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A class of semismooth Newton methods for unilaterally constrained variational problems modeling cracks
under a nonpenetration condition is introduced and investigated. On the continuous level, a penalization
technique is applied that allows to argue generalized differentiability of the nonlinear mapping associated
to its first-order optimality characterization. It is shown that the corresponding semismooth Newton method
converges locally superlinearly. For the discrete version of the problem, fast local as well as global and
monotonous convergence of a discrete semismooth Newton method are proved. A comprehensive report
on numerical tests for the two-dimensional Lamé problem with three collinear cracks under the nonpen-
etration condition ends the article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 21:
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1. INTRODUCTION

This article is devoted to crack problems in fracture mechanics and their numerical treatment.
In the past, analytical approaches to crack problems were based on linear boundary value
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problem formulations on non-Lipschitzian domains. The aim was to study solution singularities
caused by the nonsmooth boundary of the domain and to use this information to construct
specific singular solutions; see, e.g., [1, 2].

Recently, variational methods were developed for the investigation of (unilaterally) con-
strained crack problems. The inequality constraint imposed on the jump of the displacement at
opposite crack faces prevents the nonphysical, thus inconsistent, behavior of overlapping faces
that may occur for linear models. An account for the variational technique can be found, e.g.,
in [3, 4]. The problem formulation is in terms of a variational inequality involving elements on
a Hilbert lattice. Also the variational formulation provides the appropriate state space for the
solutions to crack problem that are singular at the crack tip.

Finite element and boundary element methods were proposed for the numerical solution of
linear crack problems [5, 6]. Although the discretization technique accounting for solution
singularity is still an important ingredient, for unilaterally constrained crack problems the
numerical solution algorithms are considerably more involved. In [7–9] penalty and active-set-
type algorithms were proposed and applied for geometrically symmetric as well as nonsym-
metric crack problems. The former case can be described by a box-type inequality constraint
involving the identity operator, whereas in the latter case the description of the inequality
constraint involves a difference-type operator modeling the jump of the displacements across the
crack surfaces. In the present article we consider a general formulation for the inequality
constraint. In the corresponding test runs it turned out that the active-set-type approach is very
efficient with respect to both the number of iterations required for solving the discretized
problems and the amount of work needed per iteration. The first aspect is related to the
interpretation of the active-set method as a particular realization of a semismooth Newton
method [10]. The second fact is due to the active-set nature of the algorithm, which allows to
solve, in every iteration, only a linear system on the actual estimate for the inactive set at the
solution. The inactive set represents the nontouching part of the crack surfaces. The analysis of
an analogous treatment of crack in interfaces in composite orthotropic materials is the subject
of author’s forthcoming article. From these results we can report that the generalized Newton
method is well suitable for unilaterally constrained cracks in anisotropic solids, as well.

In the present article, our aim is to provide a local as well as global convergence analysis for
the solution of the continuous and the discrete constrained crack problems by semismooth
Newton methods. In general terms, the class of problems considered in this article is related to
the minimization of a convex quadratic objective functional subject to a linear inequality
constraint:

minimize 1
2
�Lu, u�H*,H � � f, u�H*,H over u � H subject to �u � 0, (1)

where H is a Hilbert space and H* denotes its dual, L : H3 H* is a strongly monotone bounded
linear operator, f � H* is given, and the linear continuous operator � maps H onto some Hilbert
space HB. Let H*B denote the dual space of HB. For crack problems subject to the nonpenetration
condition the operator � is related to the jump of traces of the function u across a crack. The
unique solution u of (1) can be characterized by the existence of a multiplier � � H*B satisfying

�Lu, v�H*,H � ��, �v�H*B,HB
� � f, v�H*,H � 0 for all v � H, (2a)

�u � 0, ��, � � �u�H*B,HB
� 0, for all 0 � � � HB. (2b)
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Utilizing a duality operator J : HB 3 H*B the inequality (2b) can be rewritten as the nonlinear
equation

0 � �u � P��u � �J�1�� :� ��u, �� (3)

for any constant � 	 0, where P denotes the projection onto the non-negative elements in HB.
To obtain a more amenable representation of (2b), the Lagrange multiplier � � H*B has to enjoy
certain regularity properties. For general crack problems, however, we only have � � H*B, which
does not allow to, e.g., replace (3) by a representation in the pointwise almost everywhere sense.

On the function space level this fact prevents the straightforward application of generalized
differentiability notions (see [11, 12]) to the projection operator involved in (3). However,
utilizing a penalization technique, in section 2 we obtain an approximate multiplier that enjoys
extra regularity properties. To some extent, this technique allows to choose J � idHB

while
simultaneously relaxing the equality (3). Then P becomes the max-operator and a pointwise
almost everywhere interpretation is valid. As a consequence, relying on the concept of semis-
moothness of a not necessarily (Fréchet) differentiable operator F between Banach spaces, we
are able to prove a locally superlinear convergence rate of a semismooth Newton technique
associated to the penalized problem for fixed penalty parameters. The notion of semismoothness
of a real-valued function was introduced in [13], extended to �n in [14], and carried over to
function spaces in [11, 12, 15]. In [12] the following definition is used: The operator F : X 3
Y, with X, Y Banach spaces, is slantly differentiable in an open subset U � X if there exists a
family of mappings G : U 3 �(X, Y ), referred to as generalized derivative, such that

lim
h30

1

�h�X
�F�y � h� � F�y� � G�y � h�h�Y � 0 (4)

for every y � U. In the present article we rely on this characterization because it resembles the
semismoothness concept in [14] and is valid in function spaces as well as in �n. The approach
via formula (4) for operators appeared already in [16, 17]; see also [18].

In contrast to the situation in the function space setting, after discretization in finite
dimensions no problems with respect to generalized differentiability are encountered. Therefore,
there is no need for resorting to a penalization technique, rather we introduce the semismooth
Newton method for a linear complementarity problem reformulation of the discrete constrained
crack problem and analyze its convergence. In fact, we can show fast local as well as
monotonous global convergence of the method.

