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Abstract: A new type of non-classical 2D contact problem formulated over non-convex admissible
sets is proposed. Specifically, we suppose that a composite body in its undeformed state touches a
wedge-shaped rigid obstacle at a single contact point. Composite bodies under investigation consist
of an elastic matrix and a rigid inclusion. In this case, the displacements on the set, corresponding to
a rigid inclusion, have a predetermined structure that describes possible parallel shifts and rotations
of the inclusion. The rigid inclusion is located on the external boundary and has the form of a wedge.
The presence of the rigid inclusion imposes a new type of non-penetration condition for certain
geometrical configurations of the obstacle and the body near the contact point. The sharp-shaped
edges of the obstacle effect such sets of admissible displacements that may be non-convex. For the
case of a thin rigid inclusion, which is described by a curve and a volume (bulk) rigid inclusion
specified in a subdomain, the energy minimization problems are formulated. The solvability of the
corresponding boundary value problems is proved, based on analysis of auxiliary minimization
problems formulated over convex sets. Qualitative properties of the auxiliary variational problems
are revealed; in particular, we have found their equivalent differential formulations. As the most
important result of this study, we provide justification for a new type of mathematical model for 2D
contact problems for reinforced composite bodies.

Keywords: Signorini condition; non-penetration; contact problem; rigid inclusion; nonconvex set

1. Introduction

There are various studies related to problems describing contact of elastic bodies with
rigid or elastic obstacles, see for example [1–10]. For an overview of contact problems we
refer to [11–15]. The classical Signorini-type condition supposes sufficient regularity for a
part of a body boundary, where non-penetration conditions are imposed. We refer to the
paper [16], in which free boundary problems for elastic bodies with a rigid inclusion being
in contact with another rigid non-deformable punch were proposed and investigated for
the first time. Crack problems with unilateral non-penetration conditions between crack
faces (see, for example [17–26]) are a special subclass of contact problems. Furthermore, by
passages to the limits when rigidity parameters for a family of crack problems go to infinity,
convergences of corresponding solutions to appropriate solutions of contact problems with
the Signorini-type conditions were established in [27–29].

In this article, we pay attention to variational problems describing a point contact of
composite objects having sharp-shaped edges. Specifically, we study mathematical models
describing the equilibrium of elastic bodies containing a rigid inclusion in the form of an
external wedge. In contrast to [16], we propose a class of non-linear contact problems,
where non-penetration conditions can be written for a single point located on the sharp
edge. Due to the presence of rigid inclusions, we can rewrite the non-penetration condition
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in the form of three sets of inequalities, where each system describes three possible cases of
rigid body deformations.

The contact problems are formulated as minimization problems of the energy func-
tional over sets of admissible displacements. The existence of variational solutions (at least
one and at most three) has been proved. For three auxiliary problems, each set of admissible
displacements is convex and closed and the energy functional is coercive, strictly convex
and weakly lower semi-continuous on a suitable Sobolev space. These properties allow
us to establish the existence and uniqueness of solutions for each auxiliary minimization
problem over sole sets. The issue of uniqueness of a solution for the reference minimization
problem over all three sets simultaneously is an open question. For the auxiliary variational
problems formulated over sole sets, equivalent differential conditions have been derived.

2. The Case of a Thin Rigid Inclusion

Let us formulate a contact problem for an elastic body containing a rigid inclusion
on the external boundary. Such configuration may describe bodies covered by coatings.
Consider a bounded simply connected domain Ω ⊂ R2 with the boundary Γ ∈ C0,1, which
consists of two continuous curves Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, meas(Γ1) > 0. We suppose
that the curve comprised of two line segments

γ = [0, 1]× {0} ∪ {(x1, x2) | 0 ≤ x1 ≤ 1, x2 = αx1}, 0 < α < ∞,

is a part of Γ2, such that γ ⊂ int(Γ2) (see Figure 1). For the construction of rigid displace-
ments in what follows, the domain Ω is considered to be part of the planar wedge, which
continues the sides of γ. We assume that a thin rigid inclusion is given by γ, and a rigid
obstacle is given by the other planar wedge

O = {−∞ < x1 ≤ 0, k2x1 ≤ x2 ≤ k1x1}, −∞ < k1 < 0 < α ≤ k2 < ∞.

