PROSEMINAR OPTIMIERUNG II

Victor A. Kovtunenko

Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, Heinrichstr. 36, 8010 Graz, Austria;

Lavrent'ev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

SS 2012/2013: LV 621.352

Список литературы

- [1] D.P. Bertsekas, A. Nedić, A.E. Ozdaglar, *Convex Analysis and Optimization*. Athena Scientific, Belmont, 2003, 534 pp.
- [2] C. Geiger, C. Kanzow, Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer-Verlag, Berlin, 1999, 487 S.
- [3] C. T. Kelley, Iterative Methods for Optimization. SIAM, Philadelphia, PA, 1999, 180 pp.
- [4] A.M. Khludnev, V.A. Kovtunenko, *Analysis of Cracks in Solids*. WIT-Press, Southampton, Boston, 2000, 408 pp.
- [5] D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming. Springer, New York, 2008, 546 pp.
- [6] J. Nocedal, S.J. Wright, Numerical Optimization. Springer-Verlag, New York, 1999, 636 pp.
- [7] В.М. Алексеев, Э.М. Галеев, В.М. Тихомиров, Сборник задач по оптимизации. Москва: Наука, 1984, 288 с.

1. Linear programs

Linear programs (LP) are stated in the canonical (standard) form:

(1.1)
$$\min c^{\top} x \text{ over } x \in \mathbb{R}^n \text{ subject to } Ax = b, x \ge 0,$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, and m < n. The feasible set is defined

$$\mathcal{F} = \{ x \in \mathbb{R}^n : Ax = b, \quad x \ge 0 \},$$

and its boundary corresponds to the active set

$$(1.3) \mathcal{A} = \{ x \in \mathbb{R}^n : Ax = b, \exists x_j = 0 \}.$$

The fundamental theorem of LP states that optimal solutions of (1.1) occur along \mathcal{A} at extreme (corner) points of \mathcal{F} .

Exercise 1.1. Rewrite the following LP in the standard form:

$$\min\{x_1 + 2x_2 + 3x_3\}$$
 over $x \in \mathbb{R}^3$ subject to

$$4 \le x_1 + x_2 \le 5$$
, $6 \le x_1 + x_3 \le 7$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$,

and determine A, b, c in (1.1). Hint: introduce slack variables $x_4 \ge 0$, $x_5 \ge 0$, $x_6 \ge 0$, $x_7 \ge 0$ to satisfy the non-standard inequality constraints.

Exercise 1.2. Rewrite the following LP in the standard form:

$$\min\{x+y+z\}$$
 over $(x,y,z) \in \mathbb{R}^3$ subject to $x+y \le 1$, $2x+z=3$.

and determine A, b, c in (1.1). Hint: introduce non-negative variables (x_1, \ldots, x_6) by $x = x_1 - x_2$, $y = x_3 - x_4$, $z = x_5 - x_6$.

Exercise 1.3. Convert the ℓ^1 -minimization problem to LP:

$$\min |x|$$
 over $x \in \mathbb{R}^1$ subject to $Ax = b$.

Hint: use the inequality $-|x| \le x \le |x|$.

Exercise 1.4. Given the constraints:

$$x_1 + 2x_2 \le 16$$
, $2x_1 + x_2 \le 12$, $x_1 + 2x_2 \ge 2$, $x_1 \ge 0$, $x_2 \ge 0$,

- a) plot the feasible set \mathcal{F} and determine the extreme (corner) points,
- b) plot the active set A.

Exercise 1.5. Consider feasible set $\mathcal{F} \subset \mathbb{R}^2$ satisfying the following inequalities:

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_2 - x_1 \le 2$, $x_1 + x_2 \le 7$.

- a) Plot \mathcal{F} and list its extreme points,
- b) compute $\min\{x_1 2x_2\}$ over $x \in \mathbb{R}^2$ subject to $x \in \mathcal{F}$,
- c) compute $\max\{x_1 2x_2\}$ over $x \in \mathbb{R}^2$ subject to $x \in \mathcal{F}$.

Hint: apply the fundamental theorem of LP.