In section 2 we start by introducing the precise functional analytic formulation of the
unilaterally constrained crack problem. Further we apply a penalization technique, derive its first
order optimality characterization which, is the basis for defining a semismooth Newton-type
algorithm for the numerical solution. The section ends with a convergence analysis of the
Newton process. Section 3 concentrates on the discretized crack problem. We introduce the
corresponding discrete semismooth Newton method and analyse its local convergence. The
second part of section 3 focusses on the monotonous global convergence of the method. Section
4 is devoted to numerics. We provide results obtained by the discretized penalization technique
as well as the semismooth Newton method of section 3. The problem under investigation is a
two-dimensional Lamé problem with three collinear cracks.
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2. THE SEMISMOOTH NEWTON METHOD FOR CONTINUOUS PROBLEMS
2.1. Unilaterally Constrained Crack Problems

Let 
 � �d for d � 2, 3 be a bounded domain with Lipschitz boundary 	
 consisting of two
disjoint sets, a Neumann boundary �N and a Dirichlet boundary �D � A. We assume that inside
the domain 
 we have a crack �C, which is given by some sufficiently smooth surface for d �
3 or curve for d � 2. For the theoretical part of the presentation we suppose that �C � 	
 �
A and that the crack does not intersect itself. Let 
 � (
1, . . . , 
d)� denote the unit normal
vector at the crack, and corresponding to �C we define its positive-oriented face �C


 and its
negative-oriented face �C

�, which are obtain as the limit of sequences of points x � (x1, . . . ,
xd)� � �d converging from opposite sides to �C, respectively. We further define 
C � 
��� C

to be the domain 
 with the crack �C. Its boundary 	
C consists of 	
, �C

, �C

�, and is not
Lipschitz due to the presence of the crack. See Fig. 1 for a graphical account for the geometrical
situation described above.

We suppose that the underlying physics are well described by the linear elasticity model of
a solid occupying the domain 
C. It involves the displacement vector u � (u1, . . . , ud)�(x) in
terms of linear, symmetric stress and strain tensors:

�ij�u� � cijkl�x�
kl�u�, and 
ij�u� � 0.5�ui,j � uj,i�, i, j � 1, . . . , d,

respectively, with a bounded and symmetric tensor c, i.e.,

cijkl � cjikl � cklij, c1�ij�ij � cijkl�kl�ij � c2�ij�ij for all �ij � �ji

for some constants 0 � c1 � c2. Here and throughout we utilize the standard tensor notation
common in solid mechanics and the summation convention for repeated indices.

The displacement vector u is considered in the Hilbert space

H�
C� � �u � H1�
C�d : u � 0 on �D�,

and its traces u� � u��C
� are defined on the crack faces �C

� in the usual way as elements of the
space H1/2(�C)d. The jump of the displacement across the crack �C is denoted by �u� :� u
 �
u�. In [4] (see also [3]) it was observed that physical consistency of the crack model is related
to a nonpenetration condition avoiding overlapping crack faces. In mathematical terms this is
described by the requirement u � K with

FIG. 1. Domain 
C with the crack �C.
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K � �u � H�
C� : �ui�
i � 0 on �C�.

Note that K is a closed, convex subject of H(
C). We refer to K as the set of admissible
displacements. For a given surface traction g � (g1, . . . , gd)� � L2(�N)d the displacement in
our crack model is the solution to

minimize
1

2 �

C

�ij�u�
ij�u� dx � �
�N

giui ds subject to u � K. (P)

The corresponding first-order necessary and sufficient optimality condition is given by the
variational inequality problem:

Find u � K such that

�

C

�ij�u�
ij�v � u� dx � �
�N

gi�v � u�i ds for all v � K. (5)

Using Korn’s inequality it is standard to argue the existence of a unique solution u � K to (5),
respectively (P).

It can be verified that �u� � H00
1/2(�C)d, where H00

1/2(�C) is the space of functions in H1/2(�C),
which admit a continuation by zero on an extension �̃C of �C into 
C. Since the trace of H(
C)
onto H00

1/2(�C)d is surjective, there exists a Lagrange multiplier � � H00
1/2(�C)* such that

�

C

�ij�u�
ij�v� dx � ��, �vi�
i�H00
1/2��C�*,H00

1/2��C� � �
�N

givi ds (6)

for all v � H(
C), and

��, �ui�
i�H00
1/2��C�*,H00

1/2��C� � 0, (7a)

��, ��H00
1/2��C�*,H00

1/2��C� � 0 for all 0 � � � H00
1/2��C�. (7b)

Applying Green’s formula to the first term in (6), we derive for v � H(
C) with v � 0 on 	

that

�

C

�ij�u�
ij�v� dx � � �

C

�ij,j�u�vi dx � ��


�u�, vi



i�1/2

� ��

��u�, vi

�
i�1/2 � ���i

�u�, v�i


�1/2 � ���i
��u�, v�i

��1/2, (8)

where ��, ��1/2 implies the duality pairing between the spaces H1/2(�̃C) and H�1/2(�̃C). Here the
vector 
 also denotes the unit normal vector at the smooth, closed extension �̃C, and

�
�u� � �kj�u�
j
k, ��i�u� � �ij�u�
j � �
�u�
i, v�i � vi � �vk
k�
i.
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Utilizing (8) in (6) and (7), we find that

�


�u� � �


��u� � ��, ��i

�u� � ��i

��u� � 0 i � 1, . . . , d on �C. (9)

2.2. The Semismooth Newton Algorithm for Penalized Problems

For the efficient numerical solution of (P) we propose a semismooth Newton technique applied
to a properly regularized version of (P). We show that the algorithm converges at a locally
superlinear rate for the continuous problem. Applying the same algorithmic concept to a
discretized version of (P), one can establish the local superlinear convergence for each of the
discretized problems without the need of regularization.

For � 	 0 consider the problem

�

C

�ij�u�
ij�v� dx � �
�C

��vi�
i ds � �
�N

givi ds for all v � H�
C�, (10a)

� � � min��ui�
i, 0�. (10b)

Note that (10) is the first-order optimality condition for the minimization problem

minimize
1

2 �

C

�ij�u�
ij�u� dx � �
�N

giui ds

�
�

2 �
�C

min��ui�
i, 0�2 ds subject to u � H�
C�. (P�)

Let u� � H(
C) denote the unique solution to (P�), or equivalently to (10), and set �� � �
min(�ui

��
i, 0). To solve (10) we apply the following algorithm.

Algorithm 1.