Figure 1. Geometry of the problem for composite body with the thin rigid inclusion.

Denote by W = (w1, w2) the displacement vector. We suppose that the body is fixed
on the part Γ1 of the boundary, i.e.,

W = (0, 0) on Γ1. (1)

Introduce the Sobolev spaces

H1,0
Γ1

(Ω) = {w ∈ H1(Ω) | w = 0 on Γ1}, H(Ω) = H1,0
Γ1

(Ω)2.

From the plane elasticity, we recall the strain and stress tensors describing deformation
of the body

εij(W) =
1
2
(wi,j + wj,i), σij(W) = cijklεkl(W), i, j = 1, 2, (2)
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where the comma in the first formula in (2) implies a convention for derivatives, and
summation over repeated indexes is assumed. The tensor of elastic coefficients is given by
entries cijkl assumed to be symmetric and positive definite:

cijkl = cklij = cjikl , i, j, k, l = 1, 2, cijkl ∈ L∞(Ω),

cijklξijξkl ≥ c0|ξ|2, ∀ξ, ξij = ξ ji, i, j = 1, 2, c0 = const > 0.

The well-known Korn inequality has the following form:∫
Ω

σij(W)εij(W) ≥ c‖W‖2
H(Ω), ∀W ∈ H(Ω), (3)

where the constant c > 0 is independent of W. To provide a variational formulation
describing the equilibrium state for the body with the rigid inclusion γ, we introduce the
energy functional

Π(W) =
1
2

∫
Ω

σij(W)εij(W)−
∫
Ω

FW,

where the vector F = ( f1, f2) ∈ L2(Ω)2 describes the external forces acting on the body,
FW = fiwi. The Korn inequality (3) guarantees coercivity for the energy functional Π.

Let us provide arguments justifying non-penetration conditions between the rigid
inclusion γ and the rigid obstacle O in the specific geometry configuration. Here, we should
note that our reasoning relies on assumption of the infinitesimal displacements within
linearized elasticity. We assume that the body in the undeformed state lies in front of the
sharp-shaped obstacle O (see Figure 1). The space of infinitesimal rigid displacements R(γ)
is defined according to the following general relations [14]:

R(Z) = {ρ = (ρ1, ρ2) | ρ(x) = b(x2,−x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ Z}, (4)

where Z is some subset of Ω. The non-penetration of γ into obstacle O requires that

x + ρ(x) 6∈ int(O) for x ∈ γ. (5)

According to (4) points x = (x1, x2) ∈ γ of the rigid inclusion are displaced to those
points with the following coordinates

x + ρ(x) = (x1 + bx2 + c1, x2 − bx1 + c2), x2 ∈ {0, αx1}, x1 ∈ [0, 1]. (6)

Here the term c = (c1, c2) implies dilatation, whereas the term b(x2,−x1) describes
linearized rotation in a counterclockwise fashion around the point x + c at the right angle
π/2 for b < 0, and −π/2 for b > 0.

For c1 ≥ 0 the condition (5) is satisfied within the representation (6) as x2 = 0 and
x2 = αx1 if

x1 ≥ 0, x1 + bαx1 ≥ 0 for all x1 ∈ [0, 1],

which holds as b ≥ −1/α. Indeed, this provides non-negativeness of the first component
x1 + ρ1(x) for x ∈ γ, thus the shift of γ to the right from O. Therefore, in the case of c1 ≥ 0,
the corresponding set of admissible displacements takes the following form

K1 = {W ∈ H(Ω) |W|γ = ρ, ρ(x) ∈ R(γ), b ≥ − 1
α

, c1 ≥ 0 }.

