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Abstract. Motivated by an obstacle problem for a membrane subject to cohesion forces, constrained
minimization problems involving a nonconvex and nondifferentiable objective functional representing the total
potential energy are considered. The associated first-order optimality system leads to a hemivariational in-
equality, which can also be interpreted as a special complementarity problem in function space. Besides
an analytical investigation of first-order optimality, a primal-dual active set solver is introduced. It is asso-
ciated to a limit case of a semismooth Newton method for a regularized version of the underlying problem class.
For the numerical algorithms studied in this paper, global as well as local convergence properties are derived
and verified numerically.
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1. Introduction. In this paper we investigate a class of generalized complemen-
tarity problems of the type: Find u such that

u ≥ 0; FðuÞ þ 1

δ
Hðδ− uÞ ≥ 0; u

�
FðuÞ þ 1

δ
Hðδ− uÞ

�
¼ 0;ðGCPÞ

where F represents a smooth mapping. Motivated by applications in contact mechanics
we assume throughout that FðuÞ ¼ Mu− f , where M is a monotone operator if we are
considering an infinite dimensional setting, or,M is a P-matrix in the discrete setting of
the problem. Themain difficulty of (GCP) lies in the discontinuous term ð1 ∕ δÞHðδ− uÞ,
whereH denotes the Heaviside function. The parameter δ > 0 is fixed, and we explain its
role later. We point out that the multivalued part of (GCP) represented by the specific
Heaviside function is motivated from physical considerations. From the mathematical
point of view our subsequent analysis can be extended to multivalued terms of a more
general form represented by nonincreasing functions which allow discontinuities.

Since, e.g., fixed-point arguments are not applicable to ascertain the existence of a solu-
tion to (GCP), we consider the nonconvex and nondifferentiable minimization problem
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minimize

�
1

2
Mu− f ; u

�
þ 1

δ
hmin ðδ; uÞ; ui subject tou ≥ 0:ðSVMPÞ

The analytical tools for studying (SVMP) come from the sketch of abstract set-valued ana-
lysis forvariational problems; see, e.g., [8], [35], [41].Aswe shall see, (GCP) representsa first-
order necessary optimality condition for (SVMP). Note that for δ → ∞ (GCP) turns into
the linear complementarity problem

u ≥ 0; Mu− f ≥ 0; uðMu− fÞ ¼ 0ðLCPÞ

which is a necessary and sufficient optimality condition for the convex minimization
problem

minimize

�
1

2
Mu− f ; u

�
subject to ðs:t:Þ u ≥ 0:ðCMPÞ

Werefer to [10], [37], [43] and the papers therein formore information on linear complemen-
tarity problems.

Practical applications, however, need δ < ∞ to be small, as can be seen, for exam-
ple, for an obstacle problem arising in nanomechanics and tribology (see [13]), where a
membrane (thin film) is in contact with a rigid obstacle such that cohesion forces become
important. In [5] thin films in the membrane regime were investigated. Nonideal contact
due to rough surface structure was considered in [4], and adhesion models of contact
were described in [40], [44]. Further, cohesion phenomena between crack surfaces were
investigated in [30], [32], [34] relying on Dugdale and Barenblatt models. The model
under consideration is close to Winkler-type contact problems; see [3]. For an overview
of contact and frictional problems we refer to [2], [24], [25], [26], [27], [33]. A perturbation
analysis of contact sets is presented in [31].

From the perspective of continuous optimization, the cohesion model results in the
minimization of a nonconvex and nondifferentiable cost functional subject to contact
conditions. In this context, necessary and sufficient optimality conditions for the mini-
mization problem do not coincide. The necessary optimality condition can be expressed
as a hemivariational inequality, for example. For the definition and an analysis of hemi-
variational inequalities we refer to, e.g., [14], [38]. Note that the operator in the pure
primal formulation of the optimality condition (in our case ðFðuÞ þ 1

δ
Hðδ− uÞ) is

not monotone and the solution of the first-order system it not unique. To derive a nu-
merical method for obtaining a solution of the problem, we rely on sufficient optimality
conditions expressed within a primal-dual formulation. The associated saddle point pro-
blem suggests to treat the displacement u and the pertinent contact and cohesion forces
as independent state variables. The well-posedness of the saddle point problem requires
a suitable regularization of certain nondifferentiable terms.

In the framework of numerical optimization, primal-dual active set (PDAS) meth-
ods were developed recently to efficiently compute solutions of convex minimization pro-
blems. The common advantage of PDAS-methods lies in the fact that they are
associated to generalized Newton methods; see, for instance, [15], [16], [23]. An abstract
analysis of semismooth Newton methods is given in [7], [29], and some numerical appli-
cations of PDAS are presented in [1], [17], [21]. The present paper is our first successful
attempt to treat nonconvex minimization problems within the PDAS-framework.
In fact, we construct a PDAS-algorithm to compute a solution of the underlying hemi-
variational inequality. Based on the maximum principle, monotonicity properties of our
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algorithm are established in the continuous as well as in the discretized setting. The
justification of global convergence requires discretization of the problem. Further,
for numerical efficiency reasons we incorporate the PDAS-algorithm into an adaptive
finite element method (AFEM). While a rigorous numerical analysis of the associated
AFEM is an interesting subject in its own right, it, however, goes beyond the scope
of our present paper. For the construction of a posteriori error estimators for AFEM
and an associated convergence analysis for contact or obstacle problems we refer
to [6], [19], [20], [36], [39].

Section 2 is devoted to presenting the precise problem formulation and to the deri-
vation of necessary and sufficient optimality conditions. A regularization procedure is
described in section 3. The PDAS strategy and its analysis are the subjects of section 4.
The findings of our computations including a comparison of regularized and unregular-
ized formulations are documented in section 5. In this paper we rely on the model pro-
blem with M ¼ −Δ. But we point out that our approach can be generalized to abstract
monotone operators M as well as to unilateral constraints due to body-contact and
Signorini-type conditions.

2. Obstacle problem with cohesion. We give the problem formulation and
derive well-posedness in the continuous framework. In the abstract formulation, the pro-
blem can be stated in any Rd, d ∈ N. For physical consistency we formulate the obstacle
problem for d ¼ 2.

Let Ω ⊂ R2 be a bounded domain with a smooth boundary ∂Ω. Let the shape of an
obstacle x3 ¼ ψðx1; x2Þ be given in Ω by a smooth function ψ : R2 ↦ R such that ψ ≤ 0
on ∂Ω. Consider a membrane which occupies the domain Ω and which is fixed at ∂Ω.
Under the loading force f ∈ L2ðΩÞ it is in contact with the obstacle such that a cohesion
phenomenon occurs between the membrane and the obstacle. The cohesion force is de-
scribed through a material parameters γ > 0 (of the dimension of force multiplied by
distance) and δ > 0 (of the dimension of distance). Our goal is to find the normal dis-
placement u ∈ H 1

0ðΩÞ ∩ H 2ðΩÞ and the normal force ξ ∈ L2ðΩÞ of the membrane, where
x ¼ ðx1; x2Þ⊤ ∈ Ω, and u, ξ satisfy

−DΔu− f ¼ ξ in Ω;ð1aÞ

u ¼ 0 on ∂Ω;ð1bÞ

u ≥ ψ;

8>><
>>:

ξ ¼ 0 if u > ψþ δ;

ξ ¼ −γ ∕ δ if ψ < u ≤ ψþ δ;

ξ ≥ −γ ∕ δ if u ¼ ψ:

ð1cÞ

Here, D > 0 is a given material parameter, and the inequalities in (1c) are understood
in the almost everywhere (a.e.) sense. For example, for thin plate models D ¼
Eθ3 ∕ ð12ð1− ν2ÞÞ, where θ denotes the thickness of the plate, and ν is the Poisson
ratio. The value γ ∕ δ represents the elastic limit. Later we show that the interaction
force ξ satisfies ξ ¼ λ− p; i.e., it is the difference of the contact force λ and the cohesion
force p.

