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Nonconvex problem for crack with nonpenetration
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The problem with crack under nonlinear boundary conditions is considered as a minimization of the total potential energy
functional. The functional is nonconvex by assuming the surface energy at a crack presented in a general form. The correct-
ness properties of the nonconvex minimization problem with constraints are investigated. Applying the shape sensitivity
analysis, the problem of shape perturbation is formulated, and the derivative of the total potential energy functional with
respect to the perturbation parameter is calculated. Examples on the rectilinear and the planar cracks are presented.
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1 Motivation and modeling

The classical formulation of problems with cracks implies the linear boundary condition of the stress-free faces of a crack.
Analysis of the linear crack problems using the method of matched expansions is founded in [16]. To prevent overlapping
of the crack faces possible in the linear case, in [9] the nonpenetration condition was suggested. For collection of such
nonlinear crack models with nonpenetration and their mathematical foundations, see [10]. The problems with conditions of
nonpenetration together with the given friction at a crack was studied in [1], with the Coulomb friction in [12].

On the other hand, the quasistatic process of crack propagation can be treated as an energy minimization problem, see the
related works [5,6,17]. This question is closely connected with the derivative of potential energy with respect to parameters
of the crack shape, the so-called energy release rate [4,8,18,19]. Following [20], the shape sensitivity technique was recently
extended for the linear and nonlinear crack problems to calculate the first derivative of energy [11] and corresponding local
characteristics of the crack growth [13,14].

Within an energetic approach the fracture criterion is usually based on the Griffith hypothesis [7]. This implies the
constant density of the surface energy distributed at a crack, that is presented in Fig. 1 as the constant function g(t) = g0 in
dependence on the crack opening t, t ≥ 0. For refining the Griffith hypothesis, the cohesive forces at the crack should be
taken into consideration, see [2,3,15]. This refinement leads to nonlinear functions g(t) of the density of surface energy with
the principal condition g(0) = 0, g′(0) < ∞, which allows the crack faces to close up in the vicinity of the crack. In Fig. 1
we present schematically such curves in dependence of the crack opening and corresponding to the cohesive, cohesive with
softening, and elastoplasticity conditions. Excepting the linear case, the function describing the surface energy density is
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elastoplasticity Fig. 1 Functions g of the density of surface energy.
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in general nonconvex, or may be concave. Mathematically this leads to the nonconvex constrained minimization problem,
which is under our consideration. To manage this problem, in Sect. 2 we prove its solvability basing on the weakly lower
semicontinuity and coercivity properties of the energy functional. For regular functions g we formulate the necessary
condition for the minimizer in the form of variational inequality. The unique solution of this inequality provides us the
necessary and sufficient conditions for the minimizer. The last two sections of the paper deals with the crack perturbation
problem connected with stability of the crack and its advance.

2 Nonconvex constrained minimization problem with crack

The nonconvex constrained minimization problem for cracks is formulated and analyzed with respect to the well-posedness
property in the first subsection, and the optimality conditions are argued in the second subsection.

2.1 Formulation and well-posedness of the optimization problem

Let Ω ⊂ RN , N = 2, 3, be a bounded domain and its boundary Γ consist of two parts ΓD and ΓN . Let us suppose the crack
Γ0 located inside Ω as an open curve or a surface as N = 2 or N = 3, respectively. We assume that the domain Ω can be
split into two subdomains with Lipschitz-continuous boundaries and common interface Σ, which intersects ΓD, such that
Γ0 ⊂ Σ. By choosing the unit normal vector ν0 = (ν0

1 , . . . , ν0
N ) to Γ0, two opposite crack faces Γ±

0 can be distinguished,
which correspond to ±ν0, respectively. We denote Ω0 = Ω \ Γ0. The geometric assumptions formulated above provide us
a correctness of the variational formulation of elasticity problem in the domain Ω0 with the crack Γ0.

