Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains

Victor A. Kovtunenko1,2 | Sina Reichelt3 | Anna V. Zubkova1

1 Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Graz, Austria
2 Lavrentyev Institute of Hydrodynamics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
3 Weierstrass Institute for Applied Analysis and Stochastics, Partial Differential Equations, Berlin, Germany

Correspondence
Victor A. Kovtunenko, Institute for Mathematics and Scientific Computing, Karl-Franzens University of Graz, NAWI Graz, Heinrichstrasse 36, 8010 Graz, Austria.
Email: victor.kovtunenko@uni-graz.at

Communicated by: M. Efendiev

Funding information
Austrian Science Fund, Grant/Award Number: P26147-N26: PION

1 INTRODUCTION

We consider coupled linear parabolic equations describing the diffusion of two species in two different phases of one physical domain separated by a thin periodic interface. The coupling of the species arises via nonlinear transmission conditions at the interface, which model surface reactions. Nonlinear interface reactions are relevant, for instance, in electrochemistry, see, eg, Landstorfer et al⁴ for adsorption and solvation effects at metal-electrolyte interfaces, and Efendiev et al² for electro-chemical reactions in lithium-ion batteries.

The characteristic length scale of the periodic cell is given by the homogenization parameter $\epsilon > 0$. The main objective is to derive a macroscopic model for vanishing ϵ, where both phases are connected sets. The limit bidomain model is given via two coupled parabolic equations defined in the macroscopic domain describing the diffusion of the two species in each phase and reactions at the interface. In the case of connected-connected domains, we exploit the existence of a continuous extension operator from the periodic domain to the whole domain following.³,⁴

A qualitative homogenization result for reaction-diffusion systems with nonlinear transmission conditions has recently been obtained in Gahn et al.⁵ The limit in the microscopic equations is derived rigorously in the sense of the two-scale convergence, however, without corrector estimates. There also exists a vast literature on transmission problems with linear interface conditions, eg, Donato et al⁶ and Donato and Monsurro.⁷ See references therein for the case of elliptic equations as well as the extensions of the homogenization result to parabolic equations in Jose⁸ and to nonlinear monotone
transmission conditions in Donato and Le Nguyen.9 For the treatment of oscillating third boundary conditions, we refer to Belyaev et al10 and Oleinik and Shaposhnikova.11

Within electrokinetic modeling (see Allaire et al12), in previous studies,13-16 there were considered generalized Poisson-Nernst-Planck (PNP) models over two-phase domains accounting for interfacial reactions. The corresponding PDE system obeys a structure of the gradient flow; see, eg, other works.17-19 The paper20 considers the homogenization over a two-phase domain for static PNP equations and homogeneous interface conditions. In Kovtunenko and Zubkova,21 residual error estimates for the averaged monodomain solution with first-order correctors were justified under the simplifying assumption that the flux across the interface is of order \(O(\varepsilon^2) \).

In this paper, however, we are mainly interested in quantitative asymptotic results supported by corrector estimates. There exist many articles on the derivation of error estimates for different classes of reaction-diffusion systems, eg, other works,22-25 exploiting a higher regularity of the limit solution and the continuous extension operator from a perforated domain. Moreover, unfolding-based error estimates have been proven for linear, elliptic transmission problems in Reichelt,26 for reaction-diffusion systems with linear boundary conditions in perforated domains in Muntean and Reichelt,27 and for systems with nonlinear interface conditions in a two-phase domain in Fatima et al.28 The latter results are based on the quantification of the periodicity defect for the periodic unfolding operator in Griso,29,30 and they hold without assuming higher regularity for the corrector problem.

Our approach uses the periodic unfolding method introduced in Cioranescu et al31 and further refined in Francu32 and Mielke and Timofte.33 To make our error estimates rigorous, we have to assume higher regularity for the limit solutions as well as for the correctors solving the local cell problems. This additional regularity for the limit problem is in line with established homogenization results by, eg, literature.34-36 Our result provides residual error estimates with a first-order corrector of order \(\sqrt{\varepsilon} \), which is (generally) optimal for \(H^1 \)-estimates up to a Lipschitz boundary, whereas in Fatima et al.28 the error is of order \(\varepsilon^{1/4} \). For this task, we apply the Poincaré inequality in periodic domains (see Lemma 2) and the uniform extension in connected periodic domains (see Lemma 3).

The paper is structured as follows: In Section 2, we formulate the transmission problem and all relevant assumptions. In Section 3, we prove the existence of solutions to our model and provide a priori estimates. In Sections 4 and 5, we define the periodic unfolding operator and provide important properties as well as first asymptotic results. In Section 6, we state and prove our main result on the residual error estimates.

2 | SETTING OF THE TRANSMISSION PROBLEM

For a fixed homogenization parameter \(\varepsilon > 0 \), we consider a macroscopic domain \(\Omega \) consisting of two subsets \(\Omega_1^\varepsilon, \Omega_2^\varepsilon \), which are disjoint by a thin interface \(\Gamma^\varepsilon \). The both components \(\Omega_i^\varepsilon \) are assumed to be connected such that \(|\partial \Omega_i^\varepsilon \cap \partial \Omega| \neq 0 \). By \(|\partial \Omega_i^\varepsilon \cap \partial \Omega| \), we mean the surface measure of points where the boundaries of \(\Omega_i^\varepsilon \) and \(\Omega \) will meet.

We make the following geometric assumptions.

(D1) The reference domain \(\Omega \subset \mathbb{R}^d \) is a \(d \)-dimensional hyperrectangle, \(d \geq 2 \), ie, it is

\[
\Omega = \prod_{k=1}^{d} (a_k, b_k), \quad a_k < b_k \quad \text{and} \quad a_k, b_k \in \mathbb{R}.
\]

This assumption suffices to split \(\Omega \) into periodic cells in (D3).

(D2) The unit cell \(Y = (0, 1)^d \) consists of two open, connected subsets \(Y_1 \) and \(Y_2 \), which have Lipschitz continuous boundaries \(\partial Y_1, \partial Y_2 \) and are disjoint by the interface \(\Gamma = \partial Y_1 \cap \partial Y_2 \). We assume the reflection symmetry, ie,

\[
\partial Y_i \cap \{ y_k = 0 \} = \partial Y_i \cap \{ y_k = 1 \}
\]

for \(k = 1, \ldots, d, \; i = 1, 2 \). This assumption allows us to define periodic functions on \(Y_i \) in (29). Let \(n_1 \) and \(n_2 \) denote the unit normal vectors at the respective boundaries \(\partial Y_1 \) and \(\partial Y_2 \). Every normal is chosen outward from the domain, and it does not depend on scaling by \(\varepsilon \).

(D3) For \(\varepsilon > 0 \), we introduce the decomposition of a point \(x \in \mathbb{R}^d \) as

\[
x = \varepsilon \left[\frac{x}{\varepsilon} \right] + \varepsilon \left\{ \frac{x}{\varepsilon} \right\}
\]
into the floor part \(\left\lfloor \frac{x}{\epsilon} \right\rfloor \in \mathbb{Z}^d \) and the fractional part \(\left\{ \frac{x}{\epsilon} \right\} \in Y \). According to (1), let the set of integer vectors

\[
I_\epsilon = \{ \lambda \in \mathbb{Z}^d \mid \epsilon(\lambda + y) \in \Omega \text{ for all } y \in Y \}
\]

denote the numbering of local cells inside \(\Omega \). We call \(\epsilon \) an admissible parameter, if the reference domain \(\Omega \) from (D1) can be partitioned periodically into the local cells as follows:

\[
\overline{\Omega} = \bigcup_{\lambda \in I_\epsilon} \epsilon(\lambda + Y).
\]

For a treatment of small boundary layers, see Reichelt.\(^{37, \text{lemma 2.3.3}}\)

(D4) As a consequence of (D1) to (D3), the periodic components \(\Omega^\epsilon_1 \) and \(\Omega^\epsilon_2 \) and their interface \(\Gamma^\epsilon \) are determined via

\[
\overline{\Omega}^\epsilon_1 = \bigcup_{\lambda \in I_\epsilon} \overline{Y^\epsilon_1}, \quad Y^\epsilon_1 = \epsilon(\lambda + Y), \quad \Gamma^\epsilon = \partial \Omega^\epsilon_1 \cap \partial \Omega^\epsilon_2.
\]

By this, the outward normal vectors \(n_i^\epsilon \) at \(\partial \Omega^\epsilon_1 \) coincide with the normal vectors \(n_i \) at \(\partial Y_i \) for \(i = 1, 2 \) and do not depend on the scaling \(\epsilon \). The interface \(\Gamma^\epsilon \) is a Lipschitz continuous manifold.

For admissible \(\epsilon > 0 \), time \(t \in (0, T) \) with the final time \(T > 0 \) fixed, the space variable \(x \in \overline{\Omega}^\epsilon_1 \cup \overline{\Omega}^\epsilon_2 \) in the two-component domain, we consider a nonlinear transmission problem for \(u^\epsilon_i(t, x) \), \(i = 1, 2 \), such that

\[
\begin{align*}
\partial_t u^\epsilon_i - \text{div}(A^\epsilon_i \nabla u^\epsilon_i) &= 0 & \text{in} \quad \Omega^\epsilon_i, \quad (4a) \\
A^\epsilon_i \nabla u^\epsilon_i \cdot n_i &= \epsilon g_i(u^\epsilon_1, u^\epsilon_2) & \text{on} \quad \Gamma^\epsilon, \quad (4b) \\
u^\epsilon_i &= 0 & \text{on} \quad \partial \Omega^\epsilon_i \cap \partial \Omega, \quad (4c) \\
u^\epsilon_i &= u^\epsilon_i^0 & \text{as} \quad t = 0. \quad (4d)
\end{align*}
\]

The notation \(\partial_t \) stands for the time derivative, \(\nabla \) for the spatial gradient, and \(\cdot \) for the scalar product in \(\mathbb{R}^d \). Below, we explain in detail the terms entering the system (4). We note that \(|\Gamma^\epsilon| = O(1/\epsilon) \); therefore, the scaling \(\epsilon \) in (4b) appears naturally just compensating the longer interface.

