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Abstract. The response of a body described by a quasi-linear viscoelastic constitutive relation, whose material moduli depend

on the mechanical pressure (that is one-third the trace of stress) is studied. The constitutive relation stems from a class of

implicit relations between the histories of the stress and the relative deformation gradient. A-priori thresholding is enforced

through the pressure that ensures that the displacement gradient remains small. The resulting mixed variational problem

consists of an evolutionary equation with the Volterra convolution operator; this equation is studied for well-posedness

within the theory of maximal monotone graphs. For isotropic extension or compression, a semi-analytic solution of the

quasi-linear viscoelastic problem is constructed under stress control. The equations are studied numerically with respect to

monotone loading both with and without thresholding. In the example, the thresholding procedure ensures that the solution

does not blow-up in finite time.
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1. Introduction

Implicit constitutive relations were introduced by Rajagopal [32] to describe elastic response that could
not be described by classical constitutive relations for the same. In that study, he also considered implicit
relations for viscoelastic response between the stress and its various time derivatives, and kinematical
variables and their various time derivatives. Implicit constitutive relations for viscoelastic response had
been introduced much earlier by Burgers [2] and Oldroyd [28]. While the constitutive relation introduced
by Maxwell [24] relates the stress and the time rate of stress to the symmetric part of the velocity gradient,
it is not an implicit relation as the symmetric part of the velocity gradient can be expressed in terms
of the stress and the time rate of stress. Later, Pr̊uša and Rajagopal [31] introduced implicit relations
between the history of the stress and the history of the relative deformation gradient. Recently, Murru et
al. [27] derived a subclass of constitutive relations which are appropriate to describe the elastic response of
materials such as rocks, bone, ceramics, concrete, intermetallic alloys and other porous bodies. Rajagopal
and Wineman [35] put into place implicit constitutive relations for viscoelastic porous bodies.

Let us consider the implicit response of elastic bodies introduced in [32]. The challenge consists in the
fact that the implicit constitutive relation between the Cauchy stress σ and the deformation gradient F
is given in the form

F(σ,F) = 0

and cannot be inverted to express the stress as a function of the strain, and vice versa.
A particular subclass of these constitutive relations was introduced by Rajagopal and co-authors [34,

35] in which both the stress and the linearized strain ε appear linearly. Such material response is nonlinear
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as it contains the mutual product of stress and strain, allowing one to have linearly inhomogeneous
material moduli. The material moduli depend on the density in contrast to the classical linearized elastic
model with constant coefficients. In virtue of the balance of mass, the density can be replaced by ρ =
ρR/(1+trε), where ρR is the density in the reference configuration. Well-posedness for the corresponding
problems was established within the variational theory by Itou et al. [14–16] by thresholding the moduli,
thus preventing them from becoming unbounded.

The first integral constitutive relation to describe viscoelastic response was developed by Boltzmann
[1], and this has been followed by integral constitutive relations due to Green and Rivlin [8], Lockett [23],
Pipkin and Rogers [29] and others. Fung [7] developed a one-dimensional approximation, referred to as
a quasi-linear constitutive relation, to describe the viscoelastic behavior of biological tissues. Muliana et
al. [26] developed a quasi-linear viscoelastic model in three-dimensions, wherein the relationship between
the stress and strain is nonlinear. These constitutive relations have been extended to implicit constitutive
relations, in the context of strain-limiting approach by Buĺıček et al. [6] and Itou et al. [10,11]. The
quasi-linear viscoelastic model has been used to study the Boussinesq problem by Itou et al. [12,13]
for the indentation of half-space by a rigid punch with unknown contact zones. We cite the references
[18–21,30] for nonlinear and unilateral boundary conditions which is appropriate to problems concerning
the response of viscoelastic materials.

In order to introduce the quasi-linear constitutive relation, we begin with a consideration of the
implicit constitutive relation for elastic response due to Rajagopal [34] in which both the stress σ and
the linearized strain εe appear linearly:

(1 + λ3trσ)εe = E1(1 + λ1trεe)σ + E2(1 + λ2trεe)(trσ)I, (1.1)

where I is the identity transformation, E1, E2 and λ1, λ2, λ3 are constants. Equation (1.1) is nonlinear
since it involves the products of variables σ and εe. When all λ1 = λ2 = λ3 = 0, the above constitutive
relation reduces to that for classical linearized elasticity. Let λ1 = λ2 = 0 such that (1.1) can be inverted
as an explicit constitutive expression for the strain in terms of the stress

εe = E1
1

1 + λ3trσ
σ + E2

1
1 + λ3trσ

(trσ)I, (1.2)

where the parameters E1 > 0 and E2 > 0, and λ3 ∈ R is a material moduli. Notice that the linearized
strain is a nonlinear function of the stress, but in (1.1), the linearized strain and stress are such that they
appear linearly. Below we make the assumptions in order to get from (1.2) a specific model suitable for
mathematical analysis.