For comparison, when the parameter δ → ∞, the relations in (1) reduce to the stan-
dard obstacle problem without cohesion: (1a), (1b), and
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u ≥ ψ;

�
ξ ¼ 0 if ψ < u;
ξ ≥ 0 if u ¼ ψ:

We note that the mapping u ↦ ξ defined in (1c) is discontinuous whenever
u ¼ ψþ δ. The Heaviside function

HðxÞ ≔
�
1 for x ≥ 0;
0 for x < 0

allows us to express the relations (1c) as the complementarity system

ξþ γ

δ
Hðδ− uþ ψÞ ≥ 0; u ≥ ψ;

�
ξþ γ

δ
Hðδ− uþψÞ

�
ðu− ψÞ ¼ 0:ð2Þ

The following is called the weak form of (1): Find u ∈ Kψ such thatZ
Ω

�
Dð∇uÞ⊤∇ðv− uÞ− fðv− uÞ

þ γ

δ
Hðδ− uþ ψÞðv− uÞ

�
dx ≥ 0 for all v ∈ Kψ;ð3Þ

where

Kψ ≔ fv ∈ H 1
0ðΩÞ : v ≥ ψ a:e: in Ωg:

PROPOSITION 1. If a solution u ∈ Kψ of (3) exists, then u ∈ H 2ðΩÞ, and the system
(1a)–(1c) is equivalent to (3).

Proof. For a solution u ∈ Kψ we can express (3) as the standard variational
inequality for the obstacle problem:

u ≥ ψ;

Z
Ω
ðDð∇uÞ⊤∇ðv− uÞ− ~f ðv− uÞÞdx ≥ 0 for all v ∈ Kψ

with the given right-hand side

~f ≔ f −
γ

δ
Hðδ− uþψÞ ∈ L2ðΩÞ:

Well-known regularity results imply that u ∈ H 2ðΩÞ; see, e.g., [45].
Now let u ∈ Kψ ∩ H 2ðΩÞ satisfy (1). Taking the inner product of (1a) with v− u,

where v is a smooth function such that v ≥ ψ and v ¼ 0 on ∂Ω, integration by parts, and
accounting for (1b) and (2) we arrive at (3). The converse can be argued with
ξ ¼ −DΔu− f ∈ L2ðΩÞ. ▯

To obtain the solvability of (3), we represent it as a hemivariational inequality re-
lated to a nonsmooth minimization problem. We define the continuous, nondifferenti-
able, and concave mapping u ↦ gðuÞ by

gðuÞ ≔ γ

δ
min ðδ; u− ψÞ ¼ γ

�
1 for u ≥ ψþ δ;
ðu− ψÞ ∕ δ for u < ψþ δ:

ð4Þ

It satisfies the following inequality characterizing concavity of g:
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gðvÞ− gðuÞ ≤ γ

δ
Hðδ− uþψÞðv− uÞ for all v ∈ H 1

0ðΩÞ:ð5Þ

From (5), the existence of the upper limit

lim sup
t→0

gðuþ tðv− uÞÞ− gðuÞ
t

≤
γ

δ
Hðδ− uþ ψÞðv− uÞ for all v ∈ H 1

0ðΩÞ

follows, which implies a superdifferential.
Next we investigate the nonconvex and nondifferentiable minimization problem

which we later associate to (3).
PROPOSITION 2. The constrained, nonconvex, and nondifferentiable minimization

problem

minimizeTðvÞ over v ∈ H 1
0ðΩÞ s:t: v ∈ Kψ;ð6Þ

where

TðvÞ ≔ ΠðvÞ þ
Z
Ω
gðvÞdx; with ΠðvÞ ≔

Z
Ω

�
D

2
j∇vj2 − fv

�
dx;ð7Þ

and j · j denotes the Euclidean norm in Rd, admits at least one solution u⋆ ∈ Kψ ∩
H 2ðΩÞ.

Proof. The mapping u ↦ gðuÞ in (4) is nonnegative for u ∈ Kψ. Together with the
properties of Π : H 1

0ðΩÞ ↦ R this implies that T : Kψ ⊂ H 1
0ðΩÞ ↦ R is radially un-

bounded. Therefore, the functional T is coercive on Kψ.
Let fung be an infimal sequence in Kψ satisfying

TðunÞ → T0 ≔ inf
v∈Kψ

TðvÞ:

Radial unboundedness of T implies the boundedness of fung in H 1
0ðΩÞ. Then, on a sub-

sequence still denoted by fng, un → u⋆ weakly in H 1
0ðΩÞ and strongly in L2ðΩÞ as

n → ∞. By weak closedness of Kψ we have u⋆ ∈ Kψ. Weak lower semicontinuity of
T implies that

T 0 ≤ Tðu⋆Þ ≤ lim inf
n→∞

TðunÞ ¼ T 0:

Thus, u⋆ attains the minimum ofT overKψ. Proposition 1 and Proposition 3 imply that
u⋆ ∈ H 2ðΩÞ which completes the proof. ▯

We point out that the functional T : H 1
0ðΩÞ ↦ R in (6) is nonconvex and nondif-

ferentiable due to the presence of g. For a generalization of the existence result we refer
to [30].

Now we are able to relate (3) to the minimization problem (6).
PROPOSITION 3. The hemivariational inequality (3) yields the necessary optimality

condition for the constrained, nonconvex, and nondifferentiable minimization
problem (6).

Proof. Let u denote a solution of (6), i.e.,

ΠðuÞ þ
Z
Ω
gðuÞdx ≤ ΠðvÞ þ

Z
Ω
gðvÞdx for all v ∈ Kψ:

From (5) we infer

OBSTACLE PROBLEM WITH COHESION 495

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



ΠðuÞ− ΠðvÞ ≤
Z
Ω
ðgðvÞ− gðuÞÞdx ≤

γ

δ

Z
Ω
Hðδ− uþ ψÞðv− uÞdxð8Þ

for v ∈ Kψ. For v ≥ ψ we define wðtÞ ≔ tvþ ð1− tÞu with 0 < t < 1. Note that
wðtÞ ∈ Kψ. Replacing v by wðtÞ in (8) we get

1

t
ðΠðuþ tðv− uÞÞ− ΠðuÞÞ ≥ −

γ

δ

Z
Ω
Hðδ− uþψÞðv− uÞdx:ð9Þ

In view of the Gâteaux differentiability of Π : H 1
0ðΩÞ ↦ R, we arrive at (3) by passing to

the limit in (9) as t → 0. ▯
As a consequence of Propositions 2–3 we may introduce a dual variable (Lagrange

multiplier) such that

Z
Ω

�
Dð∇u⋆Þ⊤∇v− fvþ γ

δ
Hðδ− u⋆ þψÞv− λ⋆v

�
dx ¼ 0 for all v ∈ H 1

0ðΩÞð10Þ

with

λ⋆ ≔ −DΔu⋆ − f þ γ

δ
Hðδ− u⋆ þ ψÞ ∈ L2ðΩÞ

is well-defined in the a.e. sense since u� ∈ H 2ðΩÞ. With this notation, (3) can be rewrit-
ten equivalently as

u⋆ ≥ ψ;

Z
Ω
λ⋆ðv− u⋆Þdx ≥ 0 for all v ∈ Kψ;

which implies the following complementarity system:

λ⋆ ≥ 0; u⋆ ≥ ψ;

Z
Ω
λ⋆ðu⋆ − ψÞdx ¼ 0:ð11Þ

Hence, λ⋆ ∈ Mþ, where

Mþ ≔ fλ ∈ L2ðΩÞ : λ ≥ 0 a:e: inΩg;

and the following theorem holds true.
THEOREM 1. There exists a pair ðu⋆; λ⋆Þ ∈ ðKψ ∩ H 2ðΩÞÞ×Mþ such that the

complementarity system (10)–(11) is satisfied. The primal variable u⋆ satisfies the hemi-
variational inequality (3). The pair (u⋆, ξ⋆) with

ξ⋆ ≔ λ⋆ − p⋆; p⋆ ≔
γ

δ
Hðδ− u⋆ þψÞ ∈ Mþ

satisfies the obstacle problem with cohesion (1).
We refer to p⋆ as the Lagrange multiplier associated with the cohesion force. Since

T is nonconvex, the solution to (6) is not necessarily unique and (10)–(11) is not a suffi-
cient optimality condition.
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Next we introduce the Lagrange functional

Lðv; λÞ ≔ TðvÞ−
Z
Ω
λðv− ψÞdx

¼
Z
Ω

�
D

2
j∇vj2 − fvþ gðvÞ− λðv− ψÞ

�
dx;ð12Þ

and present the following sufficient optimality condition for (6).
PROPOSITION 4. If the saddle point problem

�
Find λ⋆ ∈ Mþ;u⋆ ∈ H 1

0ðΩÞ such that
Lðu⋆; λÞ ≤ Lðu⋆; λ⋆Þ ≤ Lðv; λ⋆Þ for all λ ∈ Mþ; v ∈ H 1

0ðΩÞ
ð13Þ

admits a solution, then the primal component u⋆ satisfies u⋆ ≥ ψ and it solves the mini-
mization problem (6). Moreover (u�, λ�) is a solution of (10)–(11).

