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Abstract. The model of a stationary flow in porous media stemming from hydraulic fracking and accounting
for inertial phenomena is considered. The incompressible fluid is modeled by a nonlinear Darcy–Forchheimer

(DF) equation under mixed boundary conditions, which are appropriate for a fluid-driven fracture. The classical

DF equation is generalized with respect to a growth exponent m and inhomogeneous coefficients. Using mixed
variational formulation of the problem for unknown fluid velocity and fluid pressure, the well-posedness theorem

is proved for arbitrary m > 1. The developed Lagrange multiplier formalism is advantageous for optimal shape

design of fractures.

1. Introduction

We present a mathematical modeling for the filtration of incompressible fluids through porous media (the earth)
motivated by engineering technologies using hydraulic fracturing for mining natural gas and oil from reservoirs.
A porous medium filled with an incompressible fluid is described, which contains inside a hydraulic fracture (HF)
created by pumping a fracturing fluid into a well-bore. In practice, the fracture width is negligible, its length
and height may differ by two orders of magnitude. Therefore, in simulations, the reservoir is often simplified
to a plane 2d geometry with a straight fracture as sketched in Fig. 1. For modeling the flow in reservoir and

reservoir

we
ll-
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fracture

Figure 1. Sketch of a hydraulic fracture in a reservoir.

in the fracture, this typically requires different types of partial differential equations (PDEs) and their coupling
along fracture walls by transmission boundary conditions.[3, 17] However, treatment of the coupled models on
different scales is numerically not attainable. We assume a pressure p0 prescribed on the fracture walls, which is
obtained from experimental data or by proper modeling in the fracture,[19, 9] and we study separately the flow
in the reservoir. The complementary modeling of solid phase by the coupled poroelastic equations driven by the
hydraulic fracture and non-penetration of the fracture walls see in the recent research.[11]

For physical consistence of a flow model,[16] inertial phenomena can be quantified with the help of the Reynolds
number

(1) Re =
ρUδ

η
,

where ρ is the density, U is a characteristic velocity, δ is a characteristic pore size, and η is the effective viscosity
of the fluid. Whereas the Darcy law is suitable for Re < 1 in (1), for Re > 1 inertial phenomena should be
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taken into consideration, typically within the Darcy–Forchheimer (DF) law[4] given for the fluid pressure p and
velocity vector u by

(2) ∇p+
η

κ
u+

ρC√
κ
|u|u = 0,

where κ is the permeability, C is the inertial resistance, and | · | denotes the Euclidean norm. Setting C = 0 in
(2) turns it into the Darcy law. Equation (2) implies momentum conservation, and continuity equation leads to
the incompressibility condition

(3) div(u) = 0.

In general, the nonlinear relation (2) cannot be inverted with respect to u in order to substitute it into (3). Thus,
we have mixed (p,u) constitutive equations (2) and (3). Further we treat a generalization of the classical DF
law (2) as

(4) ∇p+Au+ β|u|m−2u = 0

with respect to the growth exponent m, where inhomogeneous coefficient matrix A and scalar β characterize the
linear and nonlinear resistance, respectively. In general, A and β may depend on the pressure p.[1] If m = 3 and
A = αI with the identity transformation I, then (4) turns into (2) with the Darcy coefficient α = η/κ and the
Forchheimer coefficient β = ρC/

√
κ. Compared to the literature,[5, 8] where various ranges of m were considered,

we provide well-posed to the flow model (3) and (4) in a unified way for arbitrary growth exponents m > 1.
From a mathematical viewpoint, we utilize the Lagrange multiplier approach[10] resulting in a mixed, primal-

dual variational formulation of the underlying problem. Based on the coercivity and Ladyzhenskaya–Babuška–
Brezzi inf-sup condition[15], the differentiability and convexity of the corresponding Lagrangian, from the mini-
max theorem existence of a unique solution follows. The primal-dual formalism is helpful for the ultimate reason
of shape design and identification.[2, 12] We cite the Lagrangian-based shape optimal control in flow models ac-
cording to Stokes,[13, 14] Brinkman,[6] and Forchheimer[7] laws. In this respect, shape optimization of hydraulic
fractures (HFs) in the DF model would be of practical interest.