Decomposing the stress and strain tensors into its deviatoric and spherical parts

σ = σ∗ +
1
3
(trσ)I, εe = (εe)∗ +

1
3
(trεe)I, (1.3)

we assume that the nonlinearity in the deviatoric part of (1.2) is negligible, for example, for isotropic
extension or compression in Sect. 4, such that

εe = E1σ
∗ + E3

1
1 + λ3trσ

(trσ)I, (1.4)

where E3 := E1/3+E2. This assumption eliminates the mixed term σ∗/(1+λ3trσ) from our consideration.
It is worth noting that trσ determines the mechanical pressure

p = − trσ
3

, (1.5)

thus implying the pressure-dependent factor in front of trσ (see Rajagopal [33] for a discussion of the
concept of pressure).

The next assumption allows us to guarantee properties of ellipticity and boundedness for the consti-
tutive relation. It can be observed that small |1 + λ3trσ| leads to the equation (1.4), wherein the strain
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εe becomes unbounded. For consistency with the assumption of small displacement, according to [14–16],
we prescribe the lower and upper thresholds

0 < M ≤ 1 ≤ M, (1.6)

where M may be small, and the cut-off function

B(trσ) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

trσ
M

, if 1 + λ3trσ < M

trσ
1 + λ3trσ

, if M ≤ 1 + λ3trσ ≤ M

trσ
M

, if 1 + λ3trσ > M

. (1.7)

Using (1.6) and (1.7), the thresholding equation is introduced as

εe = E1σ
∗ + E3B(trσ)I =: F [σ]. (1.8)

This includes equation (1.4) if M ≤ 1 + λ3trσ ≤ M in (1.7). Otherwise, if 1 + λ3trσ < M , then (1.8)
turns into the linearized relation

εe = E1σ
∗ +

E3

M
(trσ)I, (1.9)

on the other hand, if 1 + λ3trσ > M , then it is linearized as well

εe = E1σ
∗ +

E3

M
(trσ)I. (1.10)

Furthermore, if λ3 = 0, then B(trσ) = trσ in (1.7) due to (1.6), and we recover the equation of classical
linearized elasticity

εe = E1σ
∗ + E3(trσ)I = E1σ + E2(trσ)I. (1.11)

From (1.11), the material moduli are identified as

E1 =
1 + ν

E
=

1
2μ

> 0, E2 = − ν

E
, E3 =

1 − 2ν

3E
=

1
9K

> 0, (1.12)

where E > 0 and ν ∈ (0, 1/2) are the Young’s modulus and Poisson’s ratio, which determine the Lame
parameter μ and the bulk modulus K, whereas λ3 in (1.4) and the thresholds M,M in (1.8) are fitting
parameters.

For time t ≥ 0, following Rajagopal and co-authors [26,35], we introduce the viscoelastic constitutive
relation corresponding to that in the thresholding equation (1.8):

εv(t) =

t∫

0

J ′(t − s)F [σ(s)] ds =: I[F [σ]
]
(t). (1.13)

It corresponds to the constitutive equation (1.4) when

εv = I
[
E1σ

∗ + E3
trσ

1 + λ3trσ
I
]
. (1.14)

The kernel J ≥ 0 that appears in the Volterra convolution equation (1.13) is typically given by the
exponential sum

J(t) =
N∑

n=1

Jn

[

1 − exp
(

− t

τn

)]

, J ′(t) =
N∑

n=1

Jn

τn
exp

(

− t

τn

)

(1.15)
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with creep parameters J1, . . . , JN , τ1, . . . τN ≥ 0. It is worth noting that the integral operator I cannot
be inverted in general, even if F would be linear in σ. In the particular case of N = 1 in (1.15), equation
(1.13) reads

εv(t) =
J1

τ1

t∫

0

exp
(

s − t

τ1

)

F [σ(s)] ds. (1.16)

On differentiating (1.16) with respect to t, we calculate J ′′(t) = −J ′(t)/τ1 and can invert the equation,
thus arriving at the generalized Kelvin–Voigt model:

εv + τ1ε̇
v = J1F [σ], (1.17)

where dot denotes the time derivative. The classical linearized Kelvin–Voigt model εv + τ1ε̇
v = E1σ is

recovered from equation (1.17) with the parameters chosen as J1 = 1 and τ1 = αE1, where α > 0 is the
viscosity.

