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RECEDING HORIZON CONTROL WITH INCOMPLETE
OBSERVATIONS∗

KAZUFUMI ITO† AND KARL KUNISCH‡

Abstract. To overcome the difficulties related to the computational requirements for solving the
optimality systems for optimal control problems on long time horizons, receding horizon techniques
provide an important alternative. Rather than finding the optimal solution, a suboptimal control is
obtained which achieves the design objective with significantly less computational effort. Moreover,
the obtained control can be interpreted as a state feedback control. In this work we continue our
analysis of receding horizon strategies, considering the situation when only partial state observations
are available. The receding horizon strategy is combined with a state estimator framework. A
linear quadratic Gaussian design based on a linearization procedure is proposed and its asymptotic
performance is analyzed for systems with nonlinear dynamics. Numerical examples validate the
proposed methodology.
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1. Introduction. We consider the optimal control problem of minimizing the
performance index subject to a nonlinear control system:

min

∫ T∞

0

f0(x(t), u(t)) dt,(1.1)

where

d

dt
x(t) = f(x(t)) + Bu(t) for t > 0,(1.2)

x(0) = x0,(1.3)

for some T∞ ∈ (0,∞] and x0 ∈ Rn. In order to present our approach without the
technical difficulties associated to infinite dimensional control systems, we assume
here that the state space is finite dimensional. We refer to x(·) and u(·) as state
and control functions with x(t) ∈ Rn and u(t) ∈ Rm. Under appropriate conditions,
(1.1)–(1.3) admit a solution which satisfies the minimum principle

⎧⎪⎪⎨
⎪⎪⎩

d
dtx(t) = Hp(x(t), u(t), p(t)), x(0) = x0,

d
dtp(t) = −Hx(x(t), u(t), p(t)), p(T∞) = 0,

u(t) = arg minu∈Rm H(x(t), u, p(t)),

(1.4)
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208 KAZUFUMI ITO AND KARL KUNISCH

where H is the Hamiltonian defined by H(x, u, p) = f0(x, u) + p · (f(x) + Bu). The
coupled system of two-point boundary value problems with initial condition for the
primal equation and terminal condition for the adjoint equation represents a signifi-
cant challenge for numerical computations in case the dimension n of the state or the
time horizon T∞ are large. It has therefore been the focus of many research efforts.
An alternative approach consists in constructing the feedback solution based on Bell-
man’s dynamic programming principle. Again, due to computational costs, this is
tractable only for very limited examples.

One of the possibilities to overcome these difficulties is given by time-domain
decomposition based on receding horizon formulations [ABQRW, GPM]. Receding
horizon techniques have proved to be effective numerically both for optimal control
problems governed by ordinary (e.g., [CA, JYH, K, MM, PND, SMR]) and by partial
differential equations, e.g., in the form of the instantaneous control technique for
problems in fluid mechanics [B, CHK, CTMC, HV].

To briefly explain the strategy let 0 = T0 < T1 · · · < T∞ describe a grid on
[0, T∞) and let T ≥ max{Ti+1−Ti : i = 0, . . . }. If T > Ti+1−Ti, we have overlapping
domains. The receding horizon optimal control problem involves the successive finite
horizon optimal control problems on [Ti, Ti + T ],

min

∫ Ti+T

Ti

f0(x(t), u(t)) dt + G(x(Ti + T )),(1.5)

subject to

d

dt
x(t) = f(x(t)) + Bu(t), t ∈ [Ti, Ti + T ],(1.6)

x(Ti) = x∗(Ti) if i ≥ 1 and x(0) = x0 for i = 0,(1.7)

where x∗ is the solution to the auxiliary problem on [Ti−1, Ti−1 + T ].
The solution on [0, T∞) is obtained by concatenation of the solutions on [Ti, Ti+1]

for i = 0, . . . . If the terminal cost G is chosen as a control Liapunov function, then the
asymptotic stability and the performance estimate of the receding horizon synthesis
are established in [IK1] in case (1.2) is posed in a finite dimensional state space, and
in [IK2] for infinite dimensional state spaces. For example, if G is selected as the
optimal value function for (1.1)–(1.3) on the infinite horizon, then the optimal pair
(x∗, u∗) for the receding horizon control (1.5)–(1.8) is optimal for the original problem
(1.1)–(1.3) on the infinite horizon. In general, G plays the role of a look-ahead term
in the sense that it stabilizes the receding horizon synthesis and provides a good sub-
optimal control law for the given performance (1.1). Since it is impractical to assume
that the optimal value functional is known we constructed in [IK1] and [IK2] control
Liapunov functions for diverse classes of problems which are based on Liapunov or
Riccati equations. For the numerical example of section 5 we select G as the solution
to an associated Riccati equation.

If x(Ti) is observed, then the receding horizon control technique is a state feedback
method since the control on [Ti, Ti+1] is determined as a function of the state x∗(Ti).
If the optimal pair (x∗(t), u∗(t)), t ∈ [Ti, Ti + T ] is shifted by −Ti it satisfies the two-
point boundary value problem (1.4) on the interval [0, T ] with the terminal condition
p(T ) = Gx(x(T )) and initial condition x(0) = x∗(Ti).

