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HJB-POD-Based Feedback Design for the Optimal Control of Evolution
Problems∗
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Abstract. The numerical realization of closed loop control for distributed parameter systems is still a significant
challenge and in fact infeasible unless specific structural techniques are employed. In this paper we
propose the combination of model reduction techniques based on proper orthogonal decomposition
(POD) with the numerical treatment of the Hamilton–Jacobi–Bellman (HJB) equation for infinite
horizon optimal control problems by a modification of an algorithm originated by Gonzales and
Rofman and further developed by Falcone and Ferretti. The feasibility of the proposed methodology
is demonstrated numerically by means of optimal boundary feedback control for the Burgers equation
with noise in the initial condition and in the forcing function.
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1. Introduction. In many applications the discretization of optimal control problems for
time dependent partial differential equations, e.g., for the unsteady Navier–Stokes equations,
require the solution of nonlinear systems with a large number of degrees of freedom. In par-
ticular, to compute closed loop controls in state feedback form we have to solve the Hamilton–
Jacobi–Bellman (HJB) equation, which has been numerically infeasible for parabolic differen-
tial equations on a standard workstation equipment until today, if classical approximations like
finite elements or finite differences are used. In this work model reduction is applied to reduce
the number of unknowns significantly. The obtained low-dimensional models should guaran-
tee a reasonable performance of the controlled plant while being computationally tractable.
Proper orthogonal decomposition (POD) provides a method for deriving appropriate low-
order models. It can be thought of as a Galerkin approximation in the spatial variable, built
from functions corresponding to the solution of the physical system at prespecified time in-
stances. These are called the snapshots. Due to possible linear dependence or almost linear
dependence a singular value decomposition of the snapshots is carried out and the leading
generalized eigenfunctions are chosen as a basis, referred to as the POD basis. Once a low-
order model of the dynamical system is available, feedback synthesis based on approximate
solutions to the stationary HJB equation becomes feasible.

We demonstrate the feasibility of the proposed approach by means of an optimal bound-
ary control problem for the Burgers equation. Open loop optimal control problems for the

∗Received by the editors July 18, 2003; accepted for publication (in revised form) by P. Holmes June 17, 2004;
published electronically December 27, 2004.

http://www.siam.org/journals/siads/3-4/60048.html
†Karl-Franzens-Universität Graz, Institut für Mathematik, Heinrichstrasse 36, A-8010 Graz, Austria

(karl.kunisch@uni-graz.at, stefan.volkwein@uni-graz.at, lei.xie@uni-graz.at).

701

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siads/3-4/60048.html
mailto:karl.kunisch@uni-graz.at
mailto:stefan.volkwein@uni-graz.at
mailto:lei.xie@uni-graz.at


702 K. KUNISCH, S. VOLKWEIN, AND L. XIE

Burgers equation was studied by several authors; see, for instance, [7, 14, 17, 24]. Much less
attention has been paid to the important problem of closed loop control. We mention the work
by Byrnes, Gilliam, and Shubov [6], where a fixed feedback-operator is used and analyzed,
and Burns and Kang [?] where the feedback synthesis is based on Riccati operators for the
linearized equations. In [12] instantaneous control was applied to construct a feedback law
which matches a desired state, but at considerable control costs. In [15] the authors utilized
model reduction with POD to construct a suboptimal feedback synthesis, and an optimal
output feedback reduced-order control law was designed by POD discretization in [16].

The analysis and use of proper orthogonal decomposition for reduction purposes has a
long-lasting history (see [13] and the references given there). Its use in optimal control, while
rather recent, has already created a wide range of literature of which we can only mention a
few works. In [19] optimal open loop POD-based control of flow around a rotating cylinder
is investigated. Control of turbulent flow utilizing POD with the aim of drag reduction is
considered in [20], for example. POD-based control of thin film growth in a chemical vapor
deposition reactor is investigated in [3]. In [2] the dynamical system is linearized, which
allows the use of Riccati synthesis for feedback controller construction, which can favorably
be combined with POD-based model reduction. In [9] and [1] the issue of unmodeled dynamics
is addressed, i.e., the fact the snapshots for the POD-approximation are typically taken from
dynamics which may be different from the controlled dynamics.

The paper is organized in the following manner: In section 2 we review the dynamic
programming principle and the HJB equation. Section 3 is devoted to the reduced-order
approach based on POD for an abstract optimal control problem. The numerical strategy for
the feedback synthesis is explained in section 4. In section 5 we illustrate the efficiency of the
proposed method by considering an optimal boundary control problem for the viscous Burgers
equation. Conclusions are drawn in the last section. Some facts about the discretization to
the HJB equation that we employ are proven in the appendix.

2. Review of the dynamic programming principle. In this section we recall the dynamic
programming principle and its infinitesimal version, the Hamilton–Jacobi–Bellman equation.
This leads to the design of a feedback synthesis by utilizing the so-called value function. For
more details we refer the reader to, e.g., [4, Chapter I], [10].

For k, n ∈ N let U = Rk denote the control space and let Uad � U be a closed, bounded,
and convex set. Furthermore, y◦ ∈ Rn is a given initial condition. For a measurable control
function u : [0,∞) → U the state y : [0,∞) → Rn is governed by the initial value problem

ẏ(t) = F (y(t), u(t)) for t > 0,(2.1a)

y(0) = y◦.(2.1b)

To ensure the existence of a unique solution to (2.1) we make use of the following assump-
tion.

Assumption 1. The (nonlinear) mapping F : Rn × U → Rn is given in such a way that
for every choice of initial condition y◦ ∈ Rn and measurable control function u there exists a
unique state y = y(t) to the state equation (2.1).