From the mathematical point of view, the principal difficulty of quasi-linear viscoelastic equations
(1.13) and (1.14) concerns the fact that the Volterra convolution operator I is not monotone or coercive.
Therefore, the monotone operator theory is inapplicable to guarantee solvability for the corresponding
variational problems that will be stated. To remedy this difficulty, following [11–13], we introduce an
auxiliary relation between the strains εe and εv by the integral formula

εv = I(εe). (1.18)

Indeed, inserting into (1.18) the strain εe satisfying the constitutive relation for elastic response (1.8), we
find εv = I[F [σ]

]
which reduces to the constitutive equation for viscoelastic response (1.13).

The nonlinear equation (1.8) can be described by a graph G between σ and εe. The theory of graphs is
well-suited to study implicit and multi-valued functions. Following Buĺıček et al. [4,5], we will prove that
G is maximal monotone and coercive on the appropriate selection εe = ε(w), in this manner justifying
well-posedness for the underlying variational problem. The concept of maximal monotony for nonlinear
operators was established by Browder [3] and Minty [25]. We also cite relevant results using the pseudo-
monotone operators in [9,17] and hemi-variational inequalities in [22,36].

The structure of the paper is as follows. In Sect. 2, we document a boundary-value problem for the
quasi-linear viscoelastic model for unknown σ and εv = ε(u) within the context of the thresholding
equation (1.13). Well-posedness for the corresponding mixed variational problem is proved in Sect. 3 based
on the representation (1.18). In Sect. 4, we apply the theory to the semi-analytic example of isotropic
extension or compression when deformation is controlled by the pressure. The numerical simulation tests
are presented first applying monotone load, and second maintaining and then removing the load. The
thresholding model (1.13) demonstrates an interesting feature when compared to the unthresholded model
(1.14), whereas in the latter, a solution may blow-up under finite pressure when subject to monotone
loading.

2. The quasi-linear viscoelastic problem

Let Ω be a bounded domain in the Euclidean space R
d, where the spatial dimensions d = 2 and d = 3

are physically relevant. Let its boundary ∂Ω be Lipschitz continuous, and the unit normal vector n =
(n1, . . . , nd) at ∂Ω be dire cted outward Ω. We assume that the boundary is comprised of two mutually
disjoint sets ∂Ω = ΓN ∪ΓD corresponding to the Neumann ΓN and Dirichlet ΓD �= ∅ boundary conditions.
For spatial points x = (x1, . . . , xd) in the closure Ω = Ω ∪ ∂Ω and times t ∈ [0, T ] with some final time
T > 0 fixed, we denote the right time-space cylinder by ΩT = (0, T ) × Ω with the side consisting of two
parts ΓT

N = (0, T ) × ΓN and ΓT
D = (0, T ) × ΓD.
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We look for the displacement u = (u1, . . . , ud)(t,x) in ΩT . It determines the linearized strain ε(u)
valued in the space of second-order symmetric tensors R

d×d
sym as the symmetric gradient with the entries

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

, i, j = 1, . . . , d. (2.1)

For the given body force f = (f1, . . . , fd)(t,x), f ∈ C([0, T ];L2(Ω;Rd)), we look also for the stress tensor
σ(t,x) ∈ R

d×d
sym satisfying the equilibrium equation omitting the inertia terms:

−
d∑

j=1

∂σij

∂xj
= fi, i = 1, . . . , d, in ΩT . (2.2)

Prescribing the boundary force g = (g1, . . . , gd)(t,x), g ∈ C([0, T ];L2(ΓN;Rd)), we augment (2.2) with
the mixed Dirichlet–Neumann boundary conditions

u = 0 on ΓT
D, (2.3)

σn = g on ΓT
N, (2.4)

where σn = (
∑d

j=1 σ1jnj , . . . ,
∑d

j=1 σdjnj). The quasi-static equilibrium problem (2.1)–(2.4) is rendered
complete with the constitutive equation for viscoelastic response (1.13) for εv = ε(u) as

ε(u) = I[F [σ]
]
. (2.5)

