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Abstract: The influence of particle size distribution in platinum catalysts on the aging of PEM fuel
cells described by Holby–Morgan electrochemical degradation model is under investigation. The non-
diffusive model simulates mechanisms of particle drop by Pt dissolution and particle growth through
Pt ion deposition. Without spatial dependence, the number of differential equations can be reduced
using the first integral of the system. For an accelerated stress test, a non-symmetric square-wave
potential profile is applied according to the European harmonized protocol. The normal particle size
distribution determined by two probability parameters of the expectation and the standard deviation
is represented within finite groups. Numerical solution of the nonlinear diffusion equation justifies
dispersion for small and narrowing for large distribution means, decrease or increase in amplitude,
and movement of Pt particle diameters towards small sizes, which is faster for small particles.

Keywords: polymer electrolyte membrane fuel cell; catalyst on carbon; platinum degradation;
accelerated stress test; particle diameter distribution
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1. Introduction

The transition from fossil fuels such as gasoline, diesel, and coal toward sustainable en-
ergy aims to minimize environmental impact by reducing global greenhouse gas emissions
that cause climate changes. Hydrogen is a promising alternative carrier for chemical energy
within emerging renewable energy sources. Against conventional hydrogen that is gener-
ated through natural gas, membrane-based water electrolysis results in green hydrogen,
which is considered as the most advanced technology for sustainability. Environmental
impact, efficiency, and costs are the key factors influencing hydrogen production solutions
in all kinds of stationary, portable, and mobile applications. Readers can find a com-
pendium of hydrogen energy in the monographs by Ball et al. [1], Barbir [2], Hacker and
Mitsushima [3], Eikerling and Kulikovsky [4], Kulikovsky [5] and current trends of hydro-
gen engineering and future developments of (bio-) membrane technologies in the collection
by Basile et al. [6]. Guerrero-Rodríguez et al. [7] studied efficiency trends and long-term
viability of powered hydrogen production involving data collection, environmental impact,
and production costs.

Fuel cells are governed by the same principle as electrolyzers and have promising
potential to provide clean energy efficiently. FCs are classified primarily by the kind of
electrolyte they use, chemical reactions that occur within the cell, and operating conditions.
The main types of electrolyte-based fuel cells include the polymer electrolyte membrane
fuel cell (PEMFC). However, their progress is slowed down by some critical challenges
which include high manufacturing costs, the relatively low energy density of hydrogen,
fuel cell durability issues, and complicated hydrogen storage and transportation. Another
significant issue is reduction in Pt degradation in the catalyst, which is essential to lower
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the costs of fuel cells since platinum is a precious metal of high cost. Researchers are
intensively working upon mitigation strategies to reduce degradation in the course of fuel
cell operation, see Gohar et al. [8], Padgett et al. [9]. Simulation of complex behavior in
the membrane electrode assembly (MEA) stack unit can help to optimize its performance
and durability by adjusting parameters and operating conditions in real time, for example,
by the voltage fluctuations studied in Ding et al. [10]. Tian et al. [11] summarized the recent
progress in the optimization and new mechanisms of catalysts.

Fuel cells comprise together several key components that generate electricity, such
as electrodes (anode and cathode), gas diffusion layer (GDL), membrane (electrolyte),
and catalyst layer (CL) as illustrated in Figure 1. Bipolar plates serve as the anode to one
cell and the cathode to the adjacent cell. PEMs are composed of polymers with sulfonic
groups that aid proton transport from anode to cathode and separate fuel and oxidant
gasses. The anode and cathode CLs are placed on two sides of the PEM and usually
consist of platinum nanoparticles supported by carbon possessing waste surface area. They
comprise a three-layer MEA also known as a catalyst-coated membrane (CCM), and a
five-layer MEA when integrated together with the GDL. The performance of the PEMFCs
is significantly affected by the electrochemical activity of the platinum-based catalyst layers
serving as materials that enhance the rate of electrochemical reactions at the electrodes.
Protons can pass through the electrocatalyst layers owing to an added ionomer. Among
various electrochemical processes, the hydrogen oxidation reaction (HOR) at the anode
and the oxygen reduction reaction (ORR) at the cathode facilitate conversion of hydrogen
fuel into electrical energy. The review by Jithul et al. [12] examines comprehensively the
role of ORR electrocatalysts in fuel cell efficiency.
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Figure 1. Scheme of two-fuel-cell MEA stack: end plate—anode—GDL—CL—PEM—CL—GDL—bi-polar
plate—GDL—CL—PEM—CL—GDL—cathode—end plate.