For c1 ≤ 0, we should distinguish two cases depending on the parameters c2 and b.
This first case corresponds to a configuration when the inclusion is displaced above the
obstacle O after the deformation. When b ≥ 0 describes the clockwise rotation, from (5)
and (6) as x2 = 0, we have the condition
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− bx1 + c2 ≥ k1(x1 + c1) for all x1 ∈ [0, 1]. (7)

Setting x1 = 0, we get c2 ≥ k1c1. Assuming that c2 ≥ k1c1 holds, we reveal that (7) is
valid for all 0 ≤ b ≤ −k1 since k1 < 0. In order to restrict possible rotations of the inclusion
in the counterclockwise direction (b ≤ 0), we should consider the angle lying in the upper
half-plane between the rectilinear lines x2 = k1x1 and x2 = αx1. If the angle is acute, i.e.,
1 + αk1 < 0, then conditions (5) and (6) as x2 = αx1 require to satisfy

k1(x1 + bαx1) ≤ αx1 − x1b for all x1 ∈ [0, 1],

which holds as
b ≥ α− k1

1 + αk1
, where

α− k1

1 + αk1
< 0.

For the right or obtuse angle, arbitrary b is admissible since it rotates not more than
π/2. As a result, we have the following admissible set

K2 = {W ∈ H(Ω) |W|γ = ρ, ρ(x) ∈ R(γ),

bmin ≤ b ≤ −k1 c1 ≤ 0, c2 ≥ k1c1 },

where bmin = α−k1
1+αk1

if 1 + αk1 < 0, otherwise bmin = −∞.
The second possibility to fulfill (5) for c1 ≤ 0 corresponds to displacement of the

inclusion γ below the obstacle O after the deformation. Rotation in the counterclockwise
direction case needs to fulfill the non-penetration condition as x2 = αx1

αx1 − bx1 + c2 ≤ k2(x1 + bαx1 + c1) for all x1 ∈ [0, 1]. (8)

As x1 = 0, it follows c2 ≤ k2c1. Then (8) is valid for b such that

αx1 − bx1 ≤ k2(x1 + bαx1) for all x1 ∈ [0, 1],

following the restriction on b

α− k2

1 + αk2
≤ b, where

α− k2

1 + αk2
< 0

due to k2 ≥ α. Rotating in the clock-wise direction, for every positive b it holds

−bx1 + c2 ≤ k2(x1 + c1) for all x1 ∈ [0, 1].

In this case, the admissible set is given by

K3 = {W ∈ H(Ω) |W|γ = ρ, ρ(x) ∈ R(γ),

b ≥ α− k2

1 + αk2
, c1 ≤ 0, c2 ≤ k2c1 }.

Consider the minimization problem:

find U ∈ K1 ∪ K2 ∪ K3 such that Π(U) = inf
W∈K1∪K2∪K3

Π(W). (9)

It is obvious that each of sets Ki, i = 1, 2, 3 is convex and closed [21]. At the same time,
one can note that the union K1 ∪ K2 ∪ K3 is closed, but not convex.

Example 1. Indeed, consider two functions W1 ∈ K2 and W2 ∈ K3 such that

W1|γ = ρ1 = (c1
1, c1

2), (b = 0) on γ, with c1
1 = −a, c1

2 = k1(−a);

W2|γ = ρ2 = (c2
1, c2

2), (b = 0) on γ, with c2
1 = −a, c2

2 = k2(−a),
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where a > 0. Let us consider the sum Ws =
1
2 (W1 + W2), as we can see

Ws = (cs
1, cs

2) =
(
− a,

1
2
(k1 + k2)(−a)

)
on γ,

where cs
1 = −a and cs

2 = 1
2 (k1 + k2)(−a) are constant. In view of relations

cs
1 < 0, k1cs

1 > cs
2 > k2cs

1

due to k1 < 0 < k2, we conclude that Ws /∈ K1 ∪ K2 ∪ K3. Namely, Ws /∈ K1 since cs
1 < 0, and

Ws /∈ K2 because of cs
2 < k1cs

1, analogously cs
2 > k2cs

1 infer the relation Ws /∈ K3. This example
provides non-convexity of K1 ∪ K2 ∪ K3.