Let us consider the linear elasticity model of nonhomogeneous anisotropic solid. For the displacement vector u =
(u1, . . . , uN ) we introduce the symmetric tensors of strains and stresses

σij(u) = cijklεkl(u) , εij(u) = 0.5(ui,j + uj,i) , i, j = 1, . . . , N ,

with the elasticity coefficients cijkl ∈ L∞ (
RN

)
, i, j, k, l = 1, . . . , N ,

cijkl = cjikl = cklij , c0ξijξij ≤ cijklξklξij ≤ C0ξijξij , c0, C0 > 0 .

Let f = (f1, . . . , fN ) ∈ L2(RN )N be a given volume load. We define the total potential energy of the solid in domain
Ω0 as the sum of potential and surface energies, namely

T (u; Ω0) = P (u; Ω0) + S (u; Ω0) ,

P (u; Ω0) = 0.5
∫

Ω0

σij (u) εij (u) dx −
∫

Ω0

fiui dx ,

S (u; Ω0) =
∫

Γ0

g
(
�u� ν0) ds.

(1)

Here g means a density of the surface energy distributed at the crack. It depends on the crack opening
�
u
�
ν0, where

�
u
�

denotes the jump u|Γ+
0

− u|Γ−
0

. From the physical point of view, the function g can obey the following principal cases as

presented in Fig. 1. In the general case, we assume g ∈ C0,1(R) and

g ≥ 0 on R+ . (2)

For displacements we introduce the Sobolev space

H̃1 (Ω0) = {u = (u1, . . . , uN ) ∈ H1 (Ω0)
N

, u = 0 on ΓD} ,

which includes the condition of clamping at the part ΓD of external boundary Γ. By physical reasons, the overlapping of
crack faces is not acceptable. This fact can be described with the help of the nonpenetration condition as follows:

�u� ν0 ≥ 0 on Γ0 . (3)

This gets the convex closed set of admissible displacements

K0 = {u ∈ H̃1 (Ω0) , u satisfies(3)} .

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



244 V.A. Kovtunenko: Nonconvex problem for crack with nonpenetration

We formulate the problem of equilibrium of the solid with crack under given load as a minimization of the total potential
energy functional,

T
(
u0; Ω0

) ≤ T (v; Ω0) ∀v ∈ K0 , (4)

where the function T is presented by relations (1). Note that, for the Griffith case g = const problem (4) coincides with the
classical problem of minimization of the potential energy

P
(
u0; Ω0

) ≤ P (v; Ω0) ∀v ∈ K0 .

Theorem 1. There exists the solution u0 ∈ K0 of the minimization problem (4).

P r o o f. Due to the properties (2) and (3) we have S(u; Ω0) ≥ 0 for all u ∈ K0. Therefore, T is coercive on K0.
The functional P is quadratic and then weakly lower semicontinuous. Let un → u weakly in H̃1(Ω0) as n → ∞. By the
compactness property we have

�
un

�
ν0 → �

u
�
ν0 strongly in L2(Γ0) as n → ∞. From the Lipschitz-continuity property

of g, it follows that

|S (un; Ω0) − S (u; Ω0) | ≤ c1‖ �un� ν0 − �u� ν0‖0,Γ0

and S is a weakly continuous functional. Therefore, the functional T is weakly lower semicontinuous.
Now take the minimizing sequence un ∈ K0 such that T (un; Ω0) → T0 = inf

v∈K0
T (v; Ω0). The coercivity of T implies

the boundedness of un. Then un → u0 weakly in H̃1(Ω0) as n → ∞ and u0 ∈ K0 because of the weak closedness of K0.
From the weakly lower semicontinuity property of T the estimate follows

T0 ≤ T
(
u0; Ω0

) ≤ lim inf T (un; Ω0) = T0 .

This completes the proof.

2.2 Optimality conditions

We establish the necessary and sufficient optimality conditions for the optimization problem (4) provided that g satisfies
additional regularity properties.

Theorem 2. If g ∈ C1(R), then the following variational inequality
∫

Ω0

σij

(
u0) εij

(
v − u0) dx +

∫

Γ0

g′ (�u0� ν0) (
�v� ν0 − �

u0� ν0) ds ≥
∫

Ω0

fi

(
v − u0)

i
dx ∀v ∈ K0 (5)

yields the necessary condition of solvability for the minimization problem (4).