(0) Choose u(0) � H(
C); set n � 0.
(1) Decompose the crack �C into sets

I�u�n�� � � x � �C : �ui
�n��
i � 0�, A�u�n�� � �C�I�u�n��.

(2) If n � 1 and A(u(n)) � A(u(n�1)) then STOP; else go to step 3.
(3) Compute the solution u(n
1) � H(
C) to

�

C

�ij�u�
ij�v� dx � � �
A�u�n��

�ui�
i�vj�
j ds � �
�N

givi ds. (11)

(4) Set
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��n
1� � �0 on I�u�n��,
��ui

�n
1��
i on A�u�n��.

(5) Set n � n 
 1 and go to step 1.

Clearly, step 4 of the algorithm is only introduced for the convenience of notation. Let
�
(u(n)) and ��(u

(n)) denote the normal and tangential components of the stress tensor at the
crack �C depending on the solution u(n). From (8) and (11) we find that for n � 1, 2, . . .

��i
��u�n�� � 0 i � 1, . . . , d, �



�u�n�� � �

��u�n�� on �C, (12a)

�

��u�n�� � 0 on I�u�n��, �


��u�n�� � ��ui
�n��
i on A�u�n��. (12b)

We next analyze the convergence of (u�, ��) to (u, �

�(u)) as � 3 �, where u denotes the

solution to (P), and the convergence of (u(n), �(n)) to (u�, ��) as n 3 �.

Proposition 2.1. For � 3 � we have u� 3 u strongly in H(
C) and �� 3 �

�(u) weakly in

H00
1/2(�C)*.

Proof. Strong convergence of u� to u in H(
C) is proved in [3, p. 161]. From (10) it follows
that �� is bounded in H00

1/2(�C)* as � 	 0. Hence there exists u � H00
1/2(�C)* such that �� 3

� weakly in H00
1/2(�C)* for � 3 �. Taking the limit � 3 � in (10) with u � u�, � � ��, we

find

�

C

�ij�u�
ij�v� dx � ��, �vi�
i�H00
1/2��C�*,H00

1/2��C� � �
�N

givi ds.

For � � �� this equation coincides with (6). Hence, due to (9) �� converges weakly in
H00

1/2(�C)* to �

�(u) � ��. y

Next we address the convergence u(n) 3 u� with � 	 0. Note that for given � � L2(�C)
Equation (10a) is the variational formulation of the boundary value problem:

BVP��, g�

��ij�u� � 0 in 
C,
u � 0 on �D, �ij�u��j � gi i � 1, . . . , d on �N,
�


��u� � �, ��i
��u� � 0 i � 1, . . . , d on �C,

for � � (�1, . . . , �d)� being the outward unit normal vector to 	
. By Korn’s inequality there
exists a unique solution u � u(�) � H(
C) to (BVP(�, g)). Let the mapping � : L2(�C) 3
L2(�C) be defined by

���� � � min��ui����
i, 0� � �.

Then problem (10) can be expressed as the nonlinear and nondifferentiable equation in L2(�C):

���� � 0. (13)
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Let � be the characteristic function corresponding to the min-operator, i.e.,

� �s� � �0 if s � 0,
1 if s � 0.

A semismooth Newton step to (13) is given by

��� � ����ui�u
�n���
i��ûj�����
j � �� min��ui��

�n���
i, 0� � ��n�, (14)

where û(��) denotes the variational solution to (BVP(��, 0)). From (14) we deduce for
�(n
1) � �(n) 
 �� that

��n
1� � �0 on I�u���n���,
��ui��

�n�� � ûi�����
i � ��ui��
�n
1���
i on A�u���n���,

where u(�(n
1)) solves (11). Hence Algorithm 1 describes a semismooth Newton step applied
to (13).

Theorem 2.1. If �u(0) � u��H1(
C)d is sufficiently small, then the sequence ((u(n), �(n)))
generated by Algorithm 1 converges superlinearly to (u�, ��) in H1(
C)d � L2(�C).

Proof. Let us set �u � u(n
1) � u�, �� � �(n
1) � ��. From (10) and (11) we have

�

C

�ij��u�
ij�v� dx � � �
�C

���vi�
i ds for v � H�
C�. (15)

Note that

�� � � min��ui
�n��
i, 0� � ����ui

�n��
i���uj
�n
1� � uj

�n��
j� � � min��ui
��
i, 0�

� � min��ui
��
i � �ui

�n� � ui
��
i, 0� � � min��ui

��
i, 0�

� �� ��ui
��
i � �ui

�n� � ui
��
i��uj

�n� � uj
��
j � �� ��ui

�n��
i���uj�
j

�: R � ����ui
�n��
i���uj�
j.

Let p 	 2. For every v � Lp(�C) we have

�min�v � h, 0� � min�v, 0� � � �v � h�h�L2��C� � o��h�Lp��C�� (16)

as �h�Lp(�C)3 0. This is proved for domains in �d in [12, Appendix A], and the proof there can
easily be modified to the case of functions on �C. Recall that in dimension d 	 1 the trace of
H1(
C) onto Lp(�C) with p � 2d/(d � 1) is continuous. In our case p � 4 for d � 2, or p �
3 as d � 3. Applying (16) with such p to R we find that

�R�L2��C� � o���ui
�n� � ui

��
i�Lp��C��,
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and consequently

�R�L2��C� � o��u�n� � u��H1�
C�d�. (17)

Choosing v � �u in (15) and using Korn’s inequality implies that

c0��u�H1�
C�d
2 � �R�L2��C���u�L2��C�

for some constant c0 	 0. Hence, from (17) it follows

��u�H1�
C�d � o��u�n� � u��H1�
C�d�,

and consequently the final estimate

�u�n
1� � u��H1�
C�d � ���n
1� � ���L2��C� � o��u�n� � u��H1�
C�d�. (18)

y

3. THE SEMISMOOTH NEWTON METHOD FOR THE DISCRETIZED PROBLEMS

Let us consider a discretization of (P), which results in a quadratic programming problem of the
type

minimize 1
2

u�Lu � f�u over u � �N subject to �u � 0, (PN)

where L � �N�N is positive-definite and symmetric, f � �N, and � � ��B��N. Here, for the
index set B � {1, . . . , N} we denote by �B� its cardinality. Before we give a detailed description
of �, we define the index set � � B � B. Each pair (i
, i�) � � is induced by an index i �
B, which belongs to a nodal point at the crack �C, i.e., i
 � i
(i ) and i� � i�(i ). Thus, ���
� �B�. This definition allows us to write the discrete nonpenetration condition as