2. Nonlinear programs

We consider *nonlinear programs (NLP)* of the general form:

(2.1)
$$\min J(x)$$
 over $x \in \mathbb{R}^n$ subject to $e(x) = 0$, $g(x) \le 0$,

where $J: \mathbb{R}^n \to \mathbb{R}$, $e: \mathbb{R}^n \to \mathbb{R}^m$, $e = (e_1, \dots, e_m)$, m < n, and $g: \mathbb{R}^n \to \mathbb{R}^p$, $g = (g_1, \dots, g_p)$. The feasible set is defined

(2.2)
$$\mathcal{F} = \{ x \in \mathbb{R}^n : e(x) = 0, g(x) \le 0 \},$$

and its boundary corresponds to the active set

(2.3)
$$A = \{x \in \mathbb{R}^n : e(x) = 0, \exists g_j(x) = 0\}.$$

A vector $x^* \in \mathcal{F}$ is called a *global solution* of (2.1) if $J(x^*) \leq J(x)$ for all $x \in \mathcal{F}$, respectively, a *local solution* if there is a neighborhood $U(x^*) \subset \mathcal{F}$ such that $J(x^*) \leq J(x)$ for all $x \in U(x^*)$.

Exercise 2.1. In \mathbb{R}^2 consider the constraints:

$$x_1 \ge 0$$
, $x_2 \ge 0$, $x_2 - (x_1 - 1)^2 \le 0$, $x_1 \le 2$.

Plot the feasible set \mathcal{F} in (2.2) and show that $x^* = (1,0)$ is feasible but not regular. Hint: A point x^* at the hyperplane $\mathcal{E} = \{x \in \mathbb{R}^n : e_1(x) = 0, \ldots, e_k(x) = 0\}$ is regular if vectors $\nabla e_1(x^*), \ldots, \nabla e_k(x^*)$ are linearly independent (called linear independence constrained qualification (LICQ)).

Exercise 2.2. Let \mathcal{F} be a convex set in \mathbb{R}^2 . This implies that for all $x, y \in \mathcal{F}$ and $t \in [0,1]$ points $tx + (1-t)y \in \mathcal{F}$. Prove that, for nonnegative weights $c^1, \ldots, c^k \in \mathbb{R}$ such that $\sum_{i=1}^k c^i = 1$, if $x^1, \ldots, x^k \in \mathcal{F}$ then $\sum_{i=1}^k c^i x^i \in \mathcal{F}$. Hint: use induction over $k \geq 2$.

Exercise 2.3. Determine, whether the following functions defined on \mathbb{R}^2_+

a)
$$J(x) = x_1 x_2$$

c) $J(x) = x_1 (\ln x_1 - 1) + x_2 (\ln x_2 - 1)$
b) $J(x) = \frac{1}{x_1 x_2}$

are convex, concave, or neither. Hint: twice differentiable function J is convex on a convex set if its Hessian matrix $D(\nabla J)$ is positive semidefinite (spd).

Exercise 2.4. If the objective function J is convex on the convex feasible set \mathcal{F} , prove that local solutions of (2.1) are also global solutions.

Exercise 2.5. Consider the problem: $\min\{x_1 + x_2\}$ subject to $x_1^2 + x_2^2 = 1$. a) Solve the problem by eliminating the variable x_2 .

b) Plot \mathcal{F} and find tangent plane at feasible point $x^* = (-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$. Hint: at a regular point x^* of hyperplane \mathcal{E} the tangent plane (tangent cone) is

$$(2.4) \quad \mathcal{T}(x^*) = \{ v \in \mathbb{R}^n : De(x^*) \cdot v = 0 \} \quad \text{with } De := (\nabla e_1^\top, \dots, \nabla e_k^\top).$$

- c) Find (the Lagrange multiplier) $\lambda^* \in \mathbb{R}$ such that $\nabla J(x^*) = -De(x^*)\lambda^*$.
- d) Illustrate this problem geometrically.

3. Equality constrained optimization

For the equality constrained minimization problem

(3.1)
$$\min J(x)$$
 over $x \in \mathbb{R}^n$ subject to $\{e_1(x) = 0, \dots, e_m(x) = 0\}$

the Lagrange function (Lagrangian) is defined by

(3.2)
$$L: \mathbb{R}^{n+m} \to \mathbb{R}, \quad L(x,\lambda) = J(x) + e(x)^{\top} \lambda$$

with the Lagrange multipliers (dual variables) $\lambda \in \mathbb{R}^m$. The first order necessary condition of optimality implies a stationary point (x^*, λ^*) solving

$$(3.3) \qquad \nabla_{(x,\lambda)} L(x^{\star}, \lambda^{\star}) = 0 \Leftrightarrow \{ \nabla J(x^{\star}) + De(x^{\star}) \lambda^{\star} = 0, \quad e(x^{\star}) = 0 \},$$

and the second order sufficient condition along the tangent plane $\mathcal{T}(x^*)$ reads

(3.4)
$$v^{\top} D(\nabla L)(x^{\star}, \lambda^{\star}) v > 0 \quad \text{for all } v \in \mathcal{T}(x^{\star}),$$

where the Hessian matrix (Hessian) $D(\nabla L) : \mathbb{R}^{n+m} \to \mathbb{R}^{n \times n}$.