Following the argument for the use of (1.18) which was articulated in the Introduction, we look for
the displacement u in the form

u = I[w], (2.6)

where the selection εe = ε(w) satisfies equation (1.8). The relation (1.8) between stress and strain can
be generalized to an implicit relation on graph G ⊂ (Rd×d

sym)2 which we define by the inclusion

(σ, εe) ∈ G ⇔ εe = F [σ]. (2.7)

Lemma 2.1. (Selection on the graph) The quasi-linear equation (2.5) for viscoelastic response completing
the equilibrium problem (2.1)–(2.4) can be generalized to the identity (2.6) and the selection εe = ε(w)
on the graph G in (2.7) such that

(σ, ε(w)) ∈ G. (2.8)

Proof. If the selection ε(w) = F [σ] in (2.8) holds, then the variable w can be reduced by use of (2.6).
Indeed, applying to the both sides of (2.6) the symmetric gradient from (2.1), we can interchange the
linear operators ε and I, thus obtaining

ε(u) = ε(I[w]) = I[ε(w)] = I[F [σ]
]

(2.9)

and resulting in (2.5).
Conversely, ε(u) = ε(I[w]) follows (2.6) excluding rigid motions, which vanish here due to the ho-

mogeneous Dirichlet condition (2.3). Then, (2.5) and (2.6) together with (2.9) justify the selection
(2.8). �

In the next lemma, we establish some useful properties of G.

Lemma 2.2. (Properties of the graph)

(i) The graph G in (2.7) includes the origin:

(0,0) ∈ G. (2.10)
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(ii) For all (σ, εe) ∈ G, the graph is coercive with the uniform estimate:

εe · σ ≥ Cσ‖σ‖2 + Cε‖εe‖2, (2.11)

where the dot stands for the scalar product of tensors εe · σ =
∑d

i,j=1 εe
ijσij, Frobenius norm ‖σ‖ =√

σ · σ, and the constant factors are

Cσ :=
1
2

min
(
E1,

E3d

M
2

)
, Cε :=

1
2

min
( 1

E1
,

M4

(E3d)M
2

)
. (2.12)

(iii) For all pairs (σ1, ε1), (σ2, ε2) ∈ G the graph is monotone:

(ε1 − ε2) · (σ1 − σ2) ≥ 0. (2.13)

(iv) For (σ1, ε1) ∈ (Rd×d
sym)2, the graph is maximal monotone:

if (ε1 − ε2) · (σ1 − σ2) ≥ 0 for all (σ2, ε2) ∈ G, then (σ1, ε1) ∈ G. (2.14)

Proof. For σ1,σ2 ∈ R
d×d
sym , it is straightforward to check that the function B : R �→ R defined in (1.7) is

Lipschitz continuous:
∣
∣B(trσ1) − B(trσ2)

∣
∣ ≤ 1

M2

∣
∣tr(σ1 − σ2)

∣
∣, (2.15)

and strongly monotone:
(
B(trσ1) − B(trσ2)

)
tr(σ1 − σ2) ≥ 1

M
2 tr2(σ1 − σ2), (2.16)

hence bounded and coercive, too.
According to (1.3) extended to R

d and (1.8), the strain εe admits the decomposition

(εe)∗ = E1σ
∗,

1
d
trεe = E3B(trσ). (2.17)

Forming the scalar product of (2.17) with σ, using estimates (2.15) and (2.16) yields the lower bound

εe · σ = E1‖σ∗‖2 + E3B(trσ)trσ ≥ E1‖σ∗‖2 +
E3

M
2 tr2σ

≥ E1

2

(
‖σ∗‖2 +

∥
∥ 1

E1
(εe)∗∥∥2

)
+

E3

2M
2

(
tr2σ + M4

( 1
E3d

trεe
)2

)

≥ 1
2

min
(
E1,

E3d

M
2

)(‖σ∗‖2 +
1
d
tr2σ

)
+

1
2

min
( 1

E1
,

M4

(E3d)M
2

)(‖(εe)∗‖2 +
1
d
tr2(εe)

)
.

In virtue of the norm identity ‖σ‖2 = ‖σ∗‖2 + tr2σ/d and the notation for factors in (2.12), the lower
estimate (2.11) follows.