In this paper we address the state estimator problem for the receding horizon
technique. We shall also allow for additive noise in the system dynamics as well as
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 209

in the observation process and we admit uncertainty in the initial condition. The
nonlinear time-independent control system with additive unmodeled disturbance is
given by ⎧⎨

⎩
d
dtx(t) = f(x(t)) + Bu(t) + d(t) for t > 0,

x(0) = x0,
(1.8)

where d(t) is an unknown disturbance process. The observation process providing
partial observations y(t) ∈ Rp of the state x(t) is assumed to be of the form

y(t) = Cx(t) + n(t),(1.9)

where C ∈ R
p×n and n(t) is a measurement noise process. The output feedback

law will utilize the open loop optimal control u∗ with associated optimal state x∗ on
the interval [Ti, Ti+1] computed from (1.5) and (1.6). The initial condition for the
computation of x∗ is taken to be

x(0) = x0 + η0,

where η0 denotes the uncertainty in the initial condition for i = 0, and then it is
chosen as the state of the estimator, which will be introduced below, at time Ti, if
i ≥ 1. This can be considered as a preprocessing step for the construction of the
feedback law, and in view of the fact that receding time horizon T is considered to be
small compared to T∞ it is considered to be comparatively cheap.

Once x∗ is computed on [Ti, Ti + T ], the output feedback law is chosen to be of
the form

u(t) = u∗(t) −BTΠ(w(t) − x∗(t)), t ∈ [Ti, Ti+1),(1.10)

where w denotes the state of the compensator. The construction of the feedback gain
BTΠ will be specified below. Suggested from linear quadratic Gaussian (LQG) design,
the compensator is based on (1.10) together with the state estimator dynamics of the
form

dw

dt
= f ′(x̄)(w(t) − x∗(t)) + f(x∗(t)) + Bu(t) + ΣCT (y(t) − Cw(t)),(1.11)

w(Ti) = w(T−
i ) for i = 1, 2, . . . , and w(0) = x0 + η0,(1.12)

for the state estimator w(t), where w(T−
i ) denotes the value of the estimator on

[Ti−1, Ti−1 + T ] at Ti and f ′(x̄) is the Jacobian of f at a reference state x̄. This
reference state x̄ is selected on the basis of the optimal pair (x∗, u∗) on [Ti, Ti + T ],
for example,

x̄ =
1

T

∫ Ti+T

Ti

x∗(t) dt or x̄ = x∗(Ti + T ).(1.13)

The feedback synthesis (1.10)–(1.12) performs tracking of (1.8) to the optimal pair
(x∗, u∗) on [Ti, Ti+T ] under the uncertainty of the initial condition, observation noise
and an additive disturbance in the system dynamics. As described in section 2, our
tracking method is based on the linearization of the nonlinearity f at the reference
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210 KAZUFUMI ITO AND KARL KUNISCH

state x̄. The control gain BTΠ and the filter gain ΣCT will be constructed by two
LQG Riccati equations, which we specify in section 2.

For our stability analysis of the output feedback synthesis (1.11)–(1.13) it is not
necessary that (x∗, u∗) is assumed to be the optimal pair for the receding horizon
control on [Ti, Ti + T ]. It is only required that x∗ is a stable trajectory of (1.2)
corresponding to a given control u∗. However, if G is selected as a control Liapunov
function, then the global stability and performance estimate of the receding control
are established in [IK1]. Thus, we assume (x∗, u∗) is the optimal pair for the receding
horizon control on each horizon [Ti, Ti+T ] and the corresponding (1.11)–(1.13) defines
our proposed output feedback synthesis for (1.1)–(1.3).

The stability analysis and performance estimates for the proposed procedure are
given in section 2. In section 3 the asymptotic behavior of the overall closed-loop
system (1.8), with feedback control given by (1.10) and (1.11), is discussed. Our
analysis uses the Liapunov stability arguments. In section 4 we briefly address a
modification of the proposed method based on an H∞-synthesis. Numerical examples
that illustrate the feasibility of combining the receding horizon strategy with state
estimator dynamics are given in section 5, by means of stabilization and tracking
problems for the Burgers equation.

The controlled Burgers equation is an infinite dimensional system which, after
discretization, is of the form considered in (1.2). In fact, while our analysis is carried
out for finite dimensional systems, the proposed concepts can be extended to infinite
dimensional systems. The details, however, require further research.

2. LQG design. In this section we describe the construction of the feedback
and filters gains for (1.10) and (1.11). Subsequently we establish the stability and the
performance estimate for the compensator dynamics (1.10), (1.11) based on the LQG
design on a single time horizon [0, T ]. The iterative procedure on the sequence of time
horizons [Ti, Ti+1] will be considered in section 3. The Jacobian of f at x ∈ R

n will
be denoted by A(x) = f ′(x) and in particular we set

A = f ′(x̄).

