ×H−1(Ω),

E(y, u) = (y − u,−Δy − f),

β > 0, yd ∈ H2(Ω), ψ ∈ C2(Γ), and Ω a bounded domain in R
n, n ≤ 4, with smooth

boundary Γ. Since the variational solution y = y(u) to

−Δy = f in Ω, y = u on Γ,
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1206 M. HINTERMÜLLER AND K. KUNISCH

satisfies

|y(u)|H1 ≤ K(|u|H1/2 + |f |H−1)

for some constant K independent of u ∈ H1/2(Γ) and f ∈ H−1(Ω), it follows that
Assumption 2.1 is satisfied. To verify (2.2) let (ũ1, ỹ, ũ2) ∈ H1/2(Γ)×H−1(Ω)×H1(Γ).
Choose u = ũ2 and let y ∈ H1(Ω) be the unique variational solution to

−Δy = ỹ in Ω, y = ũ1 + u on Γ.

Then

C(y, u) =

⎛
⎝ y − u

−Δy
u

⎞
⎠ =

⎛
⎝ ũ1

ỹ
ũ2

⎞
⎠ ∈ H1/2(Γ) ×H−1(Ω) ×H1(Γ),

and thus C is surjective.
In this case the Lagrange multiplier associated with the inequality constraint u ≤

ψ is in H−1(Γ) and, hence, the primal-dual active set strategy without regularization
cannot be defined.

The regularized problem is given by

minimize
1

2
|y − yd|2L2(Ω) +

β

2
|u|2H1(Γ) +

1

2γ
|
(
λ̄ + γ(u− ψ)

)+ |2L2(Γ)

subject to − Δy = f in Ω,

y = u on Γ,

(3.2)

with λ̄ ∈ C(Γ), λ̄ ≥ 0. The optimality system for this problem is given by

− Δy = f in Ω, y = u on Γ,

− Δp = yd − y in Ω, p = 0 on Γ,

β(−ΔΓ + I)u +
∂p

∂n
+
(
λ̄ + γ(u− ψ)

)+
= 0 in H−1(Γ),

(3.3)

where ΔΓ denotes the Laplace–Beltrami operator on Γ; see [8]. Let (y∗, u∗) =
(y∗(u∗), u∗) denote the solution to (3.1). Then

1

2
|yγ − yd|2L2(Ω) +

β

2
|uγ |2H1(Γ) +

1

2γ
|
(
λ̄ + γ(uγ − ψ)

)+ |2L2(Γ)

≤ 1

2
|y∗ − yd|2L2(Ω) +

β

2
|u∗|2H1(Γ) +

1

2γ
|λ̄|2L2(Γ),

and hence,

|uγ |H1 ≤ K

(
1 +

1
√
γ
|λ̄|

)
L2(Γ)

.(3.4)

Here and below, K denotes a constant independent of |λ̄|L2(Γ) and γ. From well-known
estimates [16, p. 188] for elliptic equations (3.3) and (3.4), we deduce that

|yγ |H3/2(Ω) ≤ K

(
1 +

1
√
γ
|λ̄|L2(Γ)

)
,

|pγ |H7/2(Ω) ≤ K

(
1 +

1
√
γ
|λ̄|L2(Γ)

)
,∣∣∣∣∂pγ∂n

∣∣∣∣
H2(Γ)

≤ K

(
1 +

1
√
γ
|λ̄|L2(Γ)

)
,
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PATH-FOLLOWING METHODS 1207

and hence, ∣∣∣∣∂pγ∂n

∣∣∣∣
L∞(Γ)

≤ K

(
1 +

1
√
γ
|λ̄|L2(Γ)

)
,(3.5)

if n ≤ 4. From the last equation in (3.3), we deduce that

β 〈(−ΔΓ + I) (uγ − ψ), (uγ − ψ)+
〉
X∗

1 ,X1
+

(
∂pγ
∂n

+ λ̄ + γ(uγ − ψ), (uγ − ψ)+
)

L2(Γ)

+ β
(
(−ΔΓ + I)ψ, (uγ − ψ)+

)
L2(Γ)

= 0,

and thus,

β|(uγ−ψ)+|2H1(Γ)+γ|(uγ−ψ)+|2L2(Γ)+

(
λ̄ + β(−ΔΓ + I)ψ +

∂pγ
∂n

, (uγ − ψ)+
)

L2(Γ)

≤ 0.

From (3.5) it follows that

β|(uγ − ψ)+|2H1(Γ) + γ|(uγ − ψ)+|2L2(Γ)

+

(
λ̄ + β(−ΔΓ + I)ψ −K

(
1 +

|λ̄|
√
γ

)
, (uγ − ψ)+

)
L2(Γ)

≤ 0.

Hence, if λ̄ is sufficiently large such that

λ̄(x) > β(ΔΓ − I)ψ(x) + 2K for all x ∈ Γ,

then there exists γ̄ such that

uγ ≤ ψ a.e. on Γ for all γ ≥ γ̄,

and thus uγ is feasible for γ ≥ γ̄.
If |u|2H1(Γ) is replaced with |u|2

H1/2(Γ)
in (3.1) and accordingly X = H1/2(Γ) ×

H1(Ω), then the Lagrange multiplier associated with u ≤ ψ is in H−1/2(Γ), and again
regularization is necessary to employ the primal-dual active set strategy. Following
the above arguments, it can be shown that uγ ≤ ψ if λ̄ ∈ C1(Γ) and if γ is sufficiently
large, and that n ≤ 3.

