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Abstract. The Lamé model of a two-dimensional solid with a crack under the stress-free bound-
ary condition of the Neumann type at the crack faces is considered. We investigate the sensitivity
of the problem to the crack perturbation. By constructing the material derivatives of the solution
as iterative solutions of the same elasticity problem with specified right-hand sides, derivatives
of the energy functional and of the stress intensity factors with respect to the crack length of an
arbitrary order are obtained providing the corresponding asymptotic expansions. In particular,
this implies the local optimality condition for finding of the crack length and the quasi-static
model of the local crack propagation by the Griffith rupture criterion.
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1. Introduction

Analysis of the singularities arising near the crack tips in linear models was carried
out in [12], [14], [15], [7]. Non-linear models with unilateral constraints at the crack
were considered in [10], [13]. Description of the quasi-static crack propagation
requires involving of a suitable fracture criterion in terms of the energy, such as
the energy release rate or J-integral (see [8], [9], [6]), or in terms of the stress
intensity factors as in [15], [5], [1].

Following the Griffith hypothesis, question of the crack propagation depends on
the derivatives of the energy functional with respect to the crack perturbation. The
first-order variations to the linear crack problems were outlined in [4], [16], [2] and
other works, the high-order variations – in [15] by using the singular perturbations
method. The presented smooth transformation of the cracked domain allows to
adopt the regular perturbations theory to the considered problem. Thus, we apply
the technique of the shape sensitivity analysis developed in [18], [11], [17], [3] to
describe all the derivatives of the energy functional via material derivatives of the
solution. To construct the material derivatives or their stress intensity factors,
the iterations of the same elasticity problem are required. In comparison with the
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asymptotic methods, we use the energetic solutions in the variational sense of the
H1-class.

2. Variation of cracks

Let Ω ⊂ R2 be a bounded domain with a boundary Γ of the class C2,1, and
Ω = Ω∪Γ. Assume that the segment [0, l0] of the x1-axis lies inside Ω. We define
the set Γl = (0, l)×{0} in R2, where 0 < l < l0. The normal vector (0, 1) to Γl fits
its positive and negative faces Γ±l = Γl ∩{x ∈ R2, ±x2 ≥ 0}, respectively. Denote
Ωl = Ω \ Γl, where Γl = Γl ∪ ∂Γl and ∂Γl consists of the points (0, 0), (l, 0). Then
the boundary of Ωl is the union of Γ, Γ±l , ∂Γl. We consider the two-dimensional
elastic body occupying the domain Ωl with the crack Γl.

Let f = (f1, f2) ∈ [C∞(Ω)]2 be a given force. We look for the displacement
vector u = (u1, u2) and use the notation for the linear strains εij(u) and stresses
σij(u), i, j = 1, 2, given by the Lamé law

εij(u) =
1
2
(ui,j + uj,i), σij(u) = 2µεij(u) + λδij

(
ε11(u) + ε22(u)

)
.

Introduce the space

H1,0(Ωl) = {u = (u1, u2) ∈ [H1(Ωl)]2, u = 0 on Γ},

which includes the jam condition at Γ. At the crack faces Γ±l we assume the usual
stress-free condition of the Neumann type σ12(u) = σ22(u) = 0. The equilibrium
state of the solid corresponds to the minimum of the potential energy

Π(u; Ωl) =
1
2

∫
Ωl

σij(u)εij(u)−
∫
Ωl

fiui (1)

and can be described by the variational equality∫
Ωl

σij(u)εij(v) =
∫
Ωl

fivi ∀v ∈ H1,0(Ωl). (2)

By the Korn inequality provided that u = 0 on Γ, there exists the unique solution
u ∈ H1,0(Ωl) to the problem (2). The corresponding boundary value problem is
of the form:

−σij,j(u) = fi, i = 1, 2, in Ωl,

σi2(u) = 0, i = 1, 2, on Γ±l , u = 0 on Γ.
(3)

