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Abstract A class of non-smooth and non-convex optimization problems with penalty con-
straints linked to variational inequalities (VI) is studied with respect to its shape differ-
entiability. The specific problem stemming from quasi-brittle fracture describes an elastic
body with a Barenblatt cohesive crack under the inequality condition of non-penetration
at the crack faces. Based on the Lagrange approach and using smooth penalization with
the Lavrentiev regularization, a formula for the shape derivative is derived. The explicit
formula contains both primal and adjoint states and is useful for finding descent directions
for a gradient algorithm to identify an optimal crack shape from a boundary measurement.
Numerical examples of destructive testing are presented in 2D.

Keywords Shape optimization · Optimal control · Variational inequality · Penalization ·
Lagrange method · Lavrentiev regularization · Free discontinuity problem · Non-penetrating
crack · Quasi-brittle fracture · Destructive physical analysis

Mathematics Subject Classification (2000) 35R37 · 49J40 · 49Q10 · 74RXX

1 Introduction

We develop a shape derivative of geometry-dependent least-squares functions for a class
of non-smooth and non-convex optimization problems. The shape optimization problem
is constrained by a penalty equation linked to a variational inequality (VI). The specific
problem describes non-penetrating cracks with cohesion in the framework of quasi-brittle
fracture and destructive physical analysis (DPA).

Within the general theory for optimal control of VI [3,51], the main challenge consists
in the derivation of optimality conditions. It can be studied by proper approximation of VI
by regularized equations and taking the limit as the regularization parameter tends to zero.
The corresponding methods for optimal control of obstacle problems can be found in [7,25]
using augmented Lagrangians, in e.g. [27,30] for a Moreau–Yosida regularization, and in [52]
based on a Lavrentiev regularization, for the latter see [28,44]. Furthermore we cite [9,10]
for control of non-smooth and non-convex functionals, [43] for boundary control, and [22,58]
for control of quasi- and hemi-VI. Shape optimization for free-interface identification with
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obstacle-type VI using adjoints was developed recently by [18,48]. The common difficulty is
a lack of regularity that needs assumptions on a solution in order to take the limit [55].

Relying on linearized relations, a crack identification problem was treated e.g. in [6].
We can refer also to [1,24] for relevant shape optimization problems in acoustics, to [21]
in nonlinear flows subject to the divergence-free constraint, to [41] for over-determined and
to [23] for Bernoulli-type free boundary problems. In the case of non-penetrating cracks
(which are inequality-constrained), the shape differentiability of the bulk energy was proved
in [17,32] for rectilinear cracks and used for optimal shape design in [33,36,45,47]. For
curvilinear cracks, adopting the theorem of Correa–Seeger [12] on directional differentiability
of Lagrangians the shape derivative was derived in [38,40], and in [54] using Γ -convergence.

For the non-penetrating Barenblatt crack that we investigate here, the study of the
objective function and its optimal control with respect to the crack shape has a number of
challenging tasks that we address below. The subsequent Sections 3–7 follow Tasks (i)–(v),
which for convenience are summarized and explained in the following Sections 2.

2 Modeling tasks

Let t 7→ Ωt by a parameter (time)-dependent geometry with a crack Γt along an interface (the
breaking line) Σt. Denote by νt a normal vector to the surface Σt. Motivated by applications
in fracture mechanics (see e.g. [8]), we consider a total energy functional u 7→ E : V (Ωt) 7→ R,
which is given in a Hilbert space V (Ωt) by the sum

E(u;Ωt) = B(u;Ωt) + S([[u]];Σt), (2.1)

where the bulk term B is convex, typically, quadratic. The term S describes a surface energy
according to the Barenblatt idea of a cohesion zone and depends on the jump [[u]] expressing
a possible discontinuity across the interface Σt field u. The latter term is non-convex. The
condition of non-penetration (see [32,34]) for the normal opening νt · [[u]] ≥ 0 describes the
feasible set K(Ωt) ⊂ V (Ωt) which is a convex cone. For differentiable maps u 7→ E , the first
order optimality condition for the minimization of E(u;Ωt) over u ∈ K(Ωt) results in a VI

ut ∈ K(Ωt), ⟨∂uE(ut;Ωt), u− ut⟩ ≥ 0 for all u ∈ K(Ωt). (2.2)

It constitutes a non-convex problem for a solid with a non-penetrating crack (see [37]).

For comparison, the classic Griffith model of brittle fracture simplifies S to be constant,
and a crack Γt to be predefined at the interfaceΣt. This simplification results in a square-root
singularity of the displacement ut and infinite stress at the crack tip (front) ∂Γt. This is the
main disadvantage of the Griffith model, we refer to [11] for a discussion. A model, consistent
with the physics of quasi-brittle fracture for non-constant S, was suggested by Barenblatt
[4]. It takes into account the surface cohesion from the meso-level such that the interface
surfaces close in a smooth way, and thus allow healing of the crack. Indeed, after solving
problem (2.2) according to Barenblatt, the set of points where an opening [[ut]] ̸= 0 occurs,
determines the a-priori unknown crack Γt along the interface Σt. This is the complement to
the closed part of the interface where [[ut]] = 0.

The main challenge of the direct problem (2.2) concerns the term S in (2.1). From an
optimization point of view, minimization over feasible u ∈ K(Ωt) of E with a non-smooth
surface density [[u]] 7→ S (when not a C1-function) leads to a hemi-VI (2.2). The hemi-VI
approach was analyzed theoretically and numerically in [26,53] and used in [39,42,46] to
describe a quasi-static crack propagation. A quadratic function S describing adhesive cracks
was studied in [19]. In the present paper, we study C2-smooth surface energies S that are
small compared to the bulk term B in (2.1), see assumption (4.14) below, which is consistent
with meso-level modeling.
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Our ultimate aim is to identify the free-interface Σt by a shape optimization approach
as described in [20]. For this task, we introduce the VI-constrained least-squares misfit from
a given measurement z at an observation boundary ΓO

t :

J (ut;Ωt) =
1

2

∫
ΓO
t

|ut − z|2 dSx + ρ|Σt| such that ut solves (2.2), (2.3)

where the regularization uses parameter ρ > 0. This constitutes a nonsmooth–nonconvex
optimization problem.

Our current work focuses on the following tasks.

Task (i): C2-approximation of E. To provide a shape derivative of J defined in (2.3) a
continuously differentiable approximation of VI (2.2) is needed. The standard penalization
of non-penetration νt·[[u]] ≥ 0 by −[νt·[[u]]]−/ε has only C0-regularity. Here the regularization
parameter ε > 0 is small, and u = [u]+− [u]− implies the decomposition into positive [u]+ =
max(0, u) and negative [u]− = −min(0, u) parts. Therefore, we suggest a C1-penalization by
the normal compliance βϵ(νt · [[u]]) based on the Lavrentiev regularization (see Theorem 4.1).
This results in a C2-approximation of E for the ε-approximation of (2.1)–(2.3) by

J (uεt ;Ωt) =
1

2

∫
ΓO
t

|uεt − z|2 dSx + ρ|Σt|, where ∂εuE(uεt ;Ωt) = 0, (2.4)

and the penalty equation involves the operator ∂εuE introduced as follows

⟨∂εuE(u;Ωt), v⟩ := ⟨∂uE(u;Ωt), v⟩+
∫
Σt

βϵ(νt · [[u]]) (νt · [[v]]) dSx. (2.5)

Task (ii): adjoint-based optimality conditions. Applying to the penalty-constrained least-
square misfit (2.4) a Lagrange multiplier approach (see [31]), we can define an ε-dependent
Lagrangian (u, v) 7→ Lε : V (Ωt)

2 7→ R as

Lε(u, v;Ωt) = J (u;Ωt)− ⟨∂εuE(u;Ωt), v⟩. (2.6)

The primal (inf-sup) problem: for fixed vεt ∈ V (Ωt), find u
ε
t ∈ V (Ωt) such that

Lε(uεt , v;Ωt) ≤ Lε(uεt , v
ε
t ;Ωt) for all v ∈ V (Ωt). (2.7)

Since Lε is affine in v, the first order optimality condition is given by

uεt ∈ V (Ωt), ⟨∂εuE(uεt ;Ωt), u⟩ = 0 for all u ∈ V (Ωt).

The dual (sup-inf) problem (see [14, Chapter 6]) reads: for fixed uεt ∈ V (Ωt), find v
ε
t ∈ V (Ωt)

such that
Lε(uεt , v

ε
t ;Ωt) ≤ Lε(u, vεt ;Ωt) for all u ∈ V (Ωt).