For points on the graph (σ1, ε1), (σ2, ε2) ∈ G the definition (2.7) implies that

εn = E1(σn)∗ + E3B(trσn)I for n = 1, 2. (2.18)

Subtracting (2.18) for n = 1 and n = 2, with the help of (2.16) and using the notation Cσ from (2.12),
we estimate

(ε1 − ε2) · (σ1 − σ2) = E1‖(σ1 − σ2)∗‖2 + E3

(
B(trσ1) − B(trσ2)

)
tr(σ1 − σ2) ≥ 2Cσ‖σ1 − σ2‖2.

This justifies the monotone property (2.13) for G. Moreover, this estimate establishes strong monotonicity
of F , that is, uniqueness of the solution.

Now, for fixed (σ1, ε1) ∈ (Rd×d
sym)2, we assume that the inequality in (2.14) holds for all (σ2, ε2) ∈ G

satisfying (2.18). For arbitrary σ ∈ R
d×d
sym and small δ > 0, let

σδ := σ1 ± δσ, εδ := E1(σδ)∗ + E3B(trσδ)I, (2.19)
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which belongs to the graph: (σδ, εδ) ∈ G. Testing (2.14) with (σ2, ε2) = (σδ, εδ) and substituting (2.19)
yields

0 ≤ (ε1 − εδ) · (σ1 − σδ) = ∓δ
[
ε1 − E1(σ1 ± δσ)∗ − E3B

(
tr(σ1 ± δσ)

)
I
] · σ,

which after division by δ yields

∓[
ε1 − E1(σ1)∗ ∓ δE1σ

∗ − E3B
(
tr(σ1 ± δσ)

)
I
] · σ ≥ 0.

On taking the limit as δ → 0, the continuity of B in (2.15) leads to the variational equality
[
ε1 − E1(σ1)∗ − E3B(trσ1)I

] · σ = 0 (2.20)

for all σ ∈ R
d×d
sym . This justifies the equation (2.18) for (σ1, ε1), thus (σ1, ε1) ∈ G, and the maximal

monotone property (2.14) of the graph G is valid.
The inclusion (2.10) is evident. The proof is completed. �

In the next section, we provide a variational formulation for the quasi-linear viscoelastic problem
(2.1)–(2.4), (2.6) and (2.8).

3. Variational formulation within maximal monotone and coercive graphs

We start by recalling the Korn–Poincaré inequality:

‖ε(u)‖L2(Ω) ≤ ‖u‖H1(Ω) ≤ CKP‖ε(u)‖L2(Ω) if u = 0 on ΓD (3.1)

with constant CKP ≥ 1, and the boundary trace theorem

‖u‖L2(∂Ω) ≤ Ctr‖u‖H1(Ω), Ctr > 0. (3.2)

We apply standard variational arguments, namely the equilibrium equation (2.2) is multiplied by
v = (v1, . . . , vd)(x) and integrated by parts over Ω using Green’s formula

−
∫

Ω

d∑

i,j=1

∂σij

∂xj
vi dx =

∫

Ω

σ · ε(v) dx −
∫

∂Ω

σn · v dSx,

where ε(v) is defined according to (2.1). Applying the Neumann boundary condition (2.4), this yields
the variational equation

∫

Ω

σ · ε(v) dx =
∫

Ω

f · v dx +
∫

ΓN

g · v dSx (3.3)

for all test functions v ∈ H1(Ω;Rd) such that v = 0 on ΓD. Conversely, for H1-smooth stress σ, pointwise
relations (2.2) and (2.4) follow from (3.3).

For the stress σ ∈ C([0, T ];L2(Ω;Rd×d
sym)) and displacements u,w ∈ C([0, T ];H1(Ω;Rd)) such that

u = w = 0 on ΓT
D, for every t ∈ [0, T ], we express the variational equation (2.6) in the form:

∫

Ω

(
u − I[w]

) · ξ dx = 0 (3.4)

for all test functions ξ ∈ L2(Ω;Rd), and set a selection on the graph G which fulfill the inclusion in (2.7)
as

(σ, ε(w)) ∈ G ⇔
∫

Ω

(
ε(w) − F [σ]

) · η dx = 0 (3.5)

for all test functions η ∈ L2(Ω;Rd×d
sym).
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We prove existence of the weak solution (σ,u,w) satisfying the variational relations (3.3)–(3.5) based
on Lemma 2.2. It is worth noting that the variable w is redundant and later can be reduced from the
solution due to Lemma 2.1.