We assume that

(A,B,C) is stabilizable and detectable.(2.1)

Consider the controlled linear equation, which results from linearizing f at x∗(t) and
subsequently replacing x∗(t) by x̄:⎧⎨

⎩
d
dt (x̂(t) − x∗(t)) = A(x̂(t) − x∗(t)) + B(u(t) − u∗(t)) + d(t),

x̂(0) = x0 + η0,
(2.2)

where d(t) is the disturbance process. We shall further comment on the choice of the
linearized equation in Remark 2.2. Let Q ∈ R

n×n denote a positive definite matrix
and consider the tracking problem to the pair (x∗, u∗):{

min 1
2

∫∞
0

((x̂(t) − x∗(t))TQ(x̂(t) − x∗(t)) + |u(t) − u∗(t)|2)dt

subject to (2.2) over u ∈ L2(0,∞; Rm).
(2.3)

Throughout this paper we use |x|2 = (x, x) to denote the square of the Euclidean
norm of a vector x and ‖A‖ for the subordinate matrix norm. Here (x, y) stands
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 211

for the dot product of vectors x, y which will at times also be denotes by xT y. Let
V : R

n → R
+ denote the value functional associated to (2.3). It can be shown that

V (x) =
1

2
(x− x∗)TΠ(x− x∗) + vT (x− x∗) + c,

where c is a constant, and the symmetric positive definite matrix Π ∈ Rn×n and
v ∈ Rn satisfy {

ATΠ + ΠA− ΠBBT Π + Q = 0,

(A−BBT Π)T v + Π d = 0,
(2.4)

where we assume that the disturbance is constant in time. The optimal feedback loop
control for (2.3) is given by

u = u∗(t) −BT (Π(x̂(t) − x∗(t)) + v).(2.5)

Since we consider unknown, unmodeled disturbance d = d(t) we do not include the
feedforward input v in the feedback form (1.10).

Turning to the estimator we use the (Kalman) filter gain ΣCT based on the linear
system (A,C), where Σ ∈ R

n×n is the positive definite solution to

AΣ + ΣAT − ΣCT C Σ + R = 0,(2.6)

with R ∈ Rn×n a positive definite matrix. This results in the following equations for
the compensator

dw

dt
= A(x̄)(w(t) − x∗(t)) + f(x∗(t)) + Bu(t) + ΣCT (y(t) − Cw(t)),(2.7)

w(0) = x0 + η0(2.8)

and the associated feedback law

u(t) = u∗(t) −BTΠ(w(t) − x∗(t)).(2.9)

Note that (2.1) guarantees the existence of Π and Σ with the specified properties.
Moreover the spectra of A−BBT Π and A−ΣCTC are strictly contained in the left
half of the complex plane. We henceforth assume that

d ∈ L1
loc(0,∞;Rn), and n ∈ L1

loc(0,∞;Rp).

We further assume the existence of solutions x and w to (1.8) and (2.7), (2.8) on [0, T ]
for every u ∈ L1(0, T ;Rm), where y is given by (1.9).

Proposition 2.1. Let W (x) = 1
2x

TΠx. For t ∈ [0, T ] we have

d

dt
W (x(t) − x∗(t)) = −1

2
(|BTΠ(x(t) − x∗(t))|2 + (Q(x(t) − x∗(t)), x(t) − x∗(t)))

+ (d(t) + r(x(t), x∗(t)),Π(x(t) − x∗(t))) + (BTΠ(x(t) − w(t)), BTΠ(x(t) − x∗(t))),

where

r(x, x∗) = f(x) − f(x∗) −A(x̄)(x− x∗),
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212 KAZUFUMI ITO AND KARL KUNISCH

x is the solution to (1.8) with u given in (2.9), and x∗ is the solution to (1.6) with the
optimal open loop control u∗.

Proof. Using (1.6) and (1.8) we have

d

dt
(x(t) − x∗(t)) = A(x(t) − x∗(t)) −BBTΠ(x(t) − x∗(t))

+BBTΠ(x(t) − w(t)) + d(t) + r(x(t), x∗(t)).

Thus,

d

dt
W (x(t) − x∗(t)) = ((A−BBTΠ)(x(t) − x∗(t)) + BBTΠ(x(t) − w(t))

+ d(t) + r(x(t), x∗(t)),Π(x(t) − x∗(t))

and the proposition follows from the fact that

((A−BBTΠ)x,Πx) = −1

2
(|BTΠx|2 + (Qx, x)).

Proposition 2.2. Let W̃ (z) = 1
2 z

TΣ−1z. For t ∈ [0, T ] we have

d

dt
W̃ (x(t) − w(t)) = −1

2
(|C(x(t) − w(t))|2 + (RΣ−1(x(t) − w(t)),Σ−1(x(t) − w(t)))

+ (r(x(t), x∗(t)) + d(t),Σ−1(x(t) − w(t))) − (n(t), C(x(t) − w(t)),

where x and w are the solutions to (1.8) and (2.7) for some u ∈ L2(0, T ;Rm).
Proof. From (1.8) and (2.7) we have

d

dt
(x(t) − w(t)) = A(x(t) − w(t)) + r(x(t), x∗(t)) + d(t) − ΣCT (C(x(t) − w(t)) + n(t)),

and hence

d

dt
W̃ (x(t) − w(t)) = ((A− ΣCTC)(x(t) − w(t))

+ r(x(t), x∗) + d(t) − ΣCTn(t),Σ−1(x(t) − w(t))).

Thus the proposition follows from the fact that

((A− ΣCTC)z,Σ−1z) = −1

2
(|Cz|2 + (RΣ−1z,Σ−1z)).

To quantify the performance of the compensator we set

E(t) = (x(t) − x∗(t),Π(x(t) − x∗(t)))1/2 + (x(t) − w(t),Σ−1(x(t) − w(t)))1/2.