P r o o f. To prove Theorem 2, we take the element w = tv + (1 − t)u0 with v ∈ K0, 0 < t < 1, substitute it into the
inequality T (u0; Ω0) ≤ T (w; Ω0) divided with t, and then pass to the lower limit at t → 0 due to the differentiability and
weakly lower semicontinuity properties of T .

Assuming that the solution u0 ∈ K0 of (5) is smooth enough, we can apply the Green formula to deduce formally from
the variational inequality (5) the following relations






−σij,j

(
u0) = fi , i = 1, . . . , N , in Ω0 ;

u0 = 0 , on ΓD ;

σij

(
u0) νj = 0 , i = 1, . . . , N , on ΓN ;

�
σij

(
u0) ν0

j

�
= 0 , σij

(
u0) ν0

j − σkj

(
u0) ν0

j ν0
kν0

i = 0 , i = 1, . . . , N ,

�
u0� ν0 ≥ 0 , σkj

(
u0) ν0

j ν0
k − g′ (�u0� ν0) ≤ 0, on Γ0 .

(
σkj

(
u0) ν0

j ν0
k − g′ (�u0� ν0)) �

u0� ν0 = 0,

(6)

When the crack Γ0 is of the C1,1-class, the crack opening and stresses at the crack in (6) can be defined as functions from
the space H

1/2
00 (Γ0) and its dual space H

1/2
00 (Γ0)�, respectively. For details see [10]. From the mechanical point of view,

the term g′(
�
u0

�
ν0) describes the cohesive force between crack faces.
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Theorem 3. If g ∈ C1,1
(
R

)
with |g′(t) − g′(s)| ≤ c2|t − s| ∀t, s, and the uniform estimate holds

(c0 − δ) ‖u‖2
1,Ω0

− c2‖ �u� ν0‖2
0,Γ0

≥ 0 ∀u ∈ H̃1 (Ω0) , δ > 0 , (7)

then problems (4) and (5) are equivalent and their solution u0 ∈ K0 is unique.

P r o o f. Firstly, in view of Theorem 1 and Theorem 2, for such g there exists a solution to problem (5). It can be not
unique. Secondly, consider two variational inequalities (5) for two different solutions u1 and u2, respectively. Substituting
v = u2 in the first inequality, v = u1 in the second one, and summing them, in a standard way one gets

∫

Ω0

σij

(
u1 − u2) εij

(
u1 − u2) dx +

∫

Γ0

(
g′ (�u1� ν0) − g′ (�u2� ν0)) (�

u1� ν0 − �
u2� ν0) ds ≤ 0 .

Therefore, due to the Lipschitz-continuity property of g′, the fulfillment of assumption (7) leads to the conclusion that
δ‖u1 −u2‖2

1,Ω0
≤ 0 and the solution of problem (5) is unique. Because any solution of the minimization problem (4) fulfills

(5), it is also unique and coincides with the solution u0 ∈ K0 of the variational inequality (5). The proof is completed.

The required estimate (7) can be provided by that g, which is small in the C2-norm. The examples are g = const,
g′ = const, g = g0p with constant g0 << ‖p‖C2 .

3 Crack perturbation problem

In three subsections we perturb the crack shape with the help of a coordinate transformation, establish the shape differen-
tiability of the total potential energy functional, and give the example of planar cracks, respectively.

3.1 Perturbed problem with the crack

For small parameter ε we introduce the perturbation of shape given by the function Φ ∈ C1(R; W 1,∞(RN ))N . Let
Φ(0)(x) = x, x ∈ RN , i.e. Φ(ε) is a small perturbation of the identity operator. We fix ε. The coordinate transformation
y = Φ(ε)(x) transforms the initial domain Ω0 onto the perturbed domain Ωε = Φ(ε)(Ω) \ Γε with the perturbed crack
Γε = Φ(ε)(Γ0). We suppose that Φ(ε)(Ω), Γε, and Φ(ε)(ΓD) fulfill the geometric assumptions formulated for Ω, Γ0, and
ΓD, too. For ε small enough, the Jacobian of transformation admits the asymptotic expansion

J(ε) =
∣
∣∂Φ/∂x

∣
∣(ε) = 1 + ε div V + o(ε) a.e. RN ,

which provides its positiveness. Here V ∈ W 1,∞(RN )N denotes the velocity vector ∂Φ/∂ε|ε=0. Therefore, the cor-
respondence Φ(ε) : Ω0 → Ωε is one-to-one, i.e. there exists the inverse transformation Φ−1(ε) : Ωε → Ω0 with
Φ−1(ε) ∈ W 1,∞(RN )N .