Within the theory of electrochemical systems, coupled Nernst–Planck–Poisson–Navier–
Stokes equations were applied in Fuhrmann [13] for thermodynamically consistent model-
ing of isothermal and incompressible ionic mixtures in mechanical equilibrium. Numerical
solution of the nonlinear diffusion system ensuring a non-negative and non-oscillatory solu-
tion was developed based on two-point flux finite volume methods on unstructured triangu-
lar meshes. The numerical procedure was used for semiconductor simulation taking into ac-
count finite ion size and solvation effects. Addressing relevant issues, we refer to Fellner and
Kovtunenko [14], González-Granada and Kovtunenko [15], Kovtunenko and Zubkova [16]
for electrochemical modeling with Poisson–Nernst–Planck equations, to Alekseev and
Spivak [17] for temperature-dependent coupling, and to González-Durán et al. [18] for
computational fluid dynamics. In the monographs of Khludnev and Kovtunenko [19], one
can find variational models suitable for mechanical degradation and in Efendiev [20] the ab-
stract theory of nonlinear evolution equations. For statistical-based and machine-learning
methods see Khajavian and Haseli [21], Khatun et al. [22].

The performance and durability of PMFCs is strongly correlated with parameters like
the platinum particle size. Sevjidsuren et al. [23] studied and compared the structure and
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morphology of support materials for electrocatalysts and demonstrated that the carbon
support affects the electrode layer and catalyst characteristics such as platinum particle size
and dispersion. Transmission electron microscopy (TEM) images show that Pt particle size
distribution (PSD) is not homogeneous on the support and particles tend to agglomerate,
which is called Ostwald ripening (see [24]) because larger particles are energetically more
stable. Not only Pt/C but also nano-structures, including carbon nano-tubes (CNTs) are
widely used as support materials. Mensharapov et al. [25] estimated the effect of CNT-
based support on the resulting size distribution of Pt nanoparticles. To determine the
platinum PSD they employed the semi-empirical model based on Sakurai et al. [26] to
describe the Ostwald ripening mechanism. Growth of large particles owing to size re-
distribution can be modeled by introducing varied particle size groups to represent a nearly
continuous particle size distribution.

In the literature, there are a number of models of catalyst degradation describing
various individual mechanisms; see the overview by Jahnke et al. [27]. The coupling of
different degradation processes is crucial for understanding the fuel cell behavior in whole.
Darling and Meyer [28] were the first who developed kinetic rate equations for the descrip-
tion of electrochemical mechanisms of Pt dissolution and Pt oxide film formation. Then,
oxide chemical dissolution was canceled by Holby and Morgan [29] since it was negligible
compared to the two others. The authors used a Butler–Volmer equation accounting for
the Gibbs–Thomson energy and the coupled mechanisms of Ostwald ripening, together
with the Pt band formation in the membrane. Later Holby et al. [30] and Li et al. [31]
refined the catalyst modeling with PSD of many finite sizes. The simulation of PSD was in
good qualitative agreement with the experimental data. The Holby–Morgan model was
investigated with respect to various industrial protocols of the cyclic voltammetry (CV) of
square-waves (SWs) and triangle-waves (TWs) in Kovtunenko and Karpenko-Jereb [32].
Further, we employed the EU harmonized Fuel Cell and Hydrogen Joint Undertaking (FCH
JU2) non-symmetric SW. Local sensitivity analysis for lifetime prognosis of the catalyst after
accelerated stress test (AST) was utilized in Kovtunenko and Karpenko-Jereb [33], and fea-
sible domains for operating conditions and model parameters of Pt/C electrocatalysts in
PEMFCs were derived in Karpenko-Jereb and Kovtunenko [34] and Kovtunenko [35–37].