Note that E(t) = (W (x(t)−x∗(t))+W̃ (x(t)−w(t)))1/2. We further introduce positive
constants α1, α2 and β1, β2 such that

α1 I ≤ Π ≤ α2 I, β1 I ≤ Σ−1 ≤ β2 I,(2.10)
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 213

where I is the identity matrix on Rn. We shall require the following assumptions:
there exists ω > 0 such that

1

2
(|BTΠx|2 + (Qx, x) + |Cz|2 + (RΣ−1z,Σ−1z))

− (BTΠΣ Σ−1z,BTΠx) ≥ ω (W (x) + W̃ (z)) for all x, z ∈ Rn,

(2.11)

and

E(0) ≤ δ

2
and |x∗(t) − x̄| ≤ δ on [0, T ] for some δ > 0.(2.12)

Turning to the effect of the nonlinearity we observe that

r(x, x∗) = f(x) − f(x∗) −A(x∗)(x− x∗) + (A(x∗) −A(x̄))(x− x∗).

We assume that there exist a constant L such that

|r(x, x∗)| ≤ L (|x∗ − x̄| + |x− x∗|) |x− x∗| for all x, x∗ ∈ S,(2.13)

where S = {x ∈ Rn : |x− x̄| ≤ δ(1 + 1√
α1

)}. We shall further assume that

ω̃ = ω − Lδ

√
α1 + 1

α1

√
α2 +

√
α2 + β2

2
> 0.(2.14)

This requirement is trivially satisfied if f is linear. Let us define

ρ(t) =
√
α2 + β2 |d(t)| +

1√
β1

‖C‖|n(t)|.

We require the following smallness condition on the noise processes:∫ t

0

e−ω̃(t−s)ρ(s) ds <
δ

2
for all t ∈ [0, T ].(2.15)

Theorem 2.1. If (2.12) and the stability conditions (2.11), (2.13), (2.14) and
the smallness condition on the noise processes (2.15) are satisfied, then

E(t) ≤ e−ω̃t E(0) +

∫ t

0

e−ω̃(t−s)ρ(s) ds(2.16)

holds for all t ∈ [0, T ].
Proof. Due to (2.12) there exists τ such that

E(τ) ≤ δ on [0, τ ].

Note that
√
α1|x(t) − x∗(t)| ≤ E(t) and therefore x(t) ∈ S for t ∈ [0, τ ]. Set

X(t) = |x(t)− x∗(t)|Π and Y (t) = |x(t)−w(t)|Σ−1 . Suppressing the dependence on t
we obtain by (2.12), (2.13) that

(r(x, x∗),Π(x− x∗)) + (r(x, x∗),Σ−1(x− w))

≤ Lδ

√
α1 + 1

α1
(
√
α2X

2 +
√
β2XY )

≤ Lδ

√
α1 + 1

α1

√
α2 +

√
α2 + β2

2
(X2 + Y 2) for t ∈ [0, τ ].
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214 KAZUFUMI ITO AND KARL KUNISCH

Since

E(t)
d

dt
E(t) =

d

dt
(W (x(t) − x∗(t)) + W̃ (x(t) − w(t))),

we find by Proposition 2.1, 2.2, with u given in (2.9), and (2.11), (2.13), (2.14) that

d

dt
(W (x− x∗) + W̃ (x− w))

≤ −ω(W (x− x∗) + W̃ (x− w)) + (d + r(x, x∗),Π(x− x∗) + Σ−1(x− w)) − (n,C(x− w))

≤ −ω̃(W (x− x∗) + W̃ (x− w)) + (d,Π(x− x∗)) + (d,Σ−1(x− w)) − (n,C(x− w))

≤ −ω̃(W (x− x∗) + W̃ (x− w)) + ρ(t)(W (x− x∗) + W̃ (x− w))1/2.

Consequently

d

dt
E(t) ≤ −ω̃E(t) + ρ(t).

This implies (2.16) on [0, τ ].

By (2.15) and continuity of t →
∫ t

0
e−ω(t−s)ρ(s)ds there exists α ∈ (0, 1) such that

∫ t

0

e−ω̃(t−s)ρ(s)ds ≤ αδ

2
for all t ∈ [0, T ],

and consequently

E(t) <
δ

2
(1 + α) for all t ∈ [0, τ ].(2.17)

A continuation argument implies that (2.16) and (2.17) hold on [0, T ]. In fact,
if (2.17) holds on [0, T ], then (2.16) can be continued from [0, τ ] to [0, T ]. Assuming
that (2.17) is not valid on [0, T ], let τ̃ denote the smallest value in (0, T ) such that
E(τ̃) = δ

2 (1+α). Then repeating the argument leading to (2.16) it can be shown that

there exists ε > 0 such that (2.16) holds in [0, τ̃ + ε]. This implies E(τ̃ + ε) < δ
2 (1+α),

which is a contradiction. Thus (2.17) holds on [0, T ].
Remark 2.1. Concerning assumption (2.12), we note that the indefinite term

−(BTΠΣΣ−1, BTΠx) can be estimated by

−(BTΠΣΣ−1z,BTΠx) ≥ − 1

2α
|BTΠΣΣ−1z|2 − α

2
|BTΠx|2

and the terms on the right-hand side can be combined with (Qx, x) and (RΣ−1z,Σ−1z),
and α > 0 appropriately chosen, to check for (2.12). However, since Π and Σ depend
nonlinearly on Q and R, respectively, we must check the validity of (2.12) for any
given system. We have done so numerically for our test examples.

Remark 2.2. The linear equation (2.2) as a basis for the construction of the
compensator is well suited for our purposes. Other choices are briefly indicated.