At times we write y(t) = y(t; y◦, u) or y = y(y◦, u) to emphasize the dependence of the
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 703

state y on y◦ and u. Associated with (2.1) is the cost functional

J(y, u) =

∫ ∞

0
L(y(t), u(t))e−λt dt,(2.2)

where L : Rn × Rk → [0,∞) is a continuous function and λ > 0 represents a discount rate.
The optimal control problem is expressed as

minJ(y, u) s.t. y solves (2.1) and u ∈ Uad.(2.3)

Here, Uad denotes the set of all measurable functions from [0,∞) to Uad. For u ∈ Uad and
y◦ ∈ Rn we introduce the reduced cost by

Ĵ(y◦, u) = J(y(y◦, u), u).(2.4)

This gives rise to the value function v : Rn → [0,∞), which is defined by

v(y◦) = inf
u∈Uad

Ĵ(y◦, u).

It satisfies the dynamic programming principle

v(y◦) = inf
u∈Uad

{∫ T

0
L(y(t; y◦, u), u(t))e−λt dt + v(y(T ; y◦, u))e−λT

}
(DPP)

for all y◦ ∈ Rn and T > 0.
Remark 2.1.
(a) (DPP) holds under general conditions on the data. For example, the existence of

optimal control has not been assumed.
(b) When L and, consequently, v are bounded, then w ≡ v holds for every function

w = w(y◦) satisfying (DPP) for all y◦ ∈ Rn and T > 0.
Suppose that the value function v is differentiable. Dividing both sides in (DPP) by T

and letting T tend to zero, we arrive after a short calculation at the infinitesimal version of
the dynamic programming principle, the HJB equation:

λv(y◦) + sup
u∈Uad

{
−∇v(y◦)F (y◦, u) − L(y◦, u)

}
= 0.(HJB)

If v is only continuous, then (HJB) has to be interpreted in terms of viscosity solutions. The
solution to the HJB equation is utilized for the synthesis procedure. Due to the Bellman
optimality principle, the function

h(t) = v(y∗(t))e−λt +

∫ t

0
L(y∗(s), u∗(s))e−λs ds

is constant for t > 0 if and only if (y∗(y◦, u∗), u∗) is an optimal trajectory and control pair
for the initial condition y◦. Under the hypothesis that v is differentiable, we conclude that
h′ ≡ 0. In particular, we find

λv(y∗(t)) −∇v(y∗(t))F (y∗(t), u∗(t)) − L(y∗(t), u∗(t)) = 0(2.5)
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704 K. KUNISCH, S. VOLKWEIN, AND L. XIE

for almost all t > 0. Utilizing (2.5), it can be shown that under appropriate conditions the
control u∗ = u∗(t) is optimal if and only if

u∗(t) = S(y∗(t)) for almost all t > 0

for any choice S such that

S(y◦) ∈ argmax
u∈Uad

{
−∇v(y◦)F (y◦, u) − L(y◦, u)

}
,(2.6)

i.e., if and only if

sup
u∈Uad

{
−∇v(y∗(t))F (y∗(t), u) − L(y∗(t), u)

}
= −∇v(y∗(t))F (y∗(t), u∗(t)) − L(y∗(t), u∗(t)) for almost all t > 0.

If v was known then determining S would be a finite dimensional mathematical program-
ming problem at every y◦ ∈ Rn. S is called the optimal feedback map. Assuming that S is
known results in the closed loop system

ẏ(t) = F (y(t), S(y(t))) for t > 0,
y(0) = y◦.

(2.7)

Its solution y∗ and the optimal control u∗ are related by

u∗(t) = S(y∗(t)), t > 0.(2.8)

We refer to the literature for analogous results if v is only continuous.
For the numerical realization we next discretize (2.1) and (HJB). For the grid size h > 0,

set

tj = jh for j = 0, 1, . . . ,

and consider the discrete time system

yj+1 = yj + hF (yj , uj) for j ≥ 0,

y0 = y◦
(2.9)

and the associated cost

Jh(y◦, uh) =
h

2

⎛
⎝L(y◦, u0) +

∞∑
j=1

βj(L(yj , uj−1) + L(yj , uj)
)⎞⎠(2.10)

for uj ∈ Uad, which arises by applying the trapezoidal rule to (2.2) with the assumption
that the controls are constant on the subintervals [tj−1, tj ]. Here we set β = e−λh, and
yh = {y◦, y1, . . . } denotes the solution to (2.9) where uh = {u0, u1, . . . } . The approximate
minimal value function vh : Rn → [0,∞) is given by

vh(y◦) = inf
uh∈Uh

ad

Jh(y◦, uh),(2.11)
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 705

where Uh
ad = {uh : uh = {u0, u1, . . . } with ui ∈ Uad}. In the appendix it is verified that vh is

the unique solution to the discrete HJB equation

vh(y◦) + sup
u∈Uad

{
−h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βv(y◦ + hF (y◦, u))

}
= 0.(HJBh)

Turning to the synthesis problem we define

Sh(y◦) ∈ argmax
u∈Uad

{
−h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βv(y◦ + hF (y◦, u))

}
.

Sufficient conditions, given in the appendix, guarantee that u∗j = Sh(y
∗
j ) gives an optimal

feedback control, i.e.,

vh(y◦) = Jh(y◦, u
∗)

and

y∗j+1 = y∗j + hF (y∗j , Sh(y
∗
h)) for j ≥ 0,

y∗0 = y◦.
(2.12)

Solving (HJBh) is still a significant challenge and infeasible for high-dimensional discretizations
of distributed parametric systems. For this reason we turn to a model reduction technique in
the following section which will allow us to reduce the dimension of the state space y in Rn.
The discretization of the value function vh will be discussed in section 4. We do not address
dimension issues concerning the control space U . Certainly, if it is infinite dimensional, it
must be discretized for numerical purposes.

3. POD Galerkin approximations for optimal control problems governed by evolution
problems. In this section we propose a reduced-order approach for optimal control problems
governed by evolution problems. It is based on POD, which is a method of deriving basis
functions containing characteristics of the investigated evolution process. The optimal control
problem for an abstract evolution problem and the POD method are introduced in sections 3.1
and 3.2, respectively, and in section 3.3 the reduced-order modeling for the optimal control
problem is addressed.