Exercise 3.1. Solve using Lagrange multipliers:

$$\min\{-x^3 - y^3\} \quad \text{subject to } x + y = 1.$$

Exercise 3.2. Consider the following minimization problem:

$$\min\left\{\frac{1}{2}x_1^2 - \frac{1}{2}x_2^2 + \frac{1}{2}x_3^2 + 2x_1x_2\right\}$$
 subject to $x_1 + x_2 = 4$, $x_3 - 9x_1 + 16 = 0$.

- a) Construct Lagrangian and find the stationary point (x^*, λ^*) of this problem.
- b) Check a second order sufficient condition along the tangent plane $\mathcal{T}(x^*)$.

Exercise 3.3. If a, b, c are positive real numbers, prove that the inequality $a^3 + b^3 + c^3 \ge 3abc$ holds. Hint: it is enough to prove that, if 3abc = K (with arbitrarily fixed $K \ge 0$), then $\min\{a^3 + b^3 + c^3\} = K$.

Exercise 3.4. A box with sides x, y and z is to be manufactured such that its top (xy), bottom (xy), and front (xz) faces must be doubled. Find the dimensions of such a box that maximize the volume xyz for a given face area, equal to 18 dm². Hint: use first order and verify second order conditions.

Exercise 3.5. Find an oriented triangle of maximal area such that one vertex is $(x_3, y_3) = (1, 0)$ and the other two vertexes (x_1, y_1) , (x_2, y_2) lie on

the unit circle in
$$\mathbb{R}^2$$
. Hint: use the area formula $S = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ 1 & 1 & 1 \end{vmatrix}$.

4. Inequality constrained optimization

For the general, equality and inequality constrained minimization problem

(4.1)
$$\min J(x)$$
 over $x \in \mathbb{R}^n$ subject to $e(x) = 0, g(x) \le 0$,

the Lagrange function (Lagrangian) is defined by

$$(4.2) L: \mathbb{R}^{n+m+p} \mapsto \mathbb{R}, \quad L(x,\lambda,\mu) = J(x) + e(x)^{\top} \lambda + q(x)^{\top} \mu$$

with the Lagrange multipliers $(\lambda, \mu) \in \mathbb{R}^{m+p}$. The first order necessary optimality condition implies Karush-Kuhn-Tucker (KKT) conditions:

(4.3a)
$$\nabla_{(x,\lambda)}L(x^{\star},\lambda^{\star},\mu^{\star}) = 0 \Leftrightarrow \begin{cases} \nabla J(x^{\star}) + De(x^{\star})\lambda^{\star} + Dg(x^{\star})\mu^{\star} = 0, \\ e(x^{\star}) = 0 \end{cases}$$

(4.3b)
$$\mu^* \ge 0, \quad g(x^*) \le 0, \quad g_i(x^*)\mu_i^* = 0 \quad \text{for } i = 1, \dots, p.$$

The second order sufficient condition along the tangent plane $\mathcal{T}(x^*)$ reads

$$(4.4) v^{\top} D(\nabla L)(x^{\star}, \lambda^{\star}, \mu^{\star}) v > 0 \text{for all } v \in \mathcal{T}(x^{\star}).$$

Exercise 4.1. Solve using KKT conditions:

$$\min\{3x - x^3\}$$
 over $x \in \mathbb{R}$ subject to $x \le 2$

and plot the objective function on the feasible set.

Exercise 4.2. Solve using KKT conditions:

$$\min\{e^{x_1}\}$$
 over $x \in \mathbb{R}^2$ subject to $e^{-x_1} + x_2 = 7$, $x_1 \ge 0$, $x_2 \ge 0$.

