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Chapter 12

Suboptimal Feedback
Control of Flow Separation
by POD Model Reduction

Karl Kunisch∗ and Lei Xie∗

12.1 Introduction
Optimal design for fluid dynamical systems, which is a useful computational tool in aerody-
namic drag reduction, turbulence delay, and combustion control, etc., has been an interesting
research area for many years. This research stands at the crossroads of optimization (to carry
out optimal design) and computational fluid dynamics. Many computational approaches
and theoretical investigations were carried out in the past two decades, such as [6, 8, 12, 21],
to name a few.

Generally speaking it is infeasible to carry out feedback design on infinite-dimensional
fluid dynamical systems by numerically solving the dynamic programming equation (DPE)
or the Hamilton–Jacobi–Bellman (HJB) equation. The development of proper orthogonal
decomposition (POD) techniques in recent years provides a promising approach to perform
suboptimal feedback design on reduced-order models. In this technique, a set of basis
functions is constructed from preselected snapshots. Subsequently the fluid dynamic system
is projected onto the space spanned by the basis functions, and the infinite-dimensional
nonlinear partial differential equations (PDEs) of the fluid system are reduced to finite-
dimensional ordinary differential equations (ODEs). Then the optimal design is performed
on this reduced system at reasonable computational cost. This suboptimal approach has
been applied for open-loop design on the one-dimensional Burgers equation in [13] and
on the two-dimensional Navier–Stokes (NS) equations with different geometrical shapes
in [9, 19, 20]. POD-based optimal control for distributed-parameter systems was also
investigated in [16], [1, 2], for example. Ito and Schröter [11] and Kunisch andVolkwein [13]
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234 Chapter 12. Feedback Control of Flow Separation

implemented an approach to carry out feedback control for distributed-parameter systems
on the basis of model reduction combined with solving the optimality systems for an array
of open-loop problems and interpolating the results thus obtained to define the closed-loop
synthesis. In [7] it was proved for the two-dimensional NS equations that the value function
is the unique viscosity solution to the HJB equations. In [10] a suboptimal solution strategy
for conservative systems (such as the NS equations) based on an ansatz for a solution to
the HJB equation is proposed, and in the authors’ previous work [14, 15] solving the HJB
equations for a POD-based reduced system of the Burgers equation is investigated.

The prohibitive computational cost of feedback design for nonlinear systems strongly
suggests the use of parallel computations. In this work several computers are exploited
concurrently; furthermore, on different computers, a different number of MATLAB ses-
sions is invoked, depending on the overall performance and the available computational
power of each computer. The message passing interface based on MATLAB software is
utilized to exchange data between MATLAB sessions on different computers. This parallel
implementation reduces the computing time to an acceptable level.

The chapter is arranged as follows. The distributed volume control problem and the
numerical NS solver are briefly described in Section 12.2. Then the POD technique is
applied in Section 12.3 to reduce the NS equations to a set of nonlinear ODEs, on which
feedback design will be carried out. Numerical methods to solve the discretized DPE are
discussed in Section 12.4. The computational results from the volume control are presented
in Section 12.5. In these sections, the methodology is described for the distributed volume
control problem. But it can also be applied to the boundary control problem, which is
addressed in Section 12.6.

12.2 Distributed Volume Control Problem
The dynamical system to be considered is incompressible viscous flow over a forward-facing
step, with a uniform injection on the upper boundary of the channel. Let � ∈ R2 denote
the flow domain with boundary " and let y = (u, v)T stand for the velocity. Then we have
the NS equations in nondimensional form,

yt − 1
Re
�y + (y · ∇)y + ∇p = f,

∇ · y = 0
(12.1)

in the domain � × [0,∞), where p denotes pressure, Re is the Reynold’s number, and
f is the body force. Associated with the above governing equation we have the following
boundary conditions:

y = yi in "i × [0,∞),
pn− 1

Re

∂y

∂n
= 0 in "o × [0,∞),

y = c(t) in "c × [0,∞),
y = 0 in "\("i ∪ "o ∪ "c)× [0,∞),

(12.2)

where"i, "o are the inflow and the outflow surfaces, respectively, "c is the injection surface,
c(t) is the injection velocity, and n denotes the unit normal to the boundary. The boundary
condition on the outflow boundary is the stress-free condition. The initial condition is
y(0) = y0.
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12.2. Distributed Volume Control Problem 235