One can obtain, in a standard way, the additional H2-smoothness of the solution
u inside Ωl up to the boundary Γ and Γ±l excepting neighborhoods of ∂Γl.
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For a small parameter ε > 0, let us consider the perturbed crack Γl+ε =
(0, l+ε)×{0}. In the perturbed domain Ωl+ε = Ω\Γl+ε, we also have the unique
solution uε ∈ H1,0(Ωl+ε) to the equilibrium problem∫

Ωl+ε

σij(uε)εij(v) =
∫

Ωl+ε

fivi ∀v ∈ H1,0(Ωl+ε). (4)

We vary the shape of the crack by a local coordinate transformation of the
domain like in [10]. Let Bδ be a circle of the radius δ > 0 centered in the crack
tip (l, 0), with δ < min{l; l0 − l} and Bδ ⊂ Ω. Choose the smooth cut-off function
χ, 0 ≤ χ ≤ 1, such that suppχ ⊂ Bδ and χ ≡ 1 in Bδ/2. For small ε < δ/2, we
construct the one-to-one coordinate transformation

y1 = x1 + εχ(x1, x2), y2 = x2, (y1, y2) ∈ Ωl+ε, (x1, x2) ∈ Ωl, (5)

with the Jacobian J = 1 + εχ,1, which transforms Ωl to Ωl+ε. Denote by û(x),
x ∈ Ωl, the transformed function u(y), y ∈ Ωl+ε, namely

u(y) = u(x1 + εχ(x), x2) ≡ û(x).

Using (5), rewrite the derivatives

ui,j = ûi,j −
ε

J
χ,j ûi,1, i, j = 1, 2,

and therefore,

εij(u) = εij(û)− ε

J
Eij(χ; û), Eij(χ; û) =

1
2

(
χ,iûj,1 + χ,j ûi,1

)
,

σij(u) = σij(û)− ε

J
Σij(χ; û), (6)

Σij(χ; û) = 2µEij(χ; û) + λδij

(
E11(χ; û) + E22(χ; û)

)
.

Applying the transformation (5) to the integrals in (4), we substitute (6) and
obtain the equation∫

Ωl

σij(ûε)εij(v) + εA(ûε, v) + ε2B
[ 1
J

]
(ûε, v) =

∫
Ωl

Jf̂ivi ∀v ∈ H1,0(Ωl), (7)

where the bilinear forms A and B[ · ] are as follows:

A(u, v) =
∫
Ωl

(
χ,1σij(u)εij(v)− σij(u)Eij(χ; v)− Σij(χ;u)εij(v)

)
,
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B[w](u, v) =
∫
Ωl

w · Σij(χ;u)Eij(χ; v).

Thus, ûε ∈ H1,0(Ωl) is the unique solution to the problem (7).
Note that, for small ε, the uniform in ε estimate follows from (7):

‖ûε‖H1(Ωl) ≤ const. (8)

Substituting v = u in (2), one gets the evident relation∫
Ωl

σij(u)εij(u) =
∫
Ωl

fiui. (9)

3. Material derivatives

We seek for the global expansion of the solution ûε of (7) in the form

ûε =
∞∑

n=0

εn

n!
(n)
u ,

(0)
u = u. (10)

Following [18], the functions
(n)
u , n ≥ 1, are called the material derivatives of the

order n of the solution. First, we write the series in ε of 1/J ,

1
J

=
1

1 + εχ,1
=

∞∑
n=0

(
−εχ,1

)n
,

and multiply it with (10):

1
J

ûε =
∞∑

n=0

εn

(
n∑

k=0

1
k!

(
−χ,1

)n−k(k)
u

)
. (11)

Second, in accordance with (5), by the infinite differentiability of f , one can deduce
the representation

f̂ =
∞∑

n=0

εn

n!
χn ∂nf

∂xn
1

, (12)

and therefore,

Jf̂ =
∞∑

n=0

εn

n!

(
χn ∂nf

∂xn
1

+ nχn−1χ,1
∂n−1f

∂xn−1
1

)
=

∞∑
n=0

εn

n!

(
χn ∂n−1f

∂xn−1
1

)
,1

. (13)
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We mean here the relation (∂−1f/∂x−1
1 ),1 = f as n = 0. Let us now substitute

(10), (11), (13) in (7) to obtain formally that

∞∑
n=0

εn

n!