Proof. The left inequality in (13) implies that
Z
Ω
ðλ− λ⋆Þðu⋆ − ψÞdx ≥ 0 for all λ ∈ Mþ:

Therefore, we have

λ⋆ ≥ 0;

Z
Ω
λ⋆ðu⋆ − ψÞdx ¼ 0 and u⋆ − ψ ≥ 0;

which is (11). Using v with v ≥ ψ in the right inequality in (13), it follows immediately
that

Tðu⋆Þ− TðvÞ ≤ −
Z
Ω
λ⋆ðv− ψÞdx ≤ 0 for all v ∈ Kψ:

Hence, u� is a solution of (6).
Moreover, the inequality (5) and (13) imply

Πðu⋆Þ− ΠðvÞ−
Z
Ω
λ⋆ðu⋆ − vÞdx ≤

Z
Ω
ðgðvÞ− gðu⋆ÞÞdx

≤
γ

δ

Z
Ω
Hðδ− u⋆ þψÞðv− u⋆Þdx for all v ∈ H 1

0ðΩÞ:

Replacing the test function v by wðtÞ ≔ tvþ ð1− tÞu⋆ for 0 < t < 1, dividing this in-
equality by t, and passing to the limit as t → 0, due to the Gâteaux differentiability of Π
we arrive at the necessary optimality condition of the form (10). ▯

In the next section a regularization of T will be introduced. Based on this regular-
ization existence of a saddle point satisfying Proposition 4 will be verified.

3. Regularization of the problem. For a fixed parameter ε > 0, we define the
continuously differentiable function x ↦ gεðxÞ with the properties

0 ≤ gεðxÞ ≤ c0 < ∞; 0 ≤ g 0εðxÞ ≤ c1 < ∞;ð14aÞ
gεðxÞ ¼ gðxÞ þOðεÞð14bÞ
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with constants c0; c1 ≥ 0. Our subsequent analysis relies exemplarily on the choice

gεðxÞ ¼ γ

8>><
>>:

1− ε ∕ 2 for x ≥ ψþ δ;

1− ε
2 −

ðx−ψ−δÞ2
2εδ2

for ψþ δð1− εÞ < x < ψþ δ;

ðx− ψÞ ∕ δ for ψ ≤ x ≤ ψþ δð1− εÞ
ð15Þ

with derivative

g 0εðxÞ ¼
γ

δ

8>><
>>:

0 for x ≥ ψþ δ;

− x−ψ−δ
εδ

for ψþ δð1− εÞ < x < ψþ δ;

1 for ψ ≤ x ≤ ψþ δð1− εÞ;
ð16Þ

but other choices are possible. Next we consider the regularized and, thus, differentiable
variational problem:

minimizeT εðvÞ over v ∈ H 1
0ðΩÞ s:t: v ∈ Kψ;ð17Þ

where

T εðvÞ ≔ ΠðvÞ þ
Z
Ω
gεðvÞdx ¼

Z
Ω

�
D

2
j∇vj2 − fvþ gεðvÞ

�
dx:ð18Þ

LEMMA 1. For each ε > 0 there exists a solution uε ∈ Kψ ∩ H 2ðΩÞ to the regularized
minimization problem (17). These solutions satisfy the uniform estimate

‖uε‖H 2ðΩÞ ≤ C

for some constant C ≥ 0 which is independent of ε.
Proof. Indeed, repeating the arguments of Proposition 2, due to the Lipschitz con-

tinuity of the nonnegative mapping u ↦ gεðuÞ in (14a) and the strict convexity of Π
there exists a solution uε ∈ Kψ of (17).

Differentiating (18) we obtain the following necessary optimality condition:

Z
Ω
ðDð∇uεÞ⊤∇ðv− uεÞ− f ðv− uεÞ þ g 0εðuεÞðv− uεÞÞdx ≥ 0 for all v ∈ Kψ:ð19Þ

The regularity arguments from Proposition 1 applied to (19) prove that the solution
enjoys extra H 2-smoothness. Moreover, the uniform bound of uε from (19) can be jus-
tified by the usual estimation; see, for example, [12], [22], [28], [42]. ▯

As a consequence of Lemma 1, the Lagrange multiplier associated with uε ≥ ψ is
given by

λε ≔ −DΔuε − f þ g  0εðuεÞ ∈ Mþ:ð20Þ

The weak form of (20) reads
Z
Ω
λεvdx ¼

Z
Ω
ðDð∇uεÞ⊤∇v− fvþ g 0εðuεÞvÞdx for all v ∈ H 1

0ðΩÞ:ð21Þ
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From (19) and (21) we conclude

λε ≥ 0; uε ≥ ψ;

Z
Ω
λεðuε − ψÞdx ¼ 0:ð22Þ

Analogously to (13) we consider the regularized saddle point problems: Find
λε ∈ Mþ, uε ∈ H 1

0ðΩÞ such that

Lεðuε; λÞ ≤ Lεðuε; λεÞ ≤ Lεðv; λεÞ for all λ ∈ Mþ; v ∈ H 1
0ðΩÞ;ð23Þ

where the Lagrange functional is given by

Lεðv; λÞ ≔
Z
Ω

�
D

2
j∇vj2 − fvþ gεðvÞ− λðv−ψÞ

�
dx:ð24Þ

The existence of solutions (uε, λε) to (23) follows by standard techniques on
minimax-theorems; see, e.g., [11], using (14a). Any solution (uε, λε) to this saddle point
problem satisfies (21) and (22).

LEMMA 2. For ε → 0 the sequence fðuε; λεÞgε>0 of solutions to (23) admits (at least)
one accumulation point (u⋆, λ⋆) in the weak H 2ðΩÞ× L2ðΩÞ-topology. Moreover, each
accumulation point solves the saddle point problem (13).

Proof. We pass to the limit in (23) as ε → 0 using the uniform boundness asserted
in Lemma 1. From (20) we infer that

‖λε‖L2ðΩÞ ≤ Cð25Þ

for some constant C > 0. Therefore, there exist 0 ≤ λ⋆ ∈ L2ðΩÞ, u⋆ ∈ H 1
0ðΩÞ ∩ H 2ðΩÞ

and a subsequence fε 0g of fεg such that

uε 0 → u⋆ weakly inH 2ðΩÞ;ð26aÞ
uε 0 → u⋆ strongly inH 1

0ðΩÞ;ð26bÞ
λε

 0
→ λ⋆ weakly inL2ðΩÞð26cÞ

for ε  0 → 0. Subsequently, without loss of generality, we use ε 0 ¼ ε.
Using (14) we find pointwise a.e. that

jgεðuεÞ− gðu⋆Þj ¼ jgεðuεÞ− gεðu⋆Þ þ gεðu⋆Þ− gðu⋆Þj
¼ jg 0εð ~uεÞðuε − u⋆Þ þ gεðu⋆Þ− gðu⋆Þj ≤ c1juε − u⋆j þOðεÞ

for some ~uεðxÞ on the segment joining uεðxÞ and u⋆ðxÞ, and we conclude that

gεðuεÞ → gðu⋆Þ in L2ðΩÞ as ε → 0:ð27Þ

The right inequality in (23) reads

Lεðuε; λεÞ ¼
Z
Ω

�
D

2
j∇uεj2 − fuε þ gεðuεÞ− λεðuε − ψÞ

�
dx

≤
Z
Ω

�
D

2
j∇vj2 − fvþ gεðvÞ− λεðv− ψÞ

�
dx ¼ Lεðv; λεÞ:

OBSTACLE PROBLEM WITH COHESION 499

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Passing to the lower limit as ε → 0, we get by (26) and (27)

Lðu⋆; λ⋆Þ ≤ Lðv; λ⋆Þ for all v ∈ H 1
0ðΩÞ:ð28Þ

For ε → 0 in (22), the limits in (26) imply that

λ� ≥ 0; u� ≥ ψ;

Z
Ω
λ�ðu� − ψÞdx ¼ 0;

and hence

Lðu⋆; λÞ ≤ Lðu⋆; λ⋆Þ for all λ ∈ Mþ:ð29Þ

Inequalities (28) and (29) prove the assertion of the lemma. ▯
The proposed regularization of the nondifferentiable function u ↦ gðuÞ is also useful

to formulate a semismooth Newton method for the numerical solution of the saddle
point formulation of the obstacle problem with cohesion. We return to this point in
section 5.3.