(A1) The diffusivity matrices \(A_i(y) \in L^\infty(Y_i; \mathbb{R}^{d \times d}_{\text{sym}}) \), \(i = 1, 2 \), are symmetric, uniformly bounded and elliptic: There exist \(0 < \alpha \leq \beta \) such that

\[
\alpha |\xi|^2 \leq A_i(y) \xi \cdot \xi \leq \beta |\xi|^2 \quad \text{for all} \quad \xi \in \mathbb{R}^d, \quad \text{a.e.} \quad y \in Y_i.
\]

The matrices entering (4a) to (4c) are defined as \(A^\epsilon_i(x) = A_i \left(\frac{x}{\epsilon} \right) \) according to the notation (1) and are assumed to be periodic.

In the transmission conditions (4b), the functions \(g_i : \mathbb{R}^2 \to \mathbb{R}, \ i = 1, 2, \) describe interface reactions and are assumed to satisfy

(G1) the uniform growth condition: there exists \(K_g > 0 \) such that

\[
|g_i(u_1, u_2)| \leq K_g, \quad \text{for all} \quad u_1, u_2 \in \mathbb{R};
\]

(G2) the Lipschitz continuity: There exists \(L_g \geq 0 \) such that

\[
|g_i(u_1, u_2) - g_i(v_1, v_2)| \leq L_g \left(|u_1 - v_1| + |u_2 - v_2| \right),
\]

for all \(u_i, v_i \in \mathbb{R}, \ i = 1, 2. \)

The linear diffusion equations (4a) are supported by the standard, homogeneous Dirichlet boundary conditions (4c) and the initial data (4d) for given \(u^\epsilon_i^0 \in L^2(\Omega), \ i = 1, 2. \)
We introduce the variational formulation of the problem (4) as follows: find \(u_i^r \in U_i^r \), \(i = 1, 2 \), in the search (solution) space
\[
U_i^r = \{ u \in C(0, T; L^2(\Omega_i^r)) \cap L^2(0, T; H^1(\Omega_i^r)) : \partial_t u \in L^2(0, T; H^1(\Omega_i^r)^*) \},
\]
satisfying the initial condition (4d) and the nonlinear equation
\[
\int_0^T \left(\langle \partial_t u_i^r, v_i \rangle_{\Omega_i^r} + \int_{\Omega_i^r} A_i^r \nabla u_i^r \cdot \nabla v_i \, dx \right) dt = \int_0^T \int_{\Gamma_i^r} \epsilon g_i(u_i^r, u_i^r) v_i \, d\sigma_x \, dt, \tag{8}
\]
for all test functions \(v_i \) from the test space
\[
V_i^r := \{ v \in L^2(0, T; H^1(\Omega_i^r)), \ v = 0 \text{ on } \partial \Omega_i^r \cap \partial \Omega \}.
\]
The notation \(H^1(\Omega_i^r)^* \) in \(U_i^r \) stands for the topologically dual space to \(H^1(\Omega_i^r) \), and \(\langle \cdot, \cdot \rangle_{\Omega_i^r} \) denotes the duality between them.

3 | WELL-POSEDNESS

This section provides the existence of weak solutions in the sense of variational formulation for the microscopic problem (8).

Theorem 1 (Well-posedness).

(i) The unique solution \(u_i^r \in U_i^r \) to the nonlinear transmission problem (8) exists and satisfies the following a priori estimate:
\[
\| u_i^r \|_{L^2_T}^2 := \| u_i^r \|^2_{C(0, T; L^2(\Omega_i^r))} + \| u_i^r \|^2_{L^2(0, T; H^1(\Omega_i^r))} + \| \partial_t u_i^r \|^2_{L^2(0, T; H^1(\Omega_i^r)^*)} \\
\leq C_1 \| u_i^r \|^2_{L^2(\Omega_i^r)} + C_2 K_0^2 + C_3, \quad C_1, C_2, C_3 \geq 0, \tag{9}
\]
uniformly in \(\epsilon \in (0, \epsilon_0) \) for \(\epsilon_0 > 0 \) sufficiently small.

(ii) Under assumptions on positivity of the initial data \(u_i^{m_0} > 0 \) everywhere in \(\Omega \), the solution \(u_i^r \) is positive at least locally in time, and \(u_i^r \geq 0 \) at any time under the assumption of the positive production rate from Roubíček\(^{38}\):
\[
g_i(u_i^r, u_i^r)^- = 0, \tag{10}
\]
where \((u_i^r)^- = -\min(0, u_i^r) \) stands for the negative part of the function.

Proof.

(i) To prove existence of the solution, we apply the Tikhonov-Schauder fixed point theorem. We iterate (8) starting with the suitable initialization \(u_i^{m_0} = u_i^r, m_0 \in \mathbb{N}, i = 1, 2 \).

For \(m > m_0, m \in \mathbb{N} \), a solution \(u_i^m \in U_i^r \) can be found, which satisfies the initial data (4d) and the linearized equations
\[
\int_0^T \left(\langle \partial_t u_i^m, v_i \rangle_{\Omega_i^r} + \int_{\Omega_i^r} A_i^r \nabla u_i^m \cdot \nabla v_i \, dx \right) dt = \int_0^T \int_{\Gamma_i^r} \epsilon g_i^{m-1}(u_i^m, u_i^m) v_i \, d\sigma_x \, dt, \tag{11}
\]
for all test functions \(v_i \in V_i^r \), using the notation \(g_i^{m-1} := g_i(u_i^{m-1}, u_i^{m-1}) \) for short. We can test (11) with \(v_i = u_i^m \) leading to
\[
\int_0^T \left(\langle \partial_t u_i^m, u_i^m \rangle_{\Omega_i^r} + \int_{\Omega_i^r} A_i^r \nabla u_i^m \cdot \nabla u_i^m \, dx \right) dt = \int_0^T \int_{\Gamma_i^r} \epsilon g_i^{m-1}(u_i^m, u_i^m) \, d\sigma_x \, dt. \tag{12}
\]
We estimate the integral in the right-hand side of (12) applying weighted Young inequality with a weight \(\frac{2\delta}{K_{\alpha}} > 0 \), the trace theorem (25) below, and the growth condition (6):

\[
\left| \int_0^T \int_{\Omega'} \epsilon g_{i}^{m-1} u_i^m \, d\sigma_x \, dt \right| \leq \delta \epsilon K_{Tr} \int_0^T \int_{\Gamma} (u_i^m)^2 \, d\sigma_x \, dt + \frac{\epsilon K_{Tr}}{4\delta} \int_0^T \int_{\Omega'} (g_{i}^{m-1})^2 \, d\sigma_x \, dt \leq \delta \| u_i^m \|_{L^2(0,T;H^1(\Omega'))}^2 + C. \tag{13}
\]

where \(C = \frac{K_{\alpha} K_{\beta}^2 T \epsilon |\Gamma'|}{\delta} \) with a constant \(K_{Tr} \) from the trace theorem (25) and \(K_{\alpha} \) from (6). Expressing the first term in the left-hand side of (12) by the chain rule as \(\langle \partial_t u_i^m, u_i^m \rangle = \frac{1}{2} \frac{d}{dt} \| u_i^m \|_{L^2(\Omega')}^2 \), using the uniform ellipticity (5) of \(A_i^m \) and the estimate (13), this follows

\[
\frac{1}{2} \frac{d}{dt} \int_0^T \int_{\Omega'} (u_i^m)^2 \, dx \, dt + (\alpha - \delta) \| \nabla u_i^m \|_{L^2(0,T;L^2(\Omega'))}^2 \leq \delta \| u_i^m \|_{L^2(0,T;L^2(\Omega'))}^2 + C. \tag{14}
\]

For \(\delta < \alpha \), applying Grönwall inequality,

\[
\| u_i^m(t) \|_{L^2(\Omega')}^2 + C \frac{\| u_i^m \|_{L^2(0,T;H^1(\Omega'))}^2}{\epsilon} \leq \left(\| u_i^m \|_{L^2(\Omega')}^2 + C \frac{\| u_i^m \|_{L^2(0,T;H^1(\Omega'))}^2}{\epsilon} \right) e^{2\delta t} \quad \text{for} \quad t \in (0, T),
\]

and taking in (14) the supremum over \(t \in (0, T) \), we conclude

\[
\| u_i^m(t) \|_{L^2(\Omega')}^2 + \| u_i^m \|_{L^2(0,T;H^1(\Omega'))}^2 \leq C_1 \| u_i^m \|_{L^2(\Omega')}^2 + C_2 K_{\alpha}^2 + C_3, \quad C_1, C_2, C_3 \geq 0.
\]

Hence, using (6) from (12), it follows \(\| \partial_t u_i^m \|_{L^2(0,T;H^1(\Omega'))} = O(1) \) uniformly with respect to \(m \to \infty \) and \(\epsilon \to 0 \), and the continuous embedding of the solution in \(C(0, T; L^2(\Omega')) \) holds; see Dautray and Lions, p.509. Therefore, the mapping \(M: U_i^* \to U_i^* \) is well-defined when solving (11) has compact image, and hence, there exists an accumulation point \(u_i^m \in U_i^* \), \(i = 1, 2 \), and a subsequence still denoted by \(m \) such that as \(m \to \infty \)

\[
u_i^m \to u_i^* \quad \text{weakly in} \quad U_i^* \quad \text{and} \quad u_i^m \to u_i^* \quad \text{strongly in} \quad L^2(0, T; L^2(\Gamma')).
\]

The continuity of \(M \) in the weak topology is justified using the Lipschitz continuity of the nonlinear term \(g_i \) in (7). Applying the fixed point theorem, section 4.8, theorem 8.1, p.293 and the a priori estimate (9) proves the existence of a weak solution of problem (8).