Theorem 3.1. (Well-posedness) The unique solution σ ∈ C([0, T ];L2(Ω;Rd×d
sym)) and u,w ∈ C([0, T ];

H1(Ω;Rd)) such that u = w = 0 on ΓT
D satisfying for all t ∈ [0, T ] the Dirichlet boundary condition (2.3)

and variational relations (3.3)–(3.5) exists and fulfills the following a-priori estimate:

Cσ‖σ‖2
C([0,T ];L2(Ω)) +

Cε

2C2
KP

‖w‖2
C([0,T ];H1(Ω)) ≤ C2

KP

2Cε
‖C2(f ,g)‖C([0,T ]), (3.6)

where the constant Cσ and Cε are defined in (2.12), and the forces determine

C(f ,g) := ‖f‖L2(Ω) + Ctr‖g‖L2(ΓN). (3.7)

Proof. The theorem is proved in three steps: from the Galerkin approximation, we derive uniform esti-
mate, and then pass to the limit.
k-dimensional Galerkin approximation. Let subspaces Sk and V k of finite dimensions k ∈ N build the
conforming approximation of the admissible stress σ and displacement w preserving w = 0 on ΓD. We
assume that ∪∞

k=1S
k is dense in L2(Ω;Rd×d

sym), the union ∪∞
k=1V

k is dense in H1(Ω;Rd), and inclusion
vk ∈ V k implies that ε(vk) ∈ Sk.

First, we look for a discrete solution σk ∈ C([0, T ];Sk) and wk ∈ C([0, T ];V k) fulfilling for all t ∈ [0, T ]
the semi-discrete in space problem (3.3):

∫

Ω

σk · ε(vk) dx =
∫

Ω

f · vk dx +
∫

ΓN

g · vk dSx, (3.8)

which is endowed with the constitutive equation according to (3.5):
∫

Ω

(
ε(wk) − F [σk]

) · ηk dx = 0 (3.9)

for all test functions vk ∈ V k and ηk ∈ Sk. Its unique solution exists in virtue of the Browder–Minty
theorem, because the Lipschitz continuity (2.15) and strong monotony (2.16) of the nonlinear function
B provide the coercive, strictly monotone, bounded, and hemi-continuous properties of the operator F
in the mixed variational problem (3.8) and (3.9).
Uniform in k estimate. Since the stress σk and strain ε(wk) are connected by the relation (3.9), the
selection (σk, ε(wk)) ∈ G holds according to definition (3.5). Therefore, applying the coercivity (2.11)
and using the Korn–Poincaré inequality (3.1) yields the lower bound

∫

Ω

ε(wk) · σk dx ≥ Cσ‖σk‖2
L2(Ω) +

Cε

C2
KP

‖wk‖2
H1(Ω). (3.10)

On the other side, we test the variational equation (3.8) with vk = wk, apply the Cauchy–Schwarz
inequality and trace theorem (3.2), then the weighted Young inequality provides the upper bound, where
the constant C(f ,g) is from (3.7):

∫

Ω

σk · ε(wk) dx ≤ C(f ,g)‖wk‖H1(Ω) ≤ Cε

2C2
KP

‖wk‖2
H1(Ω) +

C2
KP

2Cε
C2(f ,g). (3.11)

Combining together (3.10) and (3.11) and taking maximum over t ∈ [0, T ] leads to the uniform in k
estimate:

Cσ‖σk‖2
C([0,T ];L2(Ω)) +

Cε

2C2
KP

‖wk‖2
C([0,T ];H1(Ω)) ≤ C2

KP

2Cε
‖C2(f ,g)‖C([0,T ]). (3.12)
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Passage to the limit k → ∞. From the uniform estimate (3.12), we obtain a weakly convergent subsequence
still denoted by k such that as k → ∞:

σk ⇀ σ in C([0, T ];L2(Ω;Rd×d
sym)), wk ⇀ w in C([0, T ];H1(Ω;Rd)). (3.13)

Taking the limit of the linear equation (3.8), we get the equilibrium equation (3.3) for σ and w from
(3.13). Next, we derive the nonlinear equation in (3.5).

Testing the equilibrium equation (3.3) with the limit function v = w implies
∫

Ω

σ · ε(w) dx =
∫

Ω

f · w dx +
∫

ΓN

g · w dSx. (3.14)

For finite k, inserting vk = wk into (3.8), we obtain
∫

Ω

σk · ε(wk) dx =
∫

Ω

f · wk dx +
∫

ΓN

g · wk dSx. (3.15)

By the virtue of weak convergences in (3.13), from (3.14) and (3.15), we conclude that

lim
k→∞

∫

Ω

σk · ε(wk) dx =
∫

Ω

σ · ε(w) dx. (3.16)

Arbitrary (σ2, ε2) ∈ G and (σk, ε(wk)) ∈ G on the graph fulfill (2.13), that is
[
ε(wk) − ε2

] · (σk − σ2) ≥ 0.