In the following section we use the complementarity conditions (10)–(11) to develop
a numerical method for solving the hemivariational inequality (3) within the PDAS fra-
mework.

4. Primal-dual active set algorithm for solution of the problem. In order
to bring (10)–(11) in a form which is useful for the design of a solution algorithm we
write (11) equivalently as

λ⋆ ¼ max ð0; λ⋆ − cðu⋆ − ψÞÞ;ð30Þ

where c > 0 is an arbitrary, but fixed constant. Now we are able to define the following
active and inactive sets with respect to the contact condition

A⋆
c ¼ fx ∈ Ω : ðλ⋆ − cðu⋆ −ψÞÞðxÞ > 0g;

I⋆c ¼ fx ∈ Ω : ðλ⋆ − cðu⋆ −ψÞÞðxÞ ≤ 0g;ð31Þ

and with respect to the cohesion force

A⋆
p ¼ fx ∈ Ω : u⋆ðxÞ ≤ ψðxÞ þ δg;

I⋆p ¼ fx ∈ Ω : u⋆ðxÞ > ψðxÞ þ δg:ð32Þ

As a result we may partition Ω either with respect to the contact condition (i.e., Ω ¼
A⋆

c ∪ I⋆c ) or with respect to the cohesion force (i.e., Ω ¼ A⋆
p ∪ I⋆p ).

With the definition of the sets in (31) and (32), and using the identity (30), the
optimality system (10) and (11) can be expressed in the equivalent form:

Z
Ω
ðDð∇u⋆Þ⊤∇v− fvþ p⋆v− λ⋆vÞdx ¼ 0 for all v ∈ H 1

0ðΩÞ;ð33aÞ

p⋆ ¼ γ ∕ δ on A⋆
p ; p⋆ ¼ 0 on I⋆p ;ð33bÞ

u⋆ ¼ ψ on A⋆
c ; λ⋆ ¼ 0 on I⋆c :ð33cÞ
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We commence with the formulation of the PDAS algorithm for (33) in the function
space setting. Then we prove its properties, and finally conclude with global convergence
of the algorithm in the discrete setting.

ALGORITHM 1.
(0) Choose pairs of disjoint sets (A−1

c , I−1
c ) and (A−1

p , I−1
p ) with A−1

c ∪ I−1
c ¼ Ω and

A−1
p ∪ I−1

p ¼ Ω; set n ¼ 0.
(1) Solve for un ∈ H 1

0ðΩÞ, λn ∈ L2ðΩÞ, pn ∈ L2ðΩÞ:
Z
Ω
ðDð∇unÞ⊤∇v− fvþ pnv− λnvÞdx ¼ 0 for all v ∈ H 1

0ðΩÞ;ð34aÞ

pn ¼ γ ∕ δ on An−1
p ; pn ¼ 0 on I n−1

p ;ð34bÞ

un ¼ ψ on An−1
c ; λn ¼ 0 on I n−1

c :ð35aÞ

(2) Compute the active and inactive sets at un, λn:

An
c ¼ fx ∈ Ω : ðλn − cðun − ψÞÞðxÞ > 0g;

I nc ¼ fx ∈ Ω : ðλn − cðun − ψÞÞðxÞ ≤ 0g;ð35aÞ

An
p ¼ fx ∈ Ω : unðxÞ ≤ ψðxÞ þ δg;

I np ¼ fx ∈ Ω : unðxÞ > ψðxÞ þ δg:ð35bÞ

(3) IfAn
c ¼ An−1

c andAn
p ¼ An−1

p , then STOP; else set n ¼ nþ 1 and go to Step (1).

We continue by studying the properties of Algorithm 1. For this purpose we first
show that step (1) is well-defined.

LEMMA 3. There exists a unique solution to the linear system (34).
Proof. After determining pn ∈ L2ðΩÞ in (34b), the relations (34a) and (34c) corre-

spond to the convex minimization problem

minimizeΠðvÞ þ
Z
I n−1
c

pnvdx over v ∈ H 1
0ðΩÞ s:t: v ¼ ψ on An−1

c :ð36Þ

The existence of a unique solution of (36) follows from monotone operator theory and
the uniform convexity of Π in H 1

0ðΩÞ. The solution is denoted by un. The necessary and
sufficient first-order optimality condition reads as

Z
Ω
ðDð∇unÞ⊤∇ðv− unÞ− fðv− unÞ þ pnðv− unÞÞdx ≥ 0

for all v ∈ H 1
0ðΩÞ with v ¼ ψ onAn−1

c :ð37Þ

The test functions v ¼ un � ξ with arbitrary ξ ∈ C∞
0 ðΩÞ, suppðξÞ ⊂ I n−1

c , yield

−DΔun − f þ pn ¼ 0 in I n−1
c :ð38Þ

Moreover, Δun ¼ Δψ in An−1
c . Thus, Δun ∈ L2ðΩÞ, and the dual variable is determined

from the solution of (36) as
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λn ≔ −DΔun − f þ pn ∈ L2ðΩÞ:ð39Þ

The identity (38) implies λn ¼ 0 in I n−1
c , which corresponds to (34c). Multiplying equal-

ity (39) by v ∈ H 1
0ðΩÞ and applying Green’s formula, we arrive at (34a). ▯

LEMMA 4. If at each iteration level n the boundary ∂I nc is C 2-regular, then for the
initialization I−1

p ¼ ∅, the iterates (un,An
c , pn,An

p) of Algorithm 1 are monotone with the
properties

ψ ≤ u1 ≤ · · ·≤ un−1 ≤ un : : : ;ð40aÞ
Ω ⊇ A0

c ⊇ · · ·⊇ An−1
c ⊇ An

c : : : ;ð40bÞ
γ

δ
¼ p0 ≥ p1 ≥ · · ·≥ pn−1 ≥ pn : : : ;ð40cÞ

Ω ¼ A−1
p ⊇ A0

p ⊇ · · ·⊇ An−1
p ⊇ An

p : : : :ð40dÞ

Proof. For n ≥ 1 we define

δn−1
u ≔ un − un−1; δλn−1 ≔ λn − λn−1; δn−1

p ≔ pn − pn−1:

We proceed in several steps.
(i) Note that δn−1

p ≤ 0 a.e. in Ω whenever An−1
p ⊆ An−2

p for n ≥ 1. This follows im-
mediately from the active/inactive settings for pn in (34b). Since I−1

p ¼ ∅ and,
thus, A−1

p ¼ Ω ⊇ A0
p by our initialization, we infer that δ0

p ≤ 0 a.e. in Ω.
(ii) For n ≥ 1, due to the complementarity property implying that λn−1 ¼ 0 or

un−1 ¼ ψ, we derive from (35a) the following options:

if λn−1 ¼ 0; then un−1 < ψ inAn−1
c ; and un−1 ≥ ψ in I n−1

c ;

if un−1 ¼ ψ; then λn−1 > 0 inAn−1
c ; and λn−1 ≤ 0 in I n−1

c :ð41Þ

Henceforth un−1 ≤ ψ, λn−1 ≥ 0 in An−1
c , and un−1 ≥ ψ, λn−1 ≤ 0 in I n−1

c . Using
(34c) we conclude that δn−1

u ≥ 0 in An−1
c , and δλn−1 ≥ 0 in I n−1

c .
Taking the difference of iterates in (34a) for n and n− 1 we obtain the identity

DΔðδn−1
u Þ ¼ δn−1

p − δλn−1 in Ω:ð42Þ

If δn−1
p ≤ 0, then Δðδn−1

u Þ ≤ 0 in I n−1
c in view of (42), and the Hopf maximum

principle implies that the minimum of δn−1
u is attained on the boundary ∂I n−1

c .
We have δn−1

u ¼ 0 on ∂I n−1
c ∩ ∂Ω and δn−1

u ≥ 0 on ∂I n−1
c ∩ ∂An−1

c . Hence,
δn−1
u ≥ 0 a.e. inΩ. Consequently from (41) we obtain that I n−1

c remains inactive
during the subsequent iterate n. This implies that An

c ⊆ An−1
c . Moreover, from

δn−1
u ≥ 0 it follows that An

p ⊆ An−1
p due to the antimonotone order of An

p with
respect to un in (35b).