�uk
o�i
�
k�i
 � �uk

o�i��
k�i� � 0 for all �i
, i�� � �, k � 1, . . . , d, (19)

where each vector (uo)i � is given by (uo)i � � (u1, . . . , ud)i �, which are the displacement vectors
at the nodal points on �C


 and �C
�, respectively, with associated index i. Note that we use

summation over repeated indices k in (19). Due to our convention concerning the normal vector
along the crack, we have (
k)i 
 � (
k)i � �(
k)i �. Now let us assume that the vector u � �N

is partitioned into u � (uD, uB̃)�, where the index set B̃ and the vector uB̃ are obtained from the
following description: Let uk

B 


� ((uk
o)i 
(1), . . . , (uk

o)i 
(B)) � ��B� for k � 1, . . . , d, and
analogously for uk

B �

. Then

uB̃ � �u1
B


, . . . , ud
B


, u1
B�

, . . . , ud
B�

�� � �2d�B�. (20)

Thus, we infer that �B̃� � 2d�B�. Now, the matrix � is defined by
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� � �0, T1, . . . , Td, �T1, . . . , �Td�,

Tk � diag��
k�1, . . . , �
k��B�� � ��B���B� for k � 1, . . . , d,

where 0 is the �B� � �D�-zero matrix with �D� � N � �B̃�. Therefore � is related to the discretized
nonpenetration condition. For the above description of � to be valid we throughout assume that
the nodal values at �C

� are ordered as outlined in (20).
Note that the column-rank of � is �B�, and for later use we also observe that

ker��L�1��� � �w � ��B� : �L�1��w � 0� � �0�. (21)

Further we have that �L�1�� is positive definite.
It is well known that the solution u* � �N of problem (PN) is characterized as the solution

to the variational inequality problem: Find u � �N such that

�u � 0, � f � Lu���v � u� � 0 for all v � �N with �v � 0. (22)

Introducing a Lagrange multiplier � � ��B� this problem can be equivalently written as: Find (u,
�) � �N � ��B� such that

Lu � ��� � f, (23a)

��u, �� � max��� � �u, 0� � �� � 0, (23b)

where � 	 0 is an arbitrarily fixed real. Note that (22), respectively (23), is also sufficient for
u to be the solution of (PN), i.e., u* � u. By �* we shall denote the Lagrange multiplier
associated with u*.

3.1. The Active Set Perspective and Fast Local Convergence

In order to devise our semismooth Newton method for solving (PN) we focus on (23). Setting
y :� (u, �)� � �N � ��B�, we restate the system (23) as

F�y� � �Lu � ��� � f
��u, �� � � 0. (24)

with the nondifferentiable function F : �N
�B�3 �N
�B�. Our aim now is to show that F is slantly
differentiable. For this purpose we introduce the matrix �S � ��B���B� as

�S � diag�s1, . . . , s�B��, with si � �1 if i � S,
0 if i�S,

and we define

A�y� � �i � B : ��i � ��u�i � 0�,

I�y� � �i � B : ��i � ��u�i � 0�. (25)
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These definitions imply �A(y) 
 �I(y) � 1, which allows us to rewrite the function � in (23b)
in the form

��u, �� � ��A�y��u � ��I�y��. (26)

As a consequence, F in (24) admits the representation

F�y� � G�y�y � � f
0� with G�y� � � L ���

��A�y�� ���I�y�
�.

Now it can be easily verified that

F�y � h� � F�y� � G�y � h�h � � 0
���A�y
h� � �A�y���u � ���I�y
h� � �I�y���

�
and that the right-hand side above is zero for all h � �N � ��B� satisfying

�h�� � m/2 max����, ��,

with m given by

m � min����i � ��u�i� : i � B, ��i � ��u�i � 0�.

Thus, F satisfies

lim
h30

1

�h� �F�y � h� � F�y� � G�y � h�h� � 0,

and, according to (4), G serves as a generalized derivative of the nondifferentiable mapping F.

Remark 3.1. The set A(y*) is called the active set at y* since �*i 	 0 and (�u*)i � 0 for all
i � A(y*) at the solution y* of (23). On the other hand, for i � I(y*), we have �*i � 0 and
(�u*)i � 0. Therefore we call I(y*) the inactive set at y*.

Based on the above considerations, we can now define the semismooth Newton method for
computing the solution to (24): For some initial guess y(0) compute

y�n
1� � y�n� � G�y�n���1F�y�n��, n � 0, 1, . . . . (27)

The local convergence behavior of this iteration is the content of the following theorem.

Theorem 3.1. The semismooth Newton iteration (27) is well defined, and the sequence of
iterates (y(n)) converges superlinearly to y* with F(y*) � 0, provided that y(0) is sufficiently
close to y*.
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Proof. We first show that G(y) is a bijection for every y � �N. For arbitrary g � (gu,
g�)� � �N � ��B�, we verify that there exists a unique solution z � (zu, z�)� � �N � ��B� such
that G(y)z � g, i.e.,

Lzu � ��z� � gu, (28a)

��A�y��zu � ��I�y�z� � g�. (28b)

Since L is positive definite and, hence, invertible we obtain

zu � L�1��z� � L�1gu. (29)

Using this relation in (28b) results in

��A�y��L�1�� � ��I�y��z� � ��A�y��L�1gu � g� �: g̃. (30)

As noted earlier, the �B� � �B�-matrix M :� �L�1�� is positive definite. Whence (30) yields

�z��A�y� � �MA�y�A�y��
�1g̃A�y� �

1

�
�MA�y�A�y��

�1MA�y�I�y�g̃I�y�, (31a)

�z��I�y� �
1

�
g̃I�y�, (31b)

where we use the partition of the matrix M and the involved vectors into blocks

M � �MA�y�A�y� MA�y�I�y�

MI�y�A�y� MI�y�I�y�
� , z� � � �z��A�y�

�z��I�y�
� , g̃ � � g̃A�y�

g̃I�y�
� .