1. Linearizing (1.8) at x̄ results in

d

dt
(x̂(t) − x̄) = f(x̄) + A(x̂(t) − x̄) + B(u(t) − u∗(t)) + d(t).
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 215

The resulting Riccati synthesis is of the form (2.4) with d replaced by d+f(x̄).
Since d is unknown it cannot be used for the construction of the estimator,
and f(x̄) remains as a known bias term. It necessitates to modify W to be
W (x) = 1

2x
TΠx + xT v, with the bias v changing from one horizon to the

next.
2. It is also possible to employ the time varying linearization⎧⎨

⎩
d
dt (x̂(t) − x∗(t)) = A(t)(x̂(t) − x∗(t)) + B(u− u∗(t)) + ñ(t),

x̂ = x0,
(2.18)

where A(t) = A(x∗(t)) and use the corresponding time-varying gains BTΠ(t)
and Σ(t)CT determined by

d

dt
Π(t) + A(t)TΠ(t) + Π(t)A(t) − Π(t)BBTΠ(t) + Q = 0

and

d

dt
Σ(t) −A(t)Σ(t) − Σ(t)A(t)T + Σ(t)BBTΣ(t) −R = 0.

One can adapt our analysis and establish an error estimate analogous to (2.16)
assuming that ω > 0 and L are independent of t ∈ [0, T ].

3. Asymptotic performance of a closed-loop system. We will apply The-
orem 2.1 repeatedly on the intervals [Ti, Ti + T ]. Let us briefly recall the procedure.
The open loop solution x∗ to (1.5)–(1.7) is computed on [Ti, Ti+1], and based on it
x̄ is determined; see (1.13). To refer to a specific horizon we henceforth use x̄Ti

for
x̄. This determines A(x̄Ti

) and allows us to compute Π = Π(x̄Ti
) and Σ = Σ(x̄Ti

)
as solutions to the corresponding Riccati equations. The compensator can then be
defined on the basis of (1.10)–(1.12). To simplify the following discussion we assume
that Ti+1 − Ti = T for all i. We shall assume that

E(0) ≤ δ

2
and |x∗(t) − x̄| ≤ δ on [Ti, Ti+1] for all i = 0, . . .(3.1)

and that (2.10) and (2.11) hold uniformly on all horizons [Ti, Ti+1]. In view of the
continuity of x → A(x), we have continuity of x → Π(x) and x → Σ(x). Due to these
properties and the fact that the open loop control x∗ is typically guaranteed to be
continuous and bounded on [0,∞) (see, e.g., [IK1]), assumptions (2.10), (2.11), and
(3.1) are natural ones. As x̄Ti

changes from one horizon to the next, so does S = STi

in (2.13). We assume that (2.13) holds uniformly for all horizons as well and that∫ t

0

e−ω̃(t−s)ρ(s + Ti) ds <
δ

2
for t ∈ [0, T ] and all i = 0, 1 . . . .(3.2)

Finally we require that∫ T

0

e−ω̃(T−t) ρ(Ti + t) dt ≤ δ

2
(1 − e−ω̃T ) for i = 0, 1 . . . .(3.3)

These assumptions imply that

E(t) ≤ e−ω̃ (t−Ti)E(Ti) +

∫ t−Ti

0

e−ω̃(t−Ti−s) ρ(Ti + s) ds for t ∈ [Ti, Ti+1](3.4)
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216 KAZUFUMI ITO AND KARL KUNISCH

for every i, provided that E(Ti) ≤ δ
2 . Note that (3.3), (3.4) imply

E(Ti+1) ≤ e−ω̃ T E(Ti) +
δ

2
(1 − e−ω̃T ) ≤ δ

2
,

and hence by induction E(Ti) ≤ δ
2 for all i.

Theorem 3.1. If (3.1)–(3.3) hold and (2.10), (2.11), and (2.13) are satisfied
uniformly, then

E(t) ≤ e−ω̃ (t−Ti)E(Ti) +

∫ t−Ti

0

e−ω̃(t−Ti−s) ρ(Ti + s) ds

for t ∈ [Ti, Ti+1] and all i. In particular this implies

E(t) ≤ e−ω̃tE(0) +

∫ t

0

e−ω̃(t−s)ρ(s) ds for all t > 0.

Note that on each horizon [Ti, Ti+1] we must have |x∗(t) − x̄| ≤ δ on [0, T ]. This
may necessitate to take T smaller than Ti+1 − Ti to ensure that |x∗(t) − x̄| ≤ δ
on [Ti, Ti + T ]. In this case, we can further partition the interval [Ti, Ti+1] into
subintervals and use consecutive linearization on each subinterval so that the condition
is satisfied. The extreme case of this procedure results in the time-varying synthesis
as in Remark 2.2.

Concerning the condition |x∗(t) − x̄| ≤ δ we can use an alternative approach
motivated by the H∞ Riccati equation. This will be discussed in the next section.