In this distributed volume control problem, the right-hand side of the first component
of the NS equations is set as a linear combination of a set of shape functions, f = �ν(t)T ,
see Section 12.3, and the coefficients ν(t) are taken as the design variables. The cost
functional to be minimized is defined as

J = 1

2

(∫ ∞

0

∫
�o

e−μt‖y − yStokes‖2d�dt +
∫ ∞

0
βe−μt‖ν‖2dt

)
, (12.3)

where the positive constants β and μ are the weight coefficient and the discount rate,
respectively. The first term in (12.3) is of tracking type. Here yStokes denotes the solution
to the Stokes equation associated with (12.1) with otherwise the same geometric and data
settings. Since the Stokes solution is separation-free, a reduction of the recirculation regions
should be observed for the successfully controlled NS solution. By �o we denote the
observation region. The set of admissible controls is

Uad = {ν ∈ L2(0, T ) : νa ≤ ν ≤ νb}.

The weak form of the NS equations is given by

〈yt + (y · ∇)y, ψ〉� + 1
Re

〈∇y,∇ψ〉� − 〈∇ · ψ,p〉� = 〈f,ψ〉�,

〈∇ · y, q〉� = 0
(12.4)

with boundary conditions

y = yi in "i × [0,∞),
y = c(t) in "c × [0,∞),
y = 0 in "\("i ∪ "o ∪ "c)× [0,∞)

(12.5)

and initial condition

y(0) = y0, (12.6)

for all test function pairs (ψ, q) ∈ V × L2(�), where

V = {v ∈ H 1(�) : v = 0 on "\"o}

and 〈·, ·〉� denotes the L2 inner product over the flow domain �. This weak formulation
will be utilized to obtain the reduced-order model for the dynamic system.

In the numerical NS solver, a finite difference method is applied to approximate
the spatial differentiation over a nonuniform grid system, with an upwind scheme for the
nonlinear convection term. A staggered grid system is applied; i.e., the horizontal velocities
are located at the midpoints of the vertical cell edges, the vertical velocities are located at
the midpoints of the horizontal cell edges, and the pressure is defined at each cell center.
At the inflow boundary, only the horizontal velocity is specified as a parabolic distribution
with maximum equal to 1. The flow is initialized with the stationary Stokes flow. For time
integration, we used the fractional-step-θ-scheme as applied in [22]. A macrotime step fromD
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236 Chapter 12. Feedback Control of Flow Separation

tn to tn+1 = tn +�t is split into three substeps, tn → tn+θ → tn+1−θ → tn+1:

(I + αθ�tD(yn+θ ))yn+θ + θ�t∇pn+θ =
(I − βθ�tD(yn))yn + θ�tf n

∇ · yn+θ = 0,
(I + βθ ′�tD(yn+1−θ ))yn+1−θ + θ ′

�t∇pn+1−θ =
(I − αθ ′

�tD(yn+θ ))yn+θ + θ ′�tf n+1−θ
∇ · yn+1−θ = 0,

(I + αθ�tD(yn+1))yn+1 + θ ′
�t∇pn+1 =

(I − βθ�tD(yn+1−θ ))yn+1−θ + θ�tf n+1

∇ · yn+1 = 0,

(12.7)

where D denotes the diffusive and advective terms, θ = 1 −
√

2
2 , θ

′ = 1 − 2θ , and α =
1−2θ
1−θ , β = 1 − α. This fractional-step scheme combines advantages from the classical

Crank–Nicolson method (second-order accuracy) and the backward Euler method (strongly
A-stable).

To avoid solving nonlinear equations and to ensure second-order accuracy in time,
the nonlinear convective term yn+1 · ∇yn+1 in the left-hand side of the first component of
(12.7) is replaced by (2yn − yn−1) · ∇yn+1, which is of second-order accuracy.

12.3 POD-Based Reduced-Order Model
It is not yet possible to carry out feedback optimal control directly on the full NS equations.
A suboptimal alternative is to utilize a reduced-order model. In this section, the principles of
proper orthogonal decomposition will be introduced to construct the reduced-order model
for incompressible NS equations. In Section 12.3.1 POD will be briefly introduced. Then
this principle is applied to the NS equation to get the reduced-order model, which is presented
in Section 12.3.2. Section 12.3 describes the method to obtain the shape functions for the
distributed volume control.