3.3. Dirichlet control with control constraints, revisited. Here we con-
sider two further alternative formulations for Dirichlet boundary control and their
treatment by the primal-dual active set strategy. First, we focus on

minimize
1

2
|y − yd|2H1(Ω) +

β

2
|u|2L2(Γ) over (y, u) ∈ H1(Ω) × L2(Γ)

subject to − Δy = f in Ω,

y = u on Γ,

u ≤ ψ a.e. on Γ,

(3.6)

where yd ∈ H2(Ω), β > 0, f ∈ L2(Ω), and ψ ∈ H2(Γ). Note that (3.6) admits a
unique solution (y∗, u∗) ∈ H1(Ω) × H1/2(Γ). The optimality condition for (3.6) is
found to be (the variational form of)

− Δy = f in Ω, y = u on Γ,

− Δp = yd − y − Δyd − f in Ω, p = 0 on Γ,(
βu +

∂p

∂n
− ∂yd

∂n
, h

)
L2(Γ)

≥ 0 for all h ∈ C(u∗),

(3.7)D
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1208 M. HINTERMÜLLER AND K. KUNISCH

where (y, p) ∈ H1(Ω) ×H1(Ω), and

C(u∗) = {h = u− u∗ : u ∈ L2(Γ), u ≤ ψ}.

Next consider p as a function of u ∈ L2(Γ) defined via the first four equations in (3.7).
Note that the mapping u �→ y(u) is continuous from L2(Γ) to L2(Ω) (see [16]) and

further that u �→ ∂p(u)
∂n is continuous from L2(Γ) to H1/2(Γ). Hence, the inequality

in (3.7) can be equivalently expressed as

βu + λ =
∂

∂n
(yd − p),

λ = (λ + c(u− ψ))
+

for any c > 0. Choosing c = β, this in turn is equivalent to

βu +
∂

∂n
(yd − p) +

(
∂

∂n
(yd − p) − βψ

)+

= 0.(3.8)

As observed above, u �→ ∂p(u)
∂n is continuous from L2(Γ) to H1/2(Γ). Hence, for

each n there exists q > 2 such that u �→ ∂p(u)
∂n is continuous from L2(Γ) to Lq(Γ).

Now standard techniques [10] can be applied to argue that the primal-dual active set
strategy applied to (3.8) is locally superlinearly convergent in L2(Γ).

3.4. Optimal control problem with “solutions très faibles.” Finally, we
turn to the boundary control problem with solutions in the sense of ”solutions très
faibles”; e.g. [15, p.76],

minimize
1

2

∣∣∣∣∂y∂n − yd

∣∣∣∣
2

H−1(Γ)

+
β

2
|u|2L2(Γ) over (u, y) ∈ L2(Γ) × L2(Ω)

subject to − (y,Δv)L2(Ω) − (f, v)L2(Ω) +

(
u,

∂v

∂n

)
L2(Γ)

= 0

for all v ∈ H2(Ω) ∩H1
0 (Ω),

u ≤ ψ,

(3.9)

where yd ∈ H−1(Γ), f ∈ L2(Ω), ψ ∈ L2(Γ). We recall that u �→ ∂y
∂n is a continuous

mapping from L2(Γ) to H−1(Γ); see [15, p. 78]. The adjoint equation for the optimal
control problem (3.9) is given by

−Δp = 0 in Ω, p = (−ΔΓ)−1

(
yd −

∂y

∂n

)
on Γ,(3.10)

and it is known (see [15, p. 77] and [16]) that p ∈ H3/2(Ω) and ∂p
∂n ∈ L2(Γ). The

optimality system for (3.9) consists of the variational equation in (3.9), the adjoint
equation (3.10), and the optimality condition

βu + λ +
∂p

∂n
= 0,

λ = (λ + c(u− ψ))
+

(3.11)

for any c > 0. Choosing c = β we find, as above, that (3.11) is equivalent to

βu +
∂p

∂n
+

(
∂p

∂n
− βψ

)+

= 0.(3.12)
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PATH-FOLLOWING METHODS 1209

Note that u �→ ∂p
∂n is a continuous mapping from L2(Γ) into itself, which is not

smoothing. Thus, the max-operation in (3.12) is not generalized differentiable in the
sense of [10]. The latter property, however, is essential for a superlinear convergence
of the primal-dual active set strategy, which we, hence, cannot expect in connection
with (3.12).

Turning to the regularized version, we consider, for γ > 0,

minimize
1

2

∣∣∣∣∂y∂n − yd

∣∣∣∣
2

H−1(Γ)

+
β

2
|u|2L2(Γ) +

1

2γ

∫
Γ

∣∣∣(λ̄ + γ(u− ψ)
)+∣∣∣2

over (u, y) ∈ L2(Γ) × L2(Ω)

subject to − (y,Δv)L2(Ω) − (f, v)L2(Ω) +

(
u,

∂v

∂n

)
L2(Γ)

= 0

for all v ∈ H2(Ω) ∩H1
0 (Ω).