In the present paper, we analyze the impact of AST on electrochemical degradation in
the Holby–Morgan model with respect to changes in amplitude and dispersion of the initial
PSD. For computer simulation, a continuous normal distribution of Pt particle diameters is
approximated by finite size groups. Without ion diffusion, theoretically we obtain the fist
integral of the system reducing the number of equations to solve. Numerically, we justify
both mechanisms: the shrinking of small Pt particles through Pt dissolution, as well as the
growing of large particles by Pt ion deposition. The change in particle diameter distribution
in catalysts is accompanied by loss in electrochemical surface area (ECSA) and Pt mass.

2. Materials and Methods

Let us consider the normal distribution of platinum particle diameter d > 0, which is
determined by two parameters of expectation d̃ > 0 (which coincide with the mean) and
standard deviation σ > 0. The probability density function:

ϕ(d) =
1

σ
√

2π
e−(d−d̃)2/(2σ2) (1)

is depicted in the range d ∈ (1.5, 5.5) (nm) for d̃ = 3 and σ = 0.5 in Figure 2a. In Figure 2b,
the cumulative distribution function corresponding to (1) is drawn:

Φ(d) =
1√
2π

∫ d

−∞
e−s2/2 ds. (2)
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Figure 2. Normal distribution for [d̃ = 3, σ = 0.5]: (a) Probability density function ϕ. (b) Cumulative
distribution function Φ. (c) Particle size groups ϕ1, . . . , ϕP for P = 8.

Splitting the interval of particle diameters into sub-intervals between finite number
P > 0 of equidistant points di = di−1 + σ which are symmetric with respect to the mean d̃:

d1 = d̃ − σ(P − 1)/2, . . . , dP = d1 + σ(P − 1) = d̃ + σ(P − 1)/2, (3)

we partition 1 = ϕ1 + . . . + ϕP by finite particle size groups ϕ1, . . . , ϕP with piecewise-
constant probabilities which are defined according to (2) and (3) as follows:{

ϕ1 = Φ(d1) for d < d1, ϕP = 1 − Φ(dP−1) for dP−1 ≤ d,
ϕi = Φ(di)− Φ(di−1) for di−1 ≤ d < di, i = 2, . . . , P − 1.

(4)

The probability of eight particle size groups from (4) for d̃ = 3 and σ = 0.5 are
drawn with bars in Figure 2c and gathered in Table 1. Values ϕi imply the probability
of diameters lying within sub-intervals [0, d1 + σ/2), [di − σ/2, di + σ/2) for i = 2, . . . , 7,
and [d8 − σ/2, ∞) such that their sum equals the one. In computer simulation, we vary
parameters d̃ and σ, which satisfies the weight distribution ϕ1, . . . , ϕ8 from Table 1.

Table 1. Discrete probabilities of P = 8 particle size groups ϕ1, . . . , ϕ8 for [d̃ = 3, σ = 0.5].

Particle Size Range Probability

d1 = 1.25 d < d1 + σ/2 ϕ1 = 0.0013
d2 = 1.75 d2 − σ/2 ≤ d < d2 + σ/2 ϕ2 = 0.0214
d3 = 2.25 d3 − σ/2 ≤ d < d3 + σ/2 ϕ3 = 0.1359
d4 = 2.75 d4 − σ/2 ≤ d < d4 + σ/2 ϕ4 = 0.3413
d5 = 3.25 d5 − σ/2 ≤ d < d5 + σ/2 ϕ5 = 0.3413
d6 = 3.75 d6 − σ/2 ≤ d < d6 + σ/2 ϕ6 = 0.1359
d7 = 4.25 d7 − σ/2 ≤ d < d7 + σ/2 ϕ7 = 0.0214
d8 = 4.75 d8 − σ/2 ≤ d ϕ8 = 0.0013