12.3.1 Proper Orthogonal Decomposition

POD emerges from choosing a “best” set of orthonormal basis functions from a given
collection frequently referred to as the snapshots. It can be readily verified that this problem
is equivalent to an eigenvalue problem. Readers are referred to [1, 2, 4, 16], and the
references given there, for more details. We will only briefly sketch the methodology of
POD and recapitulate its properties.

Let the preselected collection of snapshots be denoted by

S = {Sj , j = 1, 2, . . . , N |Sj ∈ H 1(�)}

and suppose that S has rank l, that is, l = dim{span{S}}. If {ϕi}li=1 is an orthonormal basis
for S, each element in S can be expressed as Sj = ∑l

i=1〈Sj , ϕi〉ϕi for j = 1, 2, . . . , N .
The orthonormal basis can be constructed in many ways. However, in POD we require theD
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12.3. POD-Based Reduced-Order Model 237

orthonormal basis to have the property of minimizing

N∑
j=1

∥∥∥∥∥Sj −
k∑
i=1

〈Sj , ϕi〉ϕi
∥∥∥∥∥

2

for every k ∈ {1, 2, . . . , l}. Introduce the bounded linear operator S : Rn �→ L2,

Sv =
N∑
j=1

vjSj .

Its adjoint S∗ : L2 �→ Rn is given by

S∗z = (〈z, S1〉, . . . , 〈z, SN 〉)T .
The necessary optimality condition for this constrained minimization problem requires that
basis functions satisfy

SS∗ϕ = λϕ.
Since SS∗ is nonnegative and symmetric, its eigenvalues must be real and nonnegative.

In numerical implementation, we do not need to calculate the matrix SS∗; instead,
the singular value decomposition (SVD) will be applied to S such that S = U#V T , and
the POD basis function is given by [13]

ϕi = 1

#i
Svi, 1 ≤ i ≤ l, (12.8)

where #i is the ith singular value in # and vi is the associated right eigenvector in V .
Let us reiterate that the POD basis is the optimal orthonormal basis approximating

in the mean all snapshots at arbitrary truncation level. In view of our application to the
NS equations let us note that the basis elements inherit the boundary and incompressibility
condition of the snapshots.

Our next task is to properly construct the snapshots from which the basis functions
will be deduced. There are several requirements for the snapshots: first, they must capture
as much dynamics of the flow system as possible, since the basis functions inherit the
information already contained in the snapshots; second, they should satisfy homogeneous
boundary conditions; and third, the snapshots must be solenoidal for incompressible flow.

The immediate idea is to take the snapshots as the solutions of the NS equations at spec-
ified time instances. To satisfy the second requirement, a term accounting for the boundary
conditions is subtracted from the solutions at each time instant. With these considerations
in mind, we can propose the snapshots

S̃k = {y(tk)− ȳ}, k = 1, 2, . . . , N,

where y(tk) is the NS solution at t = tk and the mean flow ȳ is given by

ȳ = 1

N

N∑
k=1

y(tk).D
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238 Chapter 12. Feedback Control of Flow Separation

These snapshots satisfy homogeneous boundary conditions on the Dirichlet boundaries,
and the stress-free boundary condition is also satisfied by the snapshots on the outflow
boundary. Furthermore, to account for the effect of the nonuniform grid system, a diagonal
matrix M ∈ Rm×m is introduced, whose entries are the measures of the grid cells; hence
the snapshot matrix now takes the following form:

S = {M 1
2 S̃1,M

1
2 S̃2, . . . ,M

1
2 S̃N }.

Then the SVD is applied to the snapshot matrix using the MATLAB subroutine svds to find
the largest � < N eigenvalues and the corresponding eigenvectors,

S� = P�#�QT� , (12.9)

whereP� ∈ Rm×�,#� ∈ R�×�, andQ� ∈ RN×�. ActuallyS� is the best rank-� approximation
of the snapshot matrix S; that is, we perform truncated SVD.