(iii) This allows us to conclude the proof by induction. In fact, for n ¼ 1 we have
already argued in (i) that Ω ¼ A−1

p ⊇ A0
p implying δ0

p ≤ 0 a.e. in Ω and further
δ0
u ≥ 0 a.e. in Ω by (42). Now let n > 1 and assume that An−1

p ⊆ An−2
p . Then (i)

and (ii) of this proof yield δn−1
p ≤ 0 a.e. inΩ and δn−1

u ≥ 0 a.e. inΩ, respectively.
But the latter implies An

p ⊆ An−1
p which concludes the proof.

From the above monotonicity properties the assertions (40a)–(40d) of the lemma
follow. ▯

502 M. HINTERMÜLLER, V. A. KOVTUNENKO, AND K. KUNISCH

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



LEMMA 5. If An⋆
c ¼ An⋆−1

c and An⋆
p ¼ An⋆−1

p at some iteration n⋆, then
ðun⋆

; λn
⋆
; pn

⋆Þ ¼ ðu⋆; λ⋆; p⋆Þ, where (u⋆, λ⋆) is a solution to (10)–(11).
Proof. If An⋆

c ¼ An⋆−1
c (hence I n

⋆
c ¼ I n

⋆−1
c ), then from (34c) and (35) it follows that

un⋆ ≥ ψ, λn
⋆ ≥ 0 satisfy the complementarity conditions (11). If An⋆

p ¼ An⋆−1
p , then

pn
⋆ ¼ γ ∕ δHðδ− un⋆ þ ψÞ, which implies (10). Thus, (un⋆

, λn
⋆
) satisfies (10)–(11),

which is equivalent to (33). ▯
This result motivates our stopping rule in Algorithm 1.
Note that Lemma 4 does not imply the convergence ðun; λn; pnÞ → ðu⋆; λ⋆; p⋆Þ,

since no sufficient increase of fung can be assured and fλng need not be monotone. How-
ever, upon discretization convergence in the associated finite dimensional subspaces can
be guaranteed. This fact is studied next.

4.1. Convergence of the algorithm in finite dimensional subspaces. We re-
quire a proper discretization of the problem (33) in subspaces of H 1

0ðΩÞ and L2ðΩÞ of
finite dimension N ∈ N. Here we call a discretization proper if the active and inactive
sets in (31)–(32) of the discretized problems can be determined by the nodal values of the
discretized functions uN , λN at the nodal points xi, i ∈ f1; : : : ; Ng, of the mesh con-
structed in Ω. In this case, the active/inactive set step (35) is achieved by inspection
of the nodal values of the respective discretized function. The discrete Lagrange multi-
plier λN is introduced as the complementary vector to the discrete constraint uN ≥ ψ at
the nodal points fxigNi¼1, that is after discretization of the hemivariational inequality (3),
respectively (19), for the regularized problem.

Further, we assume that the stiffness matrix L ∈ RN×N , which corresponds to dis-
cretization of the Laplace operator−DΔ with homogeneous Dirichlet condition on ∂Ω is
nonsingular, and that it obeys the following property after index reordering:

For every partitioning of L into blocksL ¼
�
LAA LAI

LIA LII

�

corresponding to the indices of subsetsA and I of the nodes;

L−1
I I ≥ 0 andLIA ≤ 0 hold elementwise:ð43Þ

For example, if L is anM -matrix, then property (43) holds true. Note that theM -matrix
property corresponds to the maximum principle in infinite dimensions.

We approximate u ∈ H 1
0ðΩÞ by uðxÞ ¼

P
N
j¼1 u

N
j ϕjðxÞ, where fϕigNi¼1 ∈ H 1

0ðΩÞ is the
finite element basis. Discretization of the forces involves the operator Π : L2ðΩÞ ↦ RN

given by

ðΠf Þi ≔
Z
Ω
fðxÞϕiðxÞdx; i ¼ 1; : : : ; N:

In particular, for fðxÞ ¼ P
N
j¼1 f

N
j ϕjðxÞ we have Πf ¼ MfN with the mass ma-

trix Mij ¼ ðϕi;ϕjÞL2ðΩÞ.
The representation of Πp with p ¼ γ

δ
Hðδ− uþ ψÞ is more delicate since it involves

the Heaviside function. Given u we define the active set A ¼ fx ∈ Ω : Hðδ− uþ
ψÞðxÞ ¼ 1g, and hence p ¼ γ

δ
χA, where χA denotes the characteristic function of A.

For the finite element partition fTg of Ω we approximate A by ~A ¼∪l
j¼1 Tj, where

j ranges over all elements with Tj ⊂ A. Using the characteristic function

χ ~AðxÞ ¼
�
1 for x ∈ ~A;
0 otherwise;
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we approximate Πp ¼ γ
δ
ΠχA in the following way:

ðΠχAÞi ¼
Z
Ω
χAðxÞϕiðxÞdx≈

Z
Ω
χ ~AðxÞϕiðxÞdx ¼ ðΠχ ~AÞi:

We also need the discrete active set AN ¼ fxi ∈ Ag and its characteristic function

ðχAN Þi ¼
�
1 for xi ∈ AN;
0 otherwise;

which determines the discrete cohesion force pN ¼ γ
δ
χAN at the nodal points. Let us note

that knowledge of the discrete active nodal points AN uniquely determines the active
finite elements Tj, j ¼ 1; : : : ; l, and the approximate active set ~A ¼∪l

j¼1 Tj. Therefore,
the following mapping is well-defined:

ðπðχAN ÞÞi ≔
Z
Ω
χ ~AðxÞϕiðxÞdx ¼ ðΠχ ~AÞi:ð44Þ

Hence for given AN we calculate πðχAN Þ from (44) and find πðpN Þ ¼ γ
δ
πðχAN Þ. For the

convergence analysis in Theorem 2 we assume that πðχAN Þ is nonnegative for every par-
tition AN and

πðχAN Þ ≥ πðχBN Þ if and only if AN ⊇ BN:ð45Þ

This is satisfied, for example, for the continuous and piecewise-linear finite elements on a
regular grid. In the following we omit the superscript N for convenience.

The reference problem (33) in the finite dimensional subspace takes the matrix form

Lu⋆ −Mf þ πðp⋆Þ− λ⋆ ¼ 0;ð46aÞ
p⋆ ¼ γ ∕ δ on A⋆

p ; p⋆ ¼ 0 on I⋆p ;ð46bÞ
u⋆ ¼ ψ on A⋆

c ; λ⋆ ¼ 0 on I⋆c :ð46cÞ

The relations (34) in the iteration step of Algorithm 1 can then be expressed as

Lun −Mf þ πðpnÞ− λn ¼ 0;ð47aÞ
pn ¼ γ ∕ δ on An−1

p ; pn ¼ 0 on I n−1
p ;ð47bÞ

un ¼ ψ on An−1
c ; λn ¼ 0 on I n−1

c :ð47cÞ

Note that relations in (46b) and (47b) can be expressed in terms of characteristic func-
tions as p⋆ ¼ γ

δ
χA⋆

p
and pn ¼ γ

δ
χAn−1

p
; hence πðp⋆Þ and πðpnÞ are well defined by (44).

THEOREM 2. Under the assumptions of proper discretization and (43), (45) for the
initialization I−1

p ¼ ∅ the iterates (un, λn, pn) of Algorithm 1 written in the form (47)
converge monotonically to a solution (u⋆, λ⋆, p⋆) of (46) in a finite number of steps
n⋆ ∈ N with the properties

ψ ≤ u1 ≤ · · ·≤ un ≤ · · ·≤ un⋆ ¼ u⋆;ð48aÞ

fxigNi¼1 ⊇ A0
c ⊇ · · ·⊇ An

c ⊇ · · ·⊇ An⋆−1
c ¼ An⋆

c ¼ A⋆
c ;ð48bÞ
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γ

δ
¼ p0 ≥ p1 ≥ · · ·≥ pn ≥ · · ·≥ pn

⋆ ¼ p⋆;ð48cÞ
fxigNi¼1 ¼ A−1

p ⊇ A0
p ⊇ · · ·⊇ An

p ⊇ · · ·⊇ An⋆−1
p ¼ An⋆

p ¼ A⋆
p :ð48dÞ

Proof. The proof essentially repeats the arguments of the proof of Lemma 4 repla-
cing the Hopf maximum principle by property (43). For the sake of completeness we
provide the detailed proof steps.

First, for n ≥ 1 we define the following vectors in RN :

δn−1
u ≔ un − un−1; δλn−1 ≔ λn − λn−1; δn−1

p ≔ πðpnÞ− πðpn−1Þ:

The discrete analogue of step (i) of the proof of Lemma 4 remains true when replacing
the a.e. arguments by componentwise ones for the involved vectors.