To prove uniqueness, we consider the difference \(w_i^e := u_i^{1x} - u_i^{2x} \), \(i = 1, 2 \), of two solutions of (8) with the test function \(v_i = w_i^e \):

\[
\frac{1}{2} \int_{\Omega'} (w_i^e)^2 \, dx + \int_0^T \int_{\Omega'} A_i^m \nabla w_i^e \cdot \nabla w_i^e \, dx \, dt = I_{g_i}^e + I_{\delta_i}^e := \int_0^T \int_{\Gamma} \epsilon \left(g_i(u_1^{1x}, u_2^{1x}) - g_i(u_1^{2x}, u_2^{2x}) \right) w_i^e \, d\sigma_x \, dt. \tag{16}
\]

The integral \(I_{g_i}^e \) is estimated due to the Lipschitz continuity (7) as

\[
|I_{g_i}^e| \leq \epsilon L_{g_i} \int_0^T \int_{\Gamma} (|w_i^e|^2 + |w_i^e|^2) \, d\sigma_x \, dt. \tag{17}
\]

Then, collecting the expressions (16) and (17), applying the Cauchy-Schwarz and Grönwall inequalities, we get

\[
n \sum_{i=1}^2 |w_i^e(t)|^2 \leq n \sum_{i=1}^2 |w_i^e(0)|^2 e^{4K_{\alpha} L_i^e} = 0
\]

and hence conclude \(w_i^e \equiv 0 \), which proves \(u_i^{1x} \equiv u_i^{2x} \).

(ii) To prove the nonnegativity of \(u_i^* \), we decompose the solution into the positive and the negative parts as: \(u_i^* = (u_i^*)^+ - (u_i^*)^- \) and substitute it in the Equation (8) with the test function \(v_i = (u_i^*)^- \). The assumption of the positive
production rate (10) together with the uniform ellipticity (5) of A_i^ε and the nonnegativity of the initial data lead to the estimate:
\[
\sup_{t \in (0,T)} \frac{1}{2} \int_{\Omega_i^\varepsilon} \left((\partial_t u_i^\varepsilon)^{-2} \right) dx + a \| \nabla (\partial_t u_i^\varepsilon)^{-2} \|^2_{L^2(\Omega_i^\varepsilon; L^2(\Omega_i^\varepsilon)^*)} \leq \frac{1}{2} \int_{\Omega_i^\varepsilon} \left((\partial_t u_i^\varepsilon)^{-2} \right)_{t=0}^t dx = 0;
\]
hence, $(\partial_t u_i^\varepsilon)^{-2} \equiv 0$ and $u_i^\varepsilon > 0$. If $u_i^\varepsilon(0) = u_i^{0\varepsilon} > 0$ everywhere in $\bar{\Omega}$, then $u_i^\varepsilon(t) > 0$ at least for t sufficiently small, which follows by the continuity of the solution. This completes the proof.

We note that Theorem 1 can be extended for inhomogeneous diffusion equations (4a), where the uniform upper bound is proved in Gurevich and Reichelt41 for reaction functions distributed over domains Ω_i^ε.

4 PERIODIC UNFOLDING TECHNIQUE

Following Cioranescu et al.42 we recall the technique based on the periodic unfolding and averaging operators providing continuous mappings between the components $\overline{\Omega_i^\varepsilon}$ and $\overline{Y_i}$, $i = 1,2$, up to the boundaries.

Definition 1. For $u(x) \in L^2(\Omega_i^\varepsilon)$, the unfolding operator $T_{i \varepsilon} : L^2(\Omega_i^\varepsilon) \mapsto L^2(\Omega; L^2(Y_i))$, $i = 1,2$, in the domain is defined by
\[
(T_{i \varepsilon} u)(x,y) := u \left(x \left(\frac{x}{\varepsilon} \right) + \varepsilon y \right), \quad \text{for } x \in \Omega \text{ and } y \in Y_i,
\]
and for $u(x) \in L^2(\partial \Omega_i^\varepsilon)$, the operator $T_{i \varepsilon} : L^2(\partial \Omega_i^\varepsilon) \mapsto L^2(\Omega; L^2(\partial Y_i))$, $i = 1,2$, is performed on the boundary by
\[
(T_{i \varepsilon} u)(x,y) := u \left(x \left(\frac{x}{\varepsilon} \right) + \varepsilon y \right), \quad \text{for } x \in \Omega \text{ and } y \in \partial Y_i.
\]

For $\varphi(x,y) \in L^2(\Omega; L^2(Y_i))$, the averaging operator $T_{i \varepsilon}^{-1} : L^2(\Omega; L^2(Y_i)) \mapsto L^2(\Omega_i^\varepsilon)$, $i = 1,2$, in the domain is defined by
\[
(T_{i \varepsilon}^{-1} \varphi)(x) := \frac{1}{|Y_i|} \int_{Y_i} \varphi \left(x \left(\frac{x}{\varepsilon} \right) + \varepsilon z \right), \quad \text{for } x \in \Omega_i^\varepsilon,
\]
and for $\varphi(x,y) \in L^2(\Omega; L^2(\partial Y_i))$, the operator $T_{i \varepsilon}^{-1} : L^2(\Omega; L^2(\partial Y_i)) \mapsto L^2(\partial \Omega_i^\varepsilon)$, $i = 1,2$, on the boundary is expressed by
\[
(T_{i \varepsilon}^{-1} \varphi)(x) := \frac{1}{|Y_i|} \int_{Y_i} \varphi \left(x \left(\frac{x}{\varepsilon} \right) + \varepsilon z \right), \quad \text{for } x \in \partial \Omega_i^\varepsilon.
\]

Abusing the notation $T_{i \varepsilon}^{-1}$ is used for a left inverse operator of $T_{i \varepsilon}$ according to Lemma 1 (i), which is also right inverse in the special cases accounting in Lemma 1 (ii). For those functions that belong to $H^1(\Omega_i^\varepsilon)$, the restriction of the unfolding operator $T_{i \varepsilon}$ is well-defined as the mapping $H^1(\Omega_i^\varepsilon) \mapsto L^2(\Omega; H^1(Y_i))$, and for functions in $L^2(\Omega; H^1(Y_i))$, the restriction of the averaging operator $T_{i \varepsilon}^{-1}$ is well-defined as $L^2(\Omega; H^1(Y_i)) \mapsto H^1(\bigcup_{i \in I} Y_i^\varepsilon)$, where Y_i^ε is from (3). We note that the spaces $H^1(\bigcup_{i \in I} Y_i^\varepsilon)$ and $H^1(\Omega_i^\varepsilon)$ do not coincide because functions from $H^1(\bigcup_{i \in I} Y_i^\varepsilon)$ are discontinuous while they can have jumps across the interface Γ^ε.

The operator properties are collected below in Lemma 1.

Lemma 1 (Properties of the operators T_{ε} and $T_{i \varepsilon}^{-1}$). For arbitrary $x \mapsto u(x) \in H^1(\Omega_i^\varepsilon) \cap L^2(\partial \Omega_i^\varepsilon)$ and $(x,y) \mapsto \varphi(x,y) \in L^2(\Omega; H^1(Y_i))$, $i = 1,2$, and the extension by zero: $\tilde{u}(x) = u(x)$ for $x \in \Omega_i^\varepsilon$, otherwise $\tilde{u}(x) = 0$ for $x \in \Omega \setminus \overline{\Omega_i^\varepsilon}$, the following properties hold:

(i) invertibility of T_{ε}: $(T_{\varepsilon}^{-1} T_{\varepsilon}) u(x) = u(x)$;
(ii) invertibility of $T_{i \varepsilon}^{-1}$:

(iii) composition rule: $T_{i \varepsilon}(F(u))(x,y) = F(T_{i \varepsilon} u)(x,y)$ for any elementary function F;
(iv) chain rules: $\varepsilon T_{i \varepsilon}(\nabla u)(x,y) = \nabla(T_{i \varepsilon} u)(x,y)$, and $\nabla (T_{i \varepsilon}^{-1} \varphi)(x) = T_{i \varepsilon}^{-1}(\nabla \varphi + \frac{1}{\varepsilon} \nabla x \varphi)(x)$ for $x \in Y_i^\varepsilon$ and $\varphi \in H^1(\Omega \times Y_i)$.

KOVTUNENKO ET AL.
(v) integration rules:
\[
\int_{\Omega} u(x) \, dx = \frac{1}{|Y|} \int_{\Omega \times Y_i} (T_e u)(x, y) \, dx \, dy,
\]
(20a)
\[
\int_{\partial \Omega_i} u(x) \, d\sigma_x = \frac{1}{\varepsilon |Y|} \int_{\Omega \times Y_i} (T_e u)(x, y) \, dx \, d\sigma_y.
\]
(20b)

(vi) boundedness of \(T_e\):
\[
\int_{\Omega} u^2(x) \, dx = \frac{1}{|Y|} \int_{\Omega \times Y_i} (T_e u)^2(x, y) \, dx \, dy,
\]
(21a)
\[
\int_{\Omega} |\nabla u|^2(x) \, dx = \frac{1}{\varepsilon^2 |Y|} \int_{\Omega \times Y_i} |\nabla_y(T_e u)|^2(x, y) \, dx \, dy.
\]
(21b)
\[
\int_{\partial \Omega_i} u^2(x) \, d\sigma_x = \frac{1}{\varepsilon |Y|} \int_{\Omega \times Y_i} (T_e u)^2(x, y) \, dx \, d\sigma_y.
\]
(21c)

Proof. The property (iiib) follows in a straightforward manner from the calculation of \((T_e T_e^{-1} \tilde{u})(x, z) = (T_e^{-1} \tilde{u})(x)\) for \(x \in \Omega\) and \(z \in Y\):
\[
\frac{1}{|Y|} \int_{Y_i} \left(\frac{\varepsilon}{\varepsilon_y} \left(\frac{x}{\varepsilon} \right) + \varepsilon y \right) \, dy = \frac{1}{|Y|} \int_{Y_i} \left(\frac{\varepsilon}{\varepsilon} \left(\frac{x}{\varepsilon} \right) + \varepsilon y \right) \, dy = T_e^{-1} \tilde{u}(x)
\]
and the fact that \(T_e^{-1} \tilde{u} = \frac{|Y|}{|Y|}(T_e u)_{Y_i}\) as a consequence of the definition (19a) if \(\varphi(x, y) \equiv \tilde{u}(x)\) for all \(\varphi(x, y) \in L^2(\Omega; H^1(Y_i))\). The proof of the other properties can be found in other studies.\(\blacksquare\)

5 | ASYMPTOTIC ANALYSIS

In this section, we collect some auxiliary tools used later in the derivation of the residual error estimates.