This proves that (27) is well defined for every n � �0. Moreover, from (31) and (29) we infer
that �G(y(n))�1� � C for some constant C 	 0 independent of n.

The local superlinear convergence now follows from standard results; see, e.g., [12, Theorem
1.1]. y

In our numerical implementation we realize the semismooth Newton iteration (27) in the
following way.

Algorithm 2.

(0) Choose y(0) � (u(0), � (0)) � �N � ��B�; set n � 0.
(1) Compute the active and inactive sets at y(n):

A�y�n�� � �i � B : ��i
�n� � ��u�n��i � 0�. (32a)

I�y�n�� � �i � B : ��i
�n� � ��u�n��i � 0�. (32b)

(2) If n � 1 and A(y(n)) � A(y(n�1)) then STOP; else go to step 3.
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(3) Solve for y(n
1) � (u(n
1), � (n
1)) � �N � ��B�:

Lu�n
1� � ����n
1� � f, (33a)

��u�n
1��i � 0 for all i � A�y�n��, �i
�n
1� � 0 for all i � I�y�n��. (33b)

(4) Set n � n 
 1 and go to step 1.

Note that Algorithm 2 and the Newton process (27) are equivalent. In order to see this, we
rewrite (27) with respect to y(n
1) � y(n) as

L �u�n
1� � u�n�� � �����n
1� � ��n�� � f � Lu�n� � ����n�, (34a)

��A�y��n�)��u�n
1� � u�n�� � ��I�y�n����
�n
1� � ��n�� � ���n� � max����n� � �u�n�, 0�. (34b)

Equation (34a) implies (33a), and the choices (32) and (33b) realize the semismooth Newton
step for the nonsmooth equation (34b). In fact, for i � I(y(n)) we have �(�u(n))i 
 ��i

(n) � 0.
Thus, (34b) yields �i

(n
1) � 0 for all i � I(y(n)). For all i � A(y(n)) we have �(�u(n))i 
 ��i
(n)

	 0. Hence, (34) implies (�u(n
1))i � 0 for all i � A(y(n)). Combining the two cases we recover
(33b). As a consequence problem (33) is well defined and, according to Theorem 3.1, it admits
a unique solution.

Due to step 1 and our interpretation of A(y(n)) and I(y(n)) as the active and inactive sets at y(n)

(cf. Remark 3.1), Algorithm 2 resembles an active-set-type method; see [12] for more details on
this aspect.

The stopping rule in step 2 of Algorithm 2 is motivated by the following considerations. For
i � A(y(n�1)) we have (�u(n))i � 0 and for i � I(y(n�1)) we obtain �i

(n) � 0. Hence, if we assume
that A(y(n�1)) � A(y(n)), then from (32a) we infer �i

(n) 	 0 for all i � A(y(n)), and (�u(n))i �
0 for all i � I(y(n)) by (32b). This, together with (33a), proves that the iterate y(n) � (u(n), � (n))
upon termination of Algorithm 2 in step 2 satisfies F(y(n)) � 0.

Let us emphasize that the successful termination occurs after a finite number of iterations.
Indeed, since there exists only a finite number of choices for A(y(n)) with A(y(n)) � A(y(m)) for
m � n (and analogously for I(y(n))), Theorem 3.1 yields the finite step convergence.

3.2. Reduced Problems

We start by considering the reduced version of (23) given by

L̂û � f̂ � �̂��̂ � 0, (35a)

�̂�û, �̂� :� max���̂û � ��̂, 0� � ��̂ � 0. (35b)

Here we use

L̂ � LB̃B̃ � LB̃DLDD
�1LDB̃ � � �B̃���B̃�, f̂ � fB̃ � LB̃DLDD

�1 fD � � �B̃�

and further
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�̂ � �T1, . . . , Td, �T1, . . . , �Td� � ��B���B̃�, �̂ � ��B�.

In fact, (35) is obtained from (23) utilizing the relation uD � LDD
�1( fD � LDB̃uB̃), which is due

to (23a), the partition of L, f, and u according to D, B̃, and � � (0, �̂).
Note that L̂ denotes the Schur complement of LDD in L. Since L is symmetric and positive

definite, also the Schur complement L̂ is symmetric and positive definite; see [19]. As a
consequence, (35) admits a unique solution û* with associated Lagrange multiplier �̂*, and it
represents the first-order necessary and sufficient condition of

minimize 1
2

û�L̂û � f̂�û over û � ��B̃� subject to �̂û � 0. (36)

The relation between (PN) and (36) is investigated next.

Proposition 3.1.

(a) Let u* � (u*D, u*B̃) � �N be the optimal solution of (PN) with optimal multiplier �*. Then
û* � u*B̃, i.e., u*B̃ solves the reduced problem (36). The corresponding multiplier is �̂* �
�*.

(b) Let û* denote the solution of (36) with multiplier �̂*. Then (u�*D, û*) with u�*D � LDD
�1( fD �

LDB̃û*) solves (PN) with associated multiplier �̂*.

Proof.

(a) The optimal u* satisfies (23). Thus, after partitioning (23a) according to D and B̃, we
have u*D � LDD

�1( fD � LDB̃u*B̃). Inserting this in LB̃B̃u*B̃ 
 LB̃Du*D � fB̃ � (��)B̃��* � 0
yields L̂u*B̃ � f̂ � �̂��* � 0. One easily verifies that max(���B̃u*B̃ 
 ��*, 0) � ��* �
0. Since the solution of (36), and hence (35), is unique we infer �̂* � �*, û* � u*B̃ and
assertion (a) follows.

(b) The assertion essentially follows from reverting the arguments in (a). y

We may also devise a semismooth Newton method of the type of Algorithm 2 for iteratively
solving (35). In this case the analogue of step 2 consists in finding the sets

Â�ŷ�n�� � �i � B : ��̂i
�n� � ��̂û�n��i � 0�,

Î�ŷ�n�� � �i � B : ��̂i
�n� � ��̂û�n��i � 0�,

with ŷ(n) :� (û(n), �̂ (n)). Accordingly, in the new step 3 we determine (û(n
1), �̂ (n
1)) such that

L̂û�n
1� � �̂��̂�n
1� � f̂,

��̂û�n
1��i � 0 for all i � Â�û�n��, �̂i
�n
1� � 0 for all i � Î�û�n��.