We start with a non-diffusive Holby–Morgan model in time t ∈ [0, tEoL) for some end
of life (EoL) tEoL > 0 (s). Let a potential difference V (V) vary according to the FCH JU2
non-symmetric SW protocol of AST given by the piecewise-constant periodic function:

V(t) =

{
0.6 for t ∈ (k − 1)τ + (0, 10)
0.9 for t ∈ (k − 1)τ + (10, 40)

, k = 1, · · · , #k, (5)

where #k = tEoL/τ stands for the number of cycles with period τ = 40 (s). Introduce
the space variable x ∈ [0, L] along the CL thickness L = 10 (µm). We look for the Pt ion



Technologies 2024, 12, 202 5 of 14

concentration c (mol/cm3) taken within the distribution of the Pt particle diameters di (nm)
weighted by ϕi and the ratios of Pt oxide coverage θi (1) such that

c(t) > 0, d1(t), . . . , dP(t) > 0, θ1(t), . . . , θP(t) ∈ (0, 1),

which solves the coupled system of nonlinear differential (2P + 1)-equations:

ε
dc
dt

=
πNPt

2VPt

P

∑
i=1

ϕid2
i rdissol(c, di, θi), (6)

d(di)

dt
=− Ω rdissol(c, di, θi), i = 1, . . . , P, (7)

d
dt

[
ln(θid2

i )
]
=

1
Γθi

roxide(θi), i = 1, . . . , P. (8)

The Butler–Volmer equations describe the reaction rate for Pt ion dissolution (mol/(cm2 s)):

rdissol(c, di, θi) = Γ(1 − θi)
(

ν1 exp
[
−

H1,fit + (1 − β1)H1(di, θi)

RT
]

− ν2
c

cref
exp

[−H1,fit + β1H1(di, θi)

RT
])

,

where F is the Faraday constant and R is the gas constant; the molar enthalpy difference
for dissolution (J/mol) is defined by

H1(di, θi) = nF(Ueq − V)− 4Ω
di

(
γ0(θi)− Γn2FθiV

)
,

and the surface tension difference (J/cm2) is

γ0(θi) = γ + ΓRTθi

(
ln
[ν⋆2

ν⋆1
10−2pH]

+
2n2FUfit + ωθi

2RT
+ ln

( θi
2
)
+

2 − θi
θi

ln
(
1 − θi

2
))

;

and the reaction rate for the Pt oxide coverage (mol/(cm2 s)) is:

roxide(θi) = Γ
(

ν⋆1
(
1 − θi

2
)

exp
[
−

H2,fit + λθi + (1 − β2)H2(θi)

RT
]

− ν⋆2 10−2pH exp
[−H2,fit − λθi + β2H2(θi)

RT
])

,

where the molar enthalpy difference for oxidation (J/mol) is:

H2(θi) = n2F(Ufit − V) + ωθi.

The first-order differential Equations (6)–(8) are endowed with the initial conditions:

c(0) = 0, di(0) = d0
i , θi(0) = 0, (9)

where an initial PSD d0
1, . . . , d0

P > 0 is prescribed at t = 0.
After multiplication of (6) by Ω and (7) by πNPt/(2VPt)ϕid2

i , using summation of
the result over i = 1, . . . , P we cancel the right-hand side and arrive at the homogeneous
ordinary differential equation (ODE):

d
dt

(
Ωεc +

πNPt

6VPt

P

∑
i=1

ϕid3
i
)
= 0 for t ∈ (0, tEoL). (10)
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The solution of (10) using initial values from (9) implies the first integral of the system:

Ωεc =
πNPt

6VPt

P

∑
i=1

ϕi
(
(d0

i )
3 − d3

i
)
. (11)

Inserting c from (11) into (7), the ODE system is reduced to 2P-equations for unknown
variables d1(t), . . . , dP(t) and θ1(t), . . . , θP(t).