Exercise 4.3. Verify that complementarity conditions (4.3b) follows from the variational inequality

$$(4.5) \quad \mu^{\star} \geq 0, \quad \nabla_{\mu} L(x^{\star}, \lambda^{\star}, \mu^{\star})^{\top} (\mu - \mu^{\star}) \leq 0 \quad \text{for all } \{\mu \in \mathbb{R}^p : \mu \geq 0\}.$$

Hint: plug
$$\mu = (\mu_1^{\star}, \dots, t\mu_i^{\star}, \dots, \mu_p^{\star})$$
 with arbitrary $t > 0$ and $i \in \{1, \dots, p\}$.

Exercise 4.4. Let x^* , λ^* , $\mu^* \geq 0$ be a solution of the minimax problem:

(4.6)
$$\min_{(x,\lambda)} \max_{\mu} L(x,\lambda,\mu) \quad \text{over } (x,\lambda,\mu) \in \mathbb{R}^{n+m+p} \text{ subject to } \mu \geq 0.$$

- (a) Verify that this solution satisfy KKT conditions (4.3).
- (b) From (4.6) derive that x^* is feasible and that it solves (4.1).

Exercise 4.5. Consider the following minimization problem:

$$\min\{-(x-2)^2 - 2(y-1)^2\}$$
 subject to $x + 4y \le 3$ and $x \ge y$.

Solve this problem using KKT conditions.

5. Regularity and sensitivity

Exercise 5.1. Consider the minimization problem:

$$\min\{-x_1\}$$
 over $x \in \mathbb{R}^2$ subject to $x_1^2 \le x_2$ and $x_2 \le 0$.

Find the global solution of this problem and verify that there is no KKT points. Hint: consider the feasible set and check its regularity.

Exercise 5.2. For the problem:

$$\min\{y^2 - x\}$$
 over \mathbb{R}^2 subject to $y \le (1 - x)^3$, $x + y \ge 1$, $y \le 0$,

verify that the objective function is convex, the feasible set is convex and has a non-empty interior (Slater condition). This will guarantee that the KKT point is the solution of the convex minimization problem. Find this solution. Check a second order sufficient condition as well.

Exercise 5.3. Consider the problem:

$$\min\{4x_1 + x_2\}$$
 over $x \in \mathbb{R}^2$ subject to $x_1^2 + x_2 \ge 9$, $x_1 \ge 0$, $x_2 \ge 0$.

- (a) Verify that the feasible set \mathcal{F} is non-convex (hence, a KKT point may be not the solution of the minimization problem).
- (b) Since the objective function is linear, find the global solution of the problem at the boundary (the active set A) of F.
- (c) Find all solutions of the KKT system at \mathcal{A} and determine its kind of extrema.

Exercise 5.4. Consider the following minimization problem:

$$\min\{\frac{1}{2}\alpha x_1^2 + \frac{1}{2}x_2^2 + 5x_1\}$$
 over $x \in \mathbb{R}^2$ subject to $x_1 \ge 0$.

Using first and second order optimality conditions find its solution in dependence of the parameter $\alpha \in \mathbb{R}$.

Exercise 5.5. Consider the problem:

$$\min\{(x-1)^2 + y^2\}$$
 over \mathbb{R}^2 subject to $x \leq \frac{1}{\beta}y^2$.

For what values of the parameter $\beta \in \mathbb{R}$ its KKT point is a local solution? Hint: use a second order sufficient condition.

6. Quadratic programs

We consider quadratic programs (QP) as NLP with the specific (quadratic) objective function $J(x) = \frac{1}{2}x^{\top}Qx + d^{\top}x$, where the matrix $Q \in \mathbb{R}^{n \times n}$ is symmetric positive definite (spd) and $d \in \mathbb{R}^n$.

Exercise 6.1. Verify that, for $Q \in \operatorname{spd}(\mathbb{R}^{n \times n})$, the quadratic objective function J is convex by the definition: $J(tx + (1-t)y) \leq tJ(x) + (1-t)J(y)$. Hint: use the Cauchy–Schwarz inequality $x^\top Qy \leq \frac{1}{2}x^\top Qx + \frac{1}{2}y^\top Qy$.

Exercise 6.2. Consider the quadratic minimization problem:

(6.1)
$$\min\left\{\frac{1}{2}x^{\top}Qx + d^{\top}x\right\} \text{ subject to } Ax = b,$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Prove that x^* is a local solution of the problem if and only if it is a global solution.