3.1. The optimal control problem for an abstract dynamical system. Let V and H be
real separable Hilbert spaces, and suppose that V is dense in H with compact embedding. By
〈· , ·〉H we denote the inner product in H. The inner product in V is given by a symmetric
bounded, coercive, bilinear form a : V × V → R:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V(3.1)

with associated norm given by ‖ · ‖V =
√
a(· , ·). We associate with a the linear operator A,

〈Aϕ,ψ〉V ′,V = a(ϕ,ψ) for all ϕ,ψ ∈ V,

where 〈· , ·〉V ′,V denotes the duality pairing between V and its dual. Then A is an isomor-

phism from V onto V ′. For 0 < T ≤ ∞ we denote by L2(0, T ;V ) the space of equivalence
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706 K. KUNISCH, S. VOLKWEIN, AND L. XIE

classes of measurable abstract functions ϕ : (0, T ) → V , which are square integrable, i.e.,∫ T
0 ‖ϕ(t)‖2

V dt < ∞. When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) con-
sidered as a function in Ω only. The space W (0, T ) is defined as

W (0, T ) =
{
ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)

}
,

which is a Hilbert space endowed with the common inner product (see, for example, [8, p. 473]),
and we set Wloc(0,∞) =

⋂
T>0 W (0, T ). Let N : V → V ′ be a nonlinear continuous operator

map. Further, let U be a Hilbert space and Uad ⊂ U a closed and convex subset, and set
U = L2(0,∞;U) and let Uad be the subset of U containing all functions u : [0,∞) → Uad. For
y◦ ∈ H and u ∈ Uad we consider the nonlinear evolution problem on [0,∞)

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) + 〈N(y(t)), ϕ〉V ′,V = 〈B(u(t)), ϕ〉V ′,V(3.2a)

for all ϕ ∈ V and

y(0) = y◦ in H,(3.2b)

where B : U → V ′ is a continuous linear operator. We make use of the following assumption.

Assumption 2. For every u ∈ Uad and y◦ ∈ H there exists a unique solution y of (3.2) in
Wloc(0,∞).

This assumption is satisfied for many practical situations, including the controlled viscous
Burgers and two-dimensional incompressible Navier–Stokes equations.

Next we introduce the cost functional

J (y, u) =

∫ ∞

0
e−λtL̃(y(t), u(t)) dt,

where L̃ : V × U → R. The optimal control problem is given by

minJ (y, u) such that (y, u) ∈ Wloc(0,∞;V ) × Uad solves (3.2).(P)

Its approximation is considered next.

3.2. The POD method. Throughout we assume that Assumption 2 holds and we denote
by y the unique solution to (3.2). For given n ∈ N let

0 = t1 < t2 < · · · < tn < ∞(3.3)

denote a grid in the interval [0,∞) and set δtj = tj − tj−1, j = 1, . . . , n. Suppose that the
snapshots yj = y(tj) of (3.2) at the given time instances tj , j = 0, . . . , n, are known. We set

V = span {y0, . . . , yn}.

Notice that V ⊂ V by construction. Throughout the remainder of this section we let X denote
either the space V or the space H.
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 707

Let {ψi}di=1 denote an orthonormal basis for V with d = dimV. Then each member of the
ensemble V can be expressed as

yj =
d∑

i=1

〈yj , ψi〉Xψi for j = 0, . . . , n.(3.4)

The method of POD consists in choosing an orthonormal basis such that for every � ∈
{1, . . . , d} the mean square error between the elements yj , 0 ≤ j ≤ n, and the corresponding
�th partial sum of (3.4) is minimized on average:

min J(ψ1, . . . , ψ�) =
n∑

j=0

αj

∥∥∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥∥∥
2

X

subject to 〈ψi, ψj〉X = δij for 1 ≤ i ≤ �, 1 ≤ j ≤ i.

(3.5)

Here {αj}nj=0 are positive weights, which for our purposes are chosen to be

α0 =
δt1
2
, αj =

δtj + δtj+1

2
for j = 1, . . . , n− 1, αn =

δtn
2

.

A solution {ψi}�i=1 to (3.5) is called POD basis of rank �. The subspace spanned by the first
� POD basis functions is denoted by V �, i.e.,

V � = span {ψ1, . . . , ψ�}.(3.6)

The solution of (3.5) is characterized by the necessary optimality condition, which can be
written as an eigenvalue problem. For that purpose we endow Rn+1 with the weighted inner
product

〈v, w〉Rn+1 =
n∑

j=0

αjvjwj(3.7)

for v = (v0, . . . , vn)T , w = (w0, . . . , wn)T ∈ Rn+1, and the induced norm. Let us introduce the
bounded linear operator Yn : Rn+1 → X by

Ynv =
n∑

j=0

αjvjyj for v ∈ Rn+1.(3.8)

Then the adjoint Y∗
n : X → Rn+1 is given by

Y∗
nz = (〈z, y0〉X , . . . , 〈z, yn〉X)T for z ∈ X.(3.9)

It follows that Rn = YnY∗
n ∈ L(X) and Kn = Y∗

nYn ∈ R(n+1)×(n+1) are given by

Rnz =
n∑

j=0

αj〈z, yj〉Xyj for z ∈ X,

(
Kn

)
ij

= αj 〈yj , yi〉X ,

(3.10)D
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708 K. KUNISCH, S. VOLKWEIN, AND L. XIE

respectively. Here, L(X) denotes the Banach space of all bounded linear operators from X
into itself. The matrix Kn is often called a correlation matrix.

Using a Lagrangian framework, we can derive the following optimality conditions for the
optimization problem (3.5):

Rnψ = λψ(3.11)

(see, e.g., [13, pp. 88–91] and [23, section 2]). Note that Rn is a bounded, self-adjoint, and
nonnegative operator. Moreover, since the image of Rn is finite dimensional, Rn is also
compact. By Hilbert–Schmidt theory (see, e.g., [21, p. 203]) there exist an orthonormal basis
{ψi}∞i=1 for X and a sequence {λi}∞i=1 of nonnegative real numbers so that

Rnψi = λiψi, λ1 ≥ · · · ≥ λd > 0, and λi = 0 for i > d.(3.12)

Moreover, V = span {ψi}di=1. Note that {λi}∞i=0 as well as {ψi}∞i=0 depend on n. Contents
permitting the notation of this dependence is dropped.