The Pt nanoparticles are assumed to be hemispheric with the volume VPt = πd3
Pt/6

and the particle number NPt = pPt/(LρPt), where Pt particle density ρPt = 21.45 (g/cm3)
and Pt particle loading pPt = 4 × 10−4 (g/cm2). The reference Pt particle diameter dPt (cm)
is varied with the expectation d̃. In Table 2, we assemble the material and fitting parameters
for Pt ion formation and diffusion and for Pt oxide formation which are employed in the
Holby–Morgan model. The potential of hydrogen pH = 0 and Pt/C volume fraction
ε = 0.02 are set. The reference parameters for catalyst are taken from the literature [28–31].
In the previous works [34,36,37], we considered the influence of model parameters and
cycling operating conditions on the simulation result. For instance, Pt dissolution was
raised much with either an increase in the temperature or Pt/C volume fraction or with
a decrease in pH, whereas the impact of Pt particle loading was less essential. Bridging
the gap between modeling and the real test of commercial electrocatalysts is discussed in
Cherevko [38].

Table 2. Parameters for Pt ion formation and diffusion and for Pt oxide formation.

Symbol Value Units Description

ν1 1 × 104 Hz dissolution attempt frequency
ν2 8 × 105 Hz backward dissolution rate factor
β1 0.5 Butler transfer coefficient for Pt dissolution
n 2 electrons transferred during Pt dissolution

Ueq 1.118 V Pt dissolution bulk equilibrium voltage
Ω 9.09 cm3/mol molar volume of Pt
γ 2.4 × 10−4 J/cm2 Pt [1 1 1] surface tension

cref 1 mol/cm3 reference Pt ion concentration
H1,fit 4.4 × 104 J/mol partial molar Pt dissolution activation enthalpy
DPt 1 × 10−6 cm2/s diffusion coefficient of Pt ion in the membrane
ν⋆1 1 × 104 Hz forward Pt oxide formation rate constant
ν⋆2 2 × 10−2 Hz backward Pt oxide formation rate constant
Γ 2.2 × 10−9 mol/cm2 Pt surface site density
β2 0.5 Butler transfer coefficient for PtO formation
n2 2 electrons transferred during Pt oxide formation

Ufit 0.8 V Pt oxide formation bulk equilibrium voltage
λ 2 × 104 J/mol Pt oxide dependent kinetic barrier constant
ω 5 × 104 J/mol Pt oxide–oxide interaction energy

H2,fit 1.2 × 104 J/mol partial molar oxide formation activation enthalpy

For numerical solution of the Cauchy problem (6)–(9), we develop a variable time-step
approach based on the Runge–Kutta–Fehlberg method (RKF45). The basic coarse time step
∆t = 10−2 (s) is refined locally to 10−4 (s) within the (−∆t, ∆t)-neighborhood of points
t = (k− 1)τ + 10, k = 1, 2, · · · , #k, where the potential V in (4) has lift-off. It takes 4037 time
steps within each cycle to solve for (2P + 1)-unknowns. Readers can find the details in
refs. [33,34].

3. Results

Let P = 8 with normal probabilities ϕ1, . . . , ϕ8 and the initial distribution d0
1, . . . , d0

8
taken from Table 1 for [d̃ = 3, σ = 0.5] (nm). We present the corresponding numerical solu-
tion of (6)–(9). In Figure 3a the time-evolution of Pt particle diameter ratios d1/d0

1, . . . , d8/d0
8

are depicted starting from the one at t = 0 during #k = 1000 potential cycles (5) correspond-
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ing to CV time tEoL = 11.1̄ (h). Each solid line describes the dynamics of the individual
size group within the PSD. The small particles less than 4.5 (nm) are reduced by platinum
dissolution, whereas the larger particles grow by Pt ion deposition. By this, the initial PSD
is not changing during potential cycling without ion diffusion, as we can observe in the
center bar-plot Figure 3b. In Figure 3c, the ECSA ratio with respect to the reference active
area is depicted with solid lines:

E(t) = ϕ1

(d1(t)
d0

1

)2
+ . . . + ϕP

(dP(t)
d0

P

)2
, E(0) = 1,

and the weighted relative Pt mass ratio with respect to the reference one:

mPt(t) = ϕ1

(d1(t)
d0

1

)3
+ . . . + ϕP

(dP(t)
d0

P

)3
, mPt(0) = 1.