Note that Lε with respect to u is not a linear continuous functional on the dual space
V (Ωt)

⋆.
The corresponding nonlinear optimization theory was developed in e.g. [31,50,59] as

follows. If the variation ∂u(∂
ε
uE) ∈ L (V (Ωt), V (Ωt)

⋆) with respect to u in (2.5) exists, and
the associated adjoint operator [∂u(∂

ε
uE)(uεt ;Ωt)]

⋆ ∈ L (V (Ωt), V (Ωt)
⋆) satisfying

⟨[∂u(∂εuE)(uεt ;Ωt)]
⋆v, u⟩ = ⟨∂u(∂εuE)(uεt ;Ωt)u, v⟩ for all u, v ∈ V (Ωt)

is surjective with respect to uεt , then the optimality condition is given by

vεt ∈ V (Ωt), ⟨[∂u(∂εuE)(uεt ;Ωt)]
⋆vεt , v⟩ = 0 for all v ∈ V (Ωt). (2.8)

For the abstract theory associated to adjoint operators we cite [15,29,49]. To justify (2.8),
we shall linearize ∂uE around the primal solution uεt to (2.7) (see Theorem 4.2) and suggest
a suitable linearized functional (u, v) 7→ L̃ε(0, uεt , u, v) : V (Ωt)

2 7→ R such that

L̃ε(0, uεt , u
ε
t , v;Ωt) = Lε(uεt , v;Ωt) for v ∈ V (Ωt). (2.9)
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Task (iii): shape derivative. Our purpose is to calculate a shape derivative of the mapping
t 7→ J (uεt ;Ωt) that is expressed by the one-sided limit (see [13,57]):

∂tJ (uεt ;Ωt) = lim
s→0+

1

s

(
J (uεt+s;Ωt+s)− J (uεt ;Ωt)

)
. (2.10)

If a saddle-point (uεt , v
ε
t ) ∈ V (Ωt)

2 based on (2.7) and (2.9) exists, then the optimal value
misfit function defined in (2.4) is evidently equal to the optimal value Lagrange function

L̃ε(0, uεt , u
ε
t , v

ε
t ;Ωt) = Lε(uεt , v

ε
t ;Ωt) = J (uεt ;Ωt)− ⟨∂εuE(uεt ;Ωt), v

ε
t ⟩ subject to

L̃ε(0, uεt , u
ε
t , v;Ωt) ≤ L̃ε(0, uεt , u

ε
t , v

ε
t ;Ωt) ≤ L̃ε(0, uεt , u, v

ε
t ;Ωt)

for all (u, v) ∈ V (Ωt)
2. (2.11)

Henceforth, we have the following identity for the shape derivative according to (2.10):

∂tJ (uεt ;Ωt) = ∂tL̃ε(0, uεt , u
ε
t , v

ε
t ;Ωt)

= lim
s→0+

1

s

(
L̃ε(s, uεt , u

ε
t+s, v

ε
t+s;Ωt)− L̃ε(0, uεt , u

ε
t , v

ε
t ;Ωt)

)
. (2.12)

In order to construct a proper L̃ε, using a diffeomorphic coordinate transformation y = ϕs(x)
such that ϕs : Ωt 7→ Ωt+s (see [57, Chapter 2]), the bijection V (Ωt+s) 7→ V (Ωt), u 7→ u ◦ ϕs
provides the perturbed Lagrangian as

L̃ε(s, u ◦ ϕs, u ◦ ϕs, v ◦ ϕs;Ωt) = Lε(u, v;Ωt+s) for (u, v) ∈ V (Ωt+s)
2. (2.13)

Then the results of Delfour–Zolesio [13] on shape differentiabiliy can be applied to justify
the limit in (2.12), see respective Theorem 5.1 and its Corollary 5.1.

Task (iv): limit as ε → 0+. Taking the limit as ε → 0+ in relations (2.11) we shall prove
the optimality conditions (see Theorem 6.1 and its Corollary 6.1). However, we cannot pass
to the limit in (2.12) due to the presence of the unbounded term β′

ε. We conjecture that
the limit problem (2.2) is not differentiable. This agrees with the assertion that VIs are not
Fréchet differentiable with respect to shape (see [47]). Therefore, in the numerical treatment
we rely on the approximation (2.12) with small ε > 0 for the shape derivative ∂tJ .

Task (v): shape optimization. Commonly adopted in shape optimization, the gradient method
needs a descent direction minimizing the objective map Ωt 7→ J such that ∂tJ < 0. This can
be attained by a proper choice of the transformation ϕs entering implicitly in formula (2.12)
(see Corollary 5.2). Realizing the optimization algorithm for crack shape identification, from
our numerical tests we report the following feature. Those parts of the crack faces which are
in contact (where the non-penetration constraint is active) are hidden from identification.
To identify a crack needs its faces to be open (that is, VI turns into unconstrained equation)
in accordance with the concept of destructive physical analysis (DPA).

3 Cohesive crack problem

We start with a detailed description of the geometry. Let Ω ⊂ Rd, d = 2, 3, be a fixed
hold-all domain with Lipschitz boundary ∂Ω. For the time-parameter t ∈ (t0, t1), t0 < t1,
we consider a parameter-dependent geometry Ωt = (ΓD

t , Γ
N
t , Γ

O
t , Σt) defined as follows.

For brevity we use a single notation Ωt for the collection of geometric objects describing a
broken domain Ω \Σt by means of the Dirichlet, Neumann, observation boundaries, and the
breaking line, respectively.

The outer boundary is split into two variable parts such that ∂Ω = ΓD
t ∪ ΓN

t and
ΓD
t ∩ ΓN

t = ∅ with normal vector nt outward to Ω. The observation boundary is ΓO
t ⊂ ΓN

t .
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The domain is split into two variable sub-domains Ω±
t with Lipschitz boundaries ∂Ω±

t and
outward normal vectors n±t such that n±t = nt at ∂Ω. The conditions ΓD

t ∩ ∂Ω+
t ̸= ∅ and

ΓD
t ∩ ∂Ω−

t ̸= ∅ are needed to guarantee the Korn–Poincare inequality. These two domains
are separated by a breaking manifold (the free-interface) Σt = ∂Ω+

t ∩ ∂Ω−
t with normal

direction νt = n−t = −n+t such that Ω = Ω+
t ∪ Ω−

t ∪ Σt. An example geometry of Ωt is
sketched in 2D in Figure 1. We assume that these geometric properties are preserved for all

ΓD
t

Ω+
t

Ω−
t

nt

ΓD
t

nt

ΓN
t

nt

ΓN
t

nt

Σt

νt

τt

Fig. 1 An example configuration of variable geometry Ωt in 2D.

t ∈ (t0, t1) under suitable shape perturbations, which we specify below in Section 5.
For fixed t, we consider a linear elastic body that occupies the disconnected domain

Ω \Σt = Ω+
t ∪Ω−

t . By this, d-dimensional vectors of displacement u(x) at points x ∈ Ω \Σt

admit discontinuity across Σt resulting in the jump [[u]] = u|Σt∩∂Ω+
t
−u|Σt∩∂Ω−

t
. For further

use we employ an orthogonal decomposition of admissible [[u]] into the normal component
with factor νt · [[u]] and the tangential vector [[u]]τt at the interface such that

[[u]] = (νt · [[u]])νt + [[u]]τt , νt · [[u]] ≥ 0 on Σt. (3.1)

The latter inequality in (3.1) describes the non-penetration, see [32].
The essential issue of modeling is to introduce a density at Σt for the surface energy S

in (2.1) that is consistent with physics. Based on the decomposition (3.1), we set

S([[u]];Σt) =

∫
Σt

{
αf([[u]]τt) + αc(νt · [[u]])

}
dSx. (3.2)

The former, shear-induced term in (3.2), is associated with friction between the crack sur-
faces. Let the mapping ξ 7→ αf(ξ) : Rd 7→ R, and its first and second derivatives be uniformly
continuous functions, satisfying for constants Kf ,Kf1,Kf2 ≥ 0 and all ξ,

−Kf |ξ| ≤ αf(ξ), |∇αf(ξ)| ≤ Kf1, |∇2αf(ξ)| ≤ Kf2. (3.3)

For example, we have in mind a standard regularization of the Coulomb law (see e.g. [56,
Section 4.3.3]) with the positive, convex function

αf(ξ) = Fb

√
δ2 + |ξ|2, (3.4)

where δ > 0 is small, and Fb > 0 is the friction bound. In this case, Kf = 0, Kf1 = Fb, and
Kf2 = Fb/δ. For convenience, the function αf(s) in one variable s ∈ R together with its first
two derivatives are depicted in Figure 2.

The latter term in (3.2) associates cohesion between the crack surfaces. Let s 7→ αc(s) :
R 7→ R and its second derivative be uniformly continuous functions, and let there exist
constant Kc,Kc1,Kc2 ≥ 0 such that

−Kc|s| ≤ αc(s), |α′
c(s)| ≤ Kc1, |α′′

c (s)| ≤ Kc2. (3.5)
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αf(s)

s
0

δ

α′
f(s)

s0

−Kf1

Kf1
α′′
f (s)

s
0

Kf2

Fig. 2 Example graphics of αf , α
′
f , α

′′
f in 1d.

From the physics literature (e.g. [35]) we suggest the following generic function

αc(s) = Kc
s

κ+ |s|m
, (3.6)

where Kc > 0 is related to the fracture toughness, and κ > 0, m ≥ 1 are parameters. In this
case, Kc1 and Kc2 are proportional to Kc. The example of αc, α

′
c, α

′′
c for m = 4 is depicted

in Figure 3. In particular, the left plot in Figure 3 depicts the typical softening phenomenon

αc(s)

s
0

α′
c(s)

s
0

−Kc1

Kc1

α′′
c (s)

s
0

−Kc2

Kc2

Fig. 3 Example graphics of αc, α′
c, α

′′
c as κ = 1 and m = 4.

for growing s. It is worth noting that the left branch of αc(νt · [[u]]) for νt · [[u]] < 0 implies a
normal compliance and it is avoided when the non-penetration νt · [[u]] ≥ 0 in (3.1) holds.

