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Abstract

A well known approach to approximate a variational inequality consists of using
a penalty operator (nonlinear in general) [3, 8]. On the other hand, it is sometimes
possible to use iterative approaches [1, 4, 9]. In this work an iterative equation with
linear penalty operator associated with a variational inequality is constructed. The
convergence of the solutions and the error estimates are proved.

Further, primary iterative procedures based on these results are proposed to find
approximate solutions of variational inequalities. Estimates of the error and the itera-
tion numbers are obtained.

These inverstigations were suggested by a study of the contact and plastic problems
in solid mechanics [5]. With the described methods, approximate solutions of the
contact elastoplastic problems for a plate are obtained [6,7].

1. MAIN RESULTS ON THE CONVERGENCE

Let V be a Hilbert space and V* be its dual space. Denote by (-,-), (-,+), || - || and || - ||
the duality between V and V*, scalar product in V, norms in V and V*, respectively. Let
us introduce the dual injection J : V — V* meaning

(Ju,v) = (u,v) forall uw,weV

and the inverse dual injection J=!' : V* — V. Then we have that J and J~! are linear
& operators in the Hilbert space V [2].

K is taken to be a closed convex subset of V. The element f € V* and operator
A :V — V* are given. We require that

1i) A be strongly monotonous, i.e.

(Au— Av,u—v) > M|lu—v||* forall u,v€V, constant M > 0. (1)

The following variational inequality is investigated. To find u € K such that

(Au,v —u) 2 (f,v —u) forany vE€ K. (2)
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lv = Pv|| £ |lv—w| forany weE K.
Then P is Lipschitz continious [9], i.e.
|Pv — Pw|| < |lv—w|| foral v,weV. (3)

Let us construct the standard penalty operator B(v) = J(v — Pv) and define the penalty
problem depending on a small positive parameter ¢

Aut + €7 1B8(u’) = f. (4)
It is a well known result [8] that equation (4) has a unique solution u® € V which satisfies
u¢ —»u weaklyin V as e—0.
To linearize the penalty operator in (4) we use the following iteration scheme
Au + eV Jut" = f+ e TPu™Y, n=1,2,3,.. (5)

where u° € V is choosen in an arbitrary way. It follows immediately from the Browder’s
theorem that there exists a unique solution u*™ € V' of (5).

Lemma 1 The following estimates hold
e — ull® < pPlluc® — ull? + 81 = POIf = Aullz (6)
e = < g2 =l ©
where pe = (1+ Me)2 <1, & =eM™(2+Me)™.
Proof. Let us rewrite (5) adding (—Au — €' Ju) to both parts. Since J is linear, we have
Aut™ — Au+ e M J(u" —u) = f — Au + e 1J(Pu“™! = Pu).
Here, u = Pu due to u € K. Application of the linear injection J~' to this equation gives
JHAu™ — Au) + €M (ut —u) = J7H(f — Au) + e (Pus""! — Pu).
Squaring the above equality, we get
| Aus™ — Au|? + 2¢7 (Au™ — Au,u®" —u) + Y um —ufl® = (8)
1f = Aull? + 2671 (f — Au, Pus™" — u) + || Put""" = Pull®.
According to (1), the left part of (8) is bounded from below by
(M + &) lu™ — ul.

The second term in the right hand side of (8) is negative due to (2). Further, using the
inequality (3), we get

un = ull? < po (lus = ull* + €Il - Aul?)

Continuing this estimate as n goes to 1, we have

n—-1 i
e — ul? < o (nzf” CuP+E S I - Auni) .

=0

With the sum of the geometrical series
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n—1 .
Y hi=(1=p0)1=p)7,
=0

the estimate (9) gives the estimate (6).
Let us next subtract (4) from (5), then

Aut™ — Au + €M (u™ = uf) = ' J(Put"! — Puf).
Doing similarly the above (to apply J~! and square) gives
s =l < (1 4+ Me)?fhusn= - we|l

This inequality reduces to the estimate (7) and completes the proof.
It follows immediately from this Lemma that

Theorem 1
u™ — u® stronglyin V. as n — oo, €1is fized and (7) holds ,

u* > u stronglyin V as e— 0 and
llu* = ull* < &l f - Aull}

where u*™, u* and u are the solutions of (5),(4) and (2), respectively.