Both quantities E and mPt decrease by AST cycling, thus justifying degradation of the
platinum catalyst.
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Figure 3. Non-diffusive model for [d̃ = 3, σ = 0.5]: (a) Pt particle diameter ratio di/d0
i versus cycles.

(b) Non-change of PSD. (c) Ratio E of ECSA and mPt of Pt mass loss versus cycles.

Now we take into account the diffusion of Pt ion particles and for x ∈ [0, L], we look
for the space-dependent variables:

c(t, x) > 0, d1(t, x), . . . , dP(t, x) > 0, θ1(t, x), . . . , θP(t, x) ∈ (0, 1)

satisfying instead of ODE (6) the nonlinear diffusion equation:

ε
∂c
∂t

− ε3/2DPt
∂2c
∂x2 =

πNPt

2VPt

P

∑
i=1

ϕid2
i rdissol(c, di, θi) (12)

endowed with mixed boundary conditions:

∂c
∂x

(t, 0) = 0, c(t, L) = 0 for t ∈ (0, tEoL), (13)

which imply no flux at the CL left end x = 0 where the catalyst layer matches the GDL,
and perfectly absorbs the boundary with the PEM at the CL right end x = L. For numerical
solution of the partial differential equation (PDE) (12) with boundary conditions (13),
we apply the implicit–explicit scheme IMEX2 from [33,34]. On the uniform mesh size
∆x = 1 (µm), the algebraic equation after discretization has 11(2P + 1) degrees of freedom
(DOFs) at each time. This results in 754919 DOFs at each cycle for P = 8.

Accounting for diffusion, we present the numerical solution of the Holby–Morgan
model (7), (8), (12) under initial (9) and boundary (13) conditions for the initial distribution
[d̃ = 2.65, σ = 0.002] (nm) during 6.6̄ (min) CV time. In Figure 4a, the platinum ion
concentration c(t, x) (mol/cm3) is depicted versus #k = 10 voltage cycles across the catalyst
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thickness x ∈ (0, 10) (µm). It builds the surface which behaves periodically by cycling.
To observe changes in PSD at the CL end points, in two bar plots in Figure 4, we show
evolution with respect to the cycles of probability of the eight particle size groups at
x = 0, 10. There is no change of the initial partial size distribution on the GDL-CL interface
x = 0 (b), whereas PSD changes at the 10th cycle on the CL-PEM interface x = 10 (c).

Figure 4. Diffusive model for [d̃ = 2.65, σ = 0.002]: (a) Pt ion concentration c(t, x) versus cycles
across CL. (b) Non-change of PSD at interface with GDL. (c) Change of PSD at interface with PEM.

The other components of the solution depicted in Figure 4a are shown in
Figures 5 and 6 below. In the eight plots of Figure 5, the surfaces corresponding Pt particle
size groups d1, . . . , d8 are presented, where the diameters are depicted in the same range
across the catalyst thickness 10 (µm) for 10 potential cycles. We can observe that the Pt
ion diffusion is non-uniform, decreasing at the membrane interface and increasing when
approaching the interface with the gas diffusion layer, which is confirmed by the result
of Figure 4b,c. From Figure 5, we see small fluctuations by cycling and conclude that Pt
particles of small size decrease more strongly than large particles.

Figure 5. Diffusive model for [d̃ = 2.65, σ = 0.002]: Pt particle diameters d1, . . . , d8.

In the eight plots of Figure 6, the ratio groups of Pt oxide coverage θ1, . . . , θ8 are
depicted in the same coordinates. The groups behave rather similarly: the Pt surface
changes periodically with respect to cycles with the large amplitude from almost 0 to about
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1 across the whole catalyst thickness. In every cycle, the platinum oxide is formed at the
high potential, and the reverse reaction reduces PtO to platinum at the low potential.