Lemma 2 (Poincaré inequality in periodic domains). For \(u(x) \in H^1(\Omega_i)\), the following Poincaré inequality holds (see, eg, Cioranescu et al\(^{42,43}\)):
\[
\| u - (T_e u)_{Y_i} \|_{L^2(\Omega_i)}^2 \leq \varepsilon^2 K_p \| \nabla u \|_{L^2(\Omega_i)}^2, \quad K_p > 0.
\]
(22)

Proof. We recall the Poincaré inequality for a function \(\varphi(y) \in H^1(Y_i)\) in the unit cell with connected subsets \(Y_i\) for \(i = 1, 2:\)
\[
\int_{Y_i} (\varphi - \langle \varphi \rangle_{Y_i})^2 \, dy \leq K_p \int_{Y_i} |\nabla_y \varphi|^2 \, dy, \quad \langle \varphi \rangle_{Y_i} := \frac{1}{|Y_i|} \int_{Y_i} \varphi(y) \, dy.
\]
(23)
Integrating (23) over \(\Omega\) yields
\[
\int_{\Omega \times Y_i} |\varphi - \langle \varphi \rangle_{Y_i}|^2 \, dx \, dy \leq K_p \int_{\Omega \times Y_i} |\nabla_y \varphi|^2 \, dx \, dy
\]
for all \(\varphi \in L^2(\Omega; H^1(Y_i))\). Choosing \(\varphi = T_e u\) gives
\[
\frac{1}{|Y|} \int_{\Omega \times Y_i} |T_e u - (T_e u)_{Y_i}|^2 \, dx \, dy \leq \frac{K_p}{|Y|} \int_{\Omega \times Y_i} |\nabla_y (T_e u)|^2 \, dx \, dy
\]
\[
= K_p \varepsilon^2 \| u \|_{L^2(\Omega_i)}^2.
\]
For the left-hand side, we use the composition rule (iii) as well as \(T_e (T_e u)_{Y_i} = (T_e u)_{Y_i}\). For all \((x, y) \in \Omega \times Y_i\), we have
\[
(T_e (T_e u)_{Y_i} \, (x, y) = \left(T_e \left(\left(x, y \right) \mapsto \frac{1}{|Y_i|} \int_{Y_i} u \left(\frac{x}{\varepsilon} \right) + \frac{\varepsilon y}{\varepsilon} \, dz \right) \right) (x, y)
\]
\[
= \frac{1}{|Y_i|} \int_{Y_i} u \left(\frac{x}{\varepsilon} \right) + \frac{\varepsilon y}{\varepsilon} \, dz = \frac{1}{|Y_i|} \int_{Y_i} u \left(\frac{x}{\varepsilon} \right) + \varepsilon y \, dz = (T_e u)_{Y_i}(x),
\]
while noting that \(\frac{|y|}{|x|} \sim \frac{x}{y} \) for all \(y \in (0, 1)^d \). This shows, in particular, that \(y \mapsto (T_x(T_y u)_Y)(x, y) \) is constant for a.e. \(x \in \Omega \).

We recall the trace theorem in unit cells for a function \(\varphi \in L^2(\Omega; H^1(\Omega)) \):

\[
\|\varphi\|_{L^2(\partial\Omega_\varepsilon)} \leq K_{\varepsilon} (\|\varphi\|_{L^2(\Omega)}^2 + \|\nabla \varphi\|_{L^2(\partial\Omega_\varepsilon)}^2) = K_{\varepsilon} \|\varphi\|_{H^1(\Omega)}^2,
\]

with \(K_{\varepsilon} > 0 \). After the substitution of \(\varphi = T_x u \) for the function \(u(x) \in H^1(\Omega_\varepsilon) \), there follows (see, e.g., Monsurro44):

\[
\|u\|_{L^2(\partial\Omega_\varepsilon)} \leq K_{\varepsilon} \left(\frac{1}{\varepsilon} \|u\|_{L^2(\Omega)}^2 + \|\nabla u\|_{L^2(\partial\Omega_\varepsilon)}^2 \right).
\]

In particular, repeating the arguments in the proof of Lemma 2, the trace inequality in periodic domains can be shown:

\[
\|u - (T_x u)_{\partial\Omega_\varepsilon}\|_{L^2(\partial\Omega_\varepsilon)} \leq \varepsilon K_{\varepsilon}(1 + K_{\varepsilon}) \|\nabla u\|_{L^2(\partial\Omega_\varepsilon)}^2.
\]

Lemma 3 (Uniform extension in connected periodic domains). For \(u(x) \in H^1(\Omega_\varepsilon) \), there exists a continuous extension \(\tilde{u} \in H^1(\Omega) \) from the connected set \(\Omega_\varepsilon \) to \(\Omega \) such that \(\tilde{u} = u \) in \(\Omega_\varepsilon \) and

\[
\|\tilde{u}\|_{L^2(\Omega)} \leq K_{\varepsilon} \|u\|_{L^2(\Omega_\varepsilon)}, \quad \|\nabla \tilde{u}\|_{L^2(\Omega)} \leq K_{\varepsilon} \|\nabla u\|_{L^2(\Omega_\varepsilon)}^2, \quad K_{\varepsilon} > 0.
\]

If \(u = 0 \) on \(\partial\Omega_\varepsilon \cap \partial\Omega \), then \(\tilde{u} \in H^1(\Omega) \) exists satisfying (27).

Proof. Indeed, the assertion holds in accordance with previous studies,3,4,45, chapter 4 and the zero trace at the boundary \(\partial\Omega \) is argued in Höpfker,46, theorem 3.5

Below, we recall the auxiliary result from Fellner and Kovtunenko20, lemma 2 and Kovtunenko and Zubkova.21, lemma 4.1

Lemma 4 (Asymptotic restriction from \(\Omega \) to \(\Omega_\varepsilon \)). For given functions \(u, v \in H^1(\Omega) \) (which have no jumps across the interface \(\Gamma \)), the asymptotic estimate

\[
\left| \int_{\Omega_\varepsilon} uv \, dx - \frac{|Y_i|}{|Y|} \int_{\Omega} uv \, dx \right| \leq \varepsilon K_{\varepsilon} \|u\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)}, \quad K_{\varepsilon} > 0,
\]

holds as \(\varepsilon \to 0 \) for \(i = 1, 2 \).

Based on the geometric assumptions (D1) to (D4), we define the space of periodic functions in the cells \(Y_i \) by

\[
H^1_\#(Y_i) := \{ \varphi \in H^1(Y_i) : \varphi(y)|_{y_0 = 0} = \varphi(y)|_{y_1 = 1}, \ j = 1, \ldots, d, \ \text{for} \ \ y \in \partial Y_i \cap \partial Y \}.
\]

We set the standard cell problem determining \(N_i = (N_i, \ldots, N_i^d)(y) \), \(i = 1, 2 \), from

\[
\begin{align*}
\text{div}_y (A_i(\partial_y N_i + I)) &= 0 \quad \text{in} \ Y_i, \quad (30a) \\
A_i(\partial_y N_i + I)n_i &= 0 \quad \text{on} \ \Gamma, \quad (30b) \\
(\partial_y N_i + I)A_i|_{y_j = 0} &= (\partial_y N_i + I)A_i|_{y_j = 1}, \quad N_i|_{y_j = 0} = N_i|_{y_j = 1} \quad \text{for} \ k = 1, \ldots, d, \quad (30c)
\end{align*}
\]

where the last line in (30c) implies that \(N_i^k \in H^1_\#(Y_i) \) for \(i = 1, 2 \) and \(k = 1, \ldots, d \). In (30), the notation \(\partial_y N_i(y) \in \mathbb{R}^{d \times d} \) for \(y \in Y_i \) stands for the matrix of derivatives with entries \((\partial_y N_i(y))_{kl} = \frac{\partial N_i^k}{\partial y_l}, \ k, l = 1, \ldots, d \), and \(I \in \mathbb{R}^{d \times d} \) denotes the identity matrix. The system (30) admits the weak formulation: find vector-functions \(N_i \in H^1_\#(Y_i)^d \) such that

\[
\int_{Y_i} A_i(\partial_y N_i + I)\nabla \varphi \, dy = 0, \quad (31)
\]
for all test functions $\varphi \in H^1_0(Y_i)$. A solution of (31) exists, and it is defined up to a constant in Y_i.

Based on the solution N^i of the cell problem (31), the diffusivity matrices A_i admit the following asymptotic representation formulated in the lemma below; see Fellner and Kovtunenko\cite{20} and Kovtunenko and Zubkova.\cite{21}

Lemma 5 (Asymptotic formula for periodic diffusivity matrices).

(i) For the solution N^i of the cell problem (31), the following representation holds:

$$A_i(y)(\partial_y N^i(y) + I) = A_0^i + B_i(y),$$

with $A_0^i \in \mathbb{R}^{d \times d}$ given by the averaging

$$A_0^i := \langle A_i(\partial_y N^i + I) \rangle_{Y_i},$$

and it is a symmetric d-by-d matrix:

There exists $a_0 \geq 0$ such that $\xi^T A_0^i \xi \geq a_0 |\xi|^2$ for $\xi \in \mathbb{R}^d$.

(ii) Assume that $N^i \in W^{1,\infty}(Y_i)^d$. For varying function $v_i \in V_i$ and fixed $u_0^i \in L^2(0, T; H^3(\Omega))$, the following integral form corresponding to the averaged equation (50):

$$I_{A_0^i} := \int_{\Omega} A_0^i \nabla u_0^i \cdot \nabla v_i \, dx - \int_{\Gamma} A_0^i \nabla u_0^i \cdot n_i v_i \, d\sigma_x$$

with the help of the corrector $u_1^i := u_0^i + \epsilon (T_i^{-1} N^i) \cdot \nabla u_0^i$ is approximated as follows:

$$\text{Err}_0(v_i, \epsilon) := \int_0^T \left(I_{A_0^i} - \int_{\Omega} A_1^i \nabla u_1^i \cdot \nabla v_i \, dx \right) \, dt,$$

$$|\text{Err}_0(v_i, \epsilon)| \leq \epsilon K \|[A_i]\|_{L^\infty(Y_i)} \left(||N_i^i||_{L^\infty(Y_i)^d} + ||\partial_y N^i||_{L^\infty(Y_i)^{d \times d}} + 1 \right) \|u_0^i\|_{L^2(0,T;H^4(\Omega_i^i))} \|v_i\|_{L^2(0,T;H^4(\Omega_i^i))}, \quad K > 0.$$
Proof.