Exercise 6.3. The problem of finding the shortest distance from a point $x^0 \in \mathbb{R}^n$ to the hyperplane $\{x \in \mathbb{R}^n : Ax = b\}$ can be formulated as

$$\min \left\{ \frac{1}{2} (x - x^0)^\top (x - x^0) \right\} \quad \text{subject to } Ax = b.$$

- (a) Verify that the problem is of the form (6.1) and determine Q and d.
- (b) Show that: the matrix AA^{\top} is nonsingular if A has full rank,
- (c) the stationary point is $x^* = x^0 A^{\top} \lambda^*$ and $\lambda^* = (AA^{\top})^{-1} (Ax^0 b)$,
- (d) the stationary point is the optimal solution.

Exercise 6.4. For given data points $(x_1, y_1), \ldots, (x_n, y_n)$ in \mathbb{R}^2 , the linear regression problem consists in fitting the line y = d + kx such that to minimize the residuals:

$$\min \left\{ \frac{1}{2} \sum_{i=1}^{n} (d + kx_i - y_i)^{\top} (d + kx_i - y_i) \right\} \quad \text{over } (d, k)^{\top} \in \mathbb{R}^2.$$

(a) Rewrite the problem in the following form of unconstrained QP:

$$\min\left\{\frac{1}{2}(Az-b)^{\top}(Az-b)\right\} \text{ over } z \in \mathbb{R}^2.$$

- (b) Using optimality derive the normal equations: $A^{\top}Az^{\star} = A^{\top}b$.
- (c) Solving these two equations verify the formula: $k = \frac{S_{xy} \bar{x}\bar{y}}{S_{xx} \bar{x}^2}$, $d = \bar{y} k\bar{x}$ written in statistical terms

$$S_{xx} = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \quad S_{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i, \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Exercise 6.5. Consider the problem of finding the point on the parabola $y = \frac{1}{5}(x-1)^2$ that is closest to $(x^0, y^0) = (1, 2)$. This can be formulated as

$$\min\left\{\frac{1}{2}(x-1)^2 + \frac{1}{2}(y-1)^2\right\}$$
 subject to $(x-1)^2 = 5y$.

Find the stationary point of the problem and show that it is the minimum point using a second order condition.

7. Complementarity

Exercise 7.1. The Euclidean projection $P_{\mathcal{S}}x^0$ of a point $x^0 \in \mathbb{R}^n$ on simplex

$$S = \{x \in \mathbb{R}^n : x \ge 0, x^{\top}e = 1\} (e = (1, ..., 1)^{\top})$$

solves the problem: $\min\{\frac{1}{2}||x-x^0||_2^2\}$ over $x \in \mathbb{R}^n$ subject to $x \in \mathcal{S}$. Verify the formula $P_{\mathcal{S}}x^0 = \max(0, x^0 - \lambda^* e)$, where $\lambda^* \in \mathbb{R}$ is a Lagrange multiplier associated to the constraint $x^\top e = 1$.

Exercise 7.2. For the maximization of entropy find the solution:

$$\max\{-(x_1\log(x_1)+\cdots+x_n\log(x_n))\}$$
 over $x\in\mathbb{R}^n$ subject to $x\in\mathcal{S}$.

Exercise 7.3. $\phi : \mathbb{R}^2 \to \mathbb{R}$ is called a *nonlinear complementarity problem* (NCP) function if it satisfies $\phi(x,y) = 0 \Leftrightarrow x \geq 0, \ y \geq 0, \ x \cdot y = 0$. Verify that the following are NCP functions:

$$\phi_{\min}(x,y) = \min(x,y), \quad \phi_{\max}(x,y) = y - \max(0,y-cx) \quad \text{with } c > 0,$$

 $\phi_{\text{FB}}(x,y) = \sqrt{x^2 + y^2} - (x+y) \quad \text{(Fischer-Burmeister)}$

Exercise 7.4. Consider an abstract inequality constrained minimization

- (7.1) $\min J(x)$ over $x \in \mathbb{R}^n$ subject to $Ax = b, x \ge 0$.
- (a) Using KKT conditions and a NCP function ϕ derive the NCP

(7.2)
$$\Phi(x^{\star}, \lambda^{\star}, \mu^{\star}) := \begin{pmatrix} \nabla J(x^{\star}) + A^{\top} \lambda^{\star} - \mu^{\star} \\ Ax^{\star} - b \\ \phi(x^{\star}, \mu^{\star}) \end{pmatrix} = 0.$$