2. Mixed variational problem

In the Euclidean space x = (x1, . . . , xd) ∈ Rd, where either d = 2 or d = 3 depending on a specific model,
let a domain Ω having the Lipschitz boundary ∂Ω and outward normal vector n = (n1, . . . , nd) associate the
reservoir. We assume that Ω can be split by an interface Σ into two sub-domains Ω+ and Ω− with Lipschitz
boundaries ∂Ω± as illustration in 2d in Fig. 2. Further we associate a part Γf of the interface to the fracture

Ω

∂Ω
n

Γ−
f

Γ+
f Σ

Figure 2. Geometry of fractured domain Ωf .

with two fracture walls Γ±
f such that

∂Ω+ ∩ ∂Ω− = Σ, Ω = Ω+ ∪ Ω− ∪ Σ, Γf ⊂ Σ, Γ±
f ⊂ Σ± ⊂ ∂Ω±, Ωf = Ω \ Γf ,

where the fractured domain Ωf has the boundary ∂Ωf = ∂Ω ∪ Γ+
f ∪ Γ−

f . Let the boundary split into two disjoint

parts ∂Ωf = ΓN ∪ ΓD. For modeling of the fluid-driven fracture, both fracture walls are assumed to be parts of
the Dirichlet boundary Γ±

f ⊂ ΓD.
The growth exponents m ∈ (1,∞) in equation (4) determines its conjugate number m′ ∈ (1,∞) with 1/m +

1/m′ = 1. For m > 2 it follows m′ ∈ (1, 2). If m ∈ (1, 2), hence m′ > 2, then the continuous embeddings
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L2(Ωf ;Rd) ⊂ Lm(Ωf ;Rd) and Lm′
(Ωf ;R) ⊂ L2(Ωf ;R) hold with the uniform constants K(m,2) > 0 and K(2,m′) >

0 providing

(5) ∥u∥m ≤ K(m,2)∥u∥2, ∥∇p∥2 ≤ K(2,m′)∥∇p∥m′ for u ∈ L2(Ωf ;Rd), ∇p ∈ Lm′
(Ωf ;Rd), m ∈ (1, 2).

Based on estimates (5) we consider the conjugate numbers max(2,m) and min(2,m′) with 1/max(2,m) +
1/min(2,m′) = 1, which correspond to u and ∇p entering the generalized DF law (4).

We assume existence of a function p0(x) in the reservoir, which jump across the fracture walls is denoted by
[[p0]], such that

(6) p0 ∈ W 1,min(2,m′)(Ωf ;R), [[p0]] := p0|Γ+
f
− p0|Γ−

f
.

From (6) the trace p0 ∈ W 1/max(2,m),min(2,m′)(∂Ωf ;R) is well defined and allows a non-zero jump across Γf except
for the fracture tip/front. The assumption (6) is used to prescribe the inhomogeneous Dirichlet data within the
mixed boundary conditions

(7) p = p0 on ΓD, n⊤u = 0 on ΓN,

where ⊤ swaps between columns and rows, and n⊤u implies the scalar product. The function p0 means an
extension into the fractured domain Ωf of the boundary data from (7). Physically, the former condition in (7)
describes continuity of the fluid pressure through ΓD, whereas the latter condition corresponds to impermeability
at ΓN. It is worth noting that for the Darcy law ∇p + αu = 0 it implies the homogeneous Neumann condition
n⊤α−1∇p = 0 at the free surface ΓN.

The linear A(x) and nonlinear β(x) resistance coefficients are assumed inhomogeneous functions in the reser-
voir, A is given by a symmetric d × d matrix, which is uniformly bounded and positive definite with constants
0 < α ≤ α:

(8) A ∈ L∞(Ω;Rd×d
sym), α|ξ|2 ≤ ξ⊤Aξ, |Aξ| ≤ α|ξ| for ξ ∈ Rd, β ∈ L∞(Ω;R), 0 < β ≤ β ≤ β,

where Aξ stands for the matrix-vector multiplication in (8) and in what follows.
After these assumptions we consider the nonlinear boundary value problem consisted of the governing equations

(3), (4) fulfilled in the fractured domain Ωf and supported with boundary conditions (7) at ∂Ωf , with respect to
unknown the fluid pressure p(x) and the fluid velocity u(x). Because of the Dirichlet condition we introduce the
closed subspace

W
1,min(2,m′)
ΓD

(Ωf ;R) = {q ∈ W 1,min(2,m′)(Ωf ;R)| q = 0 on ΓD}.