∫
Ωl

σij(
(n)
u )εij(v) +

∞∑
n=0

εn+1

n!
A(

(n)
u , v)

+
∞∑

n=0

εn+2

n!

n∑
k=0

n!
k!

B
[(
−χ,1

)n−k
]
(
(k)
u , v) =

∞∑
n=0

εn

n!

∫
Ωl

(
χn ∂n−1fi

∂xn−1
1

)
,1

vi,

or, the same
∞∑

n=0

εn

n!

(∫
Ωl

σij(
(n)
u )εij(v) + nA(

(n−1)
u , v) (14)

+n(n− 1)
n−2∑
k=0

(n− 2)!
k!

B
[(
−χ,1

)n−2−k
]
(
(k)
u , v)−

∫
Ωl

(
χn ∂n−1fi

∂xn−1
1

)
,1

vi

)
= 0.

We should define the functions
(n)
u ∈ H1,0(Ωl) as the unique solutions of the

following iterative problems∫
Ωl

σij(
(n)
u )εij(v) =

∫
Ωl

(
χn ∂n−1fi

∂xn−1
1

)
,1

vi − nA(
(n−1)

u , v) (15)

−n(n− 1)
n−2∑
k=0

(n− 2)!
k!

B
[(
−χ,1

)n−2−k
]
(
(k)
u , v) ∀v ∈ H1,0(Ωl),

with the initial value
(0)
u = u, where u is the solution of (2). For example, for

n = 1: ∫
Ωl

σij(u̇)εij(v) =
∫
Ωl

(χfi),1vi −A(u, v); (16)

for n = 2: ∫
Ωl

σij(ü)εij(v) =
∫
Ωl

(
χ2fi,1

)
,1

vi − 2A(u̇, v)− 2B[1](u, v); (17)

and so on.
Subtracting (2) from (7), we write∫
Ωl

σij(ûε − u)εij(v) =
∫
Ωl

(
f̂i − fi + εχ,1f̂i

)
vi − εA(ûε, v)− ε2B

[ 1
J

]
(ûε, v).
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One can substitute v = ûε−u here and easily deduce, due to (8), (12) and Korn’s
inequality, that

‖ûε − u‖H1(Ωl) ≤ cε. (18)

Analogously, subtracting (2) and the corresponding equations in (15) from (7), we
can write in view of the decomposition (14) the next relation∫

Ωl

σij

(
ûε −

n∑
k=0

εk

k!
(k)
u

)
εij(v) =

∫
Ωl

((
f̂i −

n∑
k=0

εk

k!
χk ∂kfi

∂xk
1

)

+εχ,1

(
f̂i −

n−1∑
k=0

εk

k!
χk ∂kfi

∂xk
1

))
vi − εA

(
ûε −

n−1∑
k=0

εk

k!
(k)
u , v

)

−ε2
n−2∑
m=0

B
[(
−εχ,1

)n−2−m
](

ûε −
m∑

k=0

εk

k!
(k)
u , v

)
− εn+1B

[ 1
J

(
−χ,1

)n−1
]
(ûε, v)

and substitute v = ûε−
n∑

k=0

εk

k!

(k)
u as a test function to obtain, due to (8) and (18),

the estimates for n > 0:

‖ûε −
n∑

k=0

εk

k!
(k)
u ‖H1(Ωl) ≤ cεn+1. (19)

Thus, the following theorem is proved.

Theorem 1. There exist the material derivatives u̇, ü,...,
(n)
u ,... given as the

solutions of the problems (15), such that the expansion (10) holds with the estimate
(19) for any n ≥ 0.