(i) For the vector-valued solution $v_i \in V_i$ and $u_i^0 \in L^2(0, T; H^1(\Omega))$ be given. To prove (37), we rewrite $I_{A_i^0}$ in (36) in virtue of the integration rules from Lemma 1 in the microvariable y:

$$ I_{A_i^0} = \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} (T_i A_i^0) \nabla_y (T_i u_i^0) \cdot \nabla_y (T_i v_i) \, dx \, dy - \int_{\Gamma} (T_i A_i^0) \nabla_y (T_i u_i^0) \cdot n_i(T_i v_i) \, dx \, d\sigma_y. $$ (38)

For the constant matrix, the identity $A_i^0 = T_i A_i^0$ holds. Then, expressing A_i^0 from (32), using the product rule

$$ \partial_i N^i \nabla_y (T_i u_i^0) = \nabla_y (N^i \cdot \nabla_y (T_i u_i^0)) - \partial_i (N^i \nabla_y (T_i u_i^0)) N^i, $$

the chain rule $\epsilon T_i (\nabla u_i^0) = \nabla_y (T_i u_i^0)$, and the notation of the corrector $u_i^1 := u_i^0 + \epsilon (T_i^{-1} N^i) \cdot \nabla u_i^0$, we rearrange the following terms:

$$(T_i A_i^0) \nabla_y (T_i u_i^0) = (A_i + A_i (\partial_i N^i) - B_i) \nabla_y (T_i u_i^0) = A_i \nabla_y (T_i u_i^1) - A_i \partial_i (\nabla_y (T_i u_i^0)) N^i - B_i \nabla_y (T_i u_i^0). $$

Taking into account this formula, $I_{A_i^0}$ is performed equivalently by

$$ I_{A_i^0} = \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \left[A_i \nabla_y (T_i u_i^1) \cdot \nabla_y (T_i v_i) - A_i \partial_i (\nabla_y (T_i u_i^0)) N^i \cdot \nabla_y (T_i v_i) \right] \, dx \, dy $$

$$ - \int_{\Gamma} A_i^0 \nabla_y (T_i u_i^0) \cdot n_i(T_i v_i) \, dx \, d\sigma_y + I_B, $$ (39)

with the integral I_B is written component-wisely as follows:

$$ I_B := - \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} B_i \nabla_y (T_i u_i^0) \cdot \nabla_y (T_i v_i) \, dx \, dy - \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \sum_{k,l,m=1}^d b_{k,l,m}^{(i)} (T_i u_i^0)_{,k} (T_i v_i)_{,l} \, dx \, dy. $$

Recalling the definition of B_i and the fact that it is divergence-free, the term I_B is integrated by parts as follows:

$$ I_B = \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \sum_{k,l,m=1}^d b_{k,l,m}^{(i)} (T_i u_i^0)_{,k} (T_i v_i) \, dx \, dy - \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} B_i \nabla_y (T_i u_i^0) \cdot n_i(T_i v_i) \, dx \, d\sigma_y. $$ (40)

After substitution of (40) in (39), the integral over Γ disappears due to the interface condition (35). The integral over $\partial \Omega_i \setminus \Gamma$ vanishes after rewriting the integral again in macrovariables because of $v_i = 0$ on $\partial \Omega_i \cap \partial \Omega$ and because jumps across the cell boundary of v_i and ∇u_i^0 are zero (by assumed H^2-, hence, C^1-smoothness of u_i^0), while B_i is periodic.

The integral over $\Omega \times Y_i$ in (40) can be rewritten using the zero average $\langle B_i \rangle_{Y_i} = 0$ as follows:

$$ \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \sum_{k,l,m=1}^d b_{k,l,m}^{(i)} (T_i u_i^0)_{,k} (T_i v_i) \, dx \, dy = I_1^1 + I_2^1, $$

where

$$ I_1^1 := \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \sum_{k,l,m=1}^d b_{k,l,m}^{(i)} (T_i u_i^0)_{,k} (T_i v_i - \langle T_i v_i \rangle_{Y_i}) \, dx \, dy, $$

$$ I_2^1 := \frac{1}{\epsilon^2 |Y|} \int_{\Omega \times Y_i} \langle T_i v_i \rangle_{Y_i} \sum_{k,l,m=1}^d b_{k,l,m}^{(i)} [(T_i u_i^0)_{,k} - \langle (T_i u_i^0)_{,k} \rangle_{Y_i}] \, dx \, dy. $$
We rewrite I_1^i and I_2^i in the macrovariable x in all local cells using the integration rules (20) and (21) and then apply to the result the Cauchy-Schwarz inequality and the Poincaré inequality (23).

Below, the indices k, l, m will refer to both x as well as y coordinates. We are starting from

$$I_1^i = \frac{1}{\varepsilon^2 |Y|} \int_{y \times Y} \sum_{k,l,m=1}^{d} T_x (T_x^{-1} b_{klm}^{(i)}) (T_x u_{l}^{0})(y) T_x (y) \, dx \, dy = \int_{y \times Y} \sum_{k,l,m=1}^{d} \varepsilon (T_x^{-1} b_{klm}^{(i)}) (y) u_{l}^{0}(y) \, dx \, dy,$$

where it is for all $x \in \Omega_x$:

$$\langle T_x v_i \rangle_y (y) = \frac{1}{|Y|} \int_{y} v_i (x, y) \, dx = \frac{1}{|\varepsilon \lambda + Y_i|} \int_{y} v_i (z) \, dz = \langle v_i \rangle_y (x)$$

with $\lambda = [\frac{x}{\varepsilon}]$. First, there are some constants $0 < K_1 \leq K_2$ such that

$$|I_1^i| \leq K_1 ||B||_{L^{\infty}(\Omega \times Y)} ||u_0^0||_{L^\infty(\Omega \times Y)} \|\nabla v_i\|_{L^2(\Omega \times Y)} \|v_i\|_{L^2(\Omega \times Y)} \leq K_2 (||A_i||_{L^\infty(\Omega \times Y)} ||\nabla N^i||_{L^\infty(\Omega \times Y)} + 1) ||u_0^0||_{H^1(\Omega \times Y)} \|\nabla v_i\|_{L^2(\Omega \times Y)}.$$

Similarly, there exists $K_3 > 0$ such that

$$|I_2^i| \leq K_3 (||A_i||_{L^\infty(\Omega \times Y)} ||\nabla N^i||_{L^\infty(\Omega \times Y)} + 1) \sum_{k,l=1}^{d} \varepsilon \|\nabla (u_{l}^{0})\|_{L^2(\Omega \times Y)} \|v_i\|_{L^2(\Omega \times Y)}.$$

We substitute in (39) the expression of I_1^i from (40) and use (35), such that

$$I_1^i = \frac{1}{\varepsilon^2 |Y|} \int_{y \times Y} A_i \nabla_j (T_x u_{l}^{0}) \cdot \nabla_j (T_x v_i) \, dx \, dy = \frac{1}{\varepsilon^2 |Y|} \int_{y \times Y} A_i \partial_j (\nabla_j (T_x u_{l}^{0})) \partial_j (T_x v_i) \, dx \, dy + I_1^i + I_2^i.$$

Rewriting the integrals in microvariables with the help of the integration rules (20) and (21), the following estimate takes place with $K_4 > 0$:

$$I_1^i = \int_{\Omega} A_i ^{0} \nabla u_i ^{0} \cdot \nabla v_i \, dx \leq |I_1^i| + |I_2^i| + \varepsilon K_4 ||A_i||_{L^\infty(\Omega \times Y)} ||\nabla N^i||_{L^\infty(\Omega \times Y)} ||u_{l}^{0}||_{H^1(\Omega \times Y)} \|\nabla v_i\|_{L^2(\Omega \times Y)}.$$

Using the estimates (41) and (42), from (44) after integration over time, it follows (37) that proves the assertion of Lemma 5.

With these preliminaries, in the next section, we homogenize the nonlinear transmission problem (8) as $\varepsilon \to 0$.

6 | THE MAIN HOMOGENIZATION RESULT

We state the averaged bidomain diffusion problem determining the functions $u_i^0(t, x)$, $i = 1, 2$, in the time-space domain $(0, T) \times \Omega$ from

$$\partial_t u_i^0 - \text{div}(A_i ^{0} \nabla u_i ^0) = \frac{|\Gamma|}{|Y|} g_i(u_1^0, u_2^0) \quad \text{in} \quad \Omega,$$

$$u_i^0 = 0 \quad \text{on} \quad \partial \Omega,$$

$$u_i^0 = u_i^{0\text{in}} \quad \text{as} \quad t = 0,$$

where the effective matrices $A_i ^{0}$ are defined in (33). It implies the variational formulation: find $u_i^0 \in U^0$ in the space

$$U^0 = \{u \in L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)) : \partial_t u \in L^2(0, T; H^1(\Omega)^*) \text{, } u = 0 \text{ on } \partial \Omega\}.$$
such that it satisfies the initial condition \((45c)\) and the following nonlinear equation:

\[
\int_0^T \left(\langle \partial_t u^0_i, v \rangle_\Omega + \int_\Omega \left(A^0_i \nabla u^0_i \cdot \nabla v - \frac{|\Gamma|}{|Y_i|} g_i(u^0_1, u^0_2)v \right) \, dx \right) \, dt = 0. \tag{46}
\]

for all test functions \(v \in \mathcal{V}^0 := L^2(0, T; H^1_0(\Omega)).\) In \((46)\), the notation \(\langle \cdot, \cdot \rangle_\Omega\) implies the duality between \(H^1(\Omega)\) and its topologically dual space \(H^1(\Omega)^*\).