Let the column of Q� be wi, i = 1, 2, . . . , �, and let the singular value in #� be
denoted by σi, i = 1, 2, . . . , �. To determine the number of basis elements for the actual
computations we choose M ≤ � such that r = #Mk=1σ

2
k /#

�
k=1σ

2
k > 99.5%. Then the basis

functions can be expressed as

ϕi = S̃wi

σi
, i = 1, 2, . . . ,M.

The ratio r is the percentage of the total energy captured in the first M POD basis
functions and therefore is an index to measure how closely the M-dimensional subspace
{ϕ1, ϕ2, . . . , ϕM} approximates the snapshot set. In this way the basis functions are orthonor-
mal with respect to theL2-norm. Furthermore, they are solenoidal and satisfy homogeneous
boundary conditions on the Dirichlet boundaries and the stress-free boundary condition on
the outflow boundary. These properties are inherited from the snapshots. The solution to
NS equations is therefore modeled by

ŷ = ȳ +
M∑
i=1

αi(t)ϕi, (12.10)

with αi(t) to be determined from a Galerkin procedure.

12.3.2 Reduced-Order Model

With the basis functions in hand, the reduced-order model can be derived by restricting the
modeled solution (12.10) to the weak form (12.4) of the NS equations. Furthermore, recall-
ing that the basis functions are solenoidal and satisfy homogeneous boundary conditions on
the Dirichlet boundaries, we can arrive at the ODE governing α,

α̇ = −Aα − (αT Hα + P)+G, (12.11)

where the components of matrices are determined as follows:

Ai,j = 1

Re
〈∇ϕj ,∇ϕi〉 + 〈ϕj · ∇ȳ, ϕi〉 + 〈ȳ · ∇ϕj , ϕi〉,D
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12.3. POD-Based Reduced-Order Model 239

Hi,j,k = 〈ϕj · ∇ϕk, ϕi〉,
Pi = 〈ȳ · ∇ȳ,∇ϕi〉 + 1

Re
〈∇ȳ,∇ϕi〉,

Gi = 〈�νT , ϕi〉.

The boundary integral term on the outflow boundary vanishes, since we chose stress-free
outflow boundary conditions. The initial conditions for the reduced system can be derived
from evaluating (12.10) at the initial time t = 0 by

y(0) = ȳ +
M∑
i=1

αi(0)ϕi,

which can be put in the following form:

αi(0) = 〈y0 − ȳ, ϕi〉, i = 1, 2, . . . ,M. (12.12)

Classical Galerkin approximations are typically obtained via sets of test functions
that are not related to the dynamic system. Hence the resulting finite element model is a
system with a large number of unknowns. Contrary to that approach, the POD technique
takes basis functions that reflect the system dynamics. In such a way, the reduced-order
model can be of much smaller scale. The stiffness matrix is full in this case, while for finite
element or finite difference approximations it is typically sparse. This reduced-order model
is a nonlinear initial value problem, on which the feedback design will be carried out to
minimize the cost functional,

Ĵ = 1

2

∫ T

0

∫
�

e−μt‖ŷ − yStokes‖2d�dt + β

2

∫ T

0
e−μt‖ν‖2dt, (12.13)

where ŷ is given by (12.10), and the αi’s are the solutions to (12.11) with the initial condition
(12.12).

12.3.3 Construction of Shape Functions

In the control problem, the distributed volume control is achieved by the linear combination
of a set of shape functions, which are constructed in a similar way as the construction of the
basis functions for the states. First, a set of snapshots is defined as

S = y0(tk)− yStokes,

where y0(tk) is the time-dependent solution to the NS equations without any control, and
yStokes is the Stokes solution; both these terms are under the action of the injection. The
same method as stated in Section 12.3.1 is then followed to find the basis functions from
these snapshots; and the first two of them are taken as the shape functions. With the snapshot
constructed in this way, the regions are filtered out for the separation bubbles. Therefore,
this method will be very efficient, as can be seen from the numerical tests to be presented.D
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240 Chapter 12. Feedback Control of Flow Separation

12.4 Feedback Design for the Reduced Model
Feedback control can now be performed on the reduced ODE system. In this section, we
first discretize the dynamic programming equation in the time and space domains. Then
a multilevel acceleration method and a parallel computation method are briefly described.
Finally, the method of retrieving the synthesis or the feedback law is introduced.