The symmetric d-by-d tensors of linearized strain ϵ and the Cauchy stress σ are given by

ϵ(u) =
1

2
(∇u+∇u⊤), σ(u) = Cϵ(u), (3.7)

where (∇u) = (∂ui/∂xj) for i, j = 1, . . . , d, the transposition ( · )⊤ swaps columns for rows.
A symmetric fourth order tensor of elastic coefficients C(x) ∈ W 1,∞(Ω)d×d×d×d, such that
Cijkl = Cjikl = Cklij for i, j, k, l = 1, . . . , d, is positive definite and fulfills the Korn–Poincare
inequality: there exists KKP > 0 such that∫

Ω\Σt

σ(u) · ϵ(u) dx ≥ KKP∥u∥2H1(Ω\Σt)d
for u ∈ V (Ωt). (3.8)

over the Sobolev space

V (Ωt) = {u ∈ H1(Ω+
t )d ∩H1(Ω−

t )d| u = 0 on ΓD
t }. (3.9)

For a boundary traction vector g ∈ H1(∂Ω)d, we consider the following bulk energy

B(u;Ωt) =
1

2

∫
Ω\Σt

σ(u) · ϵ(u) dx−
∫
ΓN
t

g · u dSx. (3.10)
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The feasible set corresponding to the non-penetration condition in (3.1) reads

K(Ωt) = {u ∈ V (Ωt)| νt · [[u]] ≥ 0 on Σt}, (3.11)

which is a convex, closed cone.

Theorem 3.1 (Well-posedness of cohesive crack problem) There exists a solution to
the non-convex, constrained minimization problem: find ut ∈ K(Ωt) such that

E(ut;Ωt) = min
u∈K(Ωt)

E(u;Ωt), (3.12)

where the total energy E according to (3.2) and (3.10) is given by

E(u;Ωt) =
1

2

∫
Ω\Σt

σ(u) · ϵ(u) dx−
∫
ΓN
t

g · u dSx +

∫
Σt

{
αf([[u]]τt)+αc(νt · [[u]])

}
dSx. (3.13)

The solution satisfies the first-order optimality condition (2.2) in the form of VI:∫
Ω\Σt

σ(ut) · ϵ(u− ut) dx+

∫
Σt

{
∇αf([[ut]]τt) · [[u− ut]]τt

+ α′
c(νt · [[ut]]) (νt · [[u− ut]])

}
dSx ≥

∫
ΓN
t

g · (u− ut) dSx (3.14)

for all test functions u ∈ K(Ωt). For smooth solutions the boundary value relations hold:

div σ(ut) = 0 in Ω \Σt,

ut = 0 on ΓD
t , σ(ut)n = g on ΓN

t ,

[[σ(ut)νt]] = 0, (σ(ut)νt)τt = ∇αf([[ut]]τt),

νt · [[ut]] ≥ 0, νt · (σ(ut)νt) ≤ α′
c(νt · [[ut]]),

(νt · [[ut]])
{
νt · (σ(ut)νt)− α′

c(νt · [[ut]])
}
= 0 on Σt, (3.15)

for the decomposition of vector σ(ut)νt =
(
νt · (σ(ut)νt)

)
νt + (σ(ut)νt)τt according to (3.1).

The last two lines in (3.15) are the complementarity conditions. If both αf and αc were
convex (that is not αc in (3.6)), then the solution ut to (3.12) and (3.14) would be unique.

Proof On the right-hand side of (3.13), the first, quadratic in u integral term over Ω \
Σt, is strongly positive by the Korn–Poincare inequality (3.8). Using the Cauchy–Schwarz
inequality, the other boundary integral terms over Σt and Γ

N
t are bounded from below by a

sub-linear in u function∫
Σt

{
αf([[u]]τt) + αc(νt · [[u]])

}
dSx −

∫
ΓN
t

g · u dSx

≥ −
(
Kf∥[[u]]τt∥L2(Σt)d +Kc∥νt · [[u]]∥L2(Σt)

)√
|Σt| − ∥g∥L2(ΓN

t )d∥u∥L2(ΓN
t )d (3.16)

by virtue of the properties for αf , αc in (3.3), (3.5). Therefore, estimating the jump by
∥[[u]]∥2L2(Σt)

≤ 2∥u∥2
L2(Σt∩∂Ω+

t )
+ 2∥u∥2

L2(Σt∩∂Ω−
t )

and applying the trace inequality we have

∥u∥L2(∂Ω±
t )d ≤ ∥u∥H1/2(∂Ω±

t )d ≤ Ktr∥u∥H1(Ω±
t )d , u ∈ H1(Ω±

t )d. (3.17)

Then we get that E is radially unbounded, and thus coercive. The functions αf and αc are
uniformly continuous, hence preserving L2-convergence (see [5]). Using the compactness of
the embedding of the traces of u at Σt ∩ ∂Ω±

t , from H1(Ω±
t ) into L2(∂Ω±

t ), it follows that
the mapping u 7→ E(u) from V (Ωt) 7→ R is weakly lower semi-continuous.

Let {un}, n ∈ N, be an infimal sequence in K(Ωt). The coercivity of E implies the
boundedness of {un} in V (Ωt). Then, on a subsequence {unk}, there exists an accumulation
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point ut such that unk ⇀ ut weakly in H1(Ω\Σt)
d as nk → ∞. By weak closedness of K(Ωt)

we have ut ∈ K(Ωt). Taking the limit inferior of E(unk), the weak lower semi-continuity of
E implies that ut attains the minimum in (3.12). Applying standard variational arguments
implies the optimality condition (3.14) and (3.15), see details in [32, Section 1.4]. Moreover,
if αf , αc were convex, then the integral over Σt in (3.13) is monotone. This would lead
to uniqueness of ut as solution to (3.14), which is then necessarily the unique solution for
(3.12). ⊓⊔

Next we approximate the VI (3.14) by a penalty method. By itself penalization is a
self-contained physical model allowing compliance, see [2] for the discussion.

4 Lavrentiev based regularization and saddle-point problem

Let ε0 > 0. For ε ∈ (0, ε0), the standard penalization of the inequality constraint s ≥ 0 by
−[s]−/ε has only a generalized derivative H(−s)/ε, where H is the Heaviside step function
such that H(s) = 1 for s > 0, otherwise H(s) = 0 for s ≤ 0. We suggest a Lavrentiev based
C1-regularization by the normal compliance βε as follows. Let the function s 7→ βε(s) : R 7→
R be concave and differentiable, with β and β′ uniformly continuous, and let there exist
Kβ ,Kβ1 ≥ 0 such that

∣∣βϵ(s) + [s]−

ε

∣∣ ≤ Kβ , 0 ≤ β′
ϵ(s) ≤

Kβ1

ε
. (4.1)

We assume that the following conditions hold, which describe relaxed complementarity and
compliance, respectively:

βϵ(s)[s]
+ ≥ −εKβ , βϵ(s)[s]

− ≤ − ([s]−)2

ε
+ εKβ . (4.2)

For example, we construct the following mollification of minimum function

s
−ε ε

0

−1

βϵ(s)

s
−ε ε0

1
ε

β′ϵ(s)

s
−ε ε0

β′′ϵ (s)

Fig. 4 Example graphics of βε, β′
ε, β

′′
ε for fixed ε.

βϵ(s) =


s/ε for s < −ε
− exp

(
2(s+ ε)/(s− ε)

)
for − ε ≤ s < ε

0 for s ≥ ε

(4.3)

which is depicted in Figure 4 together with its two derivatives.

Lemma 4.1 For βε from (4.3), the properties (4.1) and (4.2) hold true with Kβ = Kβ1 = 1.
Moreover, β′′

ε ≤ 0 implies that β′
ε ≥ 0 decreases monotonically, and βε ≤ 0 is concave and

increases monotonically.
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Proof The properties (4.1) can be easily checked. To verify the first inequality in (4.2), from
(4.3) we deduce that βϵ(s)[s]

+ = 0 for s ≥ ε. Here we use the complementary condition
[s]−[s]+ = 0 and [s]+ = 0 for s < 0. We further have βϵ(s) ≥ −[s]−/ε−Kβ according to the
first estimate in (4.1). Henceforth, after multiplication with [s]+ ∈ [0, ε), the lower bound
βϵ(s)[s]

+ ≥ −εKβ holds for 0 ≤ s < ε.
Similarly, βϵ(s)[s]

− = −([s]−)2/ε for s < −ε in (4.3), and βϵ(s)[s]
− = 0 due to [s]− = 0

for s ≥ 0. The first estimate in (4.1), that is βϵ(s) ≤ −[s]−/ε+Kβ , after multiplication with
[s]− ∈ (0, ε] leads to the upper bound βϵ(s)[s]

− ≤ −([s]−)2/ε + εKβ for −ε ≤ s < 0. This
proves the second inequality in (4.2). ⊓⊔

Using Lemma 4.1 we obtain the existence result for the penalized cohesive crack problem.