The solvability of \((46)\) can be obtained in the same way as for \((8)\) due to the uniform boundedness \((6)\) and the continuity \((7)\) of the nonlinear term \(g_i\). Moreover, the a priori estimate like \((9)\) holds (for \(i = 1, 2\)):

\[
\|u^0_i\|_{L^\infty}^2 \leq C_1 \|u^n_i\|^2_{L^2(\Omega)} + C_2 K^2 + C_3.
\]

In Theorem 2, we need smoothness of the macroscopic solution and the uniform boundedness of \(N^d\) and of its gradient in order to prove the residual error estimate, which is a standard assumption for cell problems; see, ie, Zhikov et al., section 5.6, theorem 5.10. These assumptions might be weekend just to get a two-scale convergence to the homogenized problem.

Theorem 2 (Residual error estimate). Let the cell problem \((31)\) obey the Lipschitz continuous solution \(N^d \in W^{1,\infty}(Y_i)\), and the macroscopic solution be such that \(u^0_i \in L^2(0, T; H^1(\Omega)) \cap L^\infty(0, T; H^1(\Omega))\), \(\partial_t (\nabla u^0_i) \in L^2(0, T; L^2(\Omega_i)^d)\), \(i = 1, 2\). Then the solution \(u^i_\epsilon\) of the inhomogeneous problem \((8)\) and the first-order corrector to the solution \(u^0_i\) of the averaged problem \((46)\) given by

\[
u^i_\epsilon = u^0_i + \epsilon (T^{-1} N^d_i) \cdot \nabla u^0_i \quad \text{in} \quad \Omega,
\]

where \(N^d_i \in W^{1,\infty}(Y)\) is a periodic extension of \(N^d\) to \(Y\), satisfy the residual error estimate:

\[
\|u^\epsilon_i - u^i_\epsilon\|^2_{L^2(\Omega)} \leq Err_{12}(\epsilon) = O(\epsilon),
\]

where \(Err_{12}\) is determined in \((66)\).

Proof. We start with derivation of an asymptotic equation for the difference \(u^\epsilon_i - u^i_\epsilon\) (see \((51)\)). Multiplying the diffusion equation \((45a)\) with a test function \(v_i \in \mathcal{V}^i_\epsilon\), integrating it over \((0, T) \times \Omega_i^\epsilon\), it follows the variational equation in two subdomains for \(i = 1, 2\):

\[
\int_0^T \left(\langle \partial_t u^0_i, v_i \rangle_{\Omega_i^\epsilon} - \int_{\Omega_i^\epsilon} \left(\text{div}(A^0_i \nabla u^0_i) + \frac{|\Gamma|}{|Y_i|} g_i(u^0_1, u^0_2) \right) v_i \, dx \right) \, dt = 0. \tag{49}
\]

The integration by parts in \((49)\) due to the Dirichlet condition \((45b)\) leads to

\[
\int_0^T \left(\langle \partial_t u^0_i, v_i \rangle_{\Omega_i^\epsilon} + \int_{\Omega_i^\epsilon} A^0_i \nabla u^0_i \cdot \nabla v_i \, dx - \int_{\Gamma^\epsilon} A^0_i \nabla u^0_i \cdot n_i v_i \, d\sigma_x \right) \, dt = \int_0^T \int_{\Omega_i^\epsilon} \frac{|\Gamma|}{|Y_i|} g_i(u^0_1, u^0_2) v_i \, dx \, dt. \tag{50}
\]

We choose \(v \in \mathcal{V}^0\) and \(v_i \in \mathcal{V}^i_\epsilon\). With a special choice of \(v_i\), it can be equal to \(v\). For test functions \(v_i = v \in \mathcal{V}^0 \subset \mathcal{V}^i_\epsilon\), \(i = 1, 2\), we subtract \((50)\) from the inhomogeneous equation \((8)\):

\[
\int_0^T \left(\langle \partial_t (u^\epsilon_i - u^0_i), v \rangle_{\Omega_i^\epsilon} + \int_{\Omega_i^\epsilon} (A^\epsilon_i \nabla u^\epsilon_i - A^0_i \nabla u^0_i) \cdot \nabla v \, dx + \int_{\Gamma^\epsilon} A^0_i \nabla u^0_i \cdot n_i v \, d\sigma_x \right) \, dt = \int_0^T \left(\int_{\Gamma^\epsilon} \epsilon g_i(u^\epsilon_1, u^\epsilon_2) v \, d\sigma_x - \int_{\Omega_i^\epsilon} \frac{|\Gamma|}{|Y_i|} g_i(u^0_1, u^0_2) v \, dx \right) \, dt
\]
and gather the terms as follows:

$$
\int_0^T \left(\langle \partial_t (u_1^i - u_1^0), v \rangle_{\Omega'} + \int_{\Omega'} A_i^1 \nabla(u_1^i - u_1^0) \cdot \nabla v \right) \ dt - I_i(v) = \sum_{k=0}^{3} \text{Err}_k(v, \epsilon),
$$

where the following notation was used

$$
I_i(v) := \int_0^T \left(\int_{\Omega'} \epsilon g_i(u_1^i, u_2^i) v \ d\sigma_x - \frac{|\Gamma|}{|Y|} \int_{\Omega} g_i(u_1^i, u_2^i) v \ dx \right) \ dt.
$$

Err$_0$ is given by the formula (37) from Lemma 5, and other residual error functions Err$_k$, $k = 1, 2, 3$, in the right-hand side of (51) will be introduced and estimated next.

We use the Cauchy-Schwarz inequality and the expansion of the time-derivative of the corrector $\partial_t u_1^i = \partial_t [u_1^0 + \epsilon (T_x^{-1} N^i) \cdot \nabla u_1^0]$ implying that

$$
\text{Err}_1(v, \epsilon) := -\int_0^T \langle \partial_t (u_1^i - u_1^0), v \rangle_{\Omega'} \ dt,
$$

$$
|\text{Err}_1(v, \epsilon)| \leq \|\partial_t u_1^i - \partial_t u_1^0\|_{L^2(0,T;H^1(\Omega'))} \|v\|_{L^2(0,T;H^1(\Omega'))} \leq \epsilon \|N^i\|_{L^2(0,T;H^1(\Omega'))},
$$

Applying to $g_i(u_1^0, u_2^0)v$ the restriction operator from Lemma 4, then using the boundedness (6) and the Lipschitz continuity (7) for g_i leads to

$$
\text{Err}_2(v, \epsilon) := -\int_0^T \left(\frac{|\Gamma|}{|Y|} \int_{\Omega'} g_i(u_1^0, u_2^0) v \ dx - \frac{|\Gamma|}{|Y|} \int_{\Omega} g_i(u_1^0, u_2^0) v \ dx \right) \ dt
$$

$$
|\text{Err}_2(v, \epsilon)| \leq \epsilon K_6 \|v\|_{L^2(0,T;H^1(\Omega))},
$$

and the further error function (with $K_7 = |\Gamma|/|\Omega|$)

$$
\text{Err}_3(v, \epsilon) := \frac{|\Gamma|}{|Y|} \int_0^T \int_{\Omega'} (g_i(u_1^i, u_2^i) - g_i(u_1^0, u_2^0)) v \ dx \ dt,
$$

$$
|\text{Err}_3(v, \epsilon)| \leq \frac{|\Gamma| L_G^2}{|Y| \sum_{j=1}^2} \|u_j - u_0\|_{L^2(0,T;L^2(\Omega))} \|v\|_{L^2(0,T;L^2(\Omega))} \leq \epsilon K_7 \sum_{j=1}^2 \|N^j\|_{L^2(\Omega)} \|\nabla u_j^0\|_{L^2(0,T;L^2(\Omega))} \|v\|_{L^2(0,T;L^2(\Omega))}.
$$

In the following, we aim at substitution of v by piecewise constant average $\langle T_x v \rangle(x) := \langle T_x v \rangle_{\Omega_j}$ for $x \in \Omega_j, j = 1, 2$. For this task, we decompose I_i in (52) as follows:

$$
I_i(v) = J_i(\langle T_x v \rangle) + \text{Err}_4(v, \epsilon),
$$

with the terms defined as

$$
J_i(\langle T_x v \rangle) := \frac{1}{|Y|} \int_0^T \int_{\Omega_x} (g_i(T_x u_1^0, T_x u_2^0) - g_i(u_1^0, u_2^0)) \langle T_x v \rangle \ dx \ d\sigma_y \ dt,
$$

$$
\text{Err}_4(v, \epsilon) := \int_0^T \left(\int_{\Omega_x} \epsilon g_i(u_1^0, u_2^0) v \ d\sigma_x - \frac{1}{|Y|} \int_{\Omega_x} g_i(T_x u_1^0, T_x u_2^0) \langle T_x v \rangle \ dx \ d\sigma_y \right) \ dt
$$

$$
- \frac{|\Gamma|}{|Y|} \int_{\Omega} g_i(u_1^0, u_2^0) \langle T_x v \rangle \ dx \ d\sigma_y.
$$

We apply the integration rule (20b) to the first term of Err$_4$ and rewrite the third term using $|\Gamma| = \int_{\Omega} d\sigma_y$. Based on the boundedness (6) of g_i, from the Cauchy-Schwarz inequality, it follows the error estimate
\begin{equation}
|\text{Err}_4(v, \epsilon)| = \frac{1}{|Y|} \left| \int_0^T \int_{\Omega \times \Gamma} g_i(T_s u'_j, T_s u'_j) (T_s v - \langle T_s v \rangle) \, dx \, ds \, dt - \int_0^T \int_{\Omega \times \Gamma} g_i(u'_j, u'_j) (v - \langle T_s v \rangle) \, dx \, ds \, dt \right|
\leq \|g_i(u'_j, u'_j)\|_{L^2(\Omega \times \Gamma)} \frac{1}{|Y|} \|T_s v - \langle T_s v \rangle\|_{L^2(\Omega \times \Gamma)}
+ \frac{1}{|Y|} \|g_i(u'_j, u'_j)\|_{L^2(\Omega \times \Gamma)} \|v - \langle T_s v \rangle\|_{L^2(\Omega \times \Gamma)}
\leq \epsilon K_8 K_9 \|\nabla v\|_{L^2(\Omega \times \Gamma)}^2.
\end{equation}

where $K_8 = \sqrt{\frac{T}{|\Gamma|}} K_9 (1 + K_9) + \frac{|\Gamma|}{|Y|} \sqrt{T} |\Omega| K_9$. Here, we have used the Poincaré inequality (22), following the trace inequality in periodic domains (26) such that

\[\int_{\Omega \times \Gamma} (T_s v - \langle T_s v \rangle)^2 \, dx \, ds \leq \sum_{j=1}^2 \int_{\Omega \times \Gamma} (T_s v - \langle T_s v \rangle_{Y_j})^2 \, dx \, ds \]

\[\leq \sum_{j=1}^2 K_{9+} \int_{\Omega \times \Gamma} (T_s v - \langle T_s v \rangle_{Y_j})^2 + |\nabla_j (T_s v)|^2 \, dx \, ds \]

\[\leq K_{9+} (1 + K_9) \sum_{j=1}^2 \int_{\Omega \times \Gamma} |\nabla_j (T_s v)|^2 \, dx \, ds \leq \epsilon |Y| K_{9+} (1 + K_9) \int_{\Omega} |\nabla v|^2 \, dx. \]