Let νε be a unit normal vector to Γε. We introduce the Sobolev space

H̃1 (Ωε) = {u ∈ H1 (Ωε)
N

, u = 0 on Φ(ε) (ΓD)}

and the convex closed set

Kε = {u ∈ H̃1 (Ωε) , �u� νε ≥ 0 on Γε} ,

where
�
u
�

denotes here the jump of u on Γε. Due to the regularity properties marked above, the transformation Φ(ε) yields

the one-to-one correspondence between H̃1(Ω0) and H̃1(Ωε). This means that u ◦ Φ(ε) ∈ H̃1(Ω0) for all u ∈ H̃1(Ωε),
and u ◦ Φ−1(ε) ∈ H̃1(Ωε) for all u ∈ H̃1(Ω0). We assume the one-to-one correspondence between the sets K0 and Kε,
too. The sufficient condition for this assumption can be provided by the geometric constraint

νε ◦ Φ(ε) = ν0 . (8)

To fulfill condition (8), in the example of Sect. 3.3 we consider planar cracks with νε = ν0 = const.
Similar to (1), we introduce the functional of the total potential energy in the perturbed domain with crack by

T (u; Ωε) = 0.5
∫

Ωε

σij(u)εij(u) dy −
∫

Ωε

fiui dy +
∫

Γε

g (�u� νε) ds , u ∈ Kε , (9)
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and consider the minimization problem

T (uε; Ωε) ≤ T (v; Ωε) ∀v ∈ Kε . (10)

Following Theorem 1, there exists the solution uε ∈ Kε of problem (10).
Let us now apply the coordinate transformation Φ(ε) to the integrals in formula (9). Due to the assumption (8), this gets

the representation T (u; Ωε) = T (ε)(u ◦ Φ(ε); Ω0) with the following functional

T (ε) (u; Ω0) = 0.5
∫

Ω0

J(ε)(cijkl ◦ Φ(ε))Ekl(Ψ(ε); u)Eij(Ψ(ε); u) dx

−
∫

Ω0

J(ε)(fi ◦ Φ(ε))ui dx +
∫

Γ0

J(ε)|Ψ(ε)ν0|g (
�u� ν0) ds , u ∈ K0 , (11)

where Eij(Ψ(ε); u) = 0.5(ui,kΨkj(ε) + uj,kΨki(ε)) and Ψ(ε) = (∂Φ/∂x)−1(ε). According to [20], the boundary term in
(11) possesses an expansion in ε as

J(ε)|Ψ(ε)ν0| = 1 + ε divΓ0(V ) + o(ε) ,

divΓ0(V ) = div(V ) + (∂V/∂x)ijν
0
j ν0

i .

In view of the one-to-one correspondence between K0 and Kε, it follows from (10) that

T (ε) (uε ◦ Φ(ε); Ω0) = T (uε; Ωε) ≤ T
(
v ◦ Φ−1(ε); Ωε

)
= T (ε)(v; Ω0) , v ∈ K0 .

Therefore, the following theorem is true.