Theorem 4.1 (Well-posedness of ε-regularized cohesive crack problem) There ex-
ists a solution to the penalty problem: find uεt ∈ V (Ωt) such that∫

Ω\Σt

σ(uεt ) · ϵ(u) dx+

∫
Σt

{
∇αf([[u

ε
t ]]τt) · [[u]]τt

+ [α′
c + βε](νt · [[uεt ]]) (νt · [[u]])

}
dSx =

∫
ΓN
t

g · u dSx (4.4)

for all test functions u ∈ V (Ωt). For smooth solutions the boundary value relations hold:

div σ(uεt ) = 0 in Ω \Σt,

uεt = 0 on ΓD
t , σ(uεt )n = g on ΓN

t ,

[[σ(uεt )νt]] = 0, (σ(uεt )νt)τt = ∇αf([[u
ε
t ]]τt), νt · (σ(uεt )νt) = [α′

c + βε](νt · [[uεt ]]) on Σt. (4.5)

If both ∇αf and α
′
c were monotone, then the solution uεt to (4.4) would be unique.

Proof We apply arguments similar to those in the proof of Theorem 3.1. From the properties
of ∇αf in (3.3), and α′

c from (3.5), the fact that βϵ(s)s ≥ ([s]−)2/ε − 2εKβ by (4.2), and
using the Cauchy–Schwarz, Korn–Poincare (3.8), and trace inequalities (3.17), similarly to
(3.16) we deduce the uniform lower bound∫

Ω\Σt

σ(u) · ϵ(u) dx+

∫
Σt

{
∇αf([[u]]τt) · [[u]]τt + [α′

c + βε](νt · [[u]]) (νt · [[u]])
}
dSx

−
∫
ΓN
t

g · u dSx ≥ KKP∥u∥2H1(Ω\Σt)d
−Ktfc1∥u∥H1(Ω\Σt)d − 2εKβ |Σt|, (4.6)

where
Ktfc1 :=

(
∥g∥L2(ΓN

t )d + (Kf1 +Kc1)
√
2|Σt|

)
Ktr. (4.7)

Therefore, the operator associated to (4.4), denoted following (2.5) by ∂εuE : V (Ωt) 7→
V (Ωt)

⋆, is coercive. We have ∇αf and [α′
c+βε] are uniformly continuous, and thus preserve

L2-convergence, the operator ∂εuE is weakly continuous in the following sense. If un ⇀ ut
weakly in H1(Ω\Σt)

d as n→ ∞ (hence un → ut strongly in L2(∂Ω∪Σ±
t )d by compactness),

then for each u ∈ V (Ωt) the following convergence holds∫
Ω\Σt

σ(un) · ϵ(u) dx+

∫
Σt

{
∇αf([[u

n]]τt) · [[u]]τt + [α′
c + βε](νt · [[un]]) (νt · [[u]])

}
dSx

→
∫
Ω\Σt

σ(ut) · ϵ(u) dx+

∫
Σt

{
∇αf([[ut]]τt) · [[u]]τt + [α′

c + βε](νt · [[ut]]) (νt · [[u]])
}
dSx.

Therefore, applying a Galerkin approximation and the Brouwer fixed point theorem (see
[16]), a solution to the variational problem (4.4) can be argued. Its uniqueness under the
monotony assumption (that is not α′

c in (3.6)), and the boundary value formulation (4.5)
can be derived in a standard way. ⊓⊔
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Next, for a given observation z ∈ H1(∂Ω)d, we consider the ε-dependent least-squares
misfit function from (2.4), where uεt satisfies (4.4):

J (uεt ;Ωt) =
1

2

∫
ΓO
t

|uεt − z|2 dSx + ρ|Σt|. (4.8)

From the fundamental theorem of calculus, we have the following representations

∇αf([[u]]τt) =

∫ 1

0

∇2αf([[ru]]τt) [[u]]τt dr +∇αf(0),

[α′
c + βε](νt · [[u]]) =

∫ 1

0

[α′′
c + β′

ε](νt · [[ru]]) (νt · [[u]]) dr + [α′
c + βε](0) (4.9)

for differentiable ∇αf , α
′
c, βε. Let us fix a solution uεt to the variational equation (4.4). Based

on (4.9) we introduce a quadratic Lagrangian (compare to Lε in (2.6)) linearized around uεt

L̃ε(0, uεt , u, v;Ωt) =
1

2

∫
ΓO
t

|u− z|2 dSx + ρ|Σt| −
∫
Ω\Σt

σ(u) · ϵ(v) dx+

∫
ΓN
t

g · v dSx

−
∫
Σt

{(∫ 1

0

∇2αf([[ru
ε
t ]]τt) [[u]]τt dr +∇αf(0)

)
· [[v]]τt

+
(∫ 1

0

[α′′
c + β′

ε](νt · [[ruεt ]]) (νt · [[u]]) dr + [α′
c + βε](0)

)
(νt · [[v]])

}
dSx, (4.10)

and a saddle point problem corresponding to (2.11): for all (u, v) ∈ V (Ωt)
2,

L̃ε(0, uεt , u
ε
t , v;Ωt) ≤ L̃ε(0, uεt , u

ε
t , v

ε
t ;Ωt) ≤ L̃ε(0, uεt , u, v

ε
t ;Ωt). (4.11)

Then (4.8) can be expressed equivalently in the primal-dual form (2.11) as

J (uεt ;Ωt) = L̃ε(0, uεt , u
ε
t , v

ε
t ;Ωt), (4.12)

where according to (4.9) the optimal value of the Lagrangian at the solution is

L̃ε(0, uεt , u
ε
t , v

ε
t ;Ωt) =

1

2

∫
ΓO
t

|uεt − z|2 dSx + ρ|Σt| −
∫
Ω\Σt

σ(uεt ) · ϵ(vεt ) dx+
∫
ΓN
t

g · vεt dSx

−
∫
Σt

{
∇αf([[u

ε
t ]]τt) · [[vεt ]]τt + [α′

c + βε](νt · [[uεt ]]) (νt · [[vεt ]])
}
dSx. (4.13)

Theorem 4.2 (Well-posedness of ε-regularized saddle-point problem) Assume that
the cohesion is small in the sense that constant Kf2,Kc2 in (3.3), (3.5) are sufficiently small
so that

Kfc2 := KKP − (Kf2 +Kc2)2K
2
tr > 0, (4.14)

where KKP, Ktr are from (3.8), (3.17). Then there exists a unique saddle-point (uεt , v
ε
t ) ∈

V (Ωt)
2 in (4.11). Its primal component uεt solves (4.4). The dual component vεt is a solution

to the adjoint equation corresponding to fixed uεt :

⟨Aε(u
ε
t )v, v

ε
t ⟩ :=

∫
Ω\Σt

σ(v) · ϵ(vεt ) dx+

∫
Σt

∫ 1

0

{(
∇2αf([[ru

ε
t ]]τt) [[v]]τt

)
· [[vεt ]]τt

+ [α′′
c + β′

ε](νt · [[ruεt ]]) (νt · [[v]])(νt · [[vεt ]])
}
dr dSx =

∫
ΓO
t

(uεt − z) · v dSx (4.15)
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for all test functions v ∈ V (Ωt). For smooth solutions the boundary value relations hold:

div σ(vεt ) = 0 in Ω \Σt,

vεt = 0 on ΓD
t , σ(vεt )n = uεt − z on ΓO

t , σ(vεt )n = 0 on ΓN
t \ ΓO

t ,

[[σ(vεt )νt]] = 0, (σ(vεt )νt)τt =

∫ 1

0

∇2αf([[ru
ε
t ]]τt) [[v

ε
t ]]τt dr,

νt · (σ(vεt )νt) =
∫ 1

0

[α′′
c + β′

ε](νt · [[ruεt ]]) (νt · [[vεt ]]) dr on Σt (4.16)

implying linear, Robin-type boundary conditions at the interface.

Proof The saddle-point problem consists of two sub-problems: the former and the latter
inequalities in (4.11). Since the Lagrangian L̃ε from (4.10) is linear in v, the primal maxi-
mization problem (the former inequality in (4.11)) is equivalent to the first order optimality
condition (4.4). Its solvability is proven in Theorem 4.1. Since L̃ε from (4.10) is quadratic and
convex in u, the dual minimization problem (the latter inequality in (4.11)) is the optimality
condition expressed by the adjoint equation (4.15).