Applying Young inequality to J_i implies that

\[|J_i(\langle T_s v \rangle) | \leq \frac{1}{|Y|} \int_0^T \int_{\Omega \times \Gamma} \left(\frac{1}{2} \|g_i(T_s u'_j, T_s u'_j) - g_i(u'_j, u'_j)\|^2 + \frac{1}{2} |T_s v|^2 \right) \, dx \, ds \, dt. \]

Due to the Lipschitz continuity (7) of g_i, using the mean inequality

\[|T_s u'_j - u'_j|^2 \leq 2 |T_s (u'_j - u'_j)|^2 + 2 |T_s u'_j - u'_j|^2, \]

application of the integration rule (21c) and the trace inequality (25) proceeds further

\[|J_i(\langle T_s v \rangle) | \leq \frac{1}{|Y|} \int_0^T \int_{\Omega \times \Gamma} \left(\frac{2 |\text{Err}_3(v, \epsilon)|^2}{|Y|} \right) \, dx \, ds \, dt + \frac{|\Gamma|}{2} \sum_{j=1}^2 \int_{\Omega \times \Gamma} |\nabla_j (T_s v)|^2 \, dx \, ds + \text{Err}_3(v, \epsilon).
\]

\[\leq 2 K_9 |\text{Err}_3(v, \epsilon)|^2 + \epsilon^2 \|\nabla (u'_j - u'_j)\|_{L^2(\Omega \times \Gamma)}^2 + \frac{|\Gamma|}{2} \sum_{j=1}^2 \frac{1}{|Y_j|^2} \|v\|_{L^2(\Omega \times \Gamma)}^2 + \text{Err}_3(v, \epsilon), \]

because of (see Cioranescu et al.\(^{43}\), proposition 2.17)

\[\|\langle T_s v \rangle\|_{L^2(\Omega)} = \frac{|Y|}{|Y_j|} \|T_s^{-1} v\|_{L^2(\Omega)} \leq \sqrt{|Y|} \|v\|_{L^2(\Omega)}, \]

where

\[\text{Err}_3(v, \epsilon) := \frac{2 |\text{Err}_3(v, \epsilon)|^2}{|Y|} \sum_{j=1}^2 \int_0^T \int_{\Omega \times \Gamma} |T_s u'_j - u'_j|^2 \, dx \, ds \, dt. \]
First, we estimate Err_5 in (57). Since $u_1^1 \in H^1(\Omega)$, according to Griso, formula (3.4) the auxiliary estimate for the term in Err_5 holds:

$$\|T_\epsilon u_1^1 - u_1^1\|_{L^2(\Omega \times Y_j)}^2 \leq \epsilon^2 K_c \|\nabla u_1^1\|_{L^2(\Omega)}^2, \quad K_c > 0.$$

Therefore, from the trace theorem (24) in $\Omega \times Y_j$ and (21b), we have

$$\frac{1}{|Y|} \|T_\epsilon u_1^1 - u_1^1\|_{L^2(\Omega \times Y_j)}^2 \leq K_{tr} \left(\|T_\epsilon u_1^1 - u_1^1\|_{L^2(\Omega \times Y_j)}^2 + \|\nabla_j(T_\epsilon u_1^1)\|_{L^2(\Omega \times Y_j')}^2 \right) \epsilon^2 K_u \|\nabla u_1^1\|_{L^2(\Omega)}^2, \quad K_u := K_{tr} \left(\frac{K_c}{|Y|} + 1 \right),$$

and the term $\text{Err}_5(v, \epsilon)$ is estimated by

$$0 \leq \text{Err}_5(v, \epsilon) \leq 2 \epsilon^2 L_2 \sum_{j=1}^2 \|\nabla u_1^1\|_{L^2(0,T;L^2(\Omega))}^2.$$

(58)

Let $\eta_\Omega(x)$ be a smooth cutoff function with a compact support in Ω and equals one outside an ϵ-neighborhood of the boundary $\partial \Omega$ such that $|\eta_\Omega| \leq 1$ and $\epsilon |\nabla \eta_\Omega| \leq C_\eta$. For further use, we employ the following functions $w_i \in V^0 \subset V_i$ expressed equivalently in two ways as

$$w_i := u_1^i - u_1^0 - \epsilon (T_\epsilon^{-1} \tilde{N}) \cdot \nabla u_1^0 \eta_\Omega = \tilde{u}_i^\epsilon - u_1^1 + \epsilon (T_\epsilon^{-1} \tilde{N}) \cdot \nabla u_1^0 (1 - \eta_\Omega),$$

(59)

where $\tilde{u}_i^\epsilon \in H^1_0(\Omega)$ is the uniform extension of $u_1^i \in U^\infty_i$ according to Lemma 3.

We will derive the estimates for $\tilde{u}_i^\epsilon - u_1^1$ with the help of substitution of the test function $v = w_i$ from (59) into the expressions for $\text{Err}_k(v, \epsilon)$, $k = 0, 1, \ldots, 5$. This implies the following structure of the bounds:

$$|\text{Err}_k(w_i, \epsilon)| \leq \epsilon \alpha_k U_k,$$

(60)

where the terms are defined by means of

$$\alpha_0 := K \|A_\epsilon\|_{L^\infty(Y)} (\|N_i\|_{W^{1,\infty}(Y)} + 1), \quad U_0 := \|u_1^0\|_{L^2(0,T;H^1(Y))} \|w_i\|_{L^2(0,T;H^1(Y))},$$

$$\alpha_1 := \|N_i\|_{L^\infty(Y)}, \quad U_1 := \|\partial_t(\nabla u_1^0)\|_{L^2(0,T;H^1(Y))} \|w_i\|_{L^2(0,T;H^1(Y))},$$

$$\alpha_2 := K \tilde{K}_G, \quad U_2 := \|w_i\|_{L^2(0,T;H^1(\Omega))},$$

$$\alpha_3 := K \sum_{j=1}^2 \|\tilde{N}_j\|_{L^\infty(Y)}, \quad U_3 := \sum_{j=1}^2 \|\nabla u_1^0\|_{L^2(0,T;L^2(\Omega))} \|w_j\|_{L^2(0,T;L^2(\Omega))},$$

$$\alpha_4 := 2 \epsilon L_2 K_u, \quad U_4 := \|w_i\|_{L^2(0,T;L^2(\Omega))},$$

$$\alpha_5 := K \sum_{j=1}^2 \|\nabla u_1^0\|_{L^2(0,T;L^2(\Omega))}^2, \quad U_5 := \sum_{j=1}^2 \|\nabla u_1^0\|_{L^2(0,T;L^2(\Omega))}^2.$$

According to the uniform estimate (9) in Theorem 1 and the continuous extension (27), we have

$$\|w_i\|_{L^2(0,T;H^1(\Omega))}^2 \leq 3 K_c^2 \|u_1^i\|_{L^2(0,T;H^1(Y))}^2 + 3 \|u_1^0\|_{L^2(0,T;H^1(\Omega))}^2 + 3 \epsilon \|\tilde{N}_j\|_{L^\infty(Y)} \|\nabla u_1^0\|_{L^2(0,T;H^1(\Omega))}^2 = O(1)$$

(61)

following that all $\alpha_k = O(1)$ and $U_k = O(1)$ for $k = 0, 1, \ldots, 5$.

The asymptotic equation (51) tested with the function $v = w_i$ from (59) leads to

$$\frac{1}{2} \frac{d}{dt} \int_0^T \int_{\Omega_i} \left(u_1^i - u_1^1 \right)^2 \, dx \, dt + \int_0^T \int_{\Omega_i} A_\epsilon \nabla (u_1^i - u_1^1) \cdot \nabla (u_1^i - u_1^1) \, dx \, dt$$

$$= J_i(\langle T_\epsilon \omega_i \rangle) + \sum_{k=0}^4 \text{Err}_k(w_i, \epsilon) + \text{Err}_6(\epsilon) + M(u_1^i - u_1^1)$$

(62)
with the following two terms:

\[\text{Err}_6(\epsilon) := - \int_0^T \langle \delta_i(u'_i - u^1_i), \epsilon(T_x^{-1}N_i) \cdot \nabla u_0^1(1 - \eta_\Omega) \rangle_{\Omega_x^i} \ dt, \]

\[M(u'_i - u^1_i) := - \int_0^T \int_{\Omega_x^i} A'_i \nabla (u'_i - u^1_i) \cdot \nabla [\epsilon(T_x^{-1}N^i) \cdot \nabla u_0^1(1 - \eta_\Omega)] \ dx \ dt. \]

We note that \(M \) is not an error term; in contrary, it enters with the factor \(-\delta_1\) the left-hand side of the estimate (65) following later.