Theorem 4. Under assumption (8), the transformed function uε ◦ Φ(ε) ∈ K0 solves the minimization problem

T (ε) (uε ◦ Φ(ε); Ω0) ≤ T (ε) (v; Ω0) ∀v ∈ K0 . (12)

3.2 Shape differentiablity of the energy

For the perturbation problem we assume the enough smoothness of data, namely f ∈ C1(RN )N and cijkl ∈ C1(RN ),
i, j, k, l = 1, . . . , N . Applying then the Taylor expansion, it follows from formula (11) the asymptotic representations

T (ε) (u; Ω0) = T (u; Ω0) + R1 (ε, u; Ω0) ,

|R1 (ε, u; Ω0) | ≤ O (ε) r1
(‖u‖1,Ω0

)
,

(13)

and

T (ε) (u; Ω0) = T (u; Ω0) + ε T ′ (V, u; Ω0) + R2 (ε, u; Ω0) ,

|R2 (ε, u; Ω0) | ≤ o(ε)r2
(‖u‖1,Ω0

)
,

(14)

with continuous functionals R1, R2 and positive quadratic functions r1, r2, respectively. The functional T ′ in expansion
(14) has the form:

T ′ (V, u; Ω0) =
∫

Ω0

[
0.5 div(V cijkl)εkl(u)εij(u) − σij(u)Eij(∂V/∂x; u)

]
dx

−
∫

Ω0

div(V fi)ui dx +
∫

Γ0

divΓ0(V )g
(
�u� ν0) ds . (15)

Using Theorem 4, we substitute v = 0 in inequality (12) and can evaluate
∫

Γ0

J(ε)|Ψ(ε)ν0|g(0) ds ≥ T (ε) (uε ◦ Φ(ε); Ω0)

≥ 0.5
∫

Ω0

σij (uε ◦ Φ(ε)) εij (uε ◦ Φ(ε)) dx −
∫

Ω0

fi (uε ◦ Φ(ε))i dx − O(ε)r1
(‖uε ◦ Φ(ε)‖1,Ω0

)
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in view of expansion (13). Therefore, for ε small enough this gets the uniform estimate

‖uε ◦ Φ(ε)‖1,Ω0 ≤ U0 . (16)

Due to (16), there exists a subsequence of solutions, still marked by ε, such that

uε ◦ Φ(ε) → u0 weakly in H̃1(Ω0) as ε → 0 (17)

with the limit function u0 ∈ K0. Using the weakly lower semicontinuity property T , weak convergence (17), and expansion
(13), we can pass to the limit in (12) in the sense

T (v; Ω0) = lim T (ε) (v; Ω0) ≥ lim inf T (ε) (uε ◦ Φ(ε); Ω0)

≥ lim inf T (uε ◦ Φ(ε); Ω0) − lim O(ε)r1 (U0) ≥ T
(
u0; Ω0

)

for any v ∈ K0. Therefore, the limit function u0 ∈ K0 is a solution of the minimization problem (4). Substituting v = u0

in inequality (12) and applying expansion (13) again, we deduce that

0.5
∫

Ω0

σij

(
uε ◦ Φ(ε) − u0) εij

(
uε ◦ Φ(ε) − u0) dx

≤ −
∫

Ω0

σij

(
u0) εij

(
uε ◦ Φ(ε) − u0) dx +

∫

Ω0

fi

(
uε ◦ Φ(ε) − u0)

i
dx

−
∫

Γ0

[
g

(
�uε ◦ Φ(ε)� ν0) − g

(�
u0� ν0)] ds + 2O(ε)r1 (U0) → 0

as ε → 0 due to the weak convergence (17). Therefore,

uε ◦ Φ(ε) → u0 strongly in H̃1 (Ω0) as ε → 0 . (18)

Finally, we find the derivative of the total potential energy, given by (9), with respect to the perturbation parameter ε. Let
us substitute v = u0 in inequality (12) and use expansion (14) to evaluate the following difference from above:

T (ε) (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

) ≤ T (ε)
(
u0; Ω0

) − T
(
u0; Ω0

)

= εT ′ (V, u0; Ω0
)

+ R2
(
ε, u0; Ω0

)
. (19)

Similarly, we substitute v = uε ◦ Φ(ε) in (4) and use (14) for the estimation of the same difference from below:

T (ε) (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

) ≥ T (ε) (uε ◦ Φ(ε); Ω0) − T (uε ◦ Φ(ε); Ω0)

= εT ′ (V, uε ◦ Φ(ε); Ω0) + R2 (ε, uε ◦ Φ(ε); Ω0) . (20)

Dividing last two inequalities with ε and passing to the limit as ε → 0, due to the uniform estimate (16), expansion (14),
and strong convergence (18) we conclude that

lim
ε→0

ε−1[T (ε) (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

)]
= T ′ (V, u0; Ω0

)
.