- (b) If there exists index i such that both $x_i^* = \mu_i^* = 0$, then prove that the matrix of derivatives $D_{(x,\lambda,\mu)}\Phi(x^*,\lambda^*,\mu^*)$ is singular.
- (c) Using ϕ_{max} rewrite $\phi_{\text{max}}(x^{\star}, \mu^{\star}) = 0$ as the linear system

$$x_i^{\star} = 0$$
 for $i \in A(x^{\star}, \mu^{\star}), \quad \mu_i^{\star} = 0$ for $i \in I(x^{\star}, \mu^{\star})$

with respect to primal-dual strictly active A and inactive I sets of indexes

$$A(x^{\star}, \mu^{\star}) = \{i: \ \mu_i^{\star} - cx_i^{\star} > 0\}, \quad I(x^{\star}, \mu^{\star}) = \{i: \ \mu_i^{\star} - cx_i^{\star} \le 0\}.$$

(d) On this basis suggest iterations solving nonlinear problem (7.2).

Exercise 7.5. Consider the inequality constrained optimization

$$\min \frac{1}{2} \{ x_1^2 + (x_2 - 2)^2 + (x_3 + 3)^2 \}$$
 subject to $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

Initializing $A^{(-1)} = \emptyset$, $I^{(-1)} = \{1, 2, 3\}$ iterate the active and inactive sets

$$A^{(k)} = \left\{i: \ \mu_i^{(k)} - cx_i^{(k)} > 0\right\}, \quad I^{(k)} = \left\{i: \ \mu_i^{(k)} - cx_i^{(k)} \le 0\right\}$$

together with $x_i^{(k)} = 0$ for $i \in A^{(k-1)}$ and $\mu_i^{(k)} = 0$ for $i \in I^{(k-1)}$.

From the iteration find a solution of the KKT system for this problem.

8. Approximations

Exercise 8.1. Let $x^* = \operatorname{argmin}\{J(x)\}$ over $x \in \mathbb{R}^n$ subject to e(x) = 0, $g(x) \leq 0$. Verify that there exists constant c > 0 such that x^* is also a minimizer of the *penalty problem*

$$\min\{J(x) + c(\|e(x)\|_1 + \|\max(0, g(x))\|_1)\}$$
 over $x \in \mathbb{R}^n$.

Hint: use the fact that the associated Lagrangian L satisfies $L(x^*, \lambda^*, \mu^*) \le L(x, \lambda^*, \mu^*)$ for all $x \in \mathbb{R}^n$.

Exercise 8.2. (a) For the constrained minimization problem

$$\min\{J(x) = (x_1 - 6)^2 + (x_2 - 7)^2\}$$
 over $x \in \mathbb{R}^2$ subject to $x_1 + x_2 \le 7$

find the solution x^* and the associated Lagrange multiplier λ^* .

(b) Consider the penalty problem

$$\min\{J^{\alpha}(x) = J(x) + \alpha(\max(0, x_1 + x_2 - 7))^2\}$$
 over $x \in \mathbb{R}^2$

and find its solution x^{α} in dependence of the parameter $\alpha > 0$. Is x^{α} interior or exterior to the feasible set?

(c) Verify that $x^{\alpha} \to x^{\star}$ and $2\alpha \cdot \max(0, x_1^{\alpha} + x_2^{\alpha} - 7) \to \lambda^{\star}$ as $\alpha \to \infty$.

Exercise 8.3. (a) Find a solution x^* of the constrained minimization problem $\min\{J(x) = 2x_1^2 + 9x_2\}$ over $x \in \mathbb{R}^2$ subject to $x_1 + x_2 \ge 4$.

(b) Consider the associated inverse barrier function $J^{\tau}(x) = J(x) + \frac{\tau}{x_1 + x_2 - 4}$ in dependence of the parameter $\tau > 0$. Find the solution x^{τ} of the unconstrained problem: $\min\{J^{\tau}(x)\}$ over $x \in \mathbb{R}^2$, and compare x^{τ} with x^{\star} .

Exercise 8.4. For $\tau > 0$ consider a log-barrier function constrained minimization

(8.1)
$$\min\{J(x) - \tau \sum_{i=1}^{n} \log(x_i)\}$$
 over $x \in \mathbb{R}^n$ subject to $Ax = b, x > 0$.