The non-convexity of the admissible set does not allow application of the standard vari-
ational theory. Therefore, we prove the following existence theorem based on splitting into
convex sets. In the framework of the previous assumptions, the following assertion holds.

Theorem 1. There exists at least one, and at most three, solutions U of the variational problem (9)
over the non-convex set K1 ∪ K2 ∪ K3.

Proof. Along with the reference problem (9), we consider the following three auxiliary problems

find Ui ∈ Ki such that Π(Ui) = inf
W∈Ki

Π(W), i = 1, 2, 3. (10)

Coercivity and weak lower semi-continuity of Π(W) on the Hilbert space H(Ω)
implies that Π(W) attains its minimums over Ki, i = 1, 2, 3, at some functions U1 ∈ K1,
U2 ∈ K2, U3 ∈ K3, respectively. Furthermore, by strict convexity of the energy functional,
it follows that for each fixed i ∈ {1, 2, 3} the corresponding auxiliary problem (10) has a
unique solution Ui, i = 1, 2, 3. We can find the sought function U as a function providing a
minimum over the three optimal values, i.e.,

Π(U) = min{Π(U1), Π(U2), Π(U3)}, (11)

where Ui are the solutions to (10) for corresponding sole admissible sets Ki, i = 1, 2, 3.
Indeed, let us suppose that Ul with some l ∈ {1, 2, 3} is a minimizer of the right hand
of (11), then we have

Π(Ul) ≤ Π(W), ∀W ∈ K1 ∪ K2 ∪ K3.

This proves the theorem.

One can note that the solution of (9) may be non-unique, e.g., when Π(U1) = Π(U2) <
Π(U3) and U1 6= U2.

Remark 1. The well-posedness analysis can be adapted to the case when the straight part [0, 1]×
{0} of γ is re-specified by an inclined segment given by

{(x1, x2) | x1 ∈ [0, 1], x2 = βx1}, k1 < β < 0, β = const.

Let us reveal some qualitative properties of the auxiliary problems. Under an assumption
of additional regularity of the solutions Ui, i = 1, 2, 3, we can obtain from (10) equivalent
differential relations. We first note that the Gateaux differentiability of Π(W) provides the
equivalence of each problem of (10) to one of the following variational inequalities

Ul ∈ Kl ,
∫
Ω

σij(Ul)εij(W −Ul) ≥
∫
Ω

F(W −Ul) ∀W ∈ Kl , l = 1, 2, 3.
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For example, let us consider in detail the problem corresponding to the variational
inequality for the set K2

U2 ∈ K2,
∫
Ω

σij(U2)εij(W −U2) ≥
∫
Ω

F(W −U2) ∀W ∈ K2. (12)

By substituting the test functions of the following form W = U2 + φ, φ ∈ C∞
0 (Ω)2 we get∫

Ω

σij(U2)εij(φ) ≥
∫
Ω

Fφ ∀ φ ∈ C∞
0 (Ω)2.

In the sense of distributions, this means that

− σij,j(U2) = Fi in Ω, i = 1, 2. (13)

In the following, we will apply the following Green formula, which holds for suffi-
ciently smooth functions V and V ∈ H(Ω) [14]∫

Ω

σij(V)εij(V) = −
∫
Ω

σij,j(V)vi +
∫
Γ

(σν(V)Vν + στ(V)Vτ), (14)

where ν = (ν1, ν2) is a unit normal vector to Γ,

σν(V) = σij(V)νiνj, στ(V) = (σ1
τ(V), σ2

τ(V)) = (σ1j(V)νj, σ2j(V)νj)− σν(V)ν,

Vν = viνi, Vτ = (V1
τ , V2

τ), vi = (Vν)νi + Vi
τ , i = 1, 2.