The integration by parts in (15)–(17) is meaningful because of the local H2-
smoothness of the solutions in Bδ \ Bδ/2, and χ ≡ 1 in the neighborhood Bδ/2

of the considered crack tip, χ ≡ 0 outside Bδ. Therefore it implies with (3) the
following boundary value problems for the material derivatives. For n = 1, using
(3):

−σij,j(u̇) = χfi,1 − χ,jσij,1(u)− Σij,j(χ;u) = −σij,j(χu,1), i = 1, 2, in Ωl,

σ12(u̇) = µ
(
χ,2u1,1 − χ,1u1,2

)
, σ22(u̇) = (λ + 2µ)

(
χ,2u2,1 − χ,1u2,2

)
on Γ±l ,

u̇ = 0 on Γ;

for n = 2:

−σij,j(ü) =
(
χ2fi,1

)
,1

+ 2
(
χ,1σij,j(u̇)− χ,jσij,1(u̇)− Σij,j(χ; u̇)

)
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+2
(
χ,jΣij(χ;u)

)
,1

, i = 1, 2, in Ωl,

σ12(ü) = 2µ
(
χ,2u̇1,1 − χ,1u̇1,2

)
, σ22(ü) = 2(λ + 2µ)

(
χ,2u̇2,1 − χ,1u̇2,2

)
on Γ±l ,

ü = 0 on Γ;

and for the arbitrary n:

−σij,j(
(n)
u ) =

(
χn ∂n−1fi

∂xn−1
1

)
,1

+ n
(
χ,1σij,j(

(n−1)
u )− χ,jσij,1(

(n−1)
u )−Σij,j(χ;

(n−1)
u )

)

+n(n− 1)
n−2∑
k=0

(n− 2)!
k!

[(
−χ,1

)n−2−k
χ,jΣij(χ;

(k)
u )

]
,1

, i = 1, 2, in Ωl,

σ12(
(n)
u ) = nµ

(
χ,2

(n−1)
u 1,1 − χ,1

(n−1)
u 1,2

)
, (20)

σ22(
(n)
u ) = n(λ + 2µ)

(
χ,2

(n−1)
u 2,1 − χ,1

(n−1)
u 2,2

)
on Γ±l ,

(n)
u = 0 on Γ.

One can see from the above that, if u ∈ [H2(Ωl)]2 then u̇ = χu,1, if u ∈

[Hn+1(Ωl)]2 then
(n)
u = χn∂nu/∂xn

1 , n ∈ N, that corresponds to the represen-
tation (12).

4. Derivatives of the energy functional

Let us substitute the solution u of (2) in (1) and define the potential energy as
the function P : (0, l0) → R depending on the crack length l. In view of (9), this
function has the form

P(l) = −1
2

∫
Ωl

fiui. (21)

For the solution uε of the equation (4), applying the transformation (5), we also
get

P(l + ε) = −1
2

∫
Ωl+ε

fiu
ε
i = −1

2

∫
Ωl

Jf̂iû
ε
i . (22)

One can substitute the representations (10), (13) in (22) to obtain the formula

P(l + ε) = −1
2

∞∑
n=0

εn
n∑

k=0

1
k!(n− k)!

∫
Ωl

(
χn−k ∂n−k−1fi

∂xn−k−1
1

)
,1

(k)
u i.
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Therefore, thanks to Theorem 1, using (21) we get the expansion

P(l + ε) =
∞∑

n=0

εn

n!
P(n)(l), P(0)(l) = P(l), (23)

where the derivatives of P at the point l are as follows:

P(n)(l) = −1
2

n∑
k=0

n!
k!(n− k)!

∫
Ωl

(
χn−k ∂n−k−1fi

∂xn−k−1
1

)
,1

(k)
u i. (24)

In particular, we have

P ′(l) = −1
2

∫
Ωl

(
(χfi),1ui + fiu̇i

)
, (25)

P ′′(l) = −1
2

∫
Ωl

((
χ2fi,1

)
,1

ui + 2(χfi),1u̇i + fiüi

)
.

Using equations (15)–(17), we can reduce the order n of the material derivatives
in (24) to n− 1. Indeed, substitute v = u̇ in (2) and v = u in (16), then∫

Ωl

fiu̇i =
∫
Ωl

σij(u̇)εij(u) =
∫
Ωl

(χfi),1ui −A(u, u),

and therefore (25) takes the form

P ′(l) = −
∫
Ωl

(χfi),1ui +
1
2
A(u, u) (26)

=
∫
Ωl

[
−(χfi),1ui +

(1
2
χ,1σij(u)− Σij(χ;u)

)
εij(u)

]
.