Figure 6. Diffusive model for [d̃ = 2.65, σ = 0.002]: Pt oxide coverage ratios θ1, . . . , θ8.

Further, we consider the average over CL values in dependence on time:

d1(t) = meanx∈[0,L]d1(t, x), . . . , dP(t) = meanx∈[0,L]dP(t, x). (14)

In the following Figures 7–10, we aim to discover which changes may happen in the
normal PSD with respect to its shift, dispersion, and amplitude under the periodic cycling
when varying the Pt particle sizes. The average by (14) initial PSD is compared with PSD
when computed after #k = 100, 200, and 300 cycles for the time 3.3̄ (h). With this, the
expectation is varied in the range of d̃ = 2–6 (nm) for the standard deviation σ = 0.002 (nm)
fixed. In Figure 7a–c the respective average PSD is drawn with bar plots for d̃ = 2 (nm).
We conclude with permanent movement to the left of the initial PSD, implying reduction in
all Pt particle sizes. For #k = 300 cycles the movement is over 0.123 (nm), and the initial
size groups disperse from the initial range 0.016 (nm) to 0.022 (nm).
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Figure 7. Change in the average initial PSD for [d̃ = 2, σ = 0.002]: (a) For #k = 100 cycles. (b) For
#k = 200 cycles. (c) For #k = 300 cycles.

The change in the average Pt particle diameters for d̃ = 3 (nm) is presented in
the previous window width of 0.14 (nm). In Figure 8a–c, for larger means, we clearly
observe slowing of the PSD movement over 0.019 (nm) for #k = 300 cycles, and the initial
distribution does not disperse during the reported period of time.
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Figure 8. Change in the average initial PSD for [d̃ = 3, σ = 0.002]: (a) For #k = 100 cycles. (b) For
#k = 200 cycles. (c) For #k = 300 cycles.

In Figure 9a–c the average PSD for the distribution mean d̃ = 4 (nm) is depicted
in window of the width 0.02 (nm). Here PSD movement to the left is over 0.007 (nm)
for #k = 300 cycles. In the opposite of spreading, the initial distribution narrows from
0.016 (nm) to 0.015 (nm). Moreover, we observe the change of distribution amplitude after
#k = 200 cycles: the two size groups with probabilities ϕ3 and ϕ4 are unified together in
one size group of the probability 0.4772 which then moves to the left.

3.986 3.990 3.995 3.999 4.003 4.007
0

0.1

0.2

0.3

0.4

Pt particle diameter (nm)

(a) PSD 

0 cycles
100 cycles

3.986 3.990 3.995 3.999 4.003 4.007
0

0.1

0.2

0.3

0.4

Pt particle diameter (nm)

(b) PSD 

0 cycles
200 cycles

3.986 3.990 3.995 3.999 4.003 4.007
0

0.1

0.2

0.3

0.4

Pt particle diameter (nm)

(c) PSD 

0 cycles
300 cycles

Figure 9. Change in the average initial PSD for [d̃ = 4, σ = 0.002]: (a) For #k = 100 cycles. (b) For
#k = 200 cycles. (c) For #k = 300 cycles.

Finally, for the large Pt particle mean size d̃ = 5 (nm) time-evolution of PSD is shown
in Figure 10a–c of the same window width as before. For #k = 300 potential cycles, the
initial PSD moves to the left over 0.005 (nm) and narrows to 0.0155 (nm). At #k = 200 cycles,
two size groups with probabilities ϕ2 and ϕ3 unify in the larger size group with the higher
probability 0.1573 and then split again. Similar findings can be reported for d̃ = 6 (nm).
Indeed, larger Pt nanoparticles have larger surface areas and therefore are more stable
against agglomeration compared to the smaller particles by the Gibbs–Thompson effect.
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Figure 10. Change in the average initial PSD for [d̃ = 5, σ = 0.002]: (a) For #k = 100 cycles. (b) For
#k = 200 cycles. (c) For #k = 300 cycles.
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4. Discussion