Applying the Green formula (14) and (13), we can rewrite the corresponding varia-
tional inequality (12) in the following form∫

Γ2

(
σν(U2)(W −U2)ν + στ(U2)(W −U2)τ

)
≥ 0, ∀W ∈ K2. (15)

Then, substituting into (15) functions W = U2 + W̃, with W̃ ∈ H(Ω), W̃ = 0 on Γ1
and W̃ = U2 on γ, and applying (14), we infer∫

Γ2\γ

(σν(U2)W̃ν + στ(U2)W̃τ) ≥ 0. (16)

From (16) it follows that

στ(U2) = 0, σν(U2) = 0 on Γ2 \ γ. (17)

We insert the test functions W = 0 and W = 2U2 into (15) and obtain∫
γ

(σν(U2)ρ
2ν + στ(U2)ρ

2τ) = 0, (18)

where ρ2 = U2 a.e. on γ. Finally, bearing in mind (17) and (18) we have∫
γ

(σν(U2)ρν + στ(U2)ρτ) ≥ 0, (19)

for all rigid displacements ρ described in K2. The integral formulas (18) and (19) imply a
consequence of the principle of virtual displacements [20,30]. Following the same line of
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reasoning of [16], the converse can be proved, namely, that the differential setting consisting
of (1), (2), (13), (17)–(19) leads to the variational formulation (12).

Remark 2. The differential formulation of (12) can be obtained without additional regularity
assumptions on the solution U2. However, in this case, the expressions for the boundary conditions
take the form of duality relations in the space of distributions.

Analogously, we can obtain the following differential conditions for the variational
inequality corresponding to the set K1

− σij,j(U1) = Fi in Ω, i = 1, 2, (20)

σij(U1) = cijklεkl(U1) in Ω, i, j = 1, 2, (21)

U1 = (0, 0) on Γ1, (22)∫
γ

(σν(U1)ρ
1ν + στ(U1)ρ

1τ) = 0, where ρ1 = U1 on γ, (23)

στ(U1) = 0, σν(U1) = 0 on Γ2 \ γ, (24)∫
γ

(σν(U1)ρν + στ(U1)ρτ) ≥ 0, (25)

for all ρ described in K1.
The differential formulation for the variational inequality over the set K3 has the anal-

ogous form as the previous conditions (20)–(25) wherein the last relation (25) transforms to∫
γ

(σν(U3)ρν + στ(U3)ρτ) ≥ 0,

for all ρ from K3.

3. The Case of a Volume Rigid Inclusion

We can consider a problem for a rigid volume inclusion, which may describe reinforce-
ment of the body by an external wedge. Let us assume that a simply connected subdomain
ω ⊂ Ω has the boundary ∂ω satisfying ∂ω ∩ Γ = γ (see Figure 2).

Figure 2. Geometry of the problem for the composite body with the volume rigid inclusion.

The space of infinitesimal rigid displacements R(ω) is defined according to (4). Now,
we introduce the following sets of possible displacements

Kω
1 = {W ∈ H(Ω) |W|ω = ρ, ρ(x) ∈ R(ω), b ≥ − 1

α
, c1 ≥ 0 },
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Kω
2 = {W ∈ H(Ω) |W|ω = ρ, ρ(x) ∈ R(ω),

bmin ≤ b ≤ −k1, c1 ≤ 0, c2 ≥ k1c1 },

Kω
3 = {W ∈ H(Ω) |W|ω = ρ, ρ(x) ∈ R(ω),

b ≥ α− k2

1 + αk2
, c1 ≤ 0, c2 ≤ k2c1 }.