Because T (ε)(uε ◦ Φ(ε); Ω0) = T (uε; Ωε), the following theorem holds.

Theorem 5. Under assumptions of Theorem 4, the following limit exists

lim
ε→0

ε−1[T (uε; Ωε) − T
(
u0; Ω0

)]
= T ′ (V, u0; Ω0

)
. (21)

From Theorem 5 we can obtain the following consequence. Inequalities (19) and (20) together with formula (21) imply that

lim
ε→0

ε−1[T (ε) (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

)]
= lim

ε→0
ε−1[T (ε)

(
u0; Ω0

) − T
(
u0; Ω0

)]

= lim
ε→0

ε−1[T (ε) (uε ◦ Φ(ε); Ω0) − T (uε ◦ Φ(ε); Ω0)
]
.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



248 V.A. Kovtunenko: Nonconvex problem for crack with nonpenetration

From the following evident decompositions

T (ε) (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

)
= T (ε) (uε ◦ Φ(ε); Ω0) − T (ε)

(
u0; Ω0

)
+ T (ε)

(
u0; Ω0

) − T
(
u0; Ω0

)

= T (ε) (uε ◦ Φ(ε); Ω0) − T (uε ◦ Φ(ε); Ω0) + T (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

)

it follows two additional relations

lim
ε→0

ε−1[T (ε) (uε ◦ Φ(ε); Ω0) − T (ε)
(
u0; Ω0

)]
= 0 ,

lim
ε→0

ε−1[T (uε ◦ Φ(ε); Ω0) − T
(
u0; Ω0

)]
= 0.

3.3 Example of planar crack

For sufficiently regular g let us consider the planar crack Γ0 with the normal ν0 = (0, 0, 1), which lies on the plane x3 = 0
inside the domain Ω ⊂ R3. In the polar coordinates (r, φ) with x1 = r cos φ, x2 = r sin φ, we describe the crack by the
function R ∈ C0,1([0, 2π]), R > 0, R(0) = R(2π), as

Γ0 = {r < R(φ) , 0 ≤ φ ≤ 2π , x3 = 0} .

Let us choose the perturbation function h ∈ W 1,∞(0, 2π), h(0) = h(2π). The perturbed crack Γε on the same plane x3 = 0
with νε = ν0 is considered as

Γε = {r < R(φ) + εh(φ) , 0 ≤ φ ≤ 2π , x3 = 0} ⊂ Ω .

Let η ∈ W 1,∞(R3) be a cut-off function with η = 1 near the crack front {r = R(φ), 0 ≤ φ ≤ 2π, x3 = 0}, and
supp(η) ⊂ Ω, 0 
∈ supp(η). Such η can be constructed with the support in a tor surrounding the crack front.

The perturbation Φ(ε) constructed in the following way

Φ(ε) = (x1 + εhθ1, x2 + εhθ2, x3) , θα = xαθ, α = 1, 2 , θ = η/r ,

transforms Γ0 onto Γε, and Ω0 = Ω \ Γ0 onto Ωε = Ω \ Γε. For the velocity vector V , in this case V = (hθ1, hθ2, 0), due
to φ,αxα = 0 we can calculate

divΓ0(V ) = div(V ) = hθα,α ,

div(V f) = h(θαf),α ,

Eij(∂V/∂x; u) = 0.5(ui,α(hθα),j + uj,α(hθα),i) , i, j = 1, 2, 3.

Therefore, formula (15) and Theorem 5 give us the derivative of the total potential energy functional T in the form:

T ′(V, u0; Ω0) = 0.5
∫

Ω0

[
h(θαcijkl),αεkl

(
u0) εij

(
u0)

− σij

(
u0) (u0

i,α(hθα),j + u0
j,α(hθα),i)

]
dx −

∫

Ω0

h(θαfi),αu0
i dx +

∫

Γ0

hθα,αg
(�

u0
3
�)

ds

for any admissible function h of the crack front perturbation.