From (47a) we obtain the identity

Lδu ¼ δλ − δp

which is the finite dimensional version of (42) in step (ii) in the proof of Lemma 4. We
split this system into blocks corresponding to the active and inactive index sets, i.e.,

�
LAn−1

c An−1
c

LAn−1
c I n−1

c

LIn−1
c An−1

c
LIn−1

c I n−1
c

�� ðδuÞAn−1
cðδuÞI n−1
c

�
¼

� ðδλ − δpÞAn−1
cðδλ − δpÞI n−1
c

�
;

and extract the equality

LIn−1
c I n−1

c
ðδuÞI n−1

c
¼ −LIn−1

c An−1
c

ðδuÞAn−1
c

þ ðδλ − δpÞI n−1
c

:

Inversion yields

ðδuÞI n−1
c

¼ −L−1
I n−1
c I n−1

c
LIn−1

c An−1
c

ðδuÞAn−1
c

þ L−1
I n−1
c I n−1

c
ðδλ − δpÞI n−1

c
:ð49Þ

From the complementarity property (47c) implying that λn−1 ¼ 0 or un−1 ¼ ψ we con-
clude that δu ≥ 0 on An−1

c , and δλ ≥ 0 on I n−1
c . If δp ≤ 0, then δλ − δp ≥ 0 on I n−1

c .
Assumption (43) and (49) yield δu ≥ 0 on I n−1

c . Consequently, δu ≥ 0 for all nodes.
If δu ≥ 0, then An−1

p ⊇ An
p and δp ≤ 0 due to (45). Now, from an induction argument

like the one in step (iii) of the proof of Lemma 4 we infer the monotonicity properties of
the iteration process.

The monotonicity of the active set iterates in the finite dimensional space guaran-
tees that the stopping rule is satisfied after a finite number of steps of Algorithm 1.
Hence, the finite dimensional counterpart of Lemma 5 yields the assertion. ▯

5. Numerical results. In this section, we realize a discrete version of Algorithm 1
related to a proper finite element discretization of the problem. For this purpose, we rely
on the standard continuous piecewise-linear elements over a triangular mesh fTg. For
numerical efficiency we apply an adaptive meshing technique.

As a benchmark problem, the following example configuration is considered. The
domain is the unit square Ω ¼ ð0; 1Þ2, f ðxÞ≡−1 in Ω, and the material parameters
are D ¼ 1, γ ¼ 0.011, δ ¼ 0.01. The obstacle is given by ψðxÞ ¼ −0.075 in Ω. The para-
meters are chosen in such a way that no contact occurs between the membrane and the
obstacle, when solving an obstacle problemwithout cohesion (formally thismeans thatp⋆
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drops out of the system (33)). This solution is shown in the left plot of Figure 1(a). Notice
that there is a small gap (of about 0.0024 of a distance unit) between min ðu⋆Þ and ψ.

The solution behavior changes when the cohesion phenomenon is taken into account.
The corresponding numerical solution u⋆ is depicted in the right plot of Figure 1(b). The
cohesion variable p⋆ in (33) forces contact between the membrane and the obstacle. We
observe that the contact zoneA⋆

c is insideA⋆
p , where the cohesion force is active.The latter

set is shown in black in Figure 1(b).
The discrete multipliers λ⋆ and p⋆ of (46) are plotted in Figure 2(a) and (b),

respectively.

5.1. Primal-dual active set strategy. The numerical solution of (33) is calcu-
lated by the corresponding discrete version of Algorithm 1, which solves the discrete
problem (46). For illustration purposes, in Figure 3 we present selected iterates of active
sets An

c (shown in black) and An
p (depicted in gray). This figure shows the monotone

convergence of the active sets which is consistent with our theoretical result stated
in Theorem 2. All the assertions of Theorem 2 are validated in our numerical tests.

FIG. 1. Example configuration the obstacle problem.

FIG. 2. Lagrange multipliers.
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For initialization, we take I−1
p ¼ ∅ andA−1

c ¼ ∅. The constant c in the definition (35) of
active sets is c ¼ 10−8. Generally, varying c does not affect the algorithm.

The computation leading to the above results is based on a uniform mesh with 4225
degrees of freedom (DOF). The algorithm terminated successfully after 22 iterations. In
the following section we turn to our realization of the AFEM which is intended to
concentrate the DOF in regions where a too coarse discretization would result in large
residual errors.

5.2. PDAS with adaptive meshing. For the construction of the adaptive tri-
angulation fTg we employ the following error estimator η of the solution (u⋆

h , p
⋆
h ,

A⋆
c;h) of the discrete version of (33):

η2
fTg ¼

X
fTg

η2
T ; η2

T ¼ η2
T ° þ η2

∂T ;

η2
T ° ¼ ‖diamðTÞðDΔu⋆

h þ f − p⋆h Þ‖2L2ðT \A⋆
c;h

Þ;

η2
∂T ¼ ‖diamð∂TÞ1 ∕ 2D½½∇u⋆

h �� · ν‖2
L2ð∂T∩Ω

°
Þ
2 ;ð50Þ

where ½½·�� stands for the jump of ∇u⋆
h over element boundary, and ν is the unit normal

on ∂T . Note that A⋆
c;h determines the Lagrange multiplier λ⋆h . The subscript h refers to

the current triangulation of mesh size h. We recall thatA⋆
c;h consists of all finite elements

with the property that all vertices are in the active set.
The refinement strategy consists in a selection of a subset f ~Tg ⊂ fTg fulfilling the

criterion

ηf ~Tg ≥ ϑηfTg; where ϑ ∈ ð0; 1Þ is given:ð51Þ

it = 2 it = 4 it = 6 it = 8

it = 10 it = 11 it = 13 it = 15

it = 17 it = 19 it = 21 it = 22

FIG. 3. History of active set iterates.
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In our numerics, we use ϑ ¼ 0.5 and select elements ~T ∈ fTg, which have maximal error
η ~T , such that their sum contributes at least 50% to the total error ηfTg. This strategy is
performed in Algorithm 2.

ALGORITHM 2.
(0) Choose a uniform triangulation fTg of Ω;
(1) find a solution (u⋆

h , p
⋆
h , A

⋆
c;h) of the discrete version of (33) on fTg by the dis-

crete counterpart of Algorithm 1;
(2) estimate the error ηfTg in (50);
(3) refine f ~Tg according to (51); extend the active sets A⋆

c;h and A⋆
p;h from fTg to

the refined mesh; call the refined mesh fTg and go to Step 1.

To realize the refinement procedure in step 3 we split every selected triangle ~T and
extend the mesh to neighbor triangles to avoid hanging nodes and sliver triangles.

For illustration, in Figure 4 we present two selected meshes obtained from the itera-
tion process of Algorithm 2. One observes that the region of the strongest refinement
covers the principal singularities. First, a ring-shaped annulus of triangles is produced in
the center. It separates the active and inactive sets due to the nonsmooth Lagrange
multipliers depicted in Figure 2. Second, four refined regions located near the corners
of the square domain are determined by η∂T . They imply a large curvature of the solu-
tion which can be seen in Figure 1.

For an iterative realization of Algorithm 2 in step 3 we suggest a continuation of
initializations of the active sets from the solution on a coarse grid to the refined one.
Starting with the coarse uniform triangulation fTg with DOF ¼ 289, numerical results
are presented in Table 1.

5.3. Comparison between PDAS and the regularized formulation. We in-
vestigate an alternative numerical technique based on the regularization gε of the non-
differentiable function g given by (15). For the regularized saddle point problem (23),
the semismooth Newton concept of [15], [23] is applicable in finite dimensional spaces.

Concerning advantages and disadvantages of the regularized approach when com-
pared to the nonregularized version given by the PDAS in Algorithm 1 we stress that the
former is based on the hemivariational inequality, which constitutes a necessary optim-
ality condition for (6) while the later utilizes a regularization of the saddle point

DOF = 541 DOF = 2653

FIG. 4. Adaptive meshes.
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formulation, which is a sufficient condition for (6). In fact, at the end of this subsection
we give an example where the PDAS, depending on minor perturbations of the obstacle,
converges to either of two solutions of the hemivariational inequality, whereas the semi-
smooth Newton method converges to the unique solution of the saddle point problem.
PDAS, on the other hand, has the advantage of monotone global convergence and a u-
independent system matrix in each step.

To introduce the semismooth Newton concept, from the literature cited above we
recall the following abstract convergence result.