(a) Verify that its KKT conditions lead to the interior point system

(8.2)
$$\begin{cases} \nabla J(x) + A^{\top} \lambda - \nu = 0 \\ Ax - b = 0 \\ x_i \cdot \nu_i = \tau \text{ for } i = 1, \dots, n, \quad x > 0, \quad \nu > 0. \end{cases}$$

(b) Verify that, conversely, if the interior point system (8.2) is solvable, then it follows the KKT system for (8.1).

Exercise 8.5. For the inequality constrained optimization problem

$$\min\{J(x) = -5x_1^2 + 2x_2\}$$
 over $x \in \mathbb{R}^2$ subject to $x_1 \le 1, x_2 \ge 0$,

write the interior point system and find its solution in dependence of parameter $\tau > 0$. Passing $\tau \to 0$ find a solution of KKT system for this problem.

9. Simplex method

For LP: $\min\{c^{\top}x\}$ over $x \in \mathbb{R}^n$ subject to $Ax = b, x \geq 0$ with $A \in \mathbb{R}^{m \times n}$, partitioning $A = (B, D), x^{\top} = (x_B^{\top}, x_D^{\top}), c^{\top} = (c_B^{\top}, c_D^{\top})$ implies the system

$$Ix_b + B^{-1}Dx_D = B^{-1}b, \quad (c_D^{\top} - c_B^{\top}B^{-1}D)x_D = c^{\top}x - c_B^{\top}B^{-1}b$$

expressed by Tableau:

$$T := \left(\begin{array}{c|c} I & B^{-1}D & B^{-1}b \\ \hline 0 & c_D^\top - c_B^\top B^{-1}D =: r^\top & -c_B^\top B^{-1}b \end{array} \right)$$

and follows the simplex algorithm: Repeat until $r \geq 0$: select

$$j = \operatorname*{argmin}_{k \in \{1, \dots, n\}} \{ r_k : r_k < 0 \}, \quad i = \operatorname*{argmin}_{k \in \{1, \dots, m\}} \big\{ \frac{(B^{-1}b)_k}{(B^{-1}D)_{kj}} : (B^{-1}b)_k (B^{-1}D)_{kj} \ge 0 \big\},$$

pivot on $(B^{-1}D)_{ij}$. If all $(B^{-1}b)_k(B^{-1}D)_{kj} < 0$ then the problem is unbounded.

Exercise 9.1. Using the simplex algorithm, iterate $x = B^{-1}b$ from T for

$$\max\{5x_1 + x_2\}$$
 over $x \in \mathbb{R}^2$ subject to $4x_1 + 3x_2 \le 12$, $-2x_1 + 3x_2 \ge 6$, $x_1 \ge 0, x_2 \ge 0$.

Sketch the feasible set and the path of the simplex steps stopping at the solution of this LP. Are the iterations of x feasible?

Exercise 9.2. Using the simplex algorithm, solve the following LP:

$$\max\{x_1 + x_2\}$$
 over $x \in \mathbb{R}^2$ subject to $-2x_1 + x_2 < 1$, $x_1 - x_2 < 1$, $x_1 > 0, x_2 > 0$.

Sketch the feasible set and the path of the simplex steps.

Exercise 9.3. Find all solutions of the LP:

$$\max\{x_1 + x_2 + 2x_3\}$$
 over $x \in \mathbb{R}^3$ subject to $x_1 + 2x_2 + 2x_3 \le 2$, $x_1 + 4x_2 + 2x_3 \le 4$, $x_1 \ge 0, \dots, x_3 \ge 0$.

Exercise 9.4. Find an optimal solution of the problem:

$$\min \left\{ x_1 - 3x_2 - \frac{2}{5}x_3 \right\} \quad \text{over } x \in \mathbb{R}^3 \text{ subject to } x_1 \ge 0, \dots, x_3 \ge 0, \\ 3x_1 - x_2 + 2x_3 < 7, \quad -2x_1 + 4x_2 < 12, \quad -4x_1 + 3x_2 + 3x_3 < 14.$$

Exercise 9.5. Consider the following LP:

$$\min\{5x_1 + 3x_2\}$$
 over $x \in \mathbb{R}^3$ subject to $x_1 \ge 0, \dots, x_3 \ge 0$, $2x_1 - x_2 + 4x_3 \le 4$, $x_1 + x_2 + 2x_3 \le 5$, $2x_1 - x_2 + x_3 \ge 1$.

Starting pivot element (3,3), solve the problem with the (dual) simplex algorithm.