(3.13)

The optimality system consists of the primal equation, the adjoint equation (3.10),
and the optimality condition

βu +
∂p

∂n
+
(
λ̄ + γ(u− ψ)

)+
= 0.

Consequently the solution uγ to (3.13) is still in only L2(Γ), in general, and the
primal-dual active set strategy for (3.13) may not be (superlinearly) convergent.

4. The value functional and its model. Next we introduce the optimal
value functional of (Pγ), study its smoothness properties, and approximate it by
low-parametric families of model functions. These model functions will be used in
section 5, where we develop a path-following algorithm operating with a reliable γ-
update strategy.

Definition 4.1. The functional

γ �→ V (γ) = J(xγ) +
1

2γ

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2dw

defined on (0,∞) is called the primal-dual-path value functional.
The smoothness and monotonicity properties of V provide useful information for

tuning γ in an iterative procedure.
Proposition 4.1. The value functional V is differentiable with

V̇ (γ) = − 1

2γ2

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2 +
1

γ

∫
ω

(λ̄ + γ(x1,γ − ψ))+(x1,γ − ψ).

Proof. For γ̄, γ ∈ (0,∞) we have from (4),

〈J ′(xγ̄ + xγ), xγ̄ − xγ〉X∗,X + (λγ̄ + λγ , x1,γ̄ − x1,γ)L2 = 0,
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1210 M. HINTERMÜLLER AND K. KUNISCH

and therefore

V (γ̄) − V (γ) = J(xγ̄) − J(xγ) +
1

2γ̄

∫
ω

|(λ̄ + γ̄(x1,γ̄ − ψ))+|2

− 1

2γ

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2

= 〈J ′(xγ̄ + xγ), xγ̄ − xγ〉X∗,X +
1

2γ̄

∫
ω

|(λ̄ + γ̄(x1,γ̄ − ψ))+|2

− 1

2γ̄

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2

=
1

2γ̄

∫
ω

|(λ̄ + γ̄(x1,γ̄ − ψ))+|2 − 1

2γ

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2

− 1

2

∫
ω

((λ̄ + γ̄(x1,γ̄ − ψ))+ + (λ̄ + γ(x1,γ − ψ))+)(x1,γ̄ − x1,γ)

= I1 + I2 + I3.

It can now be argued just as in the proof of Proposition 4.1 of [12] that

lim
γ̄→γ

1

γ̄ − γ
|I2| = lim

γ̄→γ

1

γ̄ − γ
|I3| = 0

and further,

lim
γ̄→γ

1

γ̄ − γ
I1 = − 1

2γ2

∫
ω

((λ̄ + γ(x1,γ − ψ))+)2

+
1

γ

∫
ω

(λ̄ + γ(x1,γ − ψ))+(x1,γ − ψ),

as desired.
It turns out that the monotonicity properties of V may depend on the choice of

λ̄. For the following discussion we assume that the solution x̃ to (P̃) does not satisfy
x̃1 ≤ ψ. Let us start by first considering the case λ̄ = 0. We have

V̇ (γ) =
1

2

∫
ω

|(x1,γ − ψ)+|2 > 0.(4.1)

Indeed, if V̇ (γ) = 0 for some γ > 0, then x1,γ ≤ ψ, i.e., x1,γ is feasible. Thus, λγ = 0
and, from (2.3) and (2.4), we find that (xγ , λγ) = (x̃, 0) is the solution to (2.3) with
x̃1 ≤ ψ which was ruled out by assumption. In case there exist λ̄ and γ̄ > 0 such that

x1,γ ≤ ψ for all γ ≥ γ̄,(4.2)

we have by Proposition 4.1 that V̇ (γ) ≤ 0 for γ ≥ γ̄ and, unless the solution x̃ to (P̃)
satisfies x̃1 ≤ ψ, we obtain V̇ (γ) < 0 for γ ≥ γ̄. In fact, if V̇ (γ) = 0, then

0 = V̇ (γ) ≤ − 1

2γ2

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2 ≤ 0,

and hence λγ = 0. Therefore (xγ , λγ) = (x̃, 0) is the solution of (2.3), which is
excluded. Recall that a specific case in which (4.2) holds was given in section 3.2.
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PATH-FOLLOWING METHODS 1211

Next we study the second order differentiability of V .
Proposition 4.2. Assume that X1 ↪→ L2(ω) is compact and let ẋγ denote an

accumulation point of 1
γ̄−γ (x1,γ̄ −x1,γ) as γ̄ → γ. Then for a subsequence γn realizing

the accumulation point,

lim
γ̄n→γ

1

γ̄n − γ
(V̇ (γ̄n) − V̇ (γ)) =

1

γ3

∫
ω

|(λ̄ + γ(x1,γ − ψ))+|2

− 2

γ2

∫
ω

(λ̄ + γ(x1,γ − ψ))+(x1,γ − ψ)(4.3)

+
1

γ

∫
ω

(x1,γ − ψ)(x1,γ − ψ + γẋ1,γ)X
S
+
γ

.