Analogously, the substitution of v =
(n)
u in (2) and of v = u in (15) gives∫

Ωl

fi

(n)
u i =

∫
Ωl

σij(
(n)
u )εij(u) =

∫
Ωl

(
χn ∂n−1fi

∂xn−1
1

)
,1

ui − nA(
(n−1)

u , u) (27)

−n(n− 1)
n−2∑
k=0

(n− 2)!
k!

B
[(
−χ,1

)n−2−k
]
(
(k)
u , u).
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Moreover, let us take v =
(n−1)

u in (16), then

n

∫
Ωl

σij(
(n−1)

u )εij(u̇) = n

∫
Ωl

(χfi),1
(n−1)

u i − nA(u,
(n−1)

u ). (28)

Combining (24), (27), (28) together, we deduce the following formula

P(n)(l) = −
∫
Ωl

(
χn ∂n−1fi

∂xn−1
1

)
,1

ui

−1
2

n−2∑
k=1

n!
(n− k)!k!

∫
Ωl

(
χn−k ∂n−k−1fi

∂xn−k−1
1

)
,1

(k)
u i (29)

−n

2

∫
Ωl

σij(
(n−1)

u )εij(u̇) +
n(n− 1)

2

n−2∑
k=0

(n− 2)!
k!

B
[(
−χ,1

)n−2−k
]
(
(k)
u , u).

In particular, for n = 2:

P ′′(l) =
∫
Ωl

(
−

(
χ2fi,1

)
,1

ui − σij(u̇)εij(u̇)
)

+ B[1](u, u)

=
∫
Ωl

(
−

(
χ2fi,1

)
,1

ui − σij(u̇)εij(u̇) + Σij(χ;u)Eij(χ;u)
)
.

Theorem 2. There exist the derivatives of the potential energy functional with
respect to the crack length in expansion (23) given by formulas (24) or (29).

Note that integrals in (21) and (22) do not depend on χ, therefore all values of
the derivatives in expansion (23) are also independent on the cut-off function.

5. Stress intensity factors

In fracture mechanics the crack propagation is usually interpreted with the help
of the stress intensity factors (SIF). We remind its definition in connection with
the material derivatives considered.

Introduce the local polar coordinates in a neighborhood of the crack tip (l, 0)
as

x1 − l = r cos φ, x2 = r sinφ, r ≥ 0, |φ| ≤ π.
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The crack faces Γ±l correspond to the values φ = ±π, respectively. The normal
n = (n1, n2) to the boundary of the circle Bδ centered in (l, 0) is (cos φ, sin φ).
Let us define the smooth vector-functions Φ1, Φ2, which in the Descartes basis
(x1, x2) are given as follows:

Φ1(φ) =
(
(2κ− 1) cos

φ

2
− cos

3φ

2
, (2κ + 1) sin

φ

2
− sin

3φ

2
)
,

Φ2(φ) =
(
(2κ + 3) sin

φ

2
+ sin

3φ

2
,−(2κ− 3) cos

φ

2
− cos

3φ

2
)
, κ =

λ + 3µ

λ + µ
.

The functions Φm, m = 1, 2, possess the properties σij,j(
√

rΦm) = 0 as |φ| < π
and σi2(

√
rΦm) = 0 as φ = ±π, i = 1, 2. Assume also that the cut-off function χ

depends on r only. It is well known that the solution u of the Lamé system (2)
admits the unique representation in the form (see [7]):

u = χ(r)
√

rKmΦm(φ) + w, w ∈ [H2(Ωl)]2. (30)

The coefficients K1, K2 here are called SIF. To obtain them, construct the func-
tions following the idea of [15]:

ζm = χ(
√

rΦm),1 + V m, m = 1, 2, (31)

where

(
√

rΦ1),1 =
1

2
√

r

(
(2κ− 3) cos

φ

2
+ cos

5φ

2
,−(2κ + 3) sin

φ

2
+ sin

5φ

2
)
,

(
√

rΦ2),1 =
1

2
√

r

(
−(2κ + 1) sin

φ

2
− sin

5φ

2
,−(2κ− 1) cos

φ

2
+ cos

5φ

2
)
,

and V m ∈ H1,0(Ωl) are the unique solutions of the problems∫
Ωl

σij(V m)εij(v) = A(
√

rΦm, v) ∀v ∈ H1,0(Ωl), m = 1, 2. (32)