12.4.1 Discretization of DPE

For the optimal control problem

min
ν∈Uad

J =
∫ ∞

0
e−μtL(α(t), ν(t))dt

subject to α̇ = F(α(t), ν(t)), α(0) = α0 ∈ RM,
where L : RM ×RK �→ R and F : RM ×RK �→ RM , the value function can be defined as

/(α0) = inf
ν∈Uad

∫ ∞

0
e−μtL(α, ν)dt : RM �→ R

for any initial value α0. The principle of optimality by Bellman and a simple argument based
on the semigroup property lead to the dynamic programming equation (DPE) (or dynamic
programming principle) [3]

/(α0) = inf
ν∈Uad

{∫ �T

0
e−μtL(α(t), ν(t))dt + /(α(�T ))e−μ�T

}
(12.14)

for any �T > 0 and any α0 ∈ RM .
To derive the discrete DPE, we assume that the control ν is constant in the time interval

[0,�T ]. Thus we have to first-order accuracy

/(α0) = inf
ν∈Uad

{(
L(α(0), ν)+ e−μ�T L(α(�T ), ν))�T

2

+ /(α(�T ))e−μ�T
}
,

(12.15)

where the trapezoid rule is applied for the integration of the cost functional on the interval
[0,�T ]. Next, the problem arises of calculating α(�T ) from the initial condition α(0) =
α0. There are several candidates for this, such as the explicit Euler method, the modified
Euler method (Heun method), and semi-implicit methods. In the numerical tests, an explicit
scheme is applied based on a Runge–Kutta (4, 5) formula (the Dormand–Prince pair).

Then we introduce a bounded polyhedronϒ = [a1, b1]×[a2, b2]×· · ·×[aM, bM ]. The
intervals [ai, bi] are chosen in such a way that we projected the solution of the uncontrolled
NS equations onto the POD basis. This allows us to anticipate reasonable bounds for the
controlled trajectories in POD space. Along each of its dimensions we distribute equidistant
grid points to obtain a discretized polyhedron ϒh. Let us denote these grid points by
α0j , j = 1, 2, . . . , h̄. Rewriting the semidiscretized DPE (12.15) at each grid point gives

/(α0j ) = inf
ν∈Uad

{(
L(α0j , ν)+ e−μ�T L(αj (�T ), ν)

)�T
2

+ /(αj (�T ))e−μ�T
}
,

(12.16)
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12.4. Feedback Design for the Reduced Model 241

where αj (�T ) is the trajectory at t = �T from the initial position α0j .
The viability assumption is made for the polyhedron, i.e., for sufficiently small δt

x + δtF (x, u) ∈ ϒ ∀y ∈ ϒ, and ∀u ∈ Uad.
Since for our control problem, where no a priori constraint is imposed on the system

state, the value function is continuous over the whole domain [3, Chapter 3], we can find
a piecewise linear approximate solution to (12.16). For example the value function can be
approximated at αj (�T ) by the convex combination

/(αj (�T )) =
h̄∑
i=1

 ij/(α0i ),

where the coefficients  ij satisfy

0 ≤  ij ≤ 1 and
h̄∑
i=1

 ij = 1.

The construction of these coefficients is straightforward. In this way we arrive at the fully
discretized DPE

/(α0j ) = inf
ν∈Uad

{(
L(α0j , ν)+ e−μ�T L(αj (�T ), ν)

)�T
2

+e−μ�T
h̄∑
i=1

 ij/(α0i )

} (12.17)

for each j = 1, 2, . . . , h̄. It can be proved [3, Appendix A] that the above equation is
equivalent to the fixed point problem

/(α0) = T (/(α0))

with the map T : Rh̄ �→ Rh̄ defined by

T (α0j ) = inf
ν∈Uad

{(
L(α0j , ν)+ e−μ�T L(αj (�T ), ν)

)�T
2

+ e−μ�T
h̄∑
i=1

 ij/(α0i )

}
.

Close examination reveals that the map T is a contraction map with respect to the maximum
norm in Rh̄ with contraction coefficient given by e−μ�T . Consequently, the discretized
equation (12.17) has a unique solution, which can be found by the common technique of
fixed point iteration.