Remark 3.1. Setting

vi =
1√
λi

Y∗
nψi for i = 1, . . . , d,

we find Knvi = λivi and 〈vi, vj〉Rn+1 = δij for 1 ≤ i, j ≤ d. Thus, {vi}di=1 is an orthonormal
basis of eigenvectors of Kn for the image of Kn. Conversely, if {vi}di=1 is a given orthonormal
basis for the image of Kn, then it follows that the first d eigenfunctions of Rn can be determined
by

ψi =
1√
λi

Ynvi for i = 1, . . . , d.

Hence, we can determine the POD basis by solving either the eigenvalue problem for Rn or
the one for Kn.

The sequence {ψi}�i=1 solves the optimization problem (3.5). This fact as well as the error
formula below were proved in [13, section 3], for example. Let λ1 ≥ · · · ≥ λd > 0 denote the
positive eigenvalues of Rn with the associated eigenvectors ψ1, . . . , ψd ∈ X. Then, {ψn

i }�i=1 is
a POD basis of rank � ≤ d, and we have the error formula

J(ψ1, . . . , ψ�) =
n∑

j=0

αj

∥∥∥∥∥yj −
�∑

i=1

〈yj , ψi〉Xψi

∥∥∥∥∥
2

X

=
d∑

i=�+1

λi.(3.13)

3.3. Reduced-order control. The reduced-order approach to optimal control problems
such as (P) is based on approximating the nonlinear dynamics by a Galerkin technique utilizing
basis functions that contain characteristics of the controlled dynamic.

To compute a POD solution of (P) we make the ansatz

y�(t, x) =
�∑

i=1

wi(t)ψi(x).(3.14)
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 709

We introduce the mass and stiffness matrices by

M =
((

mij
))

∈ R�×� with mij = 〈ψj , ψi〉H ,

S =
((

sij
))

∈ R�×� with sij = a(ψj , ψi),

the nonlinear function N : R� → R� by

(w1, . . . ,w�) → N(w1, . . . ,w�) =
(
ni
)
∈ R� with ni =

〈
N

⎛
⎝ �∑

j=1

wiψj

⎞
⎠ , ψi

〉
V ′,V

,

and the mapping of the control input b : U → R� by

u → b(u) =
(
b(u)i

)
∈ R� with b(u)i = 〈Bu,ψi〉H .

The modal coefficients of the initial condition y�(0) ∈ R� are determined by wi(0) = (w◦)i =
〈y◦, ψi〉X , 1 ≤ i ≤ �, and the solution vector of the reduced dynamical system is denoted by
w�(t) ∈ R�. Then the Galerkin approximation of the optimal control problem (P) is given by⎧⎪⎪⎨

⎪⎪⎩
minJ �(w�, u)

s.t. u ∈ Uad and

{
ẇ�(t) = F (w�(t), u(t)) for t > 0,
w�(0) = w◦,

(P�)

where the cost functional is defined as

J �(w�, u) =

∫ ∞

0
L̃(y�(t), u(t))e−λt dt

with w� and y� related by (3.14) and the nonlinear mapping F : R� × U → R� given by

F (w�, u) = M−1
(
−Sw� − N(w�) + b(u)

)
.

Of course, it is tacitly assumed that the dynamical system in (P�) admits a unique solution
for every u ∈ Uad. Let us mention that in case of X = H the mass matrix M is just the
identity matrix. On the other hand, S is the identity matrix for X = V .

The value function v�, defined for initial states w◦ ∈ R�, is

v�(w◦) = inf
u∈Uad

Ĵ �(w◦, u),

where Ĵ �(w◦, u) = J �(w�, u) and w� solves the dynamical system in (P�) with control input u
and initial condition w◦.

4. Numerical strategy for the closed loop design. Here we briefly explain the numerical
realization of (HJBh). While (HJBh) is defined on Rn for practical purposes, we restrict
ourselves to a computational domain Υh which is a bounded subset of Rn. This is justified if
y+hF (y, u) ∈ Υh for all y ∈ Υh and u ∈ Uad. Here we choose Υh = [a1, b1]×[a2, b2]×· · ·×[a�, b�]
with a1 ≥ a2 ≥ · · · ≥ a� and b1 ≥ b2 ≥ · · · ≥ b�. Let {Sj}kj=1 denote the hypercubes of a
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710 K. KUNISCH, S. VOLKWEIN, AND L. XIE

rectilinear partition of Υh with N vertices {yj}. We consider the space W k of piecewise �-
linear functions wk : Υh → R which are continuous on Υh. We look for a solution wk ∈ W k

of

wk(yj) = inf
u∈Uad

{
h

2

(
L(yj , u) + βL(yj + hF (yj , u), u)

)
+ βwk(yj + hF (yj , u))

}
(HJBk

h)

for every vertex yj ∈ Υh. If vh is a solution to (HJBh), then it satisfies (HJBk
h) and the convex

interpolant

wk(y) =
N∑
j=1

λjv(yj) for y =
N∑
j=1

λjyj

belongs to W k. The intervals [aj , bj ] must be chosen such that they contain the components
of the expected controlled trajectories while simultaneously keeping them as small as possible
for computational purposes. Since the dynamic model is derived from POD, the magnitude
of the components in the solution representation of the trajectory in terms of the POD basis
functions are rapidly decreasing. We therefore choose the intervals [aj , bj ] such that their
lengths are rapidly decreasing. Moreover, the mesh sizes decrease as j increases, since we
expect the solution to be more sensitive to modes with lower index. The evaluation of the
right-hand side of (HJBk

h) requires us to solve a constrained nonlinear programming problem.
For this purpose we used fmincon from Matlab. It would certainly be worthwhile to investigate
possible speed-up by employing different techniques for this task. To solve (HJBk

h) on Υh, a
fixed point iteration with a multilevel acceleration strategy was used. Once (HJBk

h) is solved,
the optimal value function and corresponding optimal control at each grid point are available.