4. H∞ Riccati synthesis. In this section we present a modification of the
approach proposed in section 1 motivated by H∞ synthesis. We assume that there
exists an attenuation bound γ > 0 such that

ATΠ + ΠA− Π

(
BBT − 1

γ
I

)
Π +

1

γ
I + Q = 0(4.1)

has a positive definite solution Π and

AΣ + ΣAT − Σ

(
CTC − 1

γ
I

)
Σ +

1

γ
I + R = 0(4.2)

has a positive definite solution Σ, where again A = f ′(x̄). These Riccati equations are
similar to those used in the equivalence between H∞ controllers and linear quadratic
zero-some differential games where in our case u and w are the two players [BB]. In
the following proposition x and w denote the solutions to (1.8) and (2.7)with u given
in (2.9) and x∗ is the solution to (1.6) with the optimal open loop control u∗.

Proposition 4.1. For t ∈ [0, T ] we have

d

dt
W (x− x∗)

= − 1
2 (|BTΠ(x− x∗)|2 + (Q(x− x∗), x− x∗) + 1

γ |Π(x− x∗)|2 + 1
γ |x− x∗|2)

+ (r(x, x∗) + d,Π(x− x∗)) + (BTΠ(x− w), BTΠ(x− x∗))
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 217

and

d

dt
W̃ (x− w)

= −1

2
(|C(x− w)|2 + (RΣ−1(x− w),Σ−1(x− w)) +

1

γ
|x− w|2 +

1

γ
|Σ−1(x− w)|2)

+(r(x, x∗) + d,Σ−1(x− w)) − (n,C(x− w)),

where

r(x, x∗) = f(x) − f(x∗) −A(x̄)(x− x∗),

and the dependence of the variables on t is suppressed.

Proof. The proposition follows from the proofs of Propositions 2.1 and 2.2 ob-
serving that

((A−BBTΠ)x,Πx) = −1

2

(
|BTΠx|2 + (Qx, x) +

1

γ
|x|2 +

1

γ
|Πx|2

)
,

and

((A− ΣCTC)z,Σ−1z) = −1

2

(
|Cz|2 + (RΣ−1z,Σ−1z) +

1

γ
|z|2 +

1

γ
|Σ−1z|2

)
.

Since

r(x(t), x∗(t)) =

(∫ 1

0

A(x∗(t) + θ(x(t) − x∗(t))) dθ −A

)
(x(t) − x∗(t)),

we can observe that the assumption

∥∥∥∥
∫ 1

0

A(x∗(t) + θ(x(t) − x∗(t))) dθ −A

∥∥∥∥ ≤ 1√
2γ

for all t ∈ [0, T ](4.3)

implies that

(r(x(t), x∗(t)),Π(x(t) − x∗(t))) ≤ 1

2γ

(
|Π(x(t) − x∗(t))|2 +

1

2
|x(t) − x∗(t)|2

)
,

(4.4)

and

(r(x(t), x∗(t)),Σ−1(x(t) − x∗(t))) ≤ 1

2γ

(
|Σ−1(x(t) − w(t))|2 +

1

2
|x(t) − x∗(t)|2

)(4.5)D
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218 KAZUFUMI ITO AND KARL KUNISCH

Using (2.11) and (4.4), (4.5) we find

d

dt
(W (x− x∗) + W̃ (x− w))

≤ −ω(W (x−x∗)+W̃ (x−w))+(d + r(x, x∗),Π(x− x∗)+Σ−1(x−w))− (n,C(x−w))

− 1

2γ
(|Π(x− x∗)|2 + |x− x∗|2 + |x− w|2 + |Σ−1(x− w)|2)

≤ −ω(W (x− x∗) + W̃ (x− w)) + ρ(t)(W (x− x∗) + W̃ (x− w))1/2

+
1

2γ
(|Π(x− x∗)|2 + |x− x∗|2 + |Σ−1(x− w)|2)

− 1

2γ
(|Π(x− x∗)|2 + |x− x∗|2 + |x− w|2 + |Σ−1(x− w)|2),

where ρ(t) was defined below (2.14). Hence it follows that

d

dt
(W (x−x∗)+W̃ (x−w)) ≤ −ω(W (x−x∗)+W̃ (x−w))+ρ(t)((W (x−x∗)+W̃ (x−w)))

1
2 ,

and therefore

d

dt
E(t) ≤ −ωE(t) + ρ(t).

We can summarize the above developments in the following result.
Theorem 4.1. If (4.3) and (4.2) admit solutions for γ > 0 and (2.10), (2.11),

(4.3) hold on [0, T ], then

E(t) ≤ e−ω tE(0) +

∫ t

0

e−ω(t−s) ρ(s) ds for t ∈ [0, T ].(4.6)

If the assumptions hold uniformly on all intervals, then (4.6) holds for all t ∈ [0,∞).

5. Numerical examples. We validate the proposed approach by means of a
class of optimal control problems for the Burgers equation

min
1

2

∫ T∞

0

|y(t) − z(t)|2L2(Ω)dt +
σ

2

∫ T∞

0

|u(t)|2
L2(Ω̃)

dt(5.1)

subject to u ∈ L2(Ω̃) and⎧⎪⎪⎨
⎪⎪⎩

d
dt y(t, x) = ν yxx(t, x) − y · yx(t, x) + Bu(t, x) + d(t, x), t > 0,

y(t, 0) = y(t, 1) = 0, t > 0,

y(0, x) = ϕ(x), x ∈ (0, 1),

(5.2)

where y(t) = y(t, x), x ∈ Ω = (0, 1), and ν and σ are positive constants. Here the
initial condition ϕ ∈ L2(Ω), the control domain Ω̃ is a subset of Ω, and B is the
extension-by-zero-operator from Ω̃ to Ω. Finally d represents noise to the system and
the observation data are supposed to be of the form