In view of the properties σij,j

(
(
√

rΦm),1
)

= 0 as |φ| < π and σi2
(
(
√

rΦm),1
)

= 0
as φ = ±π, i = 1, 2, by the local regularity of the constructed functions outside
Bδ, one can see from (31), (32) that ζm, m = 1, 2, are the nontrivial functions
satisfying the homogeneous relations

−σij,j(ζm) = 0, i = 1, 2, in Ωl,

σi2(ζm) = 0, i = 1, 2, on Γ±l , ζm = 0 on Γ.
(33)
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Again, because ζm are of the H1-class outside a neighborhood of the crack tip
(l, 0), one can apply the Green formula in the domain Ωl \Bt, 0 < t < δ/2. Using
(3) and (33), we get then∫

Ωl\Bt

fiζ
m
i = −

∫
Ωl\Bt

σij,j(u)ζm
i =

∫
∂Bt

(
σij(u)njζ

m
i − σij(ζm)njui

)
. (34)

The substitution of (30), (31) in the right hand-side of (34) reduces it to the
relation ∫

Ωl\Bt

fiζ
m
i = −αKm + Im(t), α =

16πµ(λ + 2µ)
λ + µ

,

where the the last term denotes the integral

Im(t) = t

∫
|φ|<π

(
σij

(√
r(K1Φ1 + K2Φ2)

)
njV

m
i + σij(w)nj

(
(
√

rΦm
i ),1 + V m

i )

−σij

(
(
√

rΦm),1
)
njwi − σij(V m)nj

(√
r(K1Φ1

i + K2Φ2
i ) + wi

))∣∣∣
r=t

dφ.

One can see that Im(t) → 0 as t → 0, m = 1, 2. Therefore, the passing to the limit
in (34) as t → 0 leads finally to the relation

Km = − 1
α

∫
Ωl

fiζ
m
i , m = 1, 2.

For the material derivatives
(n)
u as the solutions of the Lamé problem (15), the

same as (30) representation is valid for n ≥ 1,

(n)
u = χ(r)

√
r
(n)
K mΦm(φ) +

(n)
w ,

(n)
w ∈ [H2(Ωl)]2. (35)

To find the corresponding SIF
(n)
K 1,

(n)
K 2, we use the same arguments as for (34)

with the next Green formula for non-homogeneous Neumann boundary conditions
at Γ±l ,

−
∫

Ωl\Bt

σij,j(
(n)
u )ζm

i =
∫

∂Bt

(
σij(

(n)
u )njζ

m
i − σij(ζm)nj

(n)
u i

)
+

∫
Γl\Bt

[[σi2(
(n)
u )ζm

i ]],

where the thick brackets denote the jump at Γl, i.e. [[u]] = u|Γ+
l

− u|Γ−
l
. In view

of (20), the analogous formula hold for finding
(n)
K m:

(n)
K m = − 1

α

∫
Ωl

((
χn ∂n−1fi

∂xn−1
1

)
,1

+n
(
χ,1σij,j(

(n−1)
u )−χ,jσij,1(

(n−1)
u )−Σij,j(χ;

(n−1)
u )
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+n(n− 1)
n−2∑
k=0

(n− 2)!
k!

[(
−χ,1

)n−2−k
χ,jΣij(χ;

(k)
u )

]
,1

)
ζm
i (36)

+
n

α

∫
Γl

[[
µ
(
χ,2

(n−1)
u 1,1 − χ,1

(n−1)
u 1,2

)
ζm
1 + (λ + 2µ)

(
χ,2

(n−1)
u 2,1 − χ,1

(n−1)
u 2,2

)
ζm
2

]]
.

In particular, (36) as n = 1 is of the form:

K̇m =
1
α

∫
Ωl

σij,j

(
χu,1

)
ζm
i

+
1
α

∫
Γl

[[µ(χ,2u1,1 − χ,1u1,2)ζm
1 + (λ + 2µ)(χ,2u2,1 − χ,1u2,2)ζm

2 ]].