Multiplying the equations with smooth test functions and integrating div(u) by parts using boundary conditions
(7), the mixed variational problem seeks for a solution in the weak form: find u ∈ Lmax(2,m)(Ωf ;Rd) and

p− p0 ∈ W
1,min(2,m′)
ΓD

(Ωf ;R) satisfying

(9)

∫
Ωf

v⊤(∇p+Au+ β|u|m−2u
)
dx = 0 for all v ∈ Lmax(2,m)(Ωf ;Rd),

(10)

∫
Ωf

u⊤∇q dx = 0 for all q ∈ W
1,min(2,m′)
ΓD

(Ωf ;R).

We note that the nonlinear term in (9) can be estimated using Hölder’s inequality and the upper bound in (8) as

(11)
∣∣∣∫

Ωf

v⊤β|u|m−2u dx
∣∣∣ ≤ β∥u∥m−1

m ∥v∥m.

Conversely, relations (3), (4) and (7) can be derived from (9) and (10) only for a smooth velocity whose div(u) ∈
Ln(Ωf ;R) with 1/n = 1/max(2,m) + 1/d, by virtue of the Sobolev embedding W 1,min(2,m′)(Ωf ;R) ⊂ Ln′

(Ωf ;R)
for the conjugate number 1/n′ = 1/min(2,m′)− 1/d.
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3. Lagrangian formalism

Based on the variational equations (9) and (10) we introduce the Lagrange function

(12) L : Lmax(2,m)(Ωf ;Rd)×W 1,min(2,m′)(Ωf ;R) 7→ R, L(u, p) =
∫
Ωf

(
u⊤(∇p+

1

2
Au

)
+

β

m
|u|m

)
dx.

Further we use the notation of the closed subspace U(Ωf) := Lmax(2,m)(Ωf ;Rd)×W
1,min(2,m′)
ΓD

(Ωf ;R) for brevity.

Lemma 1 (properties of Lagrangian). (i) The Lagrangian L(u, p) in (12) is differentiable:

(13)
〈∂L
∂u

(u, p),v
〉
=

∫
Ωf

v⊤(∇p+Au+ β|u|m−2u
)
dx,

〈∂L
∂p

(u, p), q
〉
=

∫
Ωf

u⊤∇q dx.

(ii) If the following condition for the growth exponent m and bounds β, β in (8) holds

(14) β + (m− 2)β ≥ 0,

then the function u 7→ L(u, p) is strictly convex with the second derivatives satisfying

(15)
∂2L
∂u2

(u, p)[v,v] =

∫
Ωf

(
v⊤(A+ β|u|m−2

)
v + (m− 2)β|u|m−4(v⊤u)2

)
dx > 0 for v ̸= 0.

(iii) The function u 7→ L(u, p) : Lmax(2,m)(Ωf ;Rd) 7→ R is coercive: for arbitrary fixed p ∈ W 1,min(2,m′)(Ωf ;R)

(16) L(u, p) ≥ α

2
∥u∥22 +

β

m
∥u∥mm − ∥∇p∥min(2,m′)∥u∥max(2,m) → +∞ as ∥u∥max(2,m) → ∞.

(iv) The following inf-sup condition holds for p ∈ W
1,min(2,m′)
ΓD

(Ωf ;R):

(17) sup
0̸=u∈Lmax(2,m)(Ωf ;Rd)

1

∥u∥max(2,m)

∫
Ωf

u⊤∇p dx ≥ KLBB∥p∥W 1,min(2,m′)(Ωf )
, KLBB > 0.

Proof. The properties (i) and (ii) can be easily checked directly by the differentiation for

∂L
∂u

(u, p) = ∇p+Au+ β|u|m−2u,
∂2L
∂u2

(u, p) = A+ β|u|m−2I+ (m− 2)β|u|m−4uu⊤,

where uu⊤ implies the dyadic product. The property (iii) follows straightforwardly from (12) when using the
lower bounds in (8) and Hölder’s inequality for u⊤∇p. The estimate from below (17) is the consequence of

definition of the dual norm in the space Lmin(2,m′)(Ωf ;R), provided by the surjectivity of the mapping q 7→ ∇q :

W
1,min(2,m′)
ΓD

(Ωf ;R) 7→ Lmin(2,m′)(Ωf ;Rd), thus proving the property (iv). □

From Lemma 1 we derive the main theorem on existence.