12.4.2 Numerical Methods

The fixed point iteration begins at an initial guess to the value function, which is zero in
our tests. After the constrained minimization problem on the right-hand side of (12.17)
is solved, the minimum is set as the new guess to the value function. This iteration isD
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repeated until the stopping criterion is satisfied. The convergence rate of the fixed point
iteration depends on μ�T . When μ�T approaches 0 the contraction coefficient e−μ�T
tends to 1, and therefore only very slow convergence behavior will be observed. Falcone
in [3, Appendix A] suggested several techniques to speed up convergence for the fixed point
iteration. But they are too expensive to carry out in our numerical tests.

However, in this study by using a multilevel method, a different method for speed-
up is carried out. In this strategy the discretized HJB equation (12.17) is first solved for
�T = 0.2 until the relative residual is decreased to less than a prescribed tolerance. These
results are taken as the initial guess to solve the HJB equations for �T = 0.05.

In solving the DPE, a constrained minimization problem must be solved independently
at each point of the polyhedron. It is possible to perform these tasks in a data parallel fashion,
running the same code simultaneously on different pieces of data on different processors.
The message passing interface (MPI) [17] is used to send and receive data among processors.
Interested readers are referred to [18] for additional information. The Gauss–Seidel scheme
can also be used to accelerate convergence; i.e., the newest available unknowns are utilized
to calculate the remaining unknowns at each iteration. But this technique does not lend
itself to parallel computations.

In practical implementations, the slaves are first started remotely from the master
computer via host-based authentication. Then the MATLAB sessions are started on the
slaves. (On each slave, more than one MATLAB session can be initialized.) For the parallel
computations to be performed, we need to transfer the required data to each MATLAB ses-
sion via MPI. On receiving data, each session on different slaves can execute computations
concurrently. The portion of the computational work, to be performed on each session, can
be adjusted according to the performance of the slaves. After all computations are finished
on all slaves, the data are collected from the MATLAB sessions.

12.4.3 Retrieving Optimal Control

After solving the discretized DPEs, we will have the value function /(α0j ) and the cor-
responding control ν(α0j ) at each point of the polyhedron. The feedback control law or
synthesis can be established through these data. Assuming the reduced-order state at a time
instant tk is known as α(tk), this state can be located in the polyhedron to find out the
coefficients  j for the convex combination,

α(tk) =
h̄∑
j=1

 jα0j .

The optimal control corresponding to the state at time tk is then set as

ν∗(tk) =
h̄∑
j=1

 jν(α0j ).

Under the assumption that the optimal control is piecewise constant, the NS equations are
integrated in the time interval from tk to tk+1 to find out the state of the flow at tk+1 and
hence the reduced-order state α(tk+1) at that time instance. This procedure is repeated untilD
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0 2 4 6 8 10 12
1

0

1
Nonuniform grid system

x

y

–

Figure 12.1. Shape of the forward-facing step and the nonuniform grid system
(shown in every other grid line).

reaching the final time. In this way the optimal trajectory and the associated piecewise
constant optimal control are determined.

12.5 Numerical Results from Volume Control
In the numerical experiments, a nonuniform 24 × 48 grid is chosen in the region [−1, 0] ×
[−1, 1] and a 96 × 24 grid for the region [0, 12] × [0, 1]. The injection is located at (6, 1)
with width 0.125 and its uniform velocity is (−1,−1)T . Figure 12.1 depicts the shape of
the step and the nonuniform grid system used to solve the NS equations. The grid lines are
concentrated toward the wall and the injection to better capture the separation bubbles. The
Reynolds number is 1000 and the observation region �o is [−1, 12] × [0, 1].

Figure 12.2 shows the streamlines of the desired flow, which is the Stokes flow obtained
with otherwise the same data. The streamlines for the uncontrolled flow at time instant
t = 10 are shown in Figure 12.3. There are separation bubbles around the step corner and
behind the injection flow. (The separation in the corner around the point (0,−1) is not
shown here or in what follows, since it is not of concern from the point of view of design
target.) The design target is to eliminate these two bubbles by tracking the desired Stokes
flow. In the POD treatment, 6 basis functions are taken to capture more than 99.5% of
the total energy. The distributed volume control is modeled by two shape functions, so
that there are two design variables. The discount rate is μ = 2. In the feedback design,
there are 18480 grid points distributed in the six-dimensional polyhedron. These data are
summarized in Table 12.1.