Consider the minimization problem:

find Uω ∈ Kω
1 ∪ Kω

2 ∪ Kω
3 such that Π(Uω) = inf

W∈Kω
1 ∪Kω

2 ∪Kω
3

Π(W). (26)

As in the previous case, each set Kω
i , i = 1, 2, 3, is convex and closed [21]. The optimal

Uω can be found as a function providing minimum solutions over the three values, i.e.,

Π(Uω) = min{Π(Uω
1 ), Π(Uω

2 ), Π(Uω
3 )},

where Uω
i are solutions of the three variational problems corresponding to sole admissible

sets Kω
i , i = 1, 2, 3,

find Uω
i ∈ Kω

i such that Π(Uω
i ) = inf

W∈Kω
i

Π(W), i = 1, 2, 3. (27)

If the boundary of the domain Ω \ω belongs to the class C1,1, then for each of three
of auxiliary variational problem (27), equivalent differential relations can be obtained
provided that solutions Uω

i , i = 1, 2, 3, are sufficiently smooth in Ω \ω. For example, in the
case of the set Kω

2 , we have

−σij,j(Uω
2 ) = Fi in Ω \ω, i = 1, 2,

σij(Uω
2 ) = cijklεkl(Uω

2 ) in Ω, i, j = 1, 2,

Uω
2 = (0, 0) on Γ1,∫

∂ω\γ

(σν(Uω
2 )−ρ2

ων + στ(Uω
2 )−ρ2

ωτ) =
∫
ω

Fρ2
ω, where ρ2

ω = Uω
2 in ω, (28)

στ(Uω
2 )− = 0, σν(Uω

2 )− = 0 on Γ2 \ γ, (29)∫
∂ω\γ

(σν(Uω
2 )−ρν + στ(Uω

2 )−ρτ) ≥
∫
ω

Fρ, (30)

for all ρ from K2. Here, the relations (28)–(30) are written for the unit external normal vector
ν to the boundary of the domain Ω \ω. The traces σν(Uω

2 )− and στ(Uω
2 )− are defined on

the negative side (∂ω \ γ)−. The negative (∂ω \ γ)− and positive side (∂ω \ γ)+ of the
curve ∂ω \ γ are selected with respect to the normal ν such that the positive side is a part
of the boundary of inclusion ω. Then σν(Uω

2 )− and στ(Uω
2 )− are defined on the boundary

of the deformed body Ω \ω. In addition, we note that the values σν(Uω
2 )−, στ(Uω

2 )− can
be non-zero on (∂ω \ γ)−, despite of σν(Uω

2 )+ = 0, στ(Uω
2 )+ = 0 on (∂ω \ γ)+ due to

εij(Uω
2 ) = 0 in the rigid inclusion ω, i, j = 1, 2. This case arises when the jumps of functions

σij(Uω
2 ), i, j = 1, 2, are not equal to zero on (∂ω \ γ)− provided that Uω

2 ∈ H(Ω), but
Uω

2 /∈ H2(Ω)2.

4. The Case of Two-Hinged Thin Rigid Inclusions

In this section, we suppose that the curve γ is divided by the point (0, 0) into two
curves γd = [0, 1]× {0} and γt = {(x1, x2) | 0 ≤ x1 ≤ 1, x2 = αx1} that corresponds to
two rigid inclusions. This setting has an additional degree of freedom allowing rotation at
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the origin. If we require that a sought function U satisfies U|γt = ρt, U|γd = ρd with some
linear functions

ρt = bt(x2,−x1) + (ct
1, ct

2) ∈ R(γt), ρd = bd(x2,−x1) + (cd
1, cd

2) ∈ R(γd),

where bd, cd
1, cd

2 ∈ R, bt, ct
1, ct

2 ∈ R, then taking into account that U ∈ H(Ω), we have

cd
1 = ct

1, cd
2 = ct

2.