\(\text{Err}_6 \) is estimated by integration by parts with respect to time

\[\text{Err}_6(\epsilon) = \int_0^T \int_{\Omega_x^i} (u'_i - u^1_i) \epsilon(T_x^{-1}N_i) \cdot \partial_t (\nabla u_0^1)(1 - \eta_\Omega) \ dx \ dt - \int_{\Omega_t^i} (u'_i - u^1_i) \epsilon(T_x^{-1}N_i) \cdot \nabla u_0^1(1 - \eta_\Omega) \ dx \big|_{t=0}^T, \]

after using Young inequality and the continuous embedding

\[\| u'_i - u^1_i \|^2_{L^2(0,T;L^2(\Omega_x^i))} \leq K_{\text{emb}} \| u'_i - u^1_i \|^2_{L^{\infty}(0,T;L^2(\Omega_x^i))}, \tag{63} \]

which implies that

\[|\text{Err}_6(\epsilon)| \leq \epsilon \alpha_6 U_6, \]

where

\[\alpha_6 := \frac{2 + K_{\text{emb}}}{2} \| N^i \|_{L^\infty(Y)^{p+\delta}}, \]

\[U_6 := \frac{1}{2 + K_{\text{emb}}} \left(\| \partial_t (\nabla u_0^1)(1 - \eta_\Omega) \|^2_{L^2(0,T;L^2(\Omega_x^i))} + 2 \| \nabla u_0^1(1 - \eta_\Omega) \|^2_{L^\infty(0,T;L^2(\Omega_x^i))} \right) + \| u'_i - u^1_i \|^2_{L^\infty(0,T;L^2(\Omega_x^i))}. \]

The term \(M(u'_i - u^1_i) \) is evaluated by Young inequality with the weight \(\delta_1 > 0 \) and using the boundedness property of \(A_i \) with the upper bound \(\beta \) from (5) as

\[|M(u'_i - u^1_i)| = \left| \int_0^T \int_{\Omega_x^i} A'_i \nabla (u'_i - u^1_i) \cdot \left(T_x^{-1}(\partial_t N^i) \cdot \nabla u_0^1(1 - \eta_\Omega) + \epsilon (T_x^{-1}N^i) \cdot \partial_t (\nabla u_0^1)(1 - \eta_\Omega) \right) \right. \]

\[\left. - \epsilon (T_x^{-1}N^i) \cdot \nabla u_0^1 \nabla \eta_\Omega \right) \ dx \ dt \right| \leq \frac{3 \beta \delta_1}{2 \sqrt{3}} \| \nabla (u'_i - u^1_i) \|^2_{L^2(0,T;L^2(\Omega_x^i))} + \text{Err}_7(\epsilon), \]

where

\[\text{Err}_7(\epsilon) := \frac{\sqrt{3} \beta}{2 \delta_1} \left\{ \| \partial_t N^i \|_{L^\infty(Y)^{p+\delta}} \| \nabla u_0^1(1 - \eta_\Omega) \|^2_{L^2(0,T;L^2(\Omega_x^i))} \right. \]

\[\left. + \epsilon^2 \| N^i \|_{L^\infty(Y)^{p+\delta}} \| \partial_t (\nabla u_0^1)(1 - \eta_\Omega) \|^2_{L^2(0,T;L^2(\Omega_x^i))} + \epsilon^2 \| N^i \|_{L^\infty(Y)^{p+\delta}} \| \nabla u_0^1 \cdot \nabla \eta_\Omega \|^2_{L^2(0,T;L^2(\Omega_x^i))} \right\}. \]

It follows

\[|\text{Err}_7(\epsilon)| \leq \epsilon \alpha_7 U_7, \]

where

\[\alpha_7 := \frac{\sqrt{3} \beta}{2} \left(\| N^i \|_{L^\infty(Y)^{p+\delta}} \| \partial_t N^i \|_{L^\infty(Y)^{p+\delta}} \right), \]

\[U_7 := \frac{1}{\delta_1} \left(\| \nabla u_0^1(1 - \eta_\Omega) \|^2_{L^2(0,T;L^2(\Omega_x^i))} + \epsilon \| \partial_t (\nabla u_0^1)(1 - \eta_\Omega) \|^2_{L^2(0,T;L^2(\Omega_x^i))} + \epsilon \| \nabla u_0^1 \cdot \nabla \eta_\Omega \|^2_{L^2(0,T;L^2(\Omega_x^i))} \right) = O(1). \]

We note that \(U_7 = O(1) \), in particular, because \(1 - \eta_\Omega \neq 0 \) on a \(O(\epsilon) \)-set using the fact that \(1 - \eta_\Omega \neq 0 \) on a set of measure \(O(\epsilon) \), thus compensating \(\nabla \eta_\Omega = O(\epsilon^{-1}) \) here.
Therefore, using the inequality (57) for $I_i((T, w_i))$ and the uniform positive definiteness (33) of A_i with the lower bound $\alpha > 0$, from (62), we arrive at the estimate

\[
\left| \frac{1}{2} \int_{\Omega^1} (u_i^1 - u_i^0)^2 \right|_{T=0}^T dx + \left(\alpha - \frac{\sqrt{3} \beta \delta_1}{2} \right) \int_0^T \int_{\Omega^1} |\nabla (u_i^1 - u_i^0)|^2 dx dt \leq (2K_t L_g^2 + a_8) \sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(0,T;L^2(\Omega^1))} + 2\varepsilon^2 K_t L_g^2 \sum_{i=1}^2 \|\nabla (u_i^1 - u_i^0)\|^2_{L^2(0,T;L^2(\Omega^1))} + \varepsilon\sum_{k=0}^5 |\text{Err}_k(w_i, \varepsilon)| + \sum_{k=6}^8 |\text{Err}_k(\varepsilon)|,
\]

(64)

where $a_8 := \frac{|I|}{2} \sum_{j=1}^2 \frac{1}{|Y_j|^2}$, and

\[
0 \leq \text{Err}_8(\varepsilon) := \alpha_8 \|\varepsilon(T_{e-1}^{-1} N \cdot \nabla u_0^0 (1 - \eta_2))\|_{L^2(0,T;L^2(\Omega^1))} \leq \varepsilon^2 \|\alpha_8\|_{L^2(\Omega^1)} \|\nabla u_0^0\|_{L^2(0,T;L^2(\Omega^1))}.
\]

After summation over $i = 1, 2$ we rearrange the terms such that

\[
\frac{1}{2} \sum_{i=1}^2 \|u_i^1(T)\|^2_{L^2(\Omega^1)} + \gamma \sum_{i=1}^2 \|\nabla (u_i^1 - u_i^0)\|^2_{L^2(0,T;L^2(\Omega^1))} \leq \alpha_{10} \sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(0,T;L^2(\Omega^1))} + \text{Err}_{10}(\varepsilon),
\]

\[
\text{Err}_{10}(\varepsilon) := \sum_{k=0}^5 \sum_{i=1}^2 |\text{Err}_k(w_i, \varepsilon)| + \sum_{k=6}^9 |\text{Err}_k(\varepsilon)|,
\]

(65)

where $\gamma := 4\varepsilon^2 K_t L_g^2 - \frac{\sqrt{3} \beta \delta_1}{2}$, $\alpha_{10} := 2K_t L_g^2 + a_8$, and the error Err_9 implies

\[
\text{Err}_9(\varepsilon) := \frac{1}{2} \|\varepsilon u_0^1(0)\|^2_{L^2(\Omega^1)} \leq \frac{\varepsilon}{2} \|\varepsilon N\|_{L^2(\Omega^1)} \|\nabla u_0^0(0)\|^2_{L^2(\Omega^1)} = O(\varepsilon).
\]

After taking the supremum over time, using the embedding theorem (63), we estimate the first term in the left-hand side of (65) by the lower bound

\[
\frac{1}{2} \sum_{i=1}^2 \|u_i^1(T)\|^2_{L^2(\Omega^1)} \geq \frac{1}{4K_{\text{emb}}} \sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(0,T;L^2(\Omega^1))} + \frac{1}{4} \sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(0,T;L^2(\Omega^1))}.
\]

We continue the estimate (65) by taking δ_1 small enough such that $\gamma > 0$. Therefore, applying Grönwall inequality leads to

\[
\sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(\Omega^1)} \leq \text{Err}_{11}(\varepsilon). \quad \text{Err}_{11}(\varepsilon) := 2\text{Err}_{10}(\varepsilon) \exp(2\alpha_{10}T).
\]

As a consequence, from (65) and the embedding theorem (63), we conclude with the estimate

\[
\sum_{i=1}^2 \|u_i^1 - u_i^0\|^2_{L^2(0,T;L^2(\Omega^1))} + \sum_{i=1}^2 \|\nabla (u_i^1 - u_i^0)\|^2_{L^2(0,T;L^2(\Omega^1))} \leq \text{Err}_{12}(\varepsilon),
\]

\[
\text{Err}_{12} := \min \left(\frac{1}{2}, \frac{1}{2K_{\text{emb}}}, \gamma \right) \left(\alpha_{10} \text{Err}_{11}(\varepsilon) + \text{Err}_{10}(\varepsilon) \right) = O(\varepsilon),
\]

(66)

which finishes the proof. \qed
7 | DISCUSSION

Compared with previous results in the literature on multiscale diffusion equations, in the paper, we derived the macroscopic bidomain model that is advantageous for numerical simulation; we first proved the homogenization result supported by residual error estimate of the asymptotic corrector due to the nonlinear transmission condition at the microscopic level, which appears to describe interface chemical reactions.

For further generalization of the obtained result, we suggest to consider the case of connected-disconnected domains Ω^1_ε and Ω^2_ε. While in the connected domain Ω^1_ε the uniform extension is applicable, the disconnected domain Ω^2_ε allows a discontinuous Poincaré estimate (see Kovtunenko and Zubkova21).

ACKNOWLEDGEMENTS

V.A.K. and A.V.Z. are supported by the Austrian Science Fund (FWF) Project P26147-N26: “Object identification problems: numerical analysis” (PION). V.A.K. thanks the Russian Foundation for Basic Research (RFBR) joint with JSPS research project 19-51-50004 for partial support. S.R. thanks the DFG Collaborative Research Center 910, subproject A5 on pattern formation in systems with multiple scales, for support.

CONFLICT OF INTEREST

This work does not have any conflicts of interest.

ORCID

Victor A. Kovtunenko \(\text{https://orcid.org/0000-0001-5664-2625}\)

REFERENCES

How to cite this article: Kovtunenko VA, Reichelt S, Zubkova AV. Corrector estimates in homogenization of a nonlinear transmission problem for diffusion equations in connected domains. Math Meth Appl Sci. 2019;1–19. https://doi.org/10.1002/mma.6007