The primal iterate on D is computed from uD
(n
1) � LDD

�1( fD � LDB̃û(n
1)). Then it is straight-
forward to verify that if û(0) � uB̃

(0) and �̂(0) � �(0), then both algorithms produce the same
sequence of primal and dual iterates.

Next we establish the following property of the matrix �̂L̂�1�̂� � ��B���B�.
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Proposition 3.2. The matrix �̂L̂�1�̂� is positive definite.

Proof. Since �̂� has full column rank, we have ker(�̂�) � {0}. Thus, for ẑ � 0 we have
�̂�ẑ � 0. From the fact that L̂ is positive definite, we conclude

ẑ��̂L̂�1�̂�ẑ � 0 for all ẑ � ��B���0�. y

Now, multiplying (35a) first by L̂�1 and then by �̂, we obtain

�̂û � �̂L̂�1f̂ � ��̂L̂�1�̂���̂ � 0. (37)

For convenience we define M̂ � (�̂L̂�1�̂�)�1. Setting v̂ :� �̂û � ��B�, multiplying (37) by M̂
and taking (35b) into account, we arrive at the linear complementarity problem: Find v̂ � ��B�

such that

M̂v̂ � q̂ � 0, (38a)

v̂ � 0, (38b)

v̂��M̂v̂ � q̂� � 0, (38c)

where q̂ :� M̂�̂L̂�1f̂ � ��B�. It is the first-order necessary and sufficient condition of the strictly
convex quadratic optimization problem

minimize 1
2

v̂�M̂v̂ � q̂�v̂ over v̂ � ��B� subject to v̂ � 0, (39)

which admits a unique solution v̂*. Let �̂* denote the associated optimal multiplier.
We have the following relation between the reduced problems (36) and (39).

Proposition 3.3.

(a) Let û* be the solution to (36) with multiplier �̂*. Then v̂* � �̂û* with multiplier �̂* �
�̂* solves (39).

(b) Let v̂* be the solution to (39) with multiplier �̂*. Then v̂* � �̂û* and �̂* � �̂*.

Proof.

(a) Given a solution û* of (36) with associated multiplier �̂*, one follows the lines before
(38) in order to show (a).

(b) By optimality of v̂* we have M̂v̂* � q̂ � �̂* � 0. Multiplying this identity by M̂�1 yields

v̂* � �̂L̂�1f̂ � �̂L̂�1�̂��̂* � 0. (40)

Now we set û
 :� L̂�1(f̂ 
 �̂��̂*). From (40) and (38) we obtain

L̂û
 � f̂ � �̂��̂* � 0,
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v̂* � �̂û
 � 0,

�̂* � 0.

From the uniqueness of the solution to (35) we conclude û
 � û* and �̂* � �̂*. y
Combining Propositions 3.1 and 3.3 proves that (PN) and (39) are equivalent in the sense that

given the solution to one of the problems; then we can construct the solution to the other one.
Similarly to (35) we can now derive a semismooth Newton method of the type of Algorithm

2 for iteratively solving (38). For this purpose we introduce �̂ � 0 in (38), which then can
equivalently be expressed as: Find v̂, �̂ � ��B� such that

M̂v̂ � q̂ � �̂ � 0, (41a)

max���̂ � v̂, 0� � ��̂ � 0. (41b)

Using the techniques in the proof of Proposition 3.3 one shows that if v̂(0) � �̂û(0) � �̂uB̃
(0) and

�̂(0) � �̂(0) � �(0) then the iterates of the semismooth Newton methods for solving (41) and (35)
coincide. Consequently, any convergence assertion associated to the semismooth Newton
algorithm for (41) carries over to Algorithm 2 and vice versa.

3.3. Global Convergence and Monotonicity

Based on the results of the previous section, we now combine the local convergence results with
global ones, i.e., convergence of Algorithm 2 regardless of the initialization.

Before we commence with the global convergence, we emphasize the importance of (38),
respectively (39). For this purpose let us for the moment assume that B̃ � B and �̂ � E with
E denoting the �B� � �B�-identity matrix, which corresponds to a unilateral constraint without
jump. Further let L be a M-matrix. Then the Schur complement L̂ is M-matrix too; see [20].
Observe that in the case of this example we have M̂ � L̂. From [8, Theorem 3.1] it follows
immediately that the semismooth Newton method converges globally and that the primal iterates
tend monotonically to the solution. Note that a scalar-valued Laplace operator obeys the
M-matrix property for properly chosen type of discretizations (see [21]). This is not the case for
the vector-valued Lamé operator. Thus this property is related to both the operator of the
problem and the type of finite elements used.

Of course, in the case of the crack problem the M-matrix property as well as the assumption
on �̂ hold not true. However, in our numerical practice Algorithm 2 still behaves like a globally
convergent method. In many cases we further observe monotonicity in the jump of the
displacements across the crack along the iteration sequence. Moreover, as we confirmed
numerically, frequently M̂ is a small perturbation of a M-matrix. Based on these observations
and relying on the reduced problem formulation (39), respectively (38), we adopt the global
convergence and monotonicity results of [8].

Let ���1 denote the subordinate matrix norm corresponding to the vector 1-norm. Applying the
semi-smooth Newton method as in Algorithm 2 to (41), we obtain the following result.

Theorem 3.2. Assume that M̂ � K̂ 
 Ŝ with K̂ � ��B���B� a nonsingular M-matrix and with
Ŝ � ��B���B� a perturbation such that �Ŝ�1 is sufficiently small. Then the semismooth Newton
algorithm for (41) and equivalently Algorithm 2 for (23) are well defined, and ((u(n), �(n)))
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converges to (u*, �*), the solution of (23), regardless of the initial choice. The local conver-
gence rate is superlinear.

Proof. Apply [8, Theorem 3.2] to the semismooth Newton method associated to (41). Then
use the equivalence of this algorithm to Algorithm 2. y

Concerning the monotonous convergence of �u(n), we have the following two assertions. For
their respective formulation we assume that M̂ � K̂ 
 Ŝ, and we introduce the matrices

T̂II � 	
l�1

�

��K̂II
�1ŜII�

l,

ÛIA � T̂IIK̂II
�1K̂IA � K̂II

�1ŜIA � T̂IIK̂II
�1ŜIA,

V̂II � T̂IIK̂II
�1,

where I, A are disjoint subsets of B. Note that these matrices are 0 when S � 0.
The first monotonicity result is given by the next theorem.