This allows us to estimate from below the scalar product
∫

Ω

[
ε(w) − ε2

] · (σ − σ2) dx ≥
∫

Ω

(
ε(w − wk

) · (σ − σ2) +
[
ε(wk) − ε2

] · (σ − σk)
)
dx.

On taking the limit based on the convergences in (3.13) and (3.16) leads to
∫

Ω

[
ε(w) − ε2

] · (σ − σ2) dx

≥
∫

Ω

ε(w) · σ dx − lim sup
k→∞

∫

Ω

ε(wk) · σk dx = 0.

Then, the maximal monotone property (2.14) of the graph guarantees the inclusion (σ, ε(w)) ∈ G, i.e.,
relation (3.5) holds for the limit functions from (3.13).

The uniqueness of σ and w can be derived from the strong monotone property (2.16) of B entering the
term F as shown in the estimate between (2.18) and (2.19). The displacement u is determined uniquely
from the equation (3.4). This completes the proof. �

4. Semi-analytical solution for isotropic extension or compression

In dimension d = 3, our consideration is simplified under the assumption of isotropic extension or com-
pression independent of x such that

σ = −p(t)I, ε =
1
3
e(t)I. (4.1)

Formula (4.1) implies the deviatoric parts σ∗ = ε∗ = 0. Therefore, the unknowns are the scalar time-
dependent functions for pressure p according to (1.5) and dilatation e = trε according to the deviatoric-
spherical decomposition (1.3). The sign p < 0 implies extension, and p > 0 compression. Since the stress
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tensor is space-independent, the equilibrium equation (2.2) is satisfied identically with the body force
f ≡ 0.

In the representation (4.1), we can distinguish between elastic and viscoelastic dilatation response
through

ee = trε(w), ev = trε(u). (4.2)

Inserting (4.2) into the governing equation (2.6) with the Volterra convolution operator I from (1.13)
implies that

ev(t) = I[ee](t) =

t∫

0

J ′(t − s)ee(s) ds, (4.3)

and the governing relation (2.8) using the cut-off function B from (1.7) takes the following form:

ee = 3E3B(−3p) = 9E3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−p

M
, if 1 − 3λ3p < M

−p

1 − 3λ3p
, if M ≤ 1 − 3λ3p ≤ M

−p

M
, if 1 − 3λ3p > M

. (4.4)

We will compare (4.4) with the unthresholded constitutive equation which exhibits unlimited strain,
introduced according to (1.4) as

ee = 9E3
−p

1 − 3λ3p
. (4.5)

The stress control formulation is studied. Namely, from the prescribed pressure p(t) as t ∈ [0, T ], we
find the evolution of dilatation ee(t) and ev(t) satisfying equations (4.3) and (4.4) (respectively, (4.5) in
the case when there is no thresholding).

To solve (4.3), we discretize the problem on the time-grid of M + 1 points

0 = t0 < t1 < · · · < tM = T,

and pick the piecewise-affine approximation

ee
M (t) = ee(tk−1) + (t − tk−1)δee

k as t ∈ [tk−1, tk] (4.6)

for k = 1, . . . , M , where the differences

δee
k :=

ee(tk) − ee(tk−1)
δtk

, δtk = tk − tk−1.

Inserting (4.6) into (4.3) and using (ee
M )′(t) = δee

k as t ∈ [tk−1, tk] provides the numerical quadrature for
the Volterra convolution operator

ev
M (t) = I[ee

M ](t) =
M∑

k=1

IM
k , IM

k :=

tk∫

tk−1

J ′(t − s)ee
M (s) ds, (4.7)

which after integration by parts using J ′(t − s) = −dJ(t − s)/ds yields

IM
k = δee

k

tk∫

tk−1

J(t − s) ds − J(t − tk)ee(tk) + J(t − tk−1)ee(tk−1). (4.8)
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Fig. 1. Under linear pressure p(t) in plot (a): quasi-linear viscoelastic dilatation evM (t) for unlimited response (4.5) in plot
(b), and (4.4) with thresholding in plot (c)