1. Multilevel method. The convergence rate of the fixed point iteration depends on h.
The HJB equation is first solved for h = 0.2; the result is taken as initial guess to solve the
HJB equation for h = 0.05. These two results are utilized to predict a new guess by means of
the secant method. Then the HJB equation is solved for h = 0.0125. This multilevel method
significantly accelerates the fixed point iteration.

2. Parallel computation. In solving the dynamic programming equation, the constrained
minimizing problem must be solved at each point of the polyhedron; these computations are
independent of each other and can therefore be performed in a fine-grained parallel strategy.
In this parallelism, the same set of codes runs simultaneously on different pieces of data on
various processors. The technique of massage passing interface (MPI) [11] was used in our
numerical tests. The mechanism used in MPI to distribute data (or information) is through
explicit sending and receiving of data among the processors. The newest MPI standard was
released in 1997. We refer to [18].

5. Application to the viscous Burgers equation. In this section we demonstrate the
efficiency of the proposed methodology by means of optimal boundary control of the viscous
Burgers equation.

5.1. The optimal control problem. Define the domains Ω = (0, 1) ⊂ R, Q = (0,∞) × Ω,
and Σ = (0,∞) × ∂Ω. In the context of section 3.1, we set H = L2(Ω), V = H1(Ω), and we
define

a(ϕ, φ) = ν

∫
Ω
ϕ′φ′ dx for ϕ, φ ∈ V,
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 711

with ν > 0 and B ∈ L(R, V ′) by

〈Bu, φ〉V ′,V = uφ(0).

Let ua ≤ ub. We set Uad = {u ∈ R : ua ≤ u ≤ ub} and define the set of admissible controls

Uad = {u ∈ L2
loc(0,∞) : u(t) ∈ Uad for almost all t ∈ (0,∞)}.(5.1)

For a control u ∈ Uad we consider the viscous Burgers equation

yt − νyxx + yyx = 0 in Q,(5.2a)

νyx(·, 0) + σ0y(·, 0) = u in (0,∞),(5.2b)

νyx(·, 1) + σ1y(·, 1) = g in (0,∞),(5.2c)

y(0, ·) = y◦ in Ω,(5.2d)

where y◦ ∈ L2(Ω) is a given initial condition and σ0, σ1, and g are real numbers. Henceforth
we consider weak solutions y ∈ Wloc(0,∞;V ) of (5.2) satisfying (5.2d) and

〈yt(t), ϕ〉V ′,V + σ1y(t, 1)ϕ(1) − σ0y(t, 0)ϕ(0)

a(y, ϕ) +

∫
Ω
y(t)y′(t)ϕdx = gϕ(1) − 〈Bu,ϕ〉V ′,V

(5.3)

for all ϕ ∈ H1(Ω) and t ∈ (0,∞) a.e. For the functional analytic treatment of (5.2) we refer
to [22, 24], for example. We shall consider the cost functional

J(y, u) =

∫ ∞

0

(
1

2

∫
Ω
|y(t, x) − z(x)|2 dx +

β

2
|u(t)|2

)
e−λt dt,

where z ∈ L2(Ω) is a given desired state and λ, β > 0 are positive constants.
The optimal control problem is given by

minJ(y, u) such that (y, u) ∈ Wloc(0,∞) × Uad satisfies (5.2),(P̃)

as a weak solution. It is straightforward to argue the existence of an optimal control for (P̃).

5.2. Reduced-order control. Suppose that we have computed a POD basis utilizing, e.g.,
a finite element code for the viscous Burgers equation and determined the basis functions as
described in section 3.2. To compute a POD solution of (P̃) we make the ansatz (3.14) for
the state variable. In addition to the matrices and vectors defined in section 3.3 we introduce
the tensor

T =
(((

bijk

)))
∈ R�×�×� with bijk =

∫
Ω
ψjψ

′
kψi dx,

and the vectors for the boundary conditions

d =
(
di
)
∈ R� with di = ψi(0), e =

(
ei
)
∈ R� with ei = ψi(1).
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712 K. KUNISCH, S. VOLKWEIN, AND L. XIE

Table 1
Construction of parallel computations.

Node Portion

master 12/18

slave1 3/18

slave2 2/18

slave3 1/18

Then the Galerkin approximation of the optimal control problem (P̃) is given by

⎧⎪⎪⎨
⎪⎪⎩

minJ �(w�, u)

s.t. u ∈ Uad and

{
ẇ�(t) = F (w�(t), u�(t)) for t > 0,
w�(0) = w◦,

(P̃�)

where the nonlinear mapping F : R� × R → R� is defined by

F (w�, u) = M−1
((

− S − (T : w�)
)
w� + d

(
dTσ0w

� − u
)
− e

(
eTσ1w

� − g
))

.

The value function v, defined for any initial state w◦ ∈ R�, is

v(w◦) = inf
u∈Uad

Ĵ �(w◦, u),

where Ĵ �(w◦, u) = J �(w�, u) and w� solves the dynamical system in (P̃�) with initial condition
w◦ and control input u.

5.3. Numerical experiments. This subsection is devoted to demonstrate the efficiency of
the feedback synthesis proposed in section 4.

In practical implementations, three Matlab sessions are started on three slaves remotely
from the master. Then the required data are transferred to the slaves via MPI. On receiving
data, each slave can perform computations concurrently. The portion of the computational
work to be performed on each slave can be adjusted according to the performance of the slaves.
After all computations are done on the slaves, the data will be collected from the slaves. The
distribution of the parallel computation is shown in Table 1. The consumed time (in seconds)
are displayed in Table 2 for the parallel and serial computations to calculate one iteration of
the fixed point scheme. The specific numbers correspond to the example with discontinuous
initial data, given below. The last row shows the ratio of the parallel time cost to the serial
time cost. With the number of grid points increasing, the ratio is increasing, partly because
more time is consumed to transfer required data to and from the slaves.