Theorem 3.3. Let the assumptions of Theorem 3.2 be satisfied. For all n � �0 and for all sets
Â(n) � {i � B : ��̂i

(n) � v̂i
(n) 	 0} and Î(n) � {i � B : ��̂i

(n) � v̂i
(n) � 0} suppose that

�K̂Î�n �̂I�n�

�1
� V̂Î�n �̂I�n�� � 0 (42)

and there exists an index n0 � �0 with

either �K̂Î�n0�Î�n0�

�1 K̂Î�n0�̂A�n0� � ÛÎ�n0�Â�n0�� � 0,

or v̂�n0� � 0.

Then �u* � �u(n
1) � �u(n) � 0 for all n � n0.

Proof. Apply [8, Theorem 3.3] to the semismooth Newton method associated to (41),
which yields v̂* � v̂(n
1) � v̂(n) � 0 for all n � n0. Then use the facts that v̂(n) � �̂û(n) for all
n � �0 and � � (0, �̂). y

Finally we state another monotonicity result, which is based on a particular initialization of
Algorithm 2.

Theorem 3.4. Let the assumptions of Theorem 3.2 be satisfied and let the sets Â(0), Î(0) be
defined as in Theorem 3.3. Suppose that Algorithm 2 is initialized with �(0) � 0 and u(0) � (uD

(0),
û(0)) with û(0) � L̂�1f̂ and uD

(0) � LDD
�1( fD � LDB̃û(0)). If for v̂(0) � �̂û(0) there holds

v̂Î �0�

�0�
� �K̂Î �0 �̂I �0�

�1 K̂Î �0�Â �0� � ÛÎ �0�Â �0��v̂Â�0�

�0�
� 0,

and (42) is satisfied, then the sequence (�u(n)) converges monotonically and �u(n) � 0 for all
n � 1.

Proof. Observe that the assumption on �(0) yields �̂(0) � 0. Apply [8, Theorem 3.3] to the
semismooth Newton method associated to (41), which yields the monotone convergence of (v̂(n))
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and v̂(n) � 0 for n � 1. Since v̂(n) � �̂û(n), u(n) � (uD
(n), û(n)), with uD

(n) � LDD
�1( fD � LDB̃û(n)),

and � � (0, �̂) the assertion follows. y

4. NUMERICAL RESULTS

Our numerical test problem of the type (P) is given by the Lamé model on the unit square in �2

with three collinear cracks. For this configuration, we report on the results obtain from
Algorithm 2 and compare these with the output obtained from a discretized version of Algorithm
1. Combined the results of Sections 2 and 3 indicate superlinear, but mesh-dependent, conver-
gence of semismooth Newton methods applied to (P). This will be confirmed by the numerical
results. The dependence of the number of iterations, however, only increases moderately as the
mesh size is decreased. Moreover, a continuation procedure with respect to the mesh size will
be introduced which significantly reduces the iteration number at finer mesh-sizes.

4.1. 2D-Lamé Problem with Three Collinear Cracks

For d � 2 we choose 
 as the unit square


 � �x � �x1, x2�
� � �2 : 0 � x1 � 1, �x2� � 0.5�

with the boundary 	
 consisting of the parts:

�D � �x : x1 � 1, �x2� � 0.5�, �N � �N1 � �N2
� ,

�N1 � �x : x1 � 0, �x2� � 0.5�, �N2
� � �x : 0 � x1 � 1, x2 � �0.5�.

Three collinear cracks in 
 are given by

�C � �n�1
3 �Cn, with �Cn � �x : 0 � x1 � 0.9, x2 � 0.5 � 0.25n�

as depicted in Fig. 2.
The unit normal vector on �C is 
 � (0, 1)�. Whence the nonpenetration condition becomes

�u2��x� � 0 for all x � �C. (43)

The plane-stress Lamé model of an isotropic solid is given in terms of the stress tensor

�11�u� � �2�L � �L�
11�u� � �L
22�u�, �12�u� � 2�L
12�u�,

�22�u� � �L
11�u� � �2�L � �L�
22�u�, �L �
E

2�1 � 
L�
, �L �

2
L�L

1 � 2
L
,

where the strain tensor is given by


11�u� � u1,1, 
22�u� � u2,2, 
12�u� � 0.5�u1,2 � u2,1�.

We choose the material parameters 0 � 
L � 0.5 and E � 7.3 � 104 (mPa).
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The solid is assumed to be clamped at �D, stress-free at �N2
� , and loaded at �N1 with traction

g � (g1, g2)� as illustrated in Fig. 2. We choose g1 � 0 and g2 � �10�3�L. This results in the
following relations:

��11,1�u� � �12,2�u� � ��12,1�u� � �22,2�u� � 0 in 
C, (44a)

u1 � u2 � 0 on �D, ��12�u� � ��22�u� � 0 on �N2
� , (44b)

��11�u� � 0, ��12�u� � g2 on �N1. (44c)

For the discretization of our test problem (P) we use standard linear finite elements and
construct a uniform triangulation. By h 	 0 we denote the corresponding mesh size.

We apply Algorithm 2 with fixed � � (10�4, 10�3). The initial choice is given by y0 � (u0,
�0)� � (L�1f, 0)�.

In Fig. 3 we depict the domain 
C in Lagrange coordinates x 
 u*(x) for two different mesh

FIG. 2. Domain 
C with three cracks �C1, �C2, �C3.

FIG. 3. Domain 
C in Lagrange coordinates x 
 u*(x).
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FIG. 4. Iterates �u(n) of the jump for 
L � 0.34.

FIG. 5. Iterates �u(n) of the jump for 
L � 0.0001.
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sizes h. One can clearly observe the effect of the surface traction applied at x1 � 0.
From our numerical tests we can report on the following behavior of Algorithm 2:

● In all cases tested the algorithm terminated after finitely many iterations by producing the
same active/inactive set structure in two consecutive iterations and, thus, it found the exact
solution of the discretized problem (PN).