Now we prove the solution existence for (4.15). For fixed uεt , the left-hand side of (4.15)
forms a linear continuous operator Aε(u

ε
t ) : V (Ωt) 7→ V ⋆(Ωt). Indeed, using the Cauchy–

Schwarz inequality and the upper bounds for ∇2αf , α
′′
c , β

′
ε in (3.3), (3.5), (4.1), the operator

is bounded from above, hence continuous. Recalling the symmetry of the elasticity coeffi-
cients C and the Hessian matrix ∇2αf , the operator is self-adjoint. Applying the Cauchy–
Schwarz, Korn–Poincare (3.8) and trace inequalities (3.17), due to the boundedness of ∇2αf ,
α′′
c , β

′
ε ≥ 0 in (3.3), (3.5), (4.1), similarly to (4.6), we estimate uniformly from below

⟨Aε(u
ε
t )u, u⟩ ≥ KKP∥u∥2H1(Ω\Σt)d

−
∫
Σt

{
Kf2

∣∣[[u]]τt∣∣2 +Kc2

∣∣νt · [[u]]∣∣2} dSx

≥ Kfc2∥u∥2H1(Ω\Σt)d
. (4.17)

Here Kfc2 > 0 due to assumption (4.14). In this case, Aε(u
ε
t ) is uniformly positive. Because

∇2αf and [α′′
c + β′

ε] are assumed uniformly continuous, they preserve L2-convergence, and
the operator Aε(u

ε
t ) is weakly lower semi-continuous by the compactness similar to argu-

ments presented in the proof of Theorem 4.1. According to the Lax–Milgram theorem, the
variational equation (4.15) has a unique solution. We derive straightforwardly its boundary
value formulation (4.16).

Since the variational equation (4.4) can be rewritten in the equivalent form

⟨Aε(u
ε
t )u

ε
t , u⟩+

∫
Σt

(
∇αf(0) · [[u]]τt + [α′

c + βε](0)(νt · [[u]])
)
dSx =

∫
ΓN
t

g · u dSx

for all u ∈ V (Ωt), by assumption (4.14) its solution uεt is unique, too. ⊓⊔

5 Shape derivative

Let us fix a flow and its inverse

s 7→ (ϕs, ϕ
−1
s ) ∈ C1([t0 − t1, t1 − t0];W

1,∞(Ω)d)2. (5.1)

This defines an associated coordinate transformation y = ϕs(x) and its inverse x = ϕ−1
s (y).

For every fixed t ∈ (t0, t1), we suppose that for s ∈ [t0, t1]− t it forms a diffeomorphism

ϕs : Ωt 7→ Ωt+s, x 7→ y, ϕ−1
s : Ωt+s 7→ Ωt, y 7→ x, (5.2)
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where the perturbed geometry Ωt+s = (ΓD
t+s, Γ

N
t+s, Γ

O
t+s, Σt+s) describes the broken domain

Ω \ Σt+s. From (5.1), a time-dependent kinematic velocity Λ(t, x) ∈ C([t0, t1];W
1,∞(Ω)d)

is assumed defined by the formula

Λ(t+ s, y) := d
dsϕs(ϕ

−1
s (y)). (5.3)

If a stationary velocity is given explicitly by Λ(x) ∈ W 1,∞(Ω)d with n · Λ = 0 at ∂Ω, thus
preserving the hold-all domain, then Λ determines the flow (5.1) by unique solutions to the
autonomous ODE systems:{

d
dsϕs = Λ(ϕs) for s ̸= 0,

ϕs = x for s = 0,

{
d
dsϕ

−1
s = −Λ(ϕ−1

s ) for s ̸= 0,
ϕ−1
s = y for s = 0,

(5.4)

which build a semi-group of transformations.
The following properties (T1)–(T4) are needed to prove shape differentiability.

(T1) We assume that the map u 7→ u ◦ ϕs is bijective between the function spaces

V (Ωt+s) 7→ V (Ωt). (5.5)

Based on assumption (5.5), the perturbed objective (t0 − t, t1 − t)× V (Ωt), (s, ũ) 7→ J̃
and Lagrangian (t0−t, t1−t)×V (Ωt)

2, (s, ũ, ṽ) 7→ L̃ε, are well-defined for (u, v) ∈ V (Ωt+s)
2

when transformed to the reference geometry Ωt by setting

J̃ (s, u ◦ ϕs;Ωt) = J (u;Ωt+s), L̃ε(s, u ◦ ϕs, u ◦ ϕs, v ◦ ϕs;Ωt) = Lε(u, v;Ωt+s). (5.6)

At s = 0 relations (5.6) imply that for (ũ, ṽ) ∈ V (Ωt)
2

J̃ (0, ũ;Ωt) = J (ũ;Ωt), L̃ε(0, ũ, ũ, ṽ;Ωt) = Lε(ũ, ṽ;Ωt). (5.7)

According to (2.11) we look for a saddle-point (ũεt+s, ṽ
ε
t+s) ∈ V (Ωt)

2 satisfying the inequal-
ities

L̃ε(s, uεt , ũ
ε
t+s, ṽ;Ωt) ≤ L̃ε(s, uεt , ũ

ε
t+s, ṽ

ε
t+s;Ωt) ≤ L̃ε(s, uεt , ũ, ṽ

ε
t+s;Ωt) (5.8)

for all (ũ, ṽ) ∈ V (Ωt)
2. In the case of J from (4.8), applying the coordinate transformation

(5.2) we derive explicitly the objective function

J̃ (s, ũ;Ωt) =
1

2

∫
ΓO
t

|ũ− z ◦ ϕs|2 ωb
sdSx + ρ

∫
Σt

ωb
s dSx, (5.9)

where
ωd
s := det(∇ϕs) in Ω \Σt, ωb

s := |(∇ϕ−⊤
s ◦ ϕs)n±t |ωd

s at ∂Ω±
t (5.10)

denote the Jacobians, and set the perturbed Lagrangian according to (4.10) as

L̃ε(s, uεt , ũ, ṽ;Ωt) = J̃ (s, ũ;Ωt)

−
∫
Ω\Σt

(
(C ◦ ϕs)E(∇ϕ−1

s ◦ ϕs, ũ) · E(∇ϕ−1
s ◦ ϕs, ṽ)

)
ωd
sdx+

∫
ΓN
t

(g ◦ ϕs) · ṽ ωb
sdSx

−
∫
Σt

{(∫ 1

0

∇2αf([[ru
ε
t ]]τt)[[ũ]]τ̃t+s dr +∇αf(0)

)
· [[ṽ]]τ̃t+s

+
(∫ 1

0

[α′
c + βε](νt · [[ruεt ]])(ν̃t+s · [[ũ]]) dr + [α′

c + βε](0)
)
(ν̃t+s · [[ṽ]])

}
ωb
sdSx. (5.11)

In (5.11), the following decomposition at Σt was used in accordance with (3.1):

[[ũ]]τ̃t+s
:= [[ũ]]− (ν̃t+s · [[ũ]]) ν̃t+s, ν̃t+s := νt+s ◦ ϕs. (5.12)

Further in view of the chain rule ∇yu = (∇ϕ−T
s ◦ϕs)∇(u ◦ϕs), there appears the expression

E(M, ũ) :=
1

2
(M⊤∇ũ+∇ũ⊤M), M ∈ Rd×d, (5.13)

for which E(I, ũ) = ϵ(ũ) according to (3.7). For more details of the derivation, see [38,40,
41].
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Lemma 5.1 (T2) The asymptotic expansion in the first argument of J̃ from (5.9) is given
by

J̃ (s, ũ;Ωt) = J (ũ;Ωt) + O(|s|), (5.14)

and the expansion of L̃ε from (5.11) by:

L̃ε(s, uεt , ũ, ṽ;Ωt) = L̃ε(0, uεt , ũ, ṽ;Ωt) + s ∂
∂s L̃

ε(0, uεt , ũ, ṽ;Ωt) + o(|s|) (5.15)

holds as s → 0. The partial derivative (t0, t1) − t 7→ R, τ 7→ ∂
∂s L̃

ε in (5.15) is a continuous
function and exhibits the explicit representation

∂
∂s L̃

ε(τ, uεt , ũ, ṽ;Ωt) =

∫
ΓO
t

(1
2
divτtΛ|t+τ |ũ−z|2−∇zΛ|t+τ ·(ũ−z)

)
dSx+ρ

∫
Σt

divτtΛ|t+τdSx

−
∫
Ω\Σt

((
divΛ|t+τC +∇CΛ|t+τ

)
ϵ(ũ) · ϵ(ṽ)− σ(ũ) ·E(∇Λ|t+τ , ṽ)− σ(ṽ) ·E(∇Λ|t+τ , ũ)

)
dx

+

∫
ΓN
t

(
divτtΛ|t+τg +∇g Λ|t+τ

)
· ṽ dSx −

∫
Σt

{∫ 1

0

(
∇2αf([[ru

ε
t ]]τt) [[ũ]]∇τtΛ|t+τ

)
· [[ṽ]]τtdr

+
(∫ 1

0

∇2αf([[ru
ε
t ]]τt) [[ũ]]τtdr +∇αf(0)

)
·
(
divτtΛ|t+τ [[ṽ]]τt + [[ṽ]]∇τtΛ|t+τ

)
+
(∫ 1

0

[α′′
c + β′

ε](νt · [[ruεt ]]) (νt · [[ũ]]) dr + [α′
c + βε](0)

)(
(divτtΛ|t+τνt +∇νtΛ|t+τ ) · [[ṽ]]

)
+

∫ 1

0

[α′′
c + β′

ε](νt · [[ruεt ]])
(
∇νtΛ|t+τ · [[ũ]]

)
(νt · [[ṽ]]) dr

}
dSx. (5.16)

In (5.16) the notation ∇τtΛ and ∇νtΛ at Σt stands for

[[ũ]]∇τtΛ := −(νt · [[ũ]])∇νtΛ− (∇νtΛ · [[ũ]])νt, ∇νtΛ :=
(
(∇Λνt) · νt

)
νt −∇Λ⊤νt, (5.17)

and the tangential divergence is defined as

divτtΛ = divΛ− (∇Λn±t ) · n±t at ∂Ω±
t . (5.18)

The proof of Lemma 5.1 is presented in Appendix A.