Theorem 1 (solution existence). Under condition (14), there exists a unique saddle-point to the following
minimax problem: For given p0 from (6), find (u, p− p0) ∈ U(Ωf) satisfying

(18) L(u, q) ≤ L(u, p) ≤ L(v, p) for all (v, q) ∈ U(Ωf).

The pair (u, p) fulfills optimality conditions in the form of variational equations (9), (10), which imply a weak
solution to the generalized DF equations (3), (4) under boundary conditions (7). The following a-priori estimates
hold:
(19)

min
(
1,

1

K(m,2)

)
α∥u∥2 +min

(
1,

1

K(2,m)

)
β∥u∥m−1

m ≤ ∥∇p0∥min(2,m′), KLBB∥p∥W 1,min(2,m′)(Ωf )
≤ ∥∇p0∥min(2,m′),

where constants K(m,2), K(2,m′), α, β, and KLBB are from (5), (8), and (17).
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Proof. The mapping u 7→ L(u, p) is coercive by (16), convex by (15) and differentiable by (13), hence weakly
lower semi-continuous, see Theorem 1.7.[10] The linear mapping p 7→ L(u, p) satisfies the inf-sup condition (17).
These properties guarantee a solution to the nonlinear saddle-point problem (18),[18] which is unique due to the
strict convexity in (15). Applying the differential calculus (13) we arrive at the variational equations (9) and
(10).

Testing (9) with v = u, and (10) with admissible q = p0 − p, after their summation we have

(20) α∥u∥22 + β∥u∥mm ≤
∫
Ωf

(
u⊤Au+ β|u|m

)
dx = −

∫
Ωf

u⊤∇p0 dx ≤ ∥∇p0∥min(2,m′)∥u∥max(2,m),

where the lower bounds in (8) and Hölder’s inequality were used for the estimates from below and above. With
the help of continuous embeddings in (5), from (20) the two cases follow:

α∥u∥2 +
β

K(2,m)
∥u∥m−1

m ≤ ∥∇p0∥min(2,m′) for m < 2,
α

K(m,2)
∥u∥2 + β∥u∥m−1

m ≤ ∥∇p0∥min(2,m′) for m ≥ 2,

which combined together are the former inequality in (19). Inserting (10) with q = p− p0 into (17) estimates the
norms as

KLBB∥p∥W 1,min(2,m′)(Ωf )
≤ sup

0̸=u∈Lmax(2,m)(Ωf ;Rd)

1

∥u∥max(2,m)

∫
Ωf

u⊤∇p0 dx = ∥∇p0∥min(2,m′)

implying the latter inequality in (19). The proof is complete. □

The following corollary of Theorem 1 deals with the case of β = 0 in the uniform estimate of coefficients (8),
which needs m− 2 ≥ 0 in order to guarantee the fulfillment of assumption (14).

Corollary 1 (case β = 0). If m ≥ 2, then the lower bound β = 0 is admissible in (8) for the assertion of
Theorem 1.

We finish with few concluding remarks on further modeling perspectives.

4. Concluding remarks

The importance of Corollary 1 concerns the fact that, the inhomogeneous Forchheimer coefficient 0 ≤ β(x) ≤ β
is capable to describe a mixed laminar-turbulent model as follows. The laminar flow is described by Darcy’s law
in those x ∈ Ωf where β(x) = 0 (e.g., in the reservoir far from the fracture). Whereas the turbulent flow is
presented by Darcy–Forchheimer’s law in the complement x ∈ Ωf where β(x) > 0 (e.g., near the fracture).

The continuation of the model to a non-stationary one is given by replacing the continuity equation (3) with

(21)
∂p

∂t
+ γdiv(u) = 0,

where γ is the compressibility coefficient (in general, inhomogeneous). This implies the parabolic equations (4)
and (21) under mixed boundary conditions(7) and an initial condition for p, which constitute the evolutionary
Darcy–Forchheimer’s problem. The model is reasonable for the task of hydraulic fracturing.
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