If meas(S◦
γ) = 0, then γ → V (γ) is twice differentiable at γ, and the second derivative

is given by the right-hand side in (4.3) with χS+
γ

replaced by χSγ .

Proof. The first claim follows from Proposition 4.1. If meas (S◦
γ) = 0, then

accumulation points of 1
γ̄−γ (x1,γ̄ − x1,γ) as γ̄ → γ are unique, and (4.3) with χS+

γ

replaced by χSγ
, as well as existence of V̈ at γ, follow.

We turn to proposing low-parametric model functions m for V which share some
of the qualitative properties of V . Notice that, in general, V is not at our disposal
quantitatively. However, we shall see that m can be obtained from solves of the reg-
ularized problem for different choices of γ. In the next section, these model functions
will then be used as a guideline for updating γ; see (5.2). Throughout the following
discussion, we assume that the solution x̃ to (P̃ ) does not satisfy x̃1 ≤ ψ.

4.1. Case λ̄ = 0. In this case, γ → V (γ) is strictly increasing with V (0) equal
to the value of the cost in (P̃) and V ∞ the value of the cost in (P).

Proposition 4.3. The mapping γ → V̇ (γ) is monotonically decreasing.
Proof. For γ̄ > γ > 0 we have

J(xγ) +
γ

2
|(x1,γ − ψ)+|2 ≤ J(xγ̄) +

γ

2
|(x1,γ̄ − ψ)+|2

≤ J(xγ̄) +
γ̄

2
|(x1,γ̄ − ψ)+|2 ≤ J(xγ) +

γ̄

2
|(x1,γ − ψ)+|2,

and hence

J(xγ) − J(xγ̄) ≤ γ

2
(|(x1,γ̄ − ψ)+|2 − |(x1,γ − ψ)+|2),

and further

J(xγ̄) − J(xγ) ≤ γ̄

2
(|(x1,γ − ψ)+|2 − |(x1,γ̄ − ψ)+|2),

which implies

0 ≤ (γ̄ − γ)(|(x1,γ − ψ)+|2 − |(x1,γ̄ − ψ)+|2) = (γ̄ − γ)(V̇ (γ) − V̇ (γ̄)).

Note that Proposition 4.3 implies that V̈ (γ) ≤ 0 whenever the second derivative
of V exists at γ. This can also be derived from (2.9) and (4.3). A class of functions
that satisfies the above properties of V is given by

m(γ) = C1 −
C2

(D + γ)r
,(4.4)

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1212 M. HINTERMÜLLER AND K. KUNISCH

with C1 ∈ R, C2 > 0, D > 0, r > 0. In fact, ṁ > 0, m̈ < 0 and m(0), m(γ) for γ → ∞
are well defined. In our use of m for path-following algorithms, (C1, C2, D) will be
treated differently from r. While r will be chosen as a fixed number, (C1, C2, D) will
be updated in an iterative procedure. Let us further note that by a simple rescaling,
we can always assume that D = 1.

Remark 4.1. To give a second motivation for the choice of the model function,
we consider the state constrained problem

minimize J(x) =
1

2
|y − yd|2L2(Ω) +

β

2
|u|2L2(Ω) over x ∈ X

subject to −Δy = u in Ω,
y = 0 on ∂Ω,
y ≤ ψ a.e. in Ω,

where β > 0, x = (y, u) ∈ X = (H1
0 (Ω) ∩H2(Ω)) × L2(Ω), yd ∈ L2(Ω), ψ ∈ L2(Ω),

and Ω is a bounded domain in R
n. We utilize the sensitivity equation with respect

to γ and assume that meas {z : (y−ψ)(z) = 0} = ∅. Then from Proposition 2.4 with
Sγ = {z : (y − ψ)(z) > 0}, we have

−Δẏ =
1

2
ṗ , −Δṗ + (yγ − ψ)+ + γẏχSγ

= −ẏ,

and hence,

αΔ2ẏ + ẏ + γẏχSγ + (yγ − ψ)+ = 0.

Taking the inner product in L2(Ω) with (yγ − ψ)+, we have

(αΔ2ẏ + ẏ, (yγ − ψ)+) + γ(ẏ, (yγ − ψ)+) + |(yγ − ψ)+|2L2 = 0.

Replacing (αΔ2ẏ, (yγ − ψ)+) with (D̂ ẏ, (yγ − ψ)+), where D̂ is a positive constant,
we arrive at

((D + γ)ẏ, (yγ − ψ)+) + |(yγ − ψ)+|2L2 = 0,(4.5)

where we set D = D̂ + 1. Recall from Proposition 4.1 and (4.1) that |(yγ − ψ)+|2L2 =

2V̇ (γ) and |(ẏ, yγ −ψ)+| = V̈ (γ). Since we replaced αΔ2 with the constant D̂, for the
purpose of deriving this model, we replace V with its model m and obtain from (4.5)

(D + γ)m̈(γ) + 2ṁ(γ) = 0.

The solution to this ordinary differential equation is given by (4.4) with r = 1.

4.2. Case λ̄ �= 0. If (4.2) holds, then γ → V (γ) is strictly decreasing for γ ≥ γ̄,
with limγ→∞ V (γ) equal to the value of the objective of (P), and limγ→0 V (γ) = ∞.