ŷ(t) = CΩ̂ y(t) + n(t),(5.3)
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RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 219

where C is the restriction operator from Ω to Ω̂ with Ω̂ a subset of Ω, and n stands for
observation noise. We further need to specify the operators G for the terminal weight
in the receding horizon cost (1.5), the tracking weight Q in (2.3) and the operator R
in the Kalman filter equation. We shall set

R = r I and Q = q I.(5.4)

After several tests G was taken to be 0 for stabilization problems (z = 0) and as
a scalar multiple of 1

2 (x,Πx), where Π is the nonnegative solution of the algebraic
Riccati equation (2.4) with A = −ν ∂xx for tracking problems with z 	= 0. In this
way G does not depend on the specific receding horizon level and can be computed
during the initialization phase. Choosing G instead as G(x) = α |x|2 resulted in longer
computing times and less favorable tracking properties.

The spatial discretization was done by the standard Galerkin scheme applied to
(5.2) based on the basis of linear finite elements with meshsize dx. The ordinary differ-
ential equations resulting from (5.2) and (2.2), (2.7) were solved with an implicit Euler
scheme with stepsize dt, while resolving the nonlinearities by Newton’s method. The
resulting linear systems were solved by inexact GMRES iterations. Unless specified
otherwise we took

ν = .01, dt = .05, dx = .025,

and for the receding horizon, T = .5. Further, unless quoted otherwise we chose
Ω = Ω̃ = Ω̂, q = 10−5, and r = 103. For Example 1 we took σ = .0175 and for
Example 2 we calculated with σ = 10−3. The MATLAB-routine CARE was used to
solve the algebraic Riccati equations. Below, Ĵ denotes the tracking part of the cost
in (5.1). Noise was simulated by choosing uniformly distributed random numbers in
the interval [−δ, δ]. It was added to the spatial-temporal grid points for either d or
n representing disturbance to the equation and noise in the observation, respectively.
Analogously, noise in the initial data ϕ was simulated by adding random numbers in
[−δ, δ] to the values of ϕ at the spatial grid points. The initial condition for (5.2)
on receding horizon intervals with i ≥ 2 was chosen as the state of the estimator at
time Ti.

Example 5.1 (stabilization). Here we choose

ϕ(x) =

{
5 sin 2πx on (0, 1

2 ],

0 on ( 1
2 , 1),

and z = 0. Further T∞ = 5, T = 0.5, Ti = iT so that we have 10 receding horizon
intervals. The uncontrolled solution is depicted in Figure 5.1. For Figures 5.2–5.4
we chose n = 0 (no observation noise) and simulated disturbances to the system with
noise level δ = 10 for d. The result for Figure 5.2 shows an open-loop solution,
i.e., first we compute the open-loop optimal control u∗ to (5.1)–(5.2), with d = 0,
and then use the optimal open-loop control u∗ against the noisy Burgers equation
with d = 10. Figure 5.3 is for the full observation case, obtained with the state
estimator procedure introduced in section 1, with Ω̂ = Ω̃ = Ω. For Figure 5.4 we
test a partial observation case, i.e., we chose the control domain Ω̃ = (0, 1

2 ) and

the observation domain Ω̂ = ( 1
2 , 1). Thus control and observation domain are non-

overlapping. It should be noted that the hyperbolic nature of the Burgers equation is
such that information moves from smaller to larger x-values. Figures 5.5 and 5.6 show
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x–axis

Fig. 5.1. Uncontrolled solution, no noise.
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Fig. 5.2. Open-loop controlled solution.
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Fig. 5.3. Estimator closed loop.

results for the noisy observation case and we take again Ω̃ = (0, 1
2 ) and Ω̂ = ( 1

2 , 1),
i.e., the control and observation domains, which are as those used for Figure 5.4.
Figure 5.5 disturbance to the equation was set d = 0, while now the observation data
were taken to be noisy with noise level δ = 10 for n. For Figure 5.6 noise was added
to the initial condition (δ = 5) and to the observation data (δ = 10).

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



RECEDING HORIZON CONTROL WITH INCOMPLETE OBSERVATIONS 221
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Fig. 5.4. Partial control and observation domain.
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Fig. 5.5. Noise in observation.
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Fig. 5.6. Noise in observation and initial condition.

The run-times depend slightly on the random numbers that enter in d or n. Typical
times for Figures 5.3–5.6 are 16 to 17 units, whereas the run-time for Figure 5.2, which
uses the open-loop optimal control on the complete interval [0, T∞], is 181 units. The
stabilization value for Figure 5.2 is Ĵ = .540, whereas it is only Ĵ = .146 for Figure 5.3.
In Table 1 we give the stabilization values Ĵ− for the results of Figures 5.2–5.6 on
[0.5, 5], i.e., for the receding horizon intervals 2–10.
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Table 1

Ĵ−.

Fig 5.2 Fig 5.3 Fig 5.4 Fig 5.5 Fig 5.6

.17-.5 .0008-.0009 .070-.114 .056-.065 .1-.5

0
0.5

1
1.5

2
2.5

0

0.5

1

0

0.5

1

1.5

2

x–axis

t–axis

Fig. 5.7. Desired state.