Lemma 5.2 (T3) The set of saddle points (ũεt+s, ṽ
ε
t+s) for (5.8) is a singleton for all s ∈

[t0, t1]− t, and (ũεt , ṽ
ε
t ) = (uεt , v

ε
t ) as s = 0.

The proof is given in in Appendix B and follows the arguments in the proof of Theo-
rem 4.2, which treats a particular case of the saddle-point problem (5.8) as s = 0.

Lemma 5.3 (T4) There exists a subsequence sk → 0 as k → ∞, such that

(ũεt+sk
, ṽεt+sk

) → (uεt , v
ε
t ) strongly in V (Ωt)

2 as sk → 0. (5.19)

The proof of Lemma 5.3 is technical. It is presented in Appendix C.

Based on the properties (T1)–(T4) we establish the main result of this section.

Theorem 5.1 (Shape differentiability of ε-regularized optimization problem) Un-
der assumption (4.14), the shape derivative (see its definition (2.10) and existence criterion
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(2.12)) can be expressed by the partial derivative from (5.16) as

∂tJ (uεt ;Ωt) =
∂
∂s L̃

ε(0, uεt , u
ε
t , v

ε
t ;Ωt) =

∫
ΓO
t

(1
2
divτtΛ |uεt − z|2 −∇zΛ · (uεt − z)

)
dSx

−
∫
Ω\Σt

((
divΛC +∇CΛ

)
ϵ(uεt ) · ϵ(vεt )− σ(uεt ) · E(∇Λ, vεt )− σ(vεt ) · E(∇Λ, uεt )

)
dx

+

∫
ΓN
t

(
divτtΛg +∇g Λ

)
· vεt dSx −

∫
Σt

{
∇αf([[u

ε
t ]]τt) ·

(
divτtΛ [[vεt ]]τt + [[vεt ]]∇τtΛ

)
+

∫ 1

0

(
∇2αf([[ru

ε
t ]]τt) [[u

ε
t ]]∇τtΛ

)
· [[vεt ]]τtdr + [α′

c + βε](νt · [[uεt ]])
(
(divτtΛνt +∇νtΛ) · [[vεt ]]

)
+

∫ 1

0

[α′′
c + β′

ε](νt · [[ruεt ]])
(
∇νtΛ · [[uεt ]]

)
(νt · [[vεt ]]) dr

}
dSx + ρ

∫
Σt

divτtΛdSx, (5.20)

where (uεt , v
ε
t ) ∈ V (Ωt)

2 is a saddle-point to (4.11).

Proof Indeed, due to (T1)–(T4) all assumptions in Delfour–Zolesio [13, Chapter 10, Theo-
rem 5.1] are satisfied. Details of the proof can be found in [41]. ⊓⊔

Corollary 5.1 (Hadamard representation of the ε-dependent shape derivative)
Assume that the solution of (4.4) and (4.15) satisfies (uεt , v

ε
t ) ∈ H2(Ω+

t )2d ∩ H2(Ω−
t )2d.

Introducing the decomposition into normal and tangential components according to

Λ = (nt · Λ)nt + Λτt , ∇ = (nt · ∇)nt +∇τt , D = (nt · D)nt +Dτt , (5.21)

the following equivalent representation of the shape derivative (5.20) holds in terms of bound-
ary integrals in 2D:

∂
∂s L̃

ε(0, uεt , u
ε
t , v

ε
t ;Ωt)

=

∫
ΓD
t

(τt · Λ)τt · D1(u
ε
t , v

ε
t ) dSx +

∫
Σt

(
(τt · Λ)τt · Dε

2(u
ε
t , v

ε
t ) + (νt · Λ)Dε

3(u
ε
t , v

ε
t )
)
dSx

+ (τt · Λ)[[Dε
4(u

ε
t , v

ε
t )]]∂Σt

+ (τt · Λ)D5(u
ε
t )|∂ΓO

t
+ (τt · Λ)[[D6(v

ε
t )]]∂ΓN

t ∩Σt
, (5.22)

where τt is a tangential vector at the boundary, and in 3D:

=

∫
ΓD
t

Λτt · D1(u
ε
t , v

ε
t )τtdSx +

∫
Σt

(
Λτt · Dε

2(u
ε
t , v

ε
t )τt + (νt · Λ)Dε

3(u
ε
t , v

ε
t )
)
dSx

+

∫
∂Σt

(bt · Λ)[[Dε
4(u

ε
t , v

ε
t )]]dLx +

∫
∂ΓO

t

(bt · Λ)D5(u
ε
t )dLx +

∫
∂ΓN

t ∩Σt

(bt · Λ)[[D6(v
ε
t )]]dLx, (5.23)

where bt = τt × nt is a binomial vector within the moving frame at the respective boundary.
The terms in (5.22) and (5.23) are

D1(ũ, ṽ) := ∇ũ⊤σ(ṽ)nt +∇ṽ⊤σ(ũ)nt, Dε
2(ũ, ṽ) := −[qf + qεc ]τt(ũ, ṽ),

Dε
3(ũ, ṽ) := [[σ(ũ) · ϵ(ṽ)]] + ρκt − κt[pf + pεc](ũ, ṽ)− νt · [∇(pf + pεc) + qf + qεc ](ũ, ṽ),

Dε
4(ũ, ṽ) := ρ− [pf + pεc](ũ, ṽ), D5(ũ) :=

1

2
|ũ− z|2, D6(ṽ) := g · ṽ, (5.24)

with the curvature κt = divτtνt at Σt. The expressions along Σt are defined by

pf(ũ, ṽ) := ∇αf([[ũ]]τt) · [[ṽ]]τt , pεc(ũ, ṽ) := [α′
c + βε](νt · [[ũ]]) (νt · [[ṽ]]), (5.25)
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and next

qf(ũ, ṽ) := [[∇ṽ]]⊤νt
(
νt · ∇αf([[ũ]]τt)

)
+ [[∇ũ]]⊤νt

(
νt ·

∫ 1

0

∇2αf([[ru
t
ε]]τt)[[ṽ]]τtdr

)
+∇([[ũ]]τt)

⊤
∫ 1

0

(
∇2αf([[ru

ε
t ]]τt)−∇2αf([[u

ε
t ]]τt)

)
[[ṽ]]τt dr,

qεc(ũ, ṽ) := ∇(νt · [[ũ]])⊤
∫ 1

0

(
[α′′

c + β′
ε](νt · [[ruεt ]])− [α′′

c + β′
ε](νt · [[uεt ]])

)
(νt · [[ṽ]]) dr. (5.26)

The proof of Corollary 5.1 is given in Appendix D.
We remark that the additionalH2-regularity is available when a piecewise C2,0-boundaries

∂Ω±
t exclude singular points (e.g. in 2D when the boundary parts meet each other with an

π/2-angle as in Figure 1).

Corollary 5.2 (Descent direction for the ε-dependent optimization) A descent di-
rection for the perturbed L̃ε in (5.15) is provided by the following choice of the velocity

τt·Λ = −k1τt·D1(u
ε
t , v

ε
t ) at Γ

D
t , τt·Λ = −k2τt·Dε

2(u
ε
t , v

ε
t ) and νt·Λ = −k3Dε

3(u
ε
t , v

ε
t ) at Σt,

τt·Λ = −k4[[Dε
4(u

ε
t , v

ε
t )]] at ∂Σt, τt·Λ = −k5D5(u

ε
t ) at ∂Γ

O
t , τt·Λ = −k6[[D6(v

ε
t )]]at ∂Γ

N
t ∩Σt,

nt · Λ = 0 at ∂Ω (5.27)

in 2D, and in 3D respectively

Λτt = −k1D1(u
ε
t , v

ε
t )τt at ΓD

t , Λτt = −k2Dε
2(u

ε
t , v

ε
t )τtand νt · Λ = −k3Dε

3(u
ε
t , v

ε
t ) at Σt,

bt·Λ = −k4[[Dε
4(u

ε
t , v

ε
t )]] at ∂Σt, bt·Λ = −k5D5(u

ε
t ) at ∂Γ

O
t , bt·Λ = −k6[[D6(v

ε
t )]]at ∂Γ

N
t ∩Σt,

nt · Λ = 0 at ∂Ω, (5.28)

with ki ≥ 0, i = 1, . . . , 6, and not all simultaneously equal to zero.

Proof Direct substitution of (5.27) into (5.22) in 2D, respectively (5.28) into (5.23) in 3D,
provides that ∂

∂s L̃
ε(0, uεt , u

ε
t , v

ε
t ;Ωt) < 0. ⊓⊔

Corollary 5.2 is of practical importance since it provides well-posedness of gradient
schemes (see Algorithm 1) based on the descent direction from (5.27) and (5.28).

6 The limit as ε → 0+

In the following we derive the limit relations as ε→ 0+. We recall that all results involving
the dual variable vεt assume that (4.14) holds true.