Proposition 4.4. Assume that X1 ↪→ L2(ω) is compact, that meas(S◦
γ) = 0,

and that (4.2) holds. Then V̈ (γ) ≥ 0.
Proof. From (4.3) with S+

γ = Sγ , we have

V̈ (γ) =
1

γ3

∫
Sγ

λ̄2 +

∫
Sγ

(x1,γ − ψ)ẋ1,γ ≥ 1

γ

∫
Sγ

(x1,γ − ψ)2 +

∫
Sγ

(x1,γ − ψ)ẋ1,γ .
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PATH-FOLLOWING METHODS 1213

From Proposition 2.4 and (2.1), we have

γ|ẋ1,γ |L2(Sγ) ≤ |x1,γ − ψ|L2(Sγ).

This implies V̈ (γ) ≥ 0.
A class of model functions, which satisfy the above properties of V , is given by

m(γ) = C1 −
C2

(D + γ)r
+

B

γr
,(4.6)

with C1 ∈ R, B ≥ C2 > 0, D > 0, and r ∈ (0, 1]. In fact, m(0) = ∞, limγ→∞ m(γ) =
C1, ṁ(γ) < 0, and m̈(γ) > 0. A rescaling argument similar to the one for λ̄ = 0 allows
us to henceforth assume D = 1.

5. Numerics. In this section we specify an inexact path-following method for
the numerical solution of (P). In the inner loop, it utilizes a locally superlinearly
convergent algorithm for solving the regularized path problem (Pγ). The outer loop
employs a γ-update strategy based on our model functions (4.4) (respectively, (4.6)).
The section ends with a report on test runs for the solution of some state constrained
optimal control problems with distributed control and a linear elliptic PDE as the
governing equation. We also compare our new algorithm with a primal-dual path-
following interior point method [18, 27] adapted to PDE-constrained minimization
as in [1] and with the primal-dual active set strategy [1, 2]. Our test problems in-
clude cases when the optimal solution lacks strict complementarity, i.e., when the
set S∗ = {y∗ = ψ ∧ λ∗ = 0} has positive measure. It is known that lack of strict
complementarity may slow the convergence of numerical algorithms. This is due to
the difficulty of detecting the correct active (respectively, inactive) set structure in
the neighborhood of the solution.

5.1. Inner iteration: An algorithm for solving (Pγ). Here we adopt the
primal-dual active set strategy as proposed in [12] for solving problems of the type
(Pγ). The method is equivalent to a semismooth Newton algorithm, and, using the
techniques in [10], it can be shown to converge locally at a q-superlinear rate.

Algorithm PDASγ (primal-dual active set strategy for γ-regularized problem
(Pγ)).

(i) Choose λ̄ ≥ 0 and x0 ∈ X; set l = 0.
(ii) Determine the active and inactive sets

Al+1 := {w ∈ ω : λ̄(w) + γ(xl
1(w) − ψ(w)) > 0},

Il+1 := Ω \ Al+1.

(iii) Compute the solution xl+1 with associated adjoint state pl+1 of

minimize 〈J ′(xl) +
1

2
〈J ′′(xl)(x− xl), x− xl〉X∗,X

+
1

2γ
|(λ̄ + γ(x1 − ψ))+|2L2(Al+1) over x ∈ X

subject to Ex = f in W.

(iv) Compute

λl+1 =

{
0 on Il+1,

λ̄ + γ(xl+1
1 − ψ) on Al+1,

set l = l + 1, and go to (ii).
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1214 M. HINTERMÜLLER AND K. KUNISCH

The first order optimality system of the minimization problem in step (iii) is given
by

Exl+1 = f in W,

J ′′(xl)xl+1 + E∗pl+1 +
(
γ(xl+1

1 − ψ)χAl+1 , 0
)

= −J ′(xl) + J ′′(xl)xl −
(
λ̄χAl+1 , 0

)
in X∗.

Note that this system corresponds to a linearization of (2.4) at xl. In this context,
the max-function

x1 �→
(
λ̄ + γ(x1 − ψ)

)+
is linearized separately on the active and inactive sets determined in step (ii). This is
equivalent to employing a generalized (or slant) derivative of the max-function in the
spirit of [10, 12] in the process of linearization. Consequently, step (iii) is identical to
the solution of the linear system within an iteration of a semismooth Newton method
for solving (2.4).

5.2. Outer iteration: Inexact solutions and γ-update. For small γ there
is no need for highly accurate solutions of the regularized problem (Pγ), since we
expect xγ to be only a coarse approximation of x∗. Rather we propose a procedure
requiring approximate solutions of the path problem lying in some neighborhood of
the path only. This is similar to the concept considered in [12] and to path-following
for log-barrier-functions. For this purpose we introduce the residuals

rx(x) = ‖Ex− f‖W ,

rp(x, p, λ) = ‖J ′(x) + E∗p + (λ, 0)‖X∗ ,

rλ(x1, λ) = ‖λ− (λ̄ + γ(x1 − ψ))+‖X∗
1

and define the neighborhood

N (γ, r) =

{
(x, p, λ) ∈ Z : max{rx(x), rp(x, p, λ), rλ(x1, λ)} ≤ τ

γr

}

with Z = X ×X∗ × L2(ω) for some fixed τ > 0 and r > 0. In our implementation,
we typically choose r in accordance with our model (4.4) or (4.6). In the subse-
quent algorithm, for fixed γ, we stop Algorithm PDASγ after the first occurrence of
(xl, pl, λl) ∈ N (γ, r) for the first time.