In this case admissible sets have been represented by the following relations

Kh
1 = {W ∈ H(Ω) | W|γd = ρd, W|γt = ρt,

ρd ∈ R(γd), ρt ∈ R(γt), bt ≥ − 1
α

, ct
1 ≥ 0 },

Kh
2 = {W ∈ H(Ω) | W|γd = ρd, W|γt = ρt,

ρd ∈ R(γd), ρt ∈ R(γt), ct
1 ≤ 0, bd ≤ −k1, bt ≥ bmin, ct

2 ≥ k1ct
1 },

Kh
3 = {W ∈ H(Ω) | W|γd = ρd, W|γt = ρt,

ρd ∈ R(γd), ρt ∈ R(γt), bt ≥ α− k2

1 + αk2
, ct

1 ≤ 0, ct
2 ≤ k2ct

1 }.

The minimization problem:

find Uh ∈ Kh
1 ∪ Kh

2 ∪ Kh
3 such that Π(U) = inf

W∈Kh
1∪Kh

2∪Kh
3

Π(W) (31)

can be treated as the previous problem (9), since the admissible sets Kh
i , i = 1, 2, 3, are

convex closed cones and suitable test functions can be chosen in the same way as in the
derivation of (20)–(25).

5. The Case of an Obstacle with an Obtuse Angle and a Body with Sharp-Shaped Edge

Let us suppose that near the contact point a part of the boundary of an obstacle O is
comprised of two rectilinear lines given by x2 = k2x1, x2 = k1x1, k2 ≤ 0, k1 ≥ 0 composing
an obtuse angle, as shown in Figure 3.

Figure 3. Geometry of the composite body and the rigid obstacle with an obtuse angle.
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In this case, we have to fulfill the following relations according to (5) and (6) at x2 = 0

k2(x1 + c1) ≤ (−bx1 + c2) for all x1 ∈ [0, 1], (32)

and at x2 = αx1

k1(x1 + bαx1 + c1) ≥ αx1 − bx1 + c2 for all x1 ∈ [0, 1]. (33)

Setting in the last two inequalities x1 = 0, we get

k2c1 ≤ c2 ≤ k1c1. (34)

One can note that the last inequality holds only for non-negative values of c1. Assum-
ing that (34) holds, the inequality (32) is valid for b ≤ −k2. As well as (33) holds when

b ≥ α− k1

1 + k1α
.

In the framework of the previous consideration in Section 1, for the coefficient α
satisfying 0 < α < k1, a minimization problem has the following form

find Û ∈ K̂ such that Π(Û) = inf
W∈K̂

Π(W),

over the admissible set

K̂ = {W ∈ H(Ω) |W|γ = ρ, ρ(x) ∈ R(γ),

α− k1

1 + k1α
≤ b ≤ −k2, c1 ≥ 0, k2c1 ≤ c2 ≤ k1c1 }.

One can confirm that the last problem has a unique solution Û, since the set K̂ is convex.

6. Discussion

The obtained results justify the new class of point-contact problems. In contrast to
the well-known Signorini condition, the proposed non-penetration condition is imposed
for possible displacements of a single point located on a tip of a sharp-shaped rigid in-
clusion. Features of the variational problems (9), (26) and (31) are concerned with the
non-convexity of corresponding admissible sets. The well-posedness property is investi-
gated by using three auxiliary problems formulated over convex admissible sets. For the
auxiliary problems obeying unique solutions, equivalent differential formulations have
been obtained. The obtained rigorous mathematical results are subject to research from the
point of view of applications of solid mechanics in the framework of contact problems for
reinforced composite bodies. In particular, the results require numerical simulations and
their subsequent comparison with experimental data. As possible directions for further
research, we can highlight the following issues: uniqueness of solutions, approximation by
a family of equilibrium problems for elastic bodies, inverse problems, etc. From the point
of view of other constitutive relations, justification of contact problems, with the proposed
non-penetration condition in the framework of composite bodies consisting of a plastic or
viscoelastic matrix and a rigid inclusion with a sharp edge, is also an open problem.
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