4 Advance of rectilinear crack

In this part we connect the results of the previous section to the classical J-integral for rectilinear cracks, which is related to
the crack advance in fracture mechanics.

We assume the sufficient regularity for g. Let Ω ⊂ R2, the crack be rectilinear with the normal ν0 = (0, 1), namely,

Γ0 = {0 < x1 < l , x2 = 0} ⊂ Ω , l > 0 ,

and the unperturbed domain be Ω0 = Ω \ Γ0. Here parameter l means the crack length. Let χ ∈ W 1,∞(R2) be a cut-off
function such that χ = 1 in a small neighborhood B of the crack tip (l, 0) and B ⊂ supp(χ) ⊂ B1 ⊂ Ω with 0 
∈ B1.
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We denote by n = (n1, n2) the unit outward normal vector to ∂B, and D = B1 \ B. Let us apply the perturbation
Φ(ε)(x) = (x1 + εχ(x), x2), x ∈ R2, with the velocity vector V = (χ, 0). It transforms Ω0 onto the domain Ωε = Ω \ Γε

with the crack

Γε = {0 < x1 < l + ε , x2 = 0} ⊂ Ω

of the perturbed length l + ε. The chosen normal νε = (0, 1) coincides with ν0, then condition (8) is fulfilled.
By Theorem 5, in this case from formula (15) we obtain the derivative of the total potential energy in the form

T ′ (V, u0; Ω0
)

= 0.5
∫

Ω0

[
(χcijkl),1εkl

(
u0) εij

(
u0)

− σij

(
u0) (u0

i,1χ,j + u0
j,1χ,i)

]
dx −

∫

Ω0

(χfi),1u
0
i dx +

∫

Γ0

χ,1g
(�

u0
2
�)

ds . (22)

The solution u0 ∈ K0 of problem (5) possesses the additional H2-regularity outside of neighborhoods of the crack tips, i.e.
u0 ∈ H2(D). Therefore, in Ω0 \ B we can integrate by parts the corresponding integrals in expression (22). It gets

T ′
(
V, u0; Ω0 \ B

)
=

∫

Ω0\B

χu0
i,1

(
σij,j

(
u0) + fi

)
dx +

∫

∂B

fiu
0
i n1 ds −

∫

∂B

σij

(
u0)

[
0.5εij

(
u0) n1 − u0

i,1nj

]
ds

+
∫

Γ0∩D

χ,1g
(�

u0
2
�)

ds +
∫

Γ0∩D

χ
�
σi2

(
u0) u0

i,1

�
ds . (23)

Now let us use the relations (6). In our case they take the form:

−σij,j

(
u0) = fi , i = 1, 2 , (24)

inside the domain Ω0, and

�
σi2

(
u0)� = 0 , i = 1, 2 , σ12

(
u0) = 0 , (25)

�
u0

2
� ≥ 0 , σ22

(
u0) − g′ (�u0

2
�) ≤ 0 ,

(
σ22

(
u0) − g′ (�u0

2
�)) �

u0
2
�

= 0 (26)

at the crack Γ0. By the equilibrium eqs. (24), the first integral in formula (23) is zero. By relations (25) for the stresses at
the crack, the last two integrals in (23) are equal to

I =
∫

Γ0∩D

(
χ,1g

(�
u0

2
�)

+ χσ22
(
u0)

�
u0

2,1

�)
ds .

We can integrate I by parts along Γ0 ∩ D, it gets

I =
∫

Γ0∩D

χ
�
u0

2,1

� (
σ22

(
u0) − g′ (�u0

2
�))

ds + g
(�

u0
2(∂B ∩ Γ0)

�)
.

In view of relations (26) held at Γ0 ∩ D, we have either
�
u0

2
�

= 0 and then
�
u0

2,1
�

= 0, or
�
u0

2
�

> 0 and then σ22(u0) −
g′(

�
u0

2
�
) = 0. Therefore, I = g

(�
u0

2(∂B ∩ Γ0)
�)

and

T ′
(
V, u0; Ω0 \ B

)
= −

∫

∂B

σij

(
u0)

[
0.5εij

(
u0) n1 − u0

i,1nj

]
ds +

∫

∂B

fiu
0
i n1 ds + g

(�
u0

2(∂B ∩ Γ0)
�)

.