Summing together (30) and (35) with the corresponding multipliers, thanks to
Theorem 1, we deduce the following representation to the solution ûε of (7),

ûε = χ(r)
√

rKε
mΦm(φ) + W, W ∈ [H2(Ωl)]2, (37)

with

Kε
m =

∞∑
n=0

εn

n!

(n)
K m,

(0)
K m = Km, m = 1, 2, (38)

where
(n)
K m are given by (36). Because the transformation (5) does not change the

constant SIF, the same formula is also true for the solution uε of (4),

uε = χ
√

rεK
ε
mΦm(φε) + wε, wε ∈ [H2(Ωl+ε)]2, (39)

with the coefficients Kε
1, Kε

2 from (38) and the polar coordinates (rε, φε) at the
crack tip (0, l + ε).

6. Derivatives of SIF

Let us define the vector-function K : (0, l0) → R2 by the equality K(l) = (K1,K2)
with Km, m = 1, 2, from (30). It follows from (39) that K(l + ε) = (Kε

1,Kε
2), and,

by (38), we get the asymptotic formula

K(l + ε) =
∞∑

n=0

εn

n!
K(n)(l), K(0)(l) = K(l), K(n)(l) = (

(n)
K 1,

(n)
K 2), (40)

with the derivatives K(n)(l) of the order n at the point l of SIF. We formulate this
result as the following theorem.
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Theorem 3. There exist the derivatives of SIF with respect to the crack length in
expansion (40) given by the formula (36).

Let us now rewrite the derivatives of the potential energy using the derivatives
of SIF in the following way. First, by the smoothness of the solution u of (2)
outside a neighborhood of the crack tip (l, 0), we can integrate (26) by parts in
Ωl \Bδ/2 to obtain that

P ′(l) =
∫

Ωl\Bδ/2

χ(σij,j(u) + fi)ui,1 +
∫

Γl\Bδ/2

χ[[σi2(u)ui,1]]

+
∫

∂Bδ/2

(
−1

2
σij(u)εij(u)n1 + σij(u)njui,1 + fiuin1

)
+

∫
Bδ/2\Γl

fiui,1 −
∫

∂Bδ/2

fiuin1

=
∫

Bδ/2\Γl

fiui,1 +
∫

∂Bδ/2

(
σij(u)njui,1 −

1
2
σij(u)εij(u)n1

)
due to the relations (3). Again, substituting the representation (30) in the last
formula, we deduce

P ′(l) = −8µ(λ + 2µ)
λ + µ

∫
|φ|<π

(
K2

1 sin2 φ + K2
2 cos2 φ

)
dφ + I(δ), (41)

where

I(δ) =
δ

2

∫
|r|< δ

2 ,|φ|<π

fiui,1 dr dφ +
δ

2

∫
|φ|<π

(
σij

(√
r(K1Φ1 + K2Φ2)

)
njwi,1

+σij(w)nj

(√
r(K1Φ1

i + K2Φ2
i ) + wi

)
,1
− 1

2
σij

(√
r(K1Φ1 + K2Φ2)

)
εij(w)n1

−1
2
σij(w)εij

(√
r(K1Φ1 + K2Φ2) + w

)
n1

)∣∣∣
r= δ

2

dφ.

One can easily see that I(δ) → 0 as δ → 0. Because the derivative P ′(l) does not
depend on δ, we can pass to the limit in (41) as δ → 0 and obtain

P ′(l) = −α

2
K2(l), K2(l) = K2

1 + K2
2 . (42)

By Theorems 2 and 3, using the representations (23) and (40), it follows from (42)
that

P ′(l + ε) =
∞∑

n=0

εn

n!
P(n+1)(l) = −α

2
K2(l + ε) = −α

2

(
K2

1(l + ε) +K2
2(l + ε)

)
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= −α

2

∞∑
n=0

(
n∑

k=0

εn

k!(n− k)!

(
K(k)

1 (l)K(n−k)
1 (l) +K(k)

2 (l)K(n−k)
2 (l)

))
.