Once an approximate solution of (Pγ) is obtained, we have to update γ. To this
end, we introduce the feasibility measure ρF and the complementarity measure ρC as
follows:

ρF (x1) :=

∫
ω

(x1 − ψ)+dz,

ρC(x1) :=

∫
I(x1)

(x1 − ψ)+dz +

∫
A(x1)

(x1 − ψ)−dz,

where A(x1) = {z ∈ ω : λ̄(z) + γ(x1(z) − ψ(z)) > 0}, I(x1) = ω \ A(x1), and
(·)− = min(0, ·). Whenever x1 = xk+1

1 and γ = γk, we write Ak+1, Ik+1 and ρFk+1,

ρCk+1. For max(ρFk+1, ρ
C
k+1) > 0, we obtain a candidate γ+

k+1 for γk+1 as

γ+
k+1 = max

(
γk max

(
τ1,

ρFk+1

ρCk+1

)
,

1

max(ρFk+1, ρ
C
k+1)

q

)
(5.1)
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PATH-FOLLOWING METHODS 1215

with τ1 > 1 and q ≥ 1; otherwise we set γ+
k+1 = τ1γk. We include the quotient

ρFk+1/ρ
C
k+1 in order to significantly increase γ whenever ρFk+1 � ρCk+1, i.e., when the

iterates primarily lack feasibility rather than complementarity. The choice q > 1
induces certain growth rates for γ. Similar to [12], we also incorporate the following
safeguard based on our model (4.4) (respectively, (4.6)): Unless γk+1 < τ2γk, with
τ2 > 1, we reduce γ+

k+1 until

|tk(γk+1) −mk(γk+1)| ≤ τ3|J(xk+1, γk) − J(xk, γk−1)|,(5.2)

where 0 < τ3 < 1 and tk(γ) = J(xk+1, γk) + ∂J(xk,γk)
∂γ (γ − γk). In other words, the

linearization of mk at γk+1 should not be farther away from mk than the distance
of the previous two objective values of the regularized problem. As soon as (5.2) is
satisfied, we set γk+1 = γ+

k+1.
Notice that our safeguard involves the model function in iteration k, which we

denote by mk. To determine the parameters in our model, we use the actual ap-
proximate information on the value functional and its derivative as well as the value
function at some reference point. In what follows, we argue only for the model (4.6).
The case (4.4) is treated similarly. Given γk in iteration k, for fixing Bk, C1,k, and
C2,k in the model mk(γ), we use the conditions

mk(γk) = J(xk, γk), ṁk(γk) =
∂J(xk, γk)

∂γ
(xk, γk), mk(γ̂) = J(x̂, γ̂),

where x̂ denotes an approximate solution of (Pγ) at a reference value γ = γ̂.
Now we are able to outline our overall algorithm.
Algorithm IPF (inexact path-following).
(i) Initialized γ0 > 0, select r > 0, and set k := 0.
(ii) Compute (xk, pk, λk) ∈ N (γk, r).
(iii) Update γk by (5.1) with safeguard (5.2) to obtain γk+1.
(iv) Set k = k + 1 and go to (ii).
In step (ii) we use PDASγ for performing the inner iteration. The convergence

of Algorithm IPF follows immediately from the convergence of Algorithm PDASγ for
every fixed γ and the fact that γk+1 ≥ τ1γk with τ1 > 1 for all k, the property that
τ
γr
k
→ 0 for γk → ∞ in the definition of the neighborhood, and from Proposition 2.1.

5.3. Numerical tests. In this section we report on numerical results for the
solution of the following state constrained optimal control problem:

Minimize J(y, u) =
1

2
|y − yd|2L2 +

β

2
|u|2L2 over (y, u) ∈ X

subject to − Δy = u in Ω, y = 0 on Γ,
y ≤ ψ a.e. in Ω.

Thus, we have x = (y, u), X1 = H1
0 (Ω), X2 = L2(Ω), and ω = Ω = (0, 1)2.

For the discretization of the Laplace operator in two dimensions we use a standard
regular five-point finite difference stencil with mesh size h. Unless specified otherwise,
the subsequent test runs of all algorithms are based on a nested iteration technique.
For this purpose we define a grid hierarchy with mesh sizes {hi}8

i=2 and hi = 2−i. On
every grid, we stop Algorithm IPF as soon as

max(rx(xk), rp(x
k, pk, λk), rd(x

k
1 , λ

k)) ≤ 0.1h2
i ,(5.3)
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1216 M. HINTERMÜLLER AND K. KUNISCH

where rd(x
k
1 , λ

k) = ‖λk − (λk + xk
1 − ψ)+‖X∗

1
. For i = 2 we initialize the algo-

rithms by choosing y0 = ψi, u0
i = −Δiyi, and p0

i = βu0
i . Here and below, sub-

script i refers to discretized quantities on grid level i. The initial Lagrange multiplier
is λ0

i = χ{y0
i
>ψi}(λ̄i + γ0(y

0
i − ψi)) with λ̄i = max

(
yd,i − (βΔ2

i + idi)ψi, 0
)

in the

case considered in section 4.2; otherwise λ̄i = 0. For i > 2, the interpolation of
(xi−1, pi−1, λi−1), which is the approximate solution for hi−1, is used as the initial
value on the grid with mesh size hi. The interpolation process is as follows. First, we
smooth (ui−1, pi−1, λi−1) by applying (−Δi−1)