We ran all tests with five randomly chosen initializations of the random number
generator. In Table 1 we report the range of obtained values for Ĵ−. We can conclude
that the receding horizon strategy combined with the dynamic observer introduced in
section 1 attenuates noise significantly better than the open-loop controlled system;
compare column 1 in Table 1 to columns 2–4. The computing times for the receding
horizon strategy are much shorter than for the open-loop optimal control on the
complete time interval. Finally the strategy can cope with partial observations.

Example 5.2 (tracking). Here we set the initial condition as

ϕ(x) =

{
1 on (0, 1

2 ],

0 on ( 1
2 , 1),

and the target z as the characteristic function of the set {(t, x) : 2.5−5x < t < 5−5x,
x ∈ (0, 1)}; see Figure 5.7. Further T∞ = 2.5, T = 0.5, Ti = iT so that we have five
receding horizon intervals. Note that the uncontrolled solution of the Burgers equation
would transport the jump at x = 1

2 toward increasing x as t increases, while decreasing
its height. Also, the desired state z moves into the direction which is opposite to the
one of the characteristics of the Burgers equation. Thus this example can be considered
as a challenging one. For the results presented here we took the control domain as
Ω̃ = Ω. The noise levels are 5 for disturbance to the equation and 10 for observation
noise and disturbance to the initial condition. If noise is not mentioned, then it is set
equal to 0. The random number generator is initialized at the same seed, independently
for disturbances and observations.

In Figures 5.8 and 5.9 we show the open-loop and the full-observation (Ω̂ = Ω)
closed-loop results, each with disturbances to the equation. Figures 5.10 and 5.11
show partial observation results with the observation domain Ω̂ = (1/4, 1) for nonzero
disturbance d and nonzero observation noise n, respectively. Figure 5.12 provides the
result for the case with the partial observation on Ω̂ = (1/4, 1), d = 0, and noise
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Fig. 5.8. Open-loop controlled solution.
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Fig. 5.9. Estimator closed loop.
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Fig. 5.10. Estimator closed loop, partial obseration.

entering to the observations as well as the initial condition. The tracking costs for
Figures 5.8–5.12 are given in Table 2.

For Figure 5.8 we again computed the open-loop optimal control from [0, T∞]
and applied it to the perturbed Burgers equation. The computing time for Figure 5.8
is 56 units, whereas for the other figures it is 16.3 to 20 units. Thus the ratio of
the computing times for the open-loop control on [0, T∞] and the receding horizon
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Fig. 5.11. Estimator, noise in data.
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Fig. 5.12. Noise in data and initial condition.

Table 2

Ĵ.

Fig 5.8 Fig 5.9 Fig 5.10 Fig 5.11 Fig 5.12

.179 .0816 .0814 .0812 .0887

controls is less favorable than for Example 5.1. This is because the resulting two-point
boundary value problems are less well-conditioned as a consequence of the terminal
weight G 	= 0.

We also tested with smaller observation domain Ω̂ and obtained comparable re-
sults. Reducing the control domain Ω̃ results in a significant increase of Ĵ due to the
challenging nature of the problem. For example, for the settings of Figure 5.10, if
Ω̃ = (0, .8), then Ĵ = .490.

6. Conclusion. The receding horizon technique is a sequential time-domain de-
composition method to reduce the computational requirements for solving the opti-
mality systems on long time horizons. The obtained controls on each receding horizon
can be interpreted as a state feedback control. In this paper we developed a com-
pensator design in the context of receding horizon control when only partial state
observations are available. The receding horizon synthesis was combined with the
state estimator dynamics. An LQG design based on a linearization procedure was
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used and its asymptotic performance was analyzed for nonlinear systems with dis-
turbances and observation noise. Numerical examples for control problems for the
Burgers equation validate the proposed methodology.

Acknowledgment. We would like to thank Prof. Stefan Volkwein for providing
us with the code of his open loop optimal control routine for the Burgers equation.
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[CA] H. Chen and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability, Automatica, 34 (1998), pp. 1205–1217.

[CHK] H. Choi, M. Hinze, and K. Kunisch, Instantaneous control of backward facing step
flow, Appl. Numer. Math., 31 (1999), pp. 133–158.

[CTMC] H. Choi, R. Temam, P. Moin, and J. Kim, Feedback control for unsteady flow and its
application to the stochastic Burgers equation, J. Fluid Mech., 253 (1993), pp. 509–
543.

[GPM] C. E. Garcia, D. M. Prett, and M. Morari, Model predictive control: Theory and
practice—a survey, Automatica, 25 (1989), pp. 335–348.

[HV] M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equa-
tion, Nonlinear Anal., 50 (2002), pp. 1–26.

[IK1] K. Ito and K. Kunisch, On asymptotic properties of receding horizon optimal control,
SIAM J. Control. Optim., 40 (2002), pp. 1585–1610.

[IK2] K. Ito and K. Kunisch, Receding horizon optimal control for infinite dimensional
systems, ESIAM Control Optim. Calc. Var., 8 (2002), pp. 741–760.

[JYH] A. Jadababaie, J. Yu, and J. Hauser, Unconstrained Receding Horizon Control of
Nonlinear Systems, Trans. Automat. Control, 46 (2001), pp. 776–783.

[K] D. L. Kleinman, An easy way to stabilize a linear constant system, IEEE Trans.
Automat. Control, 15 (1970), pp. 692–712.

[MM] D. Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems, IEEE
Trans. Automat. Control, 35 (1990), pp. 814–824.
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