Two computational tests will be presented, one with continuous initial condition and the
other with discontinuous initial condition. For the sake of comparison we also compute open
loop solutions. This can be done efficiently by means of SQP techniques applied to (P̃) [24],
where the constraint in the form of the Burgers equation is discretized by a finite element
technique. Moreover, the infinite time horizon was replaced by a finite horizon [0, T ], with T
chosen sufficiently large so that it has little effect on the numerical results. The parameter
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HJB-POD BASED FEEDBACK DESIGN FOR TIME-DEPENDENT PDES 713

Table 2
Comparisons of parallel and serial computations: CPU times in seconds.

Grid points 625 5525 9945 17901

Parallel 20.94 194.43 438.86 814.90

Serial 35.09 344.60 643.37 1094.16

59.68% 56.42% 68.21% 74.75%

Table 3
Parameter settings.

Symbol Value Description

λ 2.0 discount rate

β 0.05 weighting coefficient for the control

T 5 time horizon

z 0 desired state

settings are listed in Table 3. Concerning the boundary conditions for the Burgers equation
(5.2), we set σ0 = σ1 = 0, g = 0. We took 251 equidistant snapshots from the uncontrolled
dynamics. For both examples four basis functions are used for the POD approximation. In
terms of the ratio r(�) =

∑�
1 λi/

∑d
i=�+1 λi this means that r(4) ≥ .985 for the first example

below, and r(4) ≥ .9999 for the second example. Unless specified otherwise, the grid size was
chosen to be 24 × 16 × 4 × 4. We also report on the effect of the choice of this grid. In our
numerical tests we frequently replaced the explicit Euler approximation y◦ +hF (y◦, u) of y(h)
by a semiimplicit approximation of y(h). This improved the performance without qualitatively
changing the results. Finally, let us comment on the choice of snapshots, which were taken
from the uncontrolled dynamics for the results to be presented below. We also carried out
tests with taking snapshots from the dynamics, controlled by the open loop optimal control,
and combination of the former and the latter. There was little effect on the value of the cost
J (evaluated for the closed loop optimal control and the associated trajectory). However, the
difference between this value for J and the value of the value-function obtained from the HJB
equation, which, as we explain below, is used for validation of our procedure, increases. This
comes as no surprise for the class of test problems under consideration. In fact, the controlled
states converge to the origin rather quickly and hence contain significantly less information
than the uncontrolled snapshots resulting in a decrease of the approximation property of the
HJB equation. This in turn could possibly be counteracted by taking nonuniformly spaced
snapshots, an issue that we do not want to pursue in this work.

Continuous initial condition. In this case the continuous initial condition is y(0) =
(1−x) sin(3π(x− 0.5)), and the viscosity coefficient is ν = 0.05. The state evolutions without
control and with feedback optimal control are displayed in Figure 1. As expected, the con-
trolled state decreases as time evolves. The feedback and open loop controls are compared in
Figure 2. In Table 4, we can see that the cost functional is decreased from 0.01818 to 0.00766
in the feedback design and from 0.01812 to 0.00681 in the open loop design. This minor dif-
ference is not unexpected since the feedback design is based on the reduced system obtained
by the POD technique, whereas the open loop optimal control is computed by means of an
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Figure 1. Uncontrolled state (left) and optimal state (right): Continuous initial condition.
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Figure 2. Comparisons of optimal controls from feedback and open-loop design: Continuous initial condition.

SQP technique for a high-resolution finite element discretization of a continuous system (5.2).
A further validation of the numerical results is obtained by comparing the values of the cost
function obtained from (i) the open loop control as in the second row of the right column of
Table 4 , (ii) inserting the controls and the controlled state into the cost as in the second row
of the left column, and (iii) from the numerical approximation to the HJB equation, shown
in the first column’s last row.

Discontinuous initial condition. In this test case, the initial condition is

y◦(x) =

{
1 if 0 ≤ x < 0.5,
0 if 0.5 < x ≤ 1,

(5.4)

and the viscosity coefficient is ν = 0.25.

First we carry out a grid convergence study using λ = 1 with all other specifications as in
Table 3. The results are shown in Table 5. Note, in particular, that the difference between
J and V decreases as the grid is refined. In the following tests, we will take the grid system
of 24 × 16 × 4 × 4 for the polyhedron, which was also taken for the case with the continuous
initial condition.
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Table 4
Comparisons of results from feedback and open loop design: Continuous initial condition.

Feedback Open loop

J w opt. control 0.00766 0.00681

J w/o control 0.01818 0.01812

Value function 0.00735

Table 5
Grid convergence study: The difference between optimal cost functional and value function decreases as the

grid of the polyhedron is fined.

4 × 4 × 4 × 4 16 × 12 × 4 × 4 24 × 16 × 4 × 4 32 × 16 × 5 × 5
J w opt. control 0.0320 0.0319 0.0319 0.0318

J w/o control 0.1267 0.1267 0.1267 0.1267

Value function 0.0272 0.0354 0.0336 0.0324

Comp. time (units) 0.08 1 2 6

Error: V and J -15% 11 % 5 % 2%

The evolutions of the state are depicted in Figure 3 for the uncontrolled and controlled
cases. Furthermore, as observed in the discussion of the results in Figure 4, the feedback con-
trol agrees well with the open loop design result. The computational results are summarized
in Table 6. Again we can claim good agreement between the optimal cost functional and the
value functional based on the reduced order calculations.

Let us turn to the effect of noise. First random noise is imposed on the initial condition.
The open loop design fails to drive the system to zero, if uniform noise in [−9, 9] is added to
the initial condition. The feedback design, however, can still generate an acceptable result, as
shown in Figure 5. Another test considered here is to impose random noise on the right-hand
side of the Burgers equation (5.2a). The controlled states with random uniform random noise
in [−0.25, 0.25] (constant w.r.t. t) are displayed in Figure 6, respectively, for feedback and
open loop design. Comparing the controlled states at t = 5 the feedback result is clearly
better than the open loop one. The reader will note a drift in the controlled solution, to a
value below 0, for the specific realization of the random numbers for this numerical run. Let
us point out here the behavior of the uncontrolled Burgers equation with Neumann boundary
conditions and random forcing with zero mean: the solution tends to be constant w.r.t. x
with the constant depending on the mean of the concrete realization of the set of random
numbers (which happens to be negative for the numerical example depicted in Figure 6).