Six computers are utilized for the numerical experiments, on each of which a different
number of MATLAB sessions is invoked. The finest time discretization is�T = 0.05. The
first computational case corresponds to β = 0.1. As shown in the first row of Table 12.2,
the cost functional J is 5.1374× 10−2 under no control; and is decreased to 2.9264× 10−2

with optimal control. The value function, corresponding to the specified initial state, is
2.8089 × 10−2. The agreement between them is satisfactory. (Theoretically, the value
function should be equal to the cost functional with the optimal control.) The streamlines
are depicted in Figure 12.4 for the optimally controlled flow at t = 10. Comparisons of
Figure 12.3 and 12.4 demonstrate that the separation bubbles are substantially attenuated in
the sense that the separation lengths are significantly decreased.D
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0 2 4 6 8 10 12
1

0

1
Streamline, Re=1000

–

Figure 12.2. Streamlines for the desired Stokes flow.
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–

Figure 12.3. Streamlines for the uncontrolled flow at t = 10.

Table 12.1. Parameter settings.

Reynolds number, Re 1000
Time horizon, T 10

No. of basis functions 6
No. of controls 2

Bounds on controls [−0.5, 0.5]
Grid system 12 × 6 × 6 × 4 × 3 × 3

Discount rate, μ 2
Observation region, �o [−1, 12] × [0, 1]

Table 12.2. Computational results.

Cost w/o control Cost w. opt. control Value function
β = 0.1 5.1374e-2 2.9264e-2 2.8089e-2
β = 0.05 5.1374e-2 2.7547e-2 2.5762e-2
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Figure 12.4. Streamlines for the controlled flow at t = 10, β = 0.1.

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

O
pt

im
al

 C
on

tr
ol

Time-dependent Optimal Controls

1st shape function
2nd shape function

0 2 4 6 8 10
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

O
pt

im
al

 C
on

tr
ol

Time-dependent Optimal Controls

1st shape function
2nd shape function

Figure 12.5. Optimal control for the distributed volume control problem; β = 0.1
(left) and β = 0.05 (right).

We also solve the DPE forβ = 0.05. The computational results are listed in the second
row of Table 12.2. Again we observe good agreement between the value function and the
cost functional with optimal control. The streamlines for this case are not shown here, since
they are similar to the streamlines for the case β = 0.1. As expected, the cost functional
and the value function are smaller than the corresponding values for the case β = 0.1 where
the controls are more expensive. Figure 12.5 presents the optimal control for two cases,
showing that all controls approach steady state as time evolves. It is worthwhile to note
the difference between two cases. In the case β = 0.05, the second control hits the upper
bound in some time interval. However, the bounds are not active throughout the whole time
horizon in the case β = 0.1. This is consistent, since we expect larger controls when the
weighting coefficient β becomes smaller.

Let us briefly comment on the computational efforts that are involved in solving the
discrete dynamic programming principle (12.14) over directly solving the optimization prob-
lem defined just above (12.14) for each grid point α0i . Obviously the infinite time horizon
problems would have to be replaced by finite time horizons. For the grid system described
in Table 12.1, this would require solving 18480 open-loop optimal control problems on
“large” time horizons. Apparently this is numerically unfeasible.

The main motivation for the construction of feedback design is its use in the contextD
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Figure 12.6. POD solution and the optimal controls: with uniform noise in
[−0.5, 0.5] imposed on the right-hand side during the time interval [0, 6], β = 0.1.

of noise to the system or to data. We performed a test in which uniform noise with values
in the interval [−0.5, 0.5] is added to the right-hand side of the NS equations during the
time interval [0, 6]. The optimal control subject to the noise can be easily retrieved from
the feedback law which is already obtained from solving the DPE. At time level tn the
numerical solution of the NS equation is projected onto the POD basis to obtain the reduced
state α(tn). An optimal control is then determined by the interpolation procedure described
in Section 12.4.3 and applied over the interval [tn, tn+1]. The POD solution and the optimal
control are shown in Figure 12.6. The effect of the noise on the controls becomes apparent
by comparing Figures 12.5 and 12.6. The controls in the latter are oscillatory up until
t = 6 when the noise in the forcing function is deactivated. The controlled streamlines are
indistinguishable from those in the noise-free case and are therefore not shown.