● In the example presented below it terminated successfully in 5 iterations for the mesh size
h � 0.05, 7 for h � 0.025, 7 for h � 0.0125, and 9 for h � 0.00625. The number of
iterations until successful termination increases only moderately as h decreases.

In the sequel let us fix h � 0.025 if not otherwise stated.
Next we discuss the influence of the parameter

�L �
�L � �L

�L
�

1

1 � 2
L
� 0.

Note that the Lamé problem degenerates in the case where �L � 0, i.e., there is no solution
available. In addition to the behavior of Algorithm 2 described above, we observe frequently
monotonous convergence of the iterates �u(n) describing the jump as depicted in Fig. 4, i.e.,

0 � �u�1� � �u�2� � · · · . (45)

TABLE I. No. of iteration for fixed grid and the continuation method.

No. of it h � 0.05 h � 0.025 h � 0.0125 h � 0.00625

Fixed grid 5 7 7 9
Continuation 5 
2 
2 
2

FIG. 6. Iterates � (n) of the multiplier.
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This confirms our results on monotonous global convergence, Theorems 3.3 and 3.4. In our tests
this monotonous behavior was destroyed when 
L � 0, i.e., �L � 0 and �L � 1. The number of
iterations, however, appeared to be stable w.r.t. small 
L as can be seen from Figs. 5 and 6,
which document the jumps �u(n) across the crack and the corresponding Lagrange multipliers
� (n) for 
L � 0.0001. Note that �u(n) for crack 3 is always positive and, thus, implies � (n) � 0
for all n. We point out that we depict only the intervals with x1 � (0, 0.5) for the 1st and 2nd
crack, respectively, since (�u(n))i � 0 at nodal points with x1 � (0.5, 0.9). From Fig. 5 it
immediately follows that all iterates are feasible, i.e.,

FIG. 7. Iterates �u(n) of the jump for log10� � 5.

FIG. 8. History of the active set as log10� � 5.
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�u�n� � 0 for all n � 1.

Finally, we report on the behavior of Algorithm 2 when using a continuation technique for
its initialization. This method works as follows: We solve problem (PN) on a grid with a coarse
mesh size H 	 0 and use the prolongation of this solution and its corresponding multipliers onto
the finer mesh with mesh size h � H as initial values. In Table I the first row shows the number
of iterations required by Algorithm 2 when initialized by u(0) � L�1f and �(0) � 0 for the
specified mesh size (fixed grid method).

The second row presents the results when only the coarse problem with h � 0.05 is initialized
as described above and in all other cases the continuation technique is used. The entry 
2
indicates that based on the special initialization subsequently only two iterations are required on
the next finer grid for successful termination. By this the second iteration confirmed in step 2
the same active/inactive sets obtained from the first iteration. The results indicate that the
continuation technique is an effective tool for reducing costly fine grid iterations.

FIG. 9. The relative error q(��1).

FIG. 10. �-approximation A(�u) of the active set A(y).
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4.2. Discrete Penalization Approach

For the discretization of Algorithm 1 applied to the Lamé problem with three collinear cracks
we use the same technique as described in the previous section.

For every fixed � 	 0 Algorithm 1 terminated successfully at the solution to the discretized
version of problem (P�) with an iteration count similar to Algorithm 2.

In Figs. 7 and 8 we depict the iterates �u(n) of the jump and the discrete active sets,
respectively, for � � 105. From Fig. 7 it is apparent that the iterates �u(n) are not monotonous
and that they are infeasible for cracks 1 and 2. Figure 8, however, shows clearly that the
active/inactive sets converge monotonically. The same behavior was observed for all values
log10� � 1, . . . , 9 tested.

Next we study the approximation quality as �3 
�. We recall that Proposition 2.1 asserts
that u�3 u* as �3 
� in the continuous setting. In Fig. 9 we show the relative error between
the discrete analogues uh

� and u*h of u� and u*, respectively, with respect to the relative discrete
H1-norm given by

q���1� � � �uh
� � u*h�

�L �uh
� � u*h�

�u*h�
�Lu*h

� 1/2

.

Here u*h is denotes the solution obtained by Algorithm 2. For the various mesh sizes h we use
a logarithmic scale on the horizontal axis. As we can see, q(��1) depends only weakly on h.
Further uh

� is very close approximation of u*h for large �. In fact, for log10� � 7 both solutions
are almost identical, difference in the sup-norm is less than 0.00035.

Figure 10 studies the influence of � on the active set at the numerical solution uh
� compared

to the active set of the true discrete solution u*h. We observe that for log10� � 7 the active sets
at the optimal solutions uh

� and u*h coincide. This is another instance of the fact that uh
� closely

approximates u*h for large �.
Finally we report on the comparison of Algorithms 1 and 2 w.r.t. the number of iterations

until successful termination. The results are displayed in Table II. For fixed � we observe that
the number of iterations stabilizes as h is reduced. This reflects our theoretical findings in section
2. On the other hand, for sufficiently small but fixed mesh size h the number of iterations
required by Algorithm 1 is increasing as � increases. This comes from the fact that the
superlinear rate proved in section 2 depends on �. Indeed, from Theorem 2.1 we infer that the
radius of the ball about uh

� where superlinear convergence is guaranteed tends to zero as �3 �.
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taufgaben in singulär gestörten Gebieten, Akademie-Verlag, Berlin, 1991.

TABLE II. No. of iteration for (PN) and its �-approximation.

log10(�) 3 4 5 6 7 8 9 (PN)

h � 0.05 2 2 4 6 6 6 6 5
h � 0.025 2 3 5 6 8 8 8 7
h � 0.0125 1 1 5 6 8 10 10 7
h � 0.00625 2 3 5 7 8 11 11 9

GENERALIZED NEWTON METHODS FOR CRACKS 609



3. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton,
Boston, 2000.

4. A. M. Khludnev and J. Sokolowski, The Griffith formula and the Cherepanov-Rice integral for crack
problems with unilateral conditions in nonsmooth domains, Eur J Appl Math 10 (1999), 379–394.

5. G. C. Hsiao, E. Schnack, and W. L. Wendland, Hybrid methods for boundary value problems via
boundary energy, in The Maz’ya Anniv Collection, Vol. 2, (Rostock, 1998), Birkhäuser, Basel, 1999,
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