These comparisons confirm that the reduced-order HJB-based closed loop control design
is effective in the presence of noise in the system dynamics.

6. Conclusion. This paper deals with nonlinear feedback design for evolution problems.
The feedback gain is obtained as the solution of the discrete HJB equation. Since the spatial
dimension for the HJB equation depends on the number of spatial grid points used in the
numerical scheme for the evolution problem, the size of the HJB equation is numerically in-
feasible if, e.g., finite element or finite difference approximations are used. Here reduced-order
modeling with POD is applied for the spatial discretization of the dynamical system resulting
in a low-dimensional HJB equation, which can be solved by a fixed-point–type algorithm. To
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Figure 3. Uncontrolled state (left) and optimal state (right): Discontinuous initial condition.
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Figure 4. Comparison of optimal control from feedback and open loop design: Discontinuous initial condition.

accelerate the method both nested iterations and parallelization are utilized. The numerical
strategy is illustrated numerically by taking an optimal boundary control problem for the
Burgers equation. It turns out that the closed loop control can be computed with reasonable
effort. Moreover, the feasibility of the proposed method and the superiority to open loop
control is demonstrated by examples including noise in the initial condition and in the forcing
function.

Appendix.

Here we verify the claims made in the second part of section 2. Throughout we assume
that h ∈ (0, 1] and that there exist constants M,L1, L2 such that

hL(y, u) ≤ M for all (y, u) ∈ Rn × Uad,(A.1)

|F (y1, u) − F (y2, u)| ≤ L1 |y1 − y2| for all y1, y2 ∈ Rn, u ∈ Uad,(A.2)

|L(y1, u) − L(y2, u)| ≤ L2 |y1 − y2| for all y1, y2 ∈ Rn, u ∈ Uad.(A.3)

We note that (A.2) and (A.3) are not required for Proposition A.1. Recall that β = e−λh

for fixed λ > 0.
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Table 6
Comparisons of results from feedback and open loop design: Discontinuous initial condition.

Feedback Open-loop

J w. opt. control 0.0370 0.0353

J w/o control 0.1258 0.1258

Value function 0.0372
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Figure 5. Optimal state with random noise (9.0) in the initial condition: Feedback design (left) and open
loop design (right).

Proposition A.1. The discrete minimal value function vh is the unique solution of

vh(y◦) = inf
u∈Uad

{
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u))

}
.(A.4)

Moreover, |vh(y◦)| ≤ M( 1
1−β − 1

2) for all y◦ ∈ Rn.

Proof. For uh = {u0, u1, . . . } ∈ Uh
ad, set ūh = {u1, u2, . . . }, and denote by yh = {yj(y◦, uh)}∞j=1

the corresponding solution to (2.9). Then

yj+1(y◦, uh) = yj(y1, ūh) for j ≥ 0,

where y1 = y◦ + hF (y◦, u0). It follows that

Jh(y◦, uh) =
h

2

(
L(y◦, u0) + βL(y1, u0)

)
+ βJh(y1, ūh),(A.5)

and consequently

vh(y◦) ≥ inf
u∈Uad

{
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u))

}
.

Conversely, let u ∈ Uh
ad and ε > 0 be arbitrary. Then there exists uεh ∈ Uad such that

vh(y◦ + hF (y◦, u)) ≥ Jh(y◦ + hF (y◦, u), uεh) − ε.

Using (A.5), we have

βvh(y◦ + hF (y◦, u)) ≥ J(y◦, û
ε
h) −

h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
− βε,
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Figure 6. Optimal state with random noise (0.25) in the RHS: Feedback design (left) and open loop design
(right).

where ûεh = {u, uε0, uε1, . . . }. This implies that

vh(y◦) ≤
h

2

(
L(y◦, u) + βL(y◦ + hF (y◦, u), u)

)
+ βvh(y◦ + hF (y◦, u)).(A.6)

Hence, vh satisfies (A.4).
Turning to uniqueness, assume that vh and wh are two solutions to (A.4) and choose ε > 0

arbitrarily. Then for every y ∈ Rn there exists uε = uε(y) ∈ Uad such that

vh(y) ≥
h

2

(
L(y, uε) + βL(y + hF (y, uε), uε)

)
+ βvh(y + hF (y, uε)) − ε,

and

wh(y) ≤
h

2

(
L(y, uε) + βL(y + hF (y, uε), uε)

)
+ βwh(y + hF (y, uε)).

Consequently,

sup
y∈Rn

(wh(y) − vh(y)) ≤ β sup
y∈Rn

(wh(y) − uh(y)) + ε.

This estimate also holds with the roles of vh and wh exchanged and hence vh = wh. Moreover
by definition of Jh(y◦, uh) and |β| < 1 we have

|vh(y◦)| ≤
M

2

⎛
⎝1 + 2

∞∑
j=1

βj

⎞
⎠ = M

(
1

1 − β
− 1

2

)
.

Next, continuity of the discrete minimal value functionals is addressed.
Proposition A.2. For every h ∈ (0, 1] the minimal value functional is uniformly continuous.

Proof. Choose ε arbitrarily and determine k such that 2M
∑∞

j=k+1 β
j < ε. For every

ȳ ∈ Rn there exists uε ∈ Uh
ad such that vh(ȳ) ≥ J(ȳ, uε) − ε. Consequently,

vh(y) − vh(ȳ) ≤ J(y, uε) − J(ȳ, uε) + ε for every y ∈ Rn,

D
ow

nl
oa

de
d 

12
/2

9/
14

 to
 1

43
.5

0.
47

.5
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p
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and by (A.1)

vh(y) − vh(ȳ) ≤
1

2

(
hL(y, uε0) − hL(ȳ, uε0)

)

+
h

2

k∑
j=1

βj |L(yj(y, u
ε), uεj−1) − L(yj(ȳ, u

ε), uεj−1)|

+
h

2

k∑
j=1

βj |L(yj(y, u
ε), uεj) − L(yj(ȳ, u

ε), uεj)|

+ 2M
∞∑

j=k+1

βj + ε.