For the numerical example, we take the kernel J(t) = J1(1 − exp(−t/τ1)) as N = 1 in (1.15) such
that

tk∫

tk−1

J(t − s) ds = J1

{

δtk − τ1

[

exp
(

tk − t

τ1

)

− exp
(

tk−1 − t

τ1

)]}

and (4.8) takes the explicit form of the piecewise-exponential function

IM
k

J1
=

[
ee(tk) − τ1δe

e
k

]
exp

( tk − t

τ1

)
− [

ee(tk−1) − τ1δe
e
k

]
exp

( tk−1 − t

τ1

)
. (4.9)

The elastic moduli are set for concrete [27]: E = 30 (GPa) and ν = 0.2 such that E1 = 0.04,
E3 = −E2 = 0.006 (1/GPa) in (1.12), λ3 = 0.1 (1/GPa) in (4.4) and (4.5), the lower threshold is taken
to be M = 0.2. The creep parameters in (1.15) are J1 = 0.04 and τ1 = 0.4 (h).

4.1. Monotone loading by pressure

First, we prescribe the pressure by the linearly increasing function

p(t) = gt for t ∈ [0, T ], (4.10)

where the final time T = 1.5 (h), and the loading rate g = 3.3 (GPa/h) as portrayed in the plot (a) of
Fig. 1.

Inserting p(t) defined as (4.10) into (4.4) (respectively, (4.5)) we obtain ee(t). Then, the discrete
solution ev

M (t) to the corresponding equation is computed with the help of the quadrature formulas (4.7)
and (4.9) on the uniform mesh with time-step δt = 0.02 as M = 75. The quasi-linear dilatation for the
viscoelastic response is portrayed versus time in Fig. 1 in the plot (b) for the response (4.5), and in plot
(c) for the thresholded equation (4.4). Blue lines indicate the part of M ≤ (1 − 3λ3p) ≤ M , red lines
indicate the part of (1 − 3λ3p) < M .

We observe that approaching the critical pressure pcr := 1/(3λ3) the right-hand side of equation (4.5)
becomes unbounded. The rate g in (4.10) is chosen such that the critical pressure pcr = 3.3 (GPa) is
attained in time t = 1 hour as seen in Fig. 1 in plot (a). Therefore, approaching from the left t = 1,
which is marked by the vertical dashed line, the solution ev

M (t) to (4.5) marked by the solid line in the
plot (b) blows up to minus infinity. Whereas this singularity is avoided within the equation (4.4) with
thresholding, the solution ev

M (t) continues after t = 1 as indicated by the marked dashed line in the plot
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Fig. 2. Pressure p(t) is increased linearly, then maintained constant and finally removed in plot (a): quasi-linear viscoelastic
dilatation evM (t) for unlimited response (4.5) in plot (b), and (4.4) with thresholding in plot (c)

(c). Both the solutions coincide for t ∈ [0, 0.8] (h) and are distinguished only after reaching the critical
pressure pcr(1 − M) = 2.6 (GPa), which is marked by the dotted lines in Fig. 1.

4.2. Creep test

In order to simulate the creep behavior, in the second test, the loading undergoes the three stages
portrayed in the plot (a) of Fig. 2. Within t ∈ [0, 0.9] (h), the pressure increases from zero linearly with
the constant rate g = 3.3 (GPa/h) as in (4.10). After reaching 0.9g = 3 (GPa/h) at t = 0.9 before it
reaches pcr, the pressure is maintained within the time interval t ∈ [0.9, 2], then immediately removed
and kept zero for t ∈ [2, 3], that is

p(t) =

⎧
⎪⎨

⎪⎩

gt for t ∈ [0, 0.9]
0.9g for t ∈ [0.9, 2]
0 for t ∈ [2, 3]

. (4.11)

The quasi-linear solutions ev
M (t) to the discrete Volterra convolution equation (4.7) and (4.9) with the

uniform time-step δt = 0.02 are portrayed versus time in Fig. 2 in the plot (b) corresponding to the
equation (4.5) without thresholding, and in the plot (c) to the equation (4.4) with thresholding. The
responses are marked by the solid line for monotone loading, dashed line while the pressure is maintained
constant, and dash-dotted line on the removal of the pressure. Here the variation of the solution to the
equation that is thresholded is moderate compared to the one that is not thresholded.
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[5] Buĺıček, M., Málek, J., Süli, E.: Existence of global weak solutions to implicitly constituted kinetic models of incom-
pressible homogeneous dilute polymers. Commun. Part. Differ. Equ. 38, 882–924 (2013)
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