Lemma 6.1 (Uniform estimate) The following a-priori estimate holds uniformly in ε ∈
(0, ε0):

∥uεt∥H1(Ω\Σt)d +
1√
ε
∥
[
νt · [[uεt ]]

]−∥L2(Σt) + ∥vεt ∥H1(Ω\Σt)d ≤ K, K ≥ 0. (6.1)

Consequently, there exists a subsequence εk → 0 as k → ∞ and an accumulation point
(ut, vt) ∈ K(Ωt)× V (Ωt) such that

(uεkt , v
εk
t ) → (ut, vt) weakly in H1(Ω \Σt)

2d, H1/2(∂Ω±
t )2d, strongly in L2(∂Ω±

t )2d. (6.2)

Proof Passing s → 0 due to the convergences (C.6) and (C.7) and using the lower bound
βϵ(νt·[[uεt ]])(νt·[[uεt ]]) ≥ ([νt·[[uεt ]]]−)2/ε−2εKβ due to (4.2), in the limit we improve the uniform
a-priori estimate (C.5) and get (6.1). Consequently (6.2) follows by a standard compactness
argument. Moreover, [νt · [[uεkt ]]]− → 0 ensures νt · [[ut]] ≥ 0 at Σt, hence ut ∈ K(Ωt). ⊓⊔
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Let ut ∈ K(Ωt) be a solution to the VI (3.14) in Theorem 3.1. According to (4.10) we
introduce the ε-independent Lagrangian (u, v) 7→ L : V (Ωt)

2 7→ R as

L(ut, u, v;Ωt) :=
1

2

∫
ΓO
t

|u− z|2 dSx + ρ|Σt| −
∫
Ω\Σt

σ(u) · ϵ(v) dx+

∫
ΓN
t

g · v dSx

−
∫
Σt

{(∫ 1

0

∇2αf([[rut]]τt) [[u]]τtdr +∇αf(0)
)
· [[v]]τt

+
(∫ 1

0

α′′
c (νt · [[rut]]) (νt · [[u]]) dr + α′

c(0)
)
(νt · [[v]])

}
dSx. (6.3)

Based on Lemma 6.1 we prove the following.

Theorem 6.1 (Limit optimality conditions) (i) There exists a pair (ut, λt) ∈ V (Ωt)×
H1/2(Σt)

⋆ which satisfies the variational equation∫
Ω\Σt

σ(ut) · ϵ(u) dx+

∫
Σt

{
∇αf([[ut]]τt) · [[u]]τt + α′

c(νt · [[ut]]) (νt · [[u]])
}
dSx

+ ⟨λt, νt · [[u]]⟩Σt
=

∫
ΓN
t

g · u dSx (6.4)

for all test functions u ∈ V (Ωt), simultaneously with the complementary relations

νt · [[ut]] ≥ 0, λt ≤ 0, ⟨λt, νt · [[ut]]⟩Σt
= 0, (6.5)

where ⟨ · , · ⟩Σt
stands for the duality pairing between H1/2(Σt) and its dual space H1/2(Σt)

⋆.
The first component ut ∈ K(Ωt) solves the VI (3.14), and according to (3.15) the second,
λt, satisfies

λt = νt · (σ(ut)νt)− α′
c(νt · [[ut]]) at Σt. (6.6)

(ii) Under the assumption (4.14), an adjoint pair (vt, µt) ∈ V (Ωt) × H1/2(Σt)
⋆ exists

and satisfies the adjoint equation∫
Ω\Σt

σ(v) · ϵ(vt) dx+

∫
Σt

∫ 1

0

{(
∇2αf([[rut]]τt) [[v]]τt

)
· [[vt]]τt

+ α′′
c (νt · [[rut]]) (νt · [[v]])(νt · [[vt]])

}
dr dSx + ⟨µt, νt · [[v]]⟩Σt =

∫
ΓO
t

(ut − z) · v dSx (6.7)

for all test functions v ∈ V (Ωt), such that the compatibility relation holds:

⟨λt − βε(0), νt · [[vt]]⟩Σt = ⟨µt, νt · [[ut]]⟩Σt , (6.8)

where βε(0) = −exp(−2) in (4.3) does not depend on ε. In case vt is smooth, the following
boundary value relations hold:

div σ(vt) = 0 in Ω \Σt,

vt = 0 on ΓD
t , σ(vt)n = ut − z on ΓO

t , σ(vt)n = 0 on ΓN
t \ ΓO

t ,

[[σ(vt)νt]] = 0, (σ(vt)νt)τt =

∫ 1

0

∇2αf([[rut]]τt) [[vt]]τt dr,

νt · (σ(vt)νt) =
∫ 1

0

α′′
c (νt · [[rut]]) (νt · [[vt]]) dr + µt on Σt. (6.9)

(iii) The quadruple (ut, vt, λt, µt) constitutes an accumulation point as εk → 0:

uεkt → ut strongly in H1(Ω \Σt)
d, vεkt ⇀ vt weakly in H1(Ω \Σt)

d, (6.10)

βεk(νt · [[u
εk
t ]]) → λt strongly in H1/2(Σt)

⋆, (6.11)∫ 1

0

β′
εk
(νt · [[ruεkt ]]) (νt · [[vεkt ]]) dr ⇀ µt ⋆-weakly in H1/2(Σt)

⋆. (6.12)
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Proof (i) Taking the limit in (4.4) with the help of the weak convergence uεkt ⇀ ut in (6.2)
we get

lim
εk→0

∫
Σt

βεk(νt · [[u
εk
t ]]) (νt · [[u]]) dSx =

∫
ΓN
t

g · u dSx −
∫
Ω\Σt

σ(ut) · ϵ(u) dx

−
∫
Σt

{
∇αf([[ut]]τt) · [[u]]τt + α′

c(νt · [[ut]]) (νt · [[u]])
}
dSx =: ⟨λt, νt · [[u]]⟩Σt . (6.13)

This implies the ⋆-weak convergence βεk(νt · [[u
εk
t ]])⇀ λt in H

1/2(Σt)
⋆, equation (6.4), and

λt ≤ 0 in (6.5) due to βεk ≤ 0 in Lemma 4.1. Testing (6.13) with u = uεkt and using (4.2)
such that∫

Σt

βεk(νt · [[u
εk
t ]]) (νt · [[uεkt ]]) dSx ≥ 1

εk

∫
Σt

(
[
νt · [[uεkt ]]

]−
)2 dSx − 2εkKβ ≥ −2εkKβ → 0,

after passage εk → 0, we get in the limit ⟨λt, νt · [[ut]]⟩Σt ≥ 0. On the other hand we have
⟨λt, νt · [[ut]]⟩Σt

≤ 0 because λt ≤ 0 and the non-penetration νt · [[ut]] ≥ 0, which together
lead to the equality in (6.5). Substituting λt with the expression (6.6) at Σt we derive the
VI (3.14) and its boundary value formulation (3.15). Thus, ut ∈ K(Ωt) yields a solution of
the cohesive crack problem.

(ii) The limit of the adjoint equation (4.15) using the convergences in (6.2) is

lim
εk→0

∫
Σt

∫ 1

0

β′
εk
(νt · [[ruεkt ]]) (νt · [[v]]) (νt · [[vεkt ]]) dr dSx

=

∫
ΓO
t

(ut − z) · v dSx −
∫
Ω\Σt

σ(v) · ϵ(vt) dx−
∫
Σt

∫ 1

0

{(
∇2αf([[rut]]τt) [[v]]τt

)
· [[vt]]τt

+ α′′
c (νt · [[rut]]) (νt · [[v]])(νt · [[vt]])

}
dSx =: ⟨µt, νt · [[v]]⟩Σt . (6.14)

The convergence in (6.14) implies (6.12) and the adjoint equation (6.7). Derivation of the
boundary value relations (6.9) is standard. According to (4.9) we have

⟨βεk(νt · [[u
εk
t ]]), νt · [[vεkt ]]⟩Σt

= ⟨
∫ 1

0

β′
εk
(νt · [[ruεkt ]]) (νt · [[uεkt ]]) dr + βϵ(0), νt · [[vεkt ]]⟩Σt

,

hence based on (6.11) and (6.12) we derive in the limit the compatibility equation (6.8).