On the other hand, in B we have χ = 1 and

T ′
(
V, u0; B \ Γ0

)
= 0.5

∫

B\Γ0

(
cijkl,1εkl

(
u0) εij

(
u0) + fiu

0
i,1

)
dx −

∫

∂B

fiu
0
i n1 ds .
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Last two formulas together give us the final representation

T ′ (V, u0; Ω0
)

= 0.5
∫

B\Γ0

(
cijkl,1εkl

(
u0) εij

(
u0) + fiu

0
i,1

)
dx

−
∫

∂B

σij

(
u0)

[
0.5εij

(
u0) n1 − u0

i,1nj

]
ds + g

(�
u0

2(∂B ∩ Γ0)
�)

. (27)

The integral over B \ Γ0 can be omitted in (27) without loss of generality by assuming that {cijkl,1} = 0 and f = 0 in a
neighborhood of the crack tip. Since the neighborhood B is arbitrary, the unique derivative expressed as

T ′ (V, u0; Ω0
)

= −
∫

∂B

σij

(
u0)

[
0.5εij

(
u0) n1 − u0

i,1nj

]
ds + g

(�
u0

2(∂B ∩ Γ0)
�)

(28)

is independent of the closed path ∂B surrounding the crack tip. The integral over ∂B here coincides with the well-known
in classical fracture mechanics Cherepanov-Rice integral:

J =
∫

∂B

σij

(
u0)

[
0.5εij

(
u0) n1 − u0

i,1nj

]
ds . (29)

The term g
(�

u0
2(∂B ∩ Γ0)

�)
expresses some δ-function at a crack. For comparison, the Griffith hypothesis g = g0 leads to

the path-independence property of the Cherepanov-Rice integral J given in (29). In this relation the surface energy density
occurs as an additional term to J in (28).

The derivative T ′ is useful for the criterions of crack advance adopted in mechanics. Thus, for g = g0 the necessary
condition of extrema of T with respect to the crack length parameter l implies T ′ = 0 and coincides with the Griffith fracture
criterion −J + g0 = 0. In the general case it should be modified according to (28).

Let us make a remark on the sign of derivative in this case. For ε ≥ 0 we have Γ0 ⊆ Γε, Ωε ⊆ Ω0, and H̃1(Ω0) ⊆ H̃1(Ωε)
in view of Φ(ε)(Γ) = Γ, because of χ = 0 near Γ. Then K0 ⊆ Kε, and we can substitute u0 ∈ K0 as an element of the
set Kε into inequality (10) as a test function. It gets T (uε; Ωε) ≤ T (u0; Ωε). Due to

�
u0

�
= 0 at Γε \ Γ0 we obtain

T (u0; Ωε) = T (u0; Ω0) +
∫

Γε\Γ0

g(0) ds. Together with the previous inequality this implies that

T (uε; Ωε) − T
(
u0; Ω0

) ≤ g(0) meas(Γε \ Γ0) .

If g(0) = 0, then T (uε; Ωε) is a nonincreasing function of parameter ε, and T ′(V, u0; Ω0) ≤ 0 by Theorem 5. If g = g0,
by the same arguments we deduce that T ′(V, u0; Ω0) ≤ g0, then the derivative can be negative as well as positive. In the
latter case a minima of T may be attained at the extrema point where T ′ = 0, and the former case g(0) = 0 implies an
unstable extrema.

5 Conclusion

The account of surface energies depending on the crack opening results in nonconvex constrained minimization of the total
potential energy subject to nonpenetration conditions between the crack surfaces. The optimization problem is well posed,
and its optimality conditions are satisfied for suitably regular functions describing the surface energy density. Formula for
the shape derivative of the energy with respect to crack perturbations is derived and applied for planar and rectilinear cracks.
For the rectilinear crack it involves the surface energy density as an additional term to the J-integral, thus influencing to the
crack advance.
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