12.6 Feedback Design for Boundary Control
In this section the proposed methodology is extended to a Dirichlet boundary control prob-
lem, in which a vertical blowing/suction actuator is located at the surface ([0, 3], 0) to at-
tenuate the separation bubble (as shown in Figure 12.7) in the flow over the forward-facing
step of length 8. In this case no injection is set on the upper channel surface. Consequently
we concentrate the grid lines only toward the wall surfaces. The actuator takes the following
form:

vc = ν(t)×
(
−0.05

3
(x − 3)

)
,

with ν(t) representing the time-dependent control. When ν is positive, the control is blowing,
and otherwise it is suction. The cost functional to be considered in this design problem is

J = 1

2

(∫ ∞

0

∫
�o

e−μt‖u− uStokes‖2d�dt + β
∫ ∞

0
e−μt |ν|2dt

)
, (12.18)

where uStokes is the u-component of the Stokes solution, and the observation window is
�o = [0, 3] × [0, 0.5]. The reason for using the u-component in the cost functional is thatD
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Figure 12.7. Streamlines for the uncontrolled flow at t = 10.

the separation is directly related to the negative u-component velocity and the control is
vertical blowing/suction. The dynamical system is the NS equations (12.1) where f is set to
0, together with boundary and initial conditions as in (12.2), except for the inject condition.
Once snapshots are chosen, we proceed in an analogous way described in the previous
sections for the volume control. This concerns the construction of the basis elements,
the Galerkin process for obtaining the reduced-order model, the approach of conducting
feedback design, and the method of retrieving the optimal control. We just describe in detail
the snapshot construction. We first take

Ŝ = {y(tk)|ν(·)=0, y(tk)|ν(·)=2) − yr}, k = 1, 2, . . . , N,

where y(tk)ν(·)=0 and y(tk)ν(·)=2 denote the solution of the NS equation at time instant t k

without control and with constant control ν = 2, respectively. The reference solution yr is
defined as

yr = yStokes |ν=2 − yStokes |ν=0

such that all the elements in the snapshot collection satisfy homogeneous boundary condition
on the Dirichlet boundaries. Finally, the mean is subtracted from the snapshot set Ŝ resulting
in

S̃ = {Ŝ − ym},
with ym = 1

N

∑N
k=1 Ŝk . After applying POD technique to obtain the basis functions ϕi , we

can model the controlled NS solution as

ŷ = ym +
M∑
i=1

αiϕi + ν(t)yr .

The reduced-order model can now be obtained by a Galerkin process, namely, by
restricting the modeled solution to the weak form (12.4). It is worthwhile to point out
that the control now enters the modeled solution to account for the boundary conditions,
differently from the reduced-order model solution (12.10) in the volume control case. As a
result, the reduced-order ODEs have M + 1 components. In other words, given the same
number of basis functions, the boundary control problem should deal with an ODE system
with one more component than the distributed volume control problem. This is partly why
the boundary control problem is more challenging.

In the design, the weight coefficient is set to β = 0.001 and the discount rate is
μ = 0.5. The Reynolds number, the time horizon, and the number of basis functions are setD
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Table 12.3. Computational results for the boundary control problem.

Cost w/o control Cost w. opt. control Value function
β = 0.001 2.1674e-1 1.7096e-1 1.5920e-1

1 0 1 2 3 4 5 6 7 8
1

0

1
Streamlines, Re = 1000

–
–

Figure 12.8. Streamlines for the flow with optimal boundary control, at t = 10.

to the same values as in the previous design case. As shown in Table 12.3, the cost functional
J is decreased from 0.21674 to 0.17096. Meanwhile the value function (0.15920) agrees
well with the cost functional under the optimal control. The optimal control turns out to be
blowing. Figures 12.7 and 12.8 present the streamlines at t = 10 of the uncontrolled and
the optimally controlled flow, respectively. The design objective is fulfilled in the sense that
the separation bubble disappears in the controlled flow. The local flow pattern experiences
large changes, which result in a relative small reduction in the cost functional.

We also tested a parabolic shape function for the spatial part of the actuator. Such a
shape function is less effective in the sense that the reduction in the cost functional is smaller
and that a small separation bulb still remains around the corner.
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