−1, the discrete Laplace operator with
homogeneous Dirichlet boundary conditions for hi−1, to the respective components.
Then a nine-point-interpolation scheme is applied to obtain (ũi, p̃i, λ̃i); see, e.g., [7].
Finally, we compute

u0
i = −

(
Dw1,i(D

0
w1,iũi) + Dw2,i(D

0
w2,iũi)

)
,

where D0
w1,i

stands for symmetric differences with homogeneous Dirichlet boundary
conditions in the w1-direction, and Dw1,i represents symmetric differences with linear
extrapolation on the boundary; similar definitions hold for Dw2,i and D0

w2,i
. The

adjoint state p0
i and the multiplier λ0

i are computed analogously.
Whenever a nonzero shift λ̄ is used, then we choose

λ̄ = max
(
yd − (βΔ2 + id)ψ, 0

)
.

This choice of λ̄ is inspired by the reduction of the system consisting of state and ad-
joint equations, by the optimality condition with respect to u, and by setting x1 = ψ.

Problem 1. The problem data are yd = 10(sin(2πx1) + x2), ψ ≡ 0.01, β = 0.1. In
Figure 1 we show the optimal state y∗h (top left plot) and control u∗

h (far right) and
the Lagrange multiplier λ∗

h (bottom) on a 128×128 grid. The behavior of λ∗
h along the

boundary between the active and inactive sets at the discrete solution clearly suggests
the measure-valuedness of λ∗.

For our model of the primal-dual value functional we use (4.6), i.e., we apply the
λ̄-shift, with r = 0.2. We use γ0 = 1E2 initially. First, we report on the behavior
of the algorithms on a fixed grid, i.e., without utilizing the nested iteration concept.
In Table 1 we show the iteration numbers for the primal-dual active set method
for solving (P) (abbreviated by PDAS), the primal-dual path-following interior point
method (PDIP), and our new path-following concept (IPF) for various mesh sizes h.
We point out that the stopping rule for each algorithm is given by (5.3). For IPF we
also specify the total number of inner iterations, i.e., the total number of iterations
of Algorithm PDASγ . In all cases, the algorithms are initialized as in the case of
i = 2 described above. Further, for Algorithm IPF we use q = 1.25 and τ1 = 10
in (5.1), τ2 = 1.01 and τ3 = 0.6 in (5.2), and τ = 100 in N (γ, r). The results in
Table 1 indicate that Algorithms IPF and PDIP are superior to PDAS, whereas IPF
appears to be more efficient than PDIP. This reflects also our experience from further
test runs for additional problems. We also point out that in contrast to PDAS and
PDIP our Algorithm IPF admits a function space analysis. As a consequence, the
number of (inner) iterations behaves in a rather mesh-independent way. For PDAS
a strong dependence of the iteration numbers on the mesh size is observed. The
stabilizing iteration numbers for PDIP in the case of mesh refinements suggest that
a function space analysis might be possible. However, to the best of our knowledge,
no such analysis is yet available for the problem class considered here that includes a
regularization parameter tending to zero in the numerical method.
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PATH-FOLLOWING METHODS 1217

Fig. 1. Optimal state (top left), optimal control (top right), and optimal multiplier (bottom)
for problem 1 with h = 1/128.

Table 1

Comparison of iteration numbers for different mesh sizes and methods.

Mesh size h 1/16 1/32 1/64 1/128 1/256

PDAS 14 27 54 113 226
PDIP 12 14 15 19 19

IPF 7(11) 9(15) 9(14) 7(13) 8(15)

Next we report on the outcome of our tests when employing the nested iteration
concept and when using the interpolation of the approximate coarse grid solution
as the initial point on the next finer grid. The results are summarized in Table 2.
Note that for IPF we display only the total number of iterations on the respective
grid. First observe that all algorithms experience a speed-up when using the nested
iteration concept. PDAS especially, although lacking a function space convergence
theory, performs remarkably well in this environment when compared to its variant
on fixed grids. With respect to iteration numbers, our path concept is slightly faster
than PDIP and PDAS. For a comparison of the CPU-times consumed by the respective
algorithm, we define CPU-ratio(algorithm) = CPU-time(algorithm)/CPU-time(IPF).
We have

CPU-ratio(PDIP) ≈ 2 and CPU-ratio(PDAS) ≈ 0.8;

i.e., PDIP requires twice as much CPU-time as IPF, while PDAS is slightly faster
than IPF. This can be explained by the fact that PDAS performs system solves only
on the currently inactive set, whereas IPF has to solve a system on the whole domain.
However, we point out that the simple structure of the system matrix of IPF, i.e.,
(−Δ)i + Di, with Di a positive (semi)definite diagonal matrix on the respective grid
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1218 M. HINTERMÜLLER AND K. KUNISCH

Table 2

Problem 1. Comparison of iteration numbers for different mesh sizes and methods based on
nested iteration.