By (A.2) and (A.3), therefore,

vh(y) − vh(ȳ) ≤ L2 |y − ȳ|
k∑

j=0

(1 + L1)
j + 2ε.

Interchanging the roles of y and ȳ the desired conclusion follows.
Proposition A.3. Every selection of controls

u∗j ∈ Sh(y
∗
j ) = argmax

u∈Uad

{
−h

2

(
L(y∗j , u) + βL(y∗j + hF (y∗j , u), u)

)
− βvh(y

∗
j + hF (y∗j , u))

}

with y∗0 = y◦ and {y∗j }∞j=1 defined by (2.9) is an optimal feedback control.
Proof. Since Uad is closed and bounded, the mapping Sh : Rn → R is well defined. By

(A.5) and the definitions of {u∗j}∞j=0 and {y∗j }∞j=0, we have

v(y∗j ) =
h

2

(
L(y∗j , u

∗
j ) + βL(y∗j+1, u

∗
j )
)
+ βv(y∗j+1)

for j = 0, 1, . . . . This implies

∞∑
j=0

βj(v(y∗j ) − v(y∗j+1))

=
h

2

∞∑
j=0

βj(L(y∗j , u
∗
j ) + βL(y∗j+1, u

∗
j ))

=
h

2

⎛
⎝L(y◦, u

∗
0) +

∞∑
j=1

β
(
L(y∗j , u

∗
j ) + L(y∗j , u

∗
j−1)

)⎞⎠ = Jh(y◦, u
∗
h),

(A.7)

and consequently v(y◦) = Jh(y◦, u
∗
h) with u∗h = {u∗0, u∗1, . . . } ∈ Uh

ad.
Proposition A.4. For every compact set K ⊂ Uad we have

lim
h→0+

sup
y◦∈K

|vh(y◦) − v(y◦)| = 0,

where v is the unique viscosity solution to (HJB).
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Proof. The existence of a unique viscosity solution is verified in [4, Theorem III.2.2.], for
example. For the convergence result we can proceed as in [4, Theorem VI.1.1.] provided that
we verify that vh(y◦) is uniformly bounded w.r.t. y◦ and h ∈ (0,min(1, 2/λ)); more precisely,
we show that

sup
{
|vh(y◦)| : y◦ ∈ Rn and h ∈ (0,min(1, λ)]

}
≤ 2M

λ
,(A.8)

and that the functions v and v̄ defined by

v(y) = lim inf
(x,h)→(y,0+)

vh(x), v̄(y) = lim sup
(x,h)→(y,0+)

vh(x)(A.9)

are a viscosity supersolution and a viscosity subsolution to (HJB), respectively. To verify
(A.8) note that 2M/λ is a supersolution to (HJBh); i.e., for every ε > 0 and y◦ ∈ Rn, there
exists uε = uε(yo) ∈ Uad such that

2M

λ
≥ h

2
(L(y◦, u

ε) + βL(y◦ + hF (y◦, u
ε), uε)) +

2βM

λ
− ε.(A.10)

To verify (A.10) we infer from (A.1) and β ≤ 1 that

h

2
(L(y◦, u

ε) + βL(y◦ + hF (y◦, u
ε), uε)) +

2βM

λ
≤ M

λ
(hλ + 2β).(A.11)

Utilizing β = e−λh ≤ 1 − λh/2 for h ≤ 2/λ, we find

hλ + 2β ≤ hλ + 2

(
1 − hλ

2

)
= 2

so that (A.11) implies (A.10). Since vh is a solution to (HJB), we have

vh(y◦) ≤
h

2

(
L(y◦, u

ε) + βL(y◦ + hF (y◦, u
ε), uε)

)
+ βvh(y◦ + F (y◦, u

ε)).(A.12)

Combining (A.10) and (A.12), we conclude

sup
y◦∈Rn

(
vh(y◦) −

2M

λ

)
≤ β sup

y◦∈Rn

(
vh(y◦) −

2M

λ

)
+ ε

so that supy◦∈Rn(vh(y◦) − 2M/λ) ≤ 0. Similarly −2M/λ is a subsolution of (HJBh). This
implies that supy◦∈Rn(−vh(y◦) − 2M/λ) ≤ 0 and hence (A.8) follows.

To show that v is a viscosity supersolution of (HJB), choose φ ∈ C1(Rn) and let y1 be a
strict minimum of v−φ in the closed ball B̄(y1, r), r > 0. Then (see [4, Lemma V.1.9.]) there
exist sequences {yn}∞n=0 in B̄(y1, r) and hn → 0+ such that

(vhn − φ)(yn) = min
s∈B̄(y1,r)

(vhn − φ)(s), yn → y1, vhn(yn) → v(y1).(A.13)
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Since vh satisfies (HJBh) we have

(1 − β)vhn(yn) − hn
2

(
L(yn, un) + βL(yn + hnF (yn, un), un)

)
+β(vhn(yn) − φ(yn)) − β

(
vhn(yn + hnF (yn, un)) − φ(yn + hnF (yn, un))

)
+β

(
φ(yn) − φ(yn + hnF (yn, un))

)
= 0.

By (A.13) we have for all n sufficiently large that

(1 − β)vhn(yn) − hn
2

(
L(yn, un) + βL(yn + hnF (yn, un), un)

)
+ β

(
φ(yn) − φ(yn + hnF (yn, un))

)
≥ 0.

Dividing by hn and passing to the limit on a subsequence, we obtain

λv(y1) − L(y1, ū) −∇φ(y1) · F (y1, ū) ≥ 0

for some ū ∈ Uad. Hence v is a viscosity supersolution for (HJB). Similarly v̄ is a viscosity
subsolution. This concludes the proof.
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