PROPOSITION 5. For a mapping F : X ↦ Y between Banach spaces X , and Y , if a
generalized derivative G : X ↦ LðX;Y Þ exists such that

‖Fðyþ sÞ− FðyÞ−Gðyþ sÞs‖Y ¼ oð‖s‖XÞð52Þ

and ‖G−1‖ is uniformly bounded in a neighborhood of a solution y⋆ ∈ X of Fðy⋆Þ ¼ 0,
then the sequence yn ∈ X of Newton iterates satisfying y0 ∈ X and

Gðyn−1Þðyn − yn−1Þ ¼ −Fðyn−1Þ for n ¼ 1; 2; : : :ð53Þ

converges superlinearly to y⋆ ∈ X , i.e.,

‖yn − y⋆‖X ¼ oð‖yn−1 − y⋆‖X Þ;

provided that y0 is chosen sufficiently close to y⋆.
Next we realize the construction of Proposition 5 for the finite element solution

0 ≤ λε ∈ L2ðΩÞ and uε ∈ H 1
0ðΩÞ of the discretized saddle point problem (23). For the

discretization we use the same arguments as written at the beginning of section 4.1.
It yields the nodal values fuε

hgNi¼1; fλεhgNi¼1 ∈ RN on a subsequent mesh of the size h con-
structed in Ω. For convenience, unless otherwise stated, in the remainder of this section
we omit the subscript h. Further we use the notation uε, λε, f , ψ ∈ RN for the values of

TABLE 1
DOF, number of iterations #it, error estimator η, components ηT ° and η∂T for the adaptive meshing.

DOF #it η ηT ° η∂T

289 8 0.1058 0.0777 0.0717

541 þ2 0.0837 0.0673 0.0495

949 þ3 0.0581 0.0418 0.0403

2653 þ3 0.0387 0.0305 0.0237

3629 þ3 0.0303 0.0221 0.0206

5569 þ4 0.0253 0.0192 0.0164

9653 þ2 0.0201 0.0158 0.0123

14013 þ5 0.0156 0.0113 0.0106

19837 þ6 0.0133 0.0098 0.0088

35473 þ3 0.0105 0.0082 0.0065

51497 þ7 0.0084 0.0062 0.0055

73897 þ2 0.0069 0.0050 0.0046
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the respective functions at the nodal points fxigNi¼1. We also consider the functions H,
gε, g 0ε defined well over RN .

In the finite dimensional setting, the optimality conditions (21) and (22) for
problem (23) can be represented as a nonlinear system of equations involving the
max-operator. We write these optimality conditions in matrix form (compare with
(10) and (30))

0 ¼ F

�
uε

λε

�
≔

�
Luε −Mf þMg 0εðuεÞ− λε

λε −maxð0; λε − cðuε − ψÞÞ
�
;ð54Þ

where the stiffness matrix L corresponds to discretization of the Laplace operator −DΔ
in Ω with homogeneous Dirichlet condition on ∂Ω. Hence, L is assumed to be symmetric
and positive definite. M stands for the respective mass matrix.

The semismooth technique utilizes the Heaviside function HðyÞ as the generalized
derivative of the nondifferentiable function y ↦ max ð0; yÞ : RN ↦ RN , which satisfies

jmax ð0; yþ sÞ−max ð0; yÞ−Hðyþ sÞsj ¼ 0

for s ∈ RN : jsij < jyij if yi ≠ 0; and arbitrary si if yi ¼ 0:ð55Þ

Since y ↦ g 0εðyÞ : RN ↦ RN in (16) can be represented as the sum of max-functions, i.e.,

g 0εðyÞ ¼
γ

δ

�
1þ 1

δε
max ð0; y− ψ− δÞ− 1

δε
max ð0; y− ψ− δð1− εÞÞ

�
;

it also has the property

jg 0εðyþ sÞ− g 0εðyÞ−Gε
1ðyþ sÞsj ¼ 0

for s ∈ RN : jsij < δε; jsij < jyi − ψðxiÞj if yi ≠ ψðxiÞ;
jsij < jyi − ψðxiÞ− δj if yi ≠ ψðxiÞ þ δ;

jsij < jyi − ψðxiÞ− δð1− εÞj if yi ≠ ψðxiÞ þ δð1− εÞð56Þ

with a generalized derivative

Gε
1ðyÞ ¼

γ

δ

�
−1 ∕ ðδεÞ for ψþ δð1− εÞ < y ≤ ψþ δ;

0 otherwise:
ð57Þ

With the help of the generalized derivative given between (55) and (57) the semi-
smooth Newton method (53) applied to the system (54) yields the following iteration:
For a given initial pair (uε;0, λε;0) compute (uε;n, λε;n) such that

�
LþMGε

1ðuε;n−1Þ −I

cGε
2ðuε;n−1Þ I −Gε

2ðuε;n−1Þ

��
uε;n − uε;n−1

λε;n − λε;n−1

�

¼ −F

�
uε;n−1

λε;n−1

�
for n ¼ 1; 2; : : : ;ð58Þ

where I is the identity matrix, and

Gε
2ðuε;n−1Þ ¼ Hðλε;n−1 − cðuε;n−1 − ψÞÞ:ð59Þ
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Hence, in every iteration n the following linear system has to be solved:

0 ¼ Luε;n −Mf − λε;n

þ γ

δ
M

8>><
>>:

1 for uε;n−1 ≤ ψþ δð1− εÞ;
− uε;n−ψ−δ

δε
for ψþ δð1− εÞ < uε;n−1 ≤ ψþ δ;

0 for uε;n−1 > ψþ δ;

ð60aÞ

λε;n ¼ Gε
2ðuε;n−1Þðλε;n − cðuε;n − ψÞÞ:ð60bÞ

We have the following local convergence result.
THEOREM 3. Under the assumptions of proper discretization, for ε > 0 fixed and

sufficiently small, the sequence of Newton iterates (uε;n, λε;n) of (60) is well-defined,
and, for any initialization (uε;0, λε;0) chosen sufficiently close to a solution (uε, λε) of
the regularized minimax problem (23), it converges superlinearly.

Proof. We start by proving well-posedness of (60). In fact, any iteration of (60) can
be expressed as

�
Lþ ε−1MG1 −I

cG2 I −G2

��
u
λ

�
¼

�
fu
f λ

�
ð61Þ

with diagonal matrices G1 and G2. The diagonal of G1 consists of either 0 or −γ ∕ δ2,
and the diagonal elements of G2 are either 0 or 1. Since the matrix L is assumed to be
positive definite, there exists an orthogonal matrix C ∈ RN×N such that L ¼ C⊤DLC ,
where DL ∈ RN×N is a diagonal matrix with all diagonal entries positive. Let
AG1

≔ fi ∈ f1; : : : ; Ng : ðG1Þii ≠ 0g. Then, Lþ ε−1MG1 is invertible for 0 ≤ ε <
γ‖M‖ ∕ ðδ2dmax

L Þ with dmax
L ≔ max fðDLÞii : i ∈ AG1

g > 0 and ‖M‖ > 0.
Thus, the inverse ðLþ ε−1MG1Þ−1 exists for all sufficiently small ε > 0, and from

(61) we obtain

u ¼ ððI −G2ÞðLþ ε−1MG1Þ þ cG2Þ−1ððI −G2Þfu þ f λÞ;
λ ¼ ðLþ ε−1MG1ÞððI −G2ÞðLþ ε−1MG1Þ þ cG2Þ−1

× ððI −G2Þfu þ f λÞ− fu:

Let AG2
≔ fi ∈ f1; : : : ; Ng : ðG2Þii ¼ 1g and A 0

G2
¼ f1; : : : ; Ng \ AG2

. Then the first
equation above yields

ui ¼ c−1ðf λÞi for i ∈ AG2
ð62Þ

and further

ðLþ ε−1MG1ÞA  0
G2

A 0
G2

uA 0
G2

¼ ðfu þ f λÞA 0
G2

− c−1ððLþ ε−1MG1ÞG2f λÞA 0
G2

:ð63Þ

If A 0
G2

is empty, then u is solely determined by (62); otherwise the invertibility of
ðLþ ε−1MG1ÞA 0

G2
A 0

G2

yields uA 0
G2

depending only on fu, f λ and G1, G2. Hence, the

system (60) is well-posed.
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Finally, since there is only a finite number of partitionings of f1; : : : ; Ng into
disjoint subsets with each partitioning belonging to a particular realization of G2,
the uniform invertibility of the Newton system in (61) (regardless of the structures
of G1 and G2) is established. Hence we can apply Proposition 5 and infer the assertion
of the theorem. ▯

Let us comment on Theorem 3. In order to prove the convergence result in function
space, an extra regularization of the Lagrange multiplier λε in (60b) would be required;
compare [18], [23]. When comparing the two nondifferentiabilities, the one due to the
obstacle constraint and the other one due to cohesion, we note the following: The former
associated to λ is more regular than the latter associated to p. For this reason we consider
the regularization pε of p in (60a), but do not regularize λ.