Mathematical modeling supported by computer simulation is very helpful for better
understanding mechanisms of electrochemical degradation which cause aging of PEMFCs.
However, precise theoretical models can be realized only with computationally expensive
algorithms that require a large number of time steps to be computed. With the demand for
low computational costs, data-driven models (DDMs) are often used in systems analysis
and generally do not reach beyond the trained set of parameters. In contrary, determining
optimal design of calibration parameters enables us to reduce efforts for parameterizing
the electrochemical FC models used in observer applications. Applying the design of exper-
iments (DOE) approach, Kravos et al. [39] suggested a reduced quasi-1D electrochemical
model that was appropriate for numerical computation and consistent from the point of
view of thermodynamics. Vrlić et al. [40] measured the power demand from real fuel cell
vehicles built by AVL List GmbH. Using the concept of model predictive control (MPC), the
authors proposed a nonlinear mass-driven 0-D transient fuel cell model with the control
goal to track the power demand. The model was described by the system of first-order
differential equations linearized around a steady-state in the context of MPC.

To increase the performance and lifetime of a fuel cell stack, suitable control and
mitigation strategies are of crucial importance for sustainable technology solutions. The Pt
degradation mechanisms by AST were examined by Bi and Fuller [41] using a bi-modal
catalyst consisting of two distinguishable size populations of 1.5 nm small and 1.75 nm
large particles in catalyst. By simulation without ion diffusion, small particles shrank
through Pt dissolution, and large particles grew with a net gain by Pt ion deposition during
voltage cycling. In Schröder et al. [42], a bi-modal distribution was performed to treat the
depth-dependent degradation mechanism of electrochemical Ostwald ripening. The larger
population increased more in particle size at the expense of the smaller population, where
re-deposition was absent. These results justify that not all degradation necessarily leads
to shrinkage or growth in each of their own-size populations. Kregar and Katrašnik [43]
established the Lifshitz–Slyozov–Wagner equations of coarsening to perform Pt particle
re-distribution in fuel cells by the classical Ostwald ripening that is driven by diffusion.
Kregar et al. [44] obtained linear growth of particles in the case of particle agglomeration
compared to the root function in the case of Ostwald ripening.

5. Conclusions

We have simulated the Holby–Morgan electrochemical degradation model of the aging
of platinum on carbon catalyst in PEMFCs. We tested the normal probability distribution
determined by two parameters of the expectation and the standard deviation, which was
approximated by discrete groups of finite size. From simulation, we report the following
changes in amplitude and dispersion of the initial PSD by cyclic voltammetry. Without
diffusion, platinum nanoparticle size decreases for small particles and increases for Pt
particles larger than 4.5 nm due to re-deposition in CL. Pt ion diffusion is close to constant
near the GDL and drops when reaching the PEM. The probability of each size group either
increases or decreases, and the PSD disperses toward small and narrows toward large
particles. Pt particle sizes are reduced under AST and cause loss in ECSA and relative
platinum mass, which is less for large Pt particle diameters since the latter are more
stable thermodynamically.
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Abbreviations
The following abbreviations are used in this manuscript:

AST accelerated stress test
BoL/EoL beginning/end of life
CNT carbon nanotube
CCM catalyst-coated membrane
CL catalyst layer
CV cyclic voltammetry
DDM data-driven model
DOF degree of freedom
DOE design of experiments
ECSA electrochemical surface area
FC fuel cell
FCH JU2 fuel cell and hydrogen joint undertaking
GDL gas diffusion layer
HOR hydrogen oxidation reaction
LPL/UPL lower/upper potential level
MEA membrane electrode assembly
MPC model predictive control
ODE ordinary differential equation
ORR oxygen reduction reaction
PDE partial differential equation
PSD particle size distribution
Pt/C platinum on carbon
Pt/PtO platinum/platinum oxide
PEMFC polymer electrolyte fuel cell
PEM polymer electrolyte membrane/proton exchange membrane
pH potential of hydrogen
SW/TW square/triangle wave
TEM transmission electron microscopy
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