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/128 1/256 total

PDAS 3 4 4 5 6 6 6 34
PDIP 3 2 4 4 5 6 7 31

IPF 4 3 3 4 5 5 5 29

with mesh size hi, suggests that one can further speed up the solution process of the
linear system in every iteration of Algorithm PDASγ . This, however, is beyond the
scope of the present work.

Problem 2 (lack of strict complementarity). We construct a test problem for which
the active set at the solution contains a subset, where strict complementarity does not
hold. For this purpose define p̃(w1, w2) = −w1(1−w1)w2(1−w2) ∈ H1

0 (Ω) ∩C∞(Ω)
and �(w1, w2) = −0.04 + 0.02w1 − 0.03w2. The adjoint state at the solution is given
by p∗ = max(p̃, �). Further, we define the active set at the solution as A∗ = {p̃ = �}
and the inactive set as its complement in Ω. We set

ξ̃ =

{
Δp̃ on I∗,

0 on A∗,

ξ = Δp, and ξL = ξ − ξ̃. Next we decompose the Lagrange multiplier at the solution
in a singular part λ∗

s and a regular part λ∗
r . The singular part consists of a line source

contribution λ∗
L and an absolutely continuous part λ∗

a:

λ∗ = λ∗
s + λ∗

r = λ∗
L + λ∗

a + λ∗
r .

We define

λ∗
L = ξL, λ∗

a = ξ̃, λ∗
r |I∗ = −ξ̃, λ∗

r |A∗ = −100p̃|A.

Further, u∗ = p∗/β, with β = 0.01, and y∗ = (−Δ)−1p∗/β. The bound is given
by ψ|A∗ = y∗|A∗ and ψ|I∗ = (1/(1 + dist(A∗)0.1))y∗|I∗ . Here dist(A∗) denotes the
distance function to the active set A∗. The desired state is given by yd = y∗ + λ∗

r .
In Figure 2 we show the optimal state y∗h (top left) and control u∗

h (top right) and
the Lagrange multiplier λ∗

h (bottom) on a 128×128 grid.
Figure 3 provides the bound ψ (top left), the difference ψ−y∗ (top right), and the

strongly active, weakly active and inactive sets (bottom). For the latter graph note
that the weakly active set corresponds to the region where strict complementarity
fails to hold (white region). The strongly active set, i.e., the set where y∗ = ψ and
λ∗ > 0, is displayed in gray. The inactive set is given by the black region.

The parameters in IPF had the values r = 0.1, τ1 = 10, τ2 = 1.01, τ3 = 0.7, and
τ = 100. We further set λ̄ = 0.

In Table 3 we report the result corresponding to Problem 2. The arrangement of
the table is analogous to that of Table 2 for Problem 1. First we note that, compared
to the previous problem, the iteration numbers for PDAS increase significantly as the
mesh is refined. This is also reflected in the following CPU-time comparison for this
example:

CPU-ratio(PDIP) ≈ 1.2 and CPU-ratio(PDAS) ≈ 1.8.
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PATH-FOLLOWING METHODS 1219

Fig. 2. Problem 2. Optimal state (top left), optimal control (top right), and optimal multiplier
(bottom) for h = 1/128.
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Fig. 3. Problem 2. Bound ψ (top left), the difference ψ − y∗ (top right), and the active and
inactive sets (bottom) for h = 1/128.D
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1220 M. HINTERMÜLLER AND K. KUNISCH

Table 3

Problem 2. Comparison of iteration numbers for different mesh sizes and methods based on
nested iteration.

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/128 1/256 total

PDAS 2 4 5 9 10 21 40 91
PDIP 3 2 3 3 6 12 11 40

IPF 7 2 4 4 6 8 15 46

Further observe that PDIP needs the lowest total number of iterations, but it requires
about 20% more CPU-time than IPF. This can be explained by the fact that interior
point approaches typically enlarge the system size by adding slack variables. An a
priori system reduction obtained by choosing specific pivots allows us to reduce the
large indefinite system occurring in every iteration to a system of the same size as
that for IPF. However, in order to compute a solution to the overall system, for
PDIP several backward substitutions are required, in contrast to the efforts needed
in IPF. Further, we point out that practically relevant versions of primal-dual path-
following interior point methods, such as the Mehrotra predictor-corrector algorithm
or the Mizuno–Todd–Ye variant (see [1] for an adaptation of these two variants to
optimal control of PDEs and for further references), require additional system solves.
Depending on the variant, one has either two system solves where the second system
has a different right hand side but the same system matrix or two system solves
where the second system has a different right hand side and a different system matrix
as well. The triangular system solves for backward substitution, and the additional
system solves mentioned above add significantly to the overall CPU-time. Let us
further point out that the reduced systems of PDIP typically have a more involved
structure when compared to the systems of IPF; for an account of this fact see, for
instance, the systems (4.6) and (4.7) in [1], and the system in Algorithm PDASγ .
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