Applying active set arguments, (60) can be rewritten as

Luε;n −Mf þMpε;n − λε;n ¼ 0;ð64aÞ
pε;n ¼ γ ∕ δ on Aε;n−1

p ; pε;n ¼ 0 on I ε;n−1
p ;ð64bÞ

pε;n ¼ −
γ

δ2ε
ðuε;n −ψ− δÞ on Aε;n−1

r ;ð64cÞ

uε;n ¼ ψ on Aε;n−1
c ; λε;n ¼ 0 on I ε;n−1

c ;ð64dÞ

where the discrete active and inactive sets are defined by

Aε;n
c ¼ fxi : ðλε;n − cðuε;n − ψÞÞðxiÞ > 0g;

I ε;nc ¼ fxi : ðλε;n − cðuε;n − ψÞÞðxiÞ ≤ 0g;ð65aÞ
Aε;n

p ¼ fxi : uε;nðxiÞ ≤ ψðxiÞ þ δð1− εÞg;ð65bÞ
Aε;n

r ¼ fxi : ψðxiÞ þ δð1− εÞ < uε;nðxiÞ ≤ ψðxiÞ þ δg;ð65cÞ
I ε;np ¼ fxi : uε;nðxiÞ > ψðxiÞ þ δg:ð65dÞ

We note that the relations (64) differ from the reference PDAS-iteration (47) only in
(64c) defined on a small set Aε;n

r in (65c), where g is smoothed by gε.
Replacing the discrete counterparts of the relations (34) and (35) of Algorithm 1 by

(64) and (65), typically a behavior as documented in Table 2 is observed. In this example
we fix the uniform mesh of size h ¼ 1 ∕ 128 with DOF ¼ 16641 and decrease the regu-
larization parameter from ε ¼ 10−0.5 to ε ¼ 10−6. For the selected values of ε we present
the number of iterations #it required to terminate the Newton iteration (64) successfully
on the basis of coincidence of two consequent iterates of active and inactive sets in (65).
After its termination, the final iterate yields the exact discrete solution of the
regularized problem (23). Its primal component uε

h is compared with the solution u⋆
h

obtained for the reference problem (46) and the difference is computed with respect
to the H 1-norm.

The third column in Table 2 validates the convergence of solutions uε
h → u⋆

h as ε
decreases. The second column demonstrates that #it is in general not smaller than the
number of iterations for the problem without regularization which is 35 in this example.
We further report that for ε ≤ 10−2.5 the two numerical approaches produce the same
result and the same history of iterates. This fact can be explained by noting that the
respective set Aε;n

r in (65c) is small for sufficiently small ε. For larger ε > 10−2.5 and for
the algorithm without regularization, an inspection of the iteration history shows a loss
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of monotonicity properties with the latter as stated in Theorem 2. This is clearly a dis-
advantage of the regularization scheme.

An advantage of the PDAS approach over regularization lies in the fact that the
system matrix in (47) is independent of u while that of (64) depends on u during the
iterations.

In the following we investigate the relation between the regularization parameter ε
and the mesh size h > 0. The H 1-error of the discrete solution of (23) in its primal
component can be estimated by

‖uε
h − u⋆‖ ≤ ‖u⋆

h − u⋆‖þ ‖uε
h − u⋆

h‖:ð66Þ

As before, ‖ · ‖ð¼ j · j1Þ denotes the H 1-norm. The first term on the right-hand side of
(66) is the error due to discretization, and the latter term expresses the error due to
regularization by ε.

Since the exact solution u⋆ of the reference problem (46) is not available, we eval-
uate these errors with the help of a solution u obtained at the finest mesh. Figure 5(a)
depicts the quantity ‖u⋆

h − u‖ for h ¼ 1 ∕ 16, 1 ∕ 32, 1 ∕ 64, 1 ∕ 128 with u⋆
h computed by

Algorithm 1. We deduce that the discretization error in the H 1-norm is of the order of
h3 ∕ 4 with respect to the uniform mesh size h. This corresponds to theoretical estimates;
see, for example, [9].

Substituting the data of ‖u⋆
h − u‖ from Figure 5(a) into (66), next we evaluate nu-

merically the error of the regularized solution on various meshes. The upper bound
‖u⋆

h − u‖þ ‖uε
h − u⋆

h‖ is represented in Figure 5(b) by the various curves depicted
in solid lines in the semilog-scale for ε ∈ ½10−6; 10−0.5�. Each curve corresponds to a uni-
form mesh of the fixed size h ¼ 1 ∕ 32, 1 ∕ 64, 1 ∕ 128, 1 ∕ 256. For each discretization level
we note that below a certain threshold ε⋆ðhÞ the error is not reduced further as the error
due to discretization persists even if ε is further reduced. In the plot we depict the region,
where a further ε reduction does not lead to a reduction of the overall error, by a gray
zone, which is bounded by a dashed line indicating ‖uε

h − u⋆
h‖ ¼ 0 for ε ≤ ε⋆ðhÞ. We

observe numerically that ε⋆ðhÞ∼ hκ for some κ ∈ ½2; 3�. For fixed h sufficiently small,
we find numerically ‖uε

h − u⋆
h‖∼

ffiffiffi
ε

p
for ε > ε⋆ðhÞ.

Finally, we investigate the robustness of both algorithms with respect to small per-
turbations of data. For this purpose, we present a worst-case scenario where the solution
u⋆ of the hemivariational inequality is not unique due to the discontinuity of the cohe-
sion force p⋆ defined by the Heaviside function. Indeed, for the specific data ψðxÞ ¼ −δ

TABLE 2
Regularization error and number of iterations #it for the ε-regularized problem.

ε #it ‖uε
h − u⋆

h ‖

1.e-0.5 37 0.009700547

1.e-1 38 0.004730327

1.e-1.5 37 0.001652930

1.e-2 37 0.000539085

1.e-2.325 35 0.000080979

1.e-2.5 35 0.000000001

1.e-3 35 0.000000001
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and f ðxÞ ¼ γ ∕ δ, x ∈ Ω, the complementarity conditions (10)–(11) are satisfied by two
solutions: Once by

λ⋆1 ¼ 0; u⋆
1 ¼ 0; p⋆1 ¼ γ

δ
Hðδ− u⋆

1 þ ψÞ ¼ γ

δ
¼ f ;

and also by the solution u⋆
2 ∈ H 1

0ðΩÞ found from the linear equationZ
Ω
ðDð∇u⋆

2 Þ⊤∇v− fvÞdx ¼ 0 for all v ∈ H 1
0ðΩÞ:

The maximum principle provides that u⋆
2 > 0 in Ω due to f > 0. Hence, p⋆2 ¼ 0 and

λ⋆2 ¼ 0. Computing this problem with the algorithms (47) and (64) we observe the fol-
lowing behavior. When small perturbations of ψ are imposed, then the results obtained
by the PDAS-algorithm in (47) converge to either of the two solutions. In contrast, the
results of the algorithm based on (64) always yield (u⋆

2 , λ
⋆
2 , p

⋆
2 ). Thus, regularization is

helpful to stabilize the numerical result when the solution is set exactly at the disconti-
nuity point.

Moreover, comparing the above two solutions u⋆
1 and u⋆

2 of the hemivariational
inequality (3) with respect to objective function T in (7), a simple calculation yields
that

Tðu⋆
1 Þ ¼ Πð0Þ þ

Z
Ω
gð0Þdx ¼

Z
Ω
γdx >

Z
Ω
γdx−

D

2

Z
Ω
j∇u⋆

2 j2dx ¼ Tðu⋆
2 Þ:

Therefore, u⋆
1 is not a solution of the minimization problem (6). This is related to the fact

that the hemivariational inequality (3) yields a necessary but not a sufficient optimality
condition for (6). Lemma 2 and Proposition 4 guarantee that u⋆

2 is a solution to (6).
Thus, the regularization technique provides a viscosity-type solution to the set-valued
minimization problem.
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