The comparison of the terms with the similar power of ε leads to

P(n+1)(l) = −α

2

n∑
k=0

n!
k!(n− k)!

(
K(k)

1 (l)K(n−k)
1 (l) +K(k)

2 (l)K(n−k)
2 (l)

)
. (43)

In particular, for n = 1, formulas (43) together with (38) give

P ′′(l) = −α
(
K1K̇1 + K2K̇2

)
and so on. Thus, the next theorem follows.

Theorem 4. The derivatives of the potential energy with respect to the crack
length in expansion (23) can be calculated with the help of the formulas (42), (43),
where SIF are taken from (36).

7. Locally optimal cracks

By adding the surface energy to (1), let us introduce the function T : (0, l0) → R
of the total potential energy as

T (l) = P(l) + γ meas Γl, γ > 0, meas Γl = l.

Then we get from Theorem 2 and (23) that

T (l + ε) = T (l) + ε
(
γ + P ′(l)

)
+

∞∑
n=2

εn

n!
P(n)(l). (44)

By the Griffith criterion of the crack propagation, the total potential energy turns
out to be minimal. The extremality condition of (44) in ε implies

0 =
d T
d ε

= γ +
∞∑

n=0

εn

n!
P(n+1)(l).

In particular, we can use the linear in ε condition

γ + P ′(l) + εP ′′(l) = 0 (45)

to seek the locally optimal crack length l + ε minimizing the quadratic approxi-
mation of the total potential energy:

T (l + ε) ≈ T (l) + ε
(
γ + P ′(l)

)
+

ε2

2
P ′′(l) ≡ T (ε). (46)
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Minimum in (46) is provided by the positiveness of the second derivative,

P ′′(l) > 0. (47)

We formulate the quasi-static model of the local crack propagation under the
assumption (47). Let t ≥ 0 be a loading parameter. We consider the load f(t) =

tf , that leads to the fact that u(t) = tu,
(n)
u (t) = t

(n)
u , n = 1, 2, ..., are the solutions

of equilibrium problems (2), (15), respectively. Therefore, the multiplier t2 appears
in derivatives of the potential energy given by (26), (29), and the functional (46)
reduces to

Tt(ε) ≡ T (l) + ε
(
γ + t2P ′(l)

)
+

ε2

2
t2P ′′(l).

We look for the propagating crack, i.e. for the value ε(t) ≥ 0 of the crack length l+
ε(t) minimizing Tt for each t ≥ 0. Due to the positiveness requirement constrained
ε(t), instead of (45) we obtain the algebraic variational inequality

ε(t) ≥ 0,
(
γ + t2P ′(l) + t2P ′′(l)ε(t)

)
(ε̄− ε(t)) ≥ 0 ∀ε̄ ≥ 0. (48)

If P ′(l) ≥ 0, then ε(t) ≡ 0 is a solution of (48) because γ > 0, that means
stationarity of the crack. For P ′(l) < 0, by the same reason we have

ε(t) = 0, 0 ≤ t ≤ tcritical, tcritical =
√

γ

−P ′(l) . (49)

The crack growth starts only after reaching this critical value, and the solution of
(48) is given then by

ε(t) =
−P ′(l)
P ′′(l) − γ

P ′′(l) ·
1
t2

, t > tcritical, (50)

which has the finite asymptotic −P ′(l)/P ′′(l) for t big. Thus, the continuous func-
tion ε(t) written in (49), (50) shows us the quasi-static, local crack propagation.

8. Conclusion

For the 2D-problem describing solids with cracks, we have constructed the global
expansion (10) of the solution with the material derivatives of an arbitrary order
given by formulas (15) or (20), and their stress intensity factors – by (36). This
allows us to find all the derivatives of the potential energy in respect to variation
of the crack length with the help of formulas (24), or (29), or (43), and to describe
the local crack propagation by the Griffith rupture criterion.

Note, for iterative calculations of the material derivatives or their SIF, in view
of the above consideration one needs only to be able to find the solutions of the
linear elasticity problem in the week sense∫

Ωl

σij(u)εij(v) = F (v)

with the corresponding right-hand sides F .
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