2. CONSTRUCTION OF APPROXIMATING SCHEMES
Let u® € V be a solution of Au® = f. Hence, (1) gives

lle® = ul| < MY f - Aul,. (10)
Choose an arbitrary positive sequence h, such that
hi—0 as e¢—0.
1. Scheme. Assume that € is fixed. We define
o =ubte,

where u*™« is the solution of (5) under the following conditions

ne = [In (h(M~2 = 8)7") /Inp ] + 1. (11)
Here the bracket [z] denotes the integer part of the number z.
Theorem 2 v — u strongly in V as ¢ = 0 and
llv¢ = ull* < (he + 6)I1f — Aull}.
it order to prove this, it is sufficient to deduce from (11) that
pr < k(M2 —§,)7N.

If equations (10) and (11) are taken into account, the formula (6) gives the desirable result.

Scheme. Another way of finding approximate solutions of (2) consists in solving (5) as €
decreases. Choose a sequence €, k=1,2 3, ... such that ¢, — 0 as k — oco. For simplicity,
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let us replace é,,, pe,, he, by 8k, pi, hi. . We define that
uF=uom k=1,23,..

is the solution of (5) with the following conditions

uck.O s uk—l,
ni = [In (ha(haor + Sk — )71 /Inpi] + 1. (12)
Here,
ho+ 8 > M2 (13)

Theorem 3 u* — u strongly in V as k — oo and
lu* = ull® < (e + 0)I1f — Aull®. (14)
Proof. Clearly, equation (12) gives
pr¥ < hi(hg—y + 8-y — &))" (15)
For k =1, due to (6),(10),(13) and (15), we have
lut = ull? < g [lu® = ull* + 8 (1 = g2 1 = Aull? <
(b2 (M2 = 81) + 61) || f — Auli2 <
(hu(M™2 = 61)(ho + 60 — 61) ™" + &1) || f — Aul]? <
(h(M™2 = 61) (M2 = 8)7 + &) || f — Au|2.
Hence, equation (14) holds for k = 1. Let (14) hold for k£ — 1, i.e.
[t — u]|? < (hiey + Brn)|| f — Aul|?. (16)
Then we prove (14) by induction. The estimate (6) and assumption (16) give
llu* = ull® < pR*llu*" — ull® + 8 (1 = p*) I f — Au|lZ <
(2 (i + 51 — 8) ™" + &) || f — Aul|2

Taking into account (15), this completes the proof.

3. Scheme. We are next going to pass to the limit as k,n — oo simultaneously. Let

v* =uF for np=1,i.e. v* be a solution of

Av* + I = f+ TPV, £=1,2,3,..., ¥ =1’

Theorem 4 There is a sequence ¢, — 0 as k — oo such that v* — u strongly in V as
k — 0o. The mazimum convergence

llv* = ul|* < M72(1 + k)| = Aul?
is provided by €, = (Mk)™'.
Proof. From (6) we have that

llo* = ull? < i ([lo** = ull? + €2l f — Aul?).
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Denote so = M2, then (10) gives
[[v° = ull* < soll f — Aulf2.
We prove the Theorem by induction. Let
07" —wl” < sl — Aullz.

Obviously, if
Pe(sk=1 + €) < s, (17)

then
[lo* — ul|* < sillf — Au|l%

Rewrite condition (17) as follows
Ci(l - M2sk) —2Msier + sy — sk < 0.

To fulfil this, it is necessary that the following inequality holds

Sk 2 Sk-1 (1 + MZSk_l)—l .

The equality gives the maximum convergence
Sk = Sg-1 (1 + Mzsk_l)—l =..-=gp (1 + kMzso)—l = Mz(]_ + k)—l.

Because of (17), ex = Msi (1 — M2s;)™" = (Mk)~!. This completes the proof.
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