(iii) The weak convergences in (6.10) are proved in Lemma 6.1. To justify the strong
convergence uεkt −ut → 0, we subtract (6.4) from (4.4), test the difference with u = uεkt −ut
and rearrange the terms as follows

∫
Ω\Σt

σ(uεkt − ut) · ϵ(uεkt − ut) dx = −
∫
Σt

{(
∇αf([[u

εk
t ]]τt)−∇αf([[ut]]τt)

)
· [[uεkt − ut]]τt

+
(
[α′

c + βεk ](νt · [[u
εk
t ]])− [α′

c + βεk ](νt · [[ut]])
)
(νt · [[uεkt − ut]])

}
dSx

− ⟨βεk(νt · [[ut]])− λt, νt · [[uεkt − ut]]⟩Σt
. (6.15)

Using the monotony of βεk and the uniform boundedness −1 < βεk(0) ≤ βεk(νt · [[ut]]) ≤ 0
for νt · [[ut]] ≥ 0, the strong convergence in (6.10) follows upon taking the limit in (6.15) as
εk → 0, see (6.2). Consequently, from (4.4) and (6.13) we conclude the strong convergence
in (6.11). This finishes the proof. ⊓⊔

Based on assertion (iii) of Theorem 6.1 we get the following.
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Corollary 6.1 (Limit optimization problems) For the fixed (λt, µt) ∈ (H1/2(Σt)
⋆)2

from Theorem 6.1 and Lagrangian L from (6.3), the pair (ut, vt) ∈ V (Ωt)
2 solving optimality

conditions (6.4), (6.5) and (6.7) satisfies the primal problem:

L(ut, ut, v;Ωt)− ⟨λt, νt · [[v]]⟩Σt ≤ L(ut, ut, vt;Ωt)− ⟨λt, νt · [[vt]]⟩Σt (6.16)

for all v ∈ V (Ωt), and the dual problem:

L(ut, ut, vt;Ωt)− ⟨µt, νt · [[ut]]⟩Σt
− ⟨βϵ(0), νt · [[vt]]⟩Σt

≤ L(ut, u, vt;Ωt)− ⟨µt, νt · [[u]]⟩Σt
− ⟨βϵ(0), νt · [[vt]]⟩Σt

for all u ∈ V (Ωt). (6.17)

By the virtue of compatibility (6.8), the corresponding optimal value function for the objective
J in (2.3) has the equivalent representations using the adjoint equation as follows:

J (ut;Ωt) = L(ut, ut, vt;Ωt)− ⟨λt, νt · [[vt]]⟩Σt

= L(ut, ut, vt;Ωt)− ⟨µt, νt · [[ut]]⟩Σt
− ⟨βϵ(0), νt · [[vt]]⟩Σt

. (6.18)

Proof Indeed, taking the limit εk → 0 in the saddle-point problem (4.11) with the Lagrangian
L̃εk from (4.13), and observing (6.10)–(6.12), the inequalities (6.16), (6.17) follow. From
the ε-dependent representation (4.12) of the optimal value function J and by using the
compatibility (6.8) we derive the limit formula (6.18). ⊓⊔

We finish by noting the difficulty that, in general, we can pass to the limit as ε → 0+

neither in the term
∫ 1

0
β′
ε(νt · [[ruεt ]]) dr in the Lagrangian L̃ε in (4.10), nor in the term

β′
ε(νt · [[uεt ]]) in the shape derivative ∂

∂s L̃
ε in (5.20) and (5.26). Otherwise, if

ηt = lim
ε→0+

∫ 1

0

β′
ε(νt · [[ruεt ]]) dr

exists, then the compatibility properties λt = (νt · [[ut]])ηt+βε(0) and µt = (νt · [[vt]])ηt which
are stronger than (6.8) hold. For a factorization of λt and µt, additional solution regularity,
as in the particular case of obstacle problems, could be helpful, see [3,27,51].

7 Shape optimization of breaking line

We apply the theoretical results to a numerical example in 2D.
As a true shape to be identified within an admissibility set {Σt} we take the piecewise-

linear line

Σ = {x1 ∈ (0, 1), x2 = ψ(x1)}, ψ(x1) = min(0.3, x1/3 + 0.1),

which breaks the rectangle Ω = (0, 1)× (0, 0.5) into two parts Ω±. Let the boundary ∂Ω be
split symmetrically into the fixed Dirichlet part ΓD = {x1 ∈ {0, 1}, x2 ∈ (0, 0.5)} and the
Neumann part ΓN = {x1 ∈ (0, 1), x2 ∈ {0, 0.5}}. For an isotropic elastic body occupying Ω
we set the material parameters: Young modulus EY = 73000 (mPa), Poisson ratio νP = 0.34,
and the corresponding Lamé parameters µL = EY/(2(1 + νP)), λL = 2µLνP/(1− 2νP). For
the matrix C of isotropic elastic coefficients the stress-strain relations are

σij = 2µLϵij + λL(ϵ11 + ϵ22)δij , i, j = 1, 2.

We rely on the approximation of νt · [[u]] by [[u]]2 := [[u2]], and [[u]]τt = [[u]]1τt with [[u]]1 := [[u1]]
at Σt, which is reasonable for flat shapes. For a friction function in one variable αf(s) =
Fb

√
δ2 + s2 such that ∇αf = τtα

′
f , and αc(s) = Kcs/(κ + |s|), applying to the body the

traction force
g1 = 0, g2(x) = (1− 7x1/4)(4x2 − 1)µL,
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according to Theorem 3.1 there exists a solution z ∈ H1(Ω \ Σ)2 such that z = 0 on ΓD,
[[z]]2 ≥ 0 on Σ, and satisfying the VI (3.14):∫

Ω\Σ
σ(z) · ϵ(u− z) dx+

∫
Σ

{
α′
f([[z]]1) [[u− z]]1

+ α′
c([[z]]2) [[u− z]]2

}
dSx ≥

∫
ΓN

g · (u− z) dSx (7.1)

for all test functions u ∈ H1(Ω \ Σ)2 such that u = 0 on ΓD and [[u]]2 ≥ 0 on Σ. Let the
observation boundary be ΓO = ΓN. We insert the solution z of (7.1) as a measurement into
the objective function J in (2.3) and consider the shape optimization problem: find Σt from
the feasible set S = {x ∈ Ω : x1 ∈ (0, 1), x2 = ψ(x1) ∈ (0, 0.5), ψ ∈ C0,1(0, 1)} such that

min
Σt∈S

J (ut;Ωt) =
1

2

∫
ΓO
t

|ut − z|2 dSx + ρ|Σt|, where ut solves (3.14). (7.2)

Evidently, the trivial minimum in (7.2) is attained asΣt = Σ and ut = z. To avoid the inverse
crime, we use two different meshes for z, and for ut when solving the inverse problem.

Now we discretize the problem. For fixed t, let Ω1
t,h, Ω

2
t,h be triangular meshes with grid

size h > 0 in Ω1
t , Ω

2
t , which are compatible at the interface such that Σt,h := Σt ∩ ∂Ω1

t,h =

Σt ∩ ∂Ω2
t,h. At the interface Σt,h the nonlinear functions are set: friction αf from (3.4) with

Fb = 10−5 (mPa); cohesion αc from (3.6) with m = 1, Kc = 10−3 (mPa·m), κ = 10−2 (m).
The parameters δ, h are assumed sufficiently small such that we rely on the discretization:

(αf)h(s) = Fb|s|, (α′
f)h(s) = Fb sgn(s), (α′′

f )h(s) = 0;

(αc)h(s) =
Kc

κ
min(κ, |s|), (α′

c)h(s) =
Kc

κ
ind{|s| < κ}, (α′′

c )h(s) = 0. (7.3)

After FE-discretization of problem (7.1) according to (7.3) on a grid of size h = 10−2,

Fig. 5 Computed true solution zh to (7.1) within current configuration (a); componentwise in (b), (c).

we solve it by a primal-dual active set (PDAS) iterative algorithm developed in [26]. The
reference numerical solution zh obtained after 4 iterations is plotted in Figure 5. In plot (a)
we present the grid in the so-called current or deformed configuration x+z(x) for x ∈ Ω \Σ
under the traction force g prescribed at ΓN. Here we observe an open part of Σ which is the
complement to the cohesion part (where [[z]]2 < κ) with contact (where [[z]]2 = 0) marked by
colors in finite elements adjacent to the interface. In plots (b), (c) of Figure 5 the solution
components (zh)1, (zh)2 in the reference configuration Ω \Σ are depicted.
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According to Theorem 4.1 we approximate the VI (3.14) by the ε-regularized cohesive
crack problem (4.4). For sufficiently small ε fixed, the compliance βε from (4.3) is discretized
as

(βε)h(s) =
1

ε
min(0, s), (β′

ε)h(s) =
1

ε
ind{s < 0}. (7.4)

Let Vt,h be the finite element (FE) space of piecewise-linear functions such that

Vt,h ⊂ V (Ωt,h) = {u ∈ H1(Ω+
t,h)

2 ∩H1(Ω−
t,h)

2| u = 0 on ΓD}.

Then the discretization of the penalty equation (4.4) becomes: find uεt,h ∈ Vt,h such that∫
Ω\Σt,h

σ(uεt,h) · ϵ(uh) dx+

∫
Σt,h

{
(α′

f)h
(
[[uεt,h]]1

)
· [[uh]]1

+ [(α′
c)h + (βε)h]

(
[[uεt,h]]2

)
[[uh]]2

}
dSx =

∫
ΓN

g · uh dSx, (7.5)

and due to (7.3) the discrete adjoint equation (4.15) reads: find vεt,h ∈ Vt,h such that

∫
Ω\Σt,h

σ(vh) · ϵ(vεt,h) dx+

∫
Σt,h

∫ 1

0

(β′
ε)h([[ru

ε
t,h]]2) [[vh]]2[[v

ε
t,h]]2 dr dSx

=

∫
ΓN

(uεt,h − zh) · vh dSx (7.6)

for all test functions uh, vh ∈ Vt,h.
After solving problems (7.5) and (7.6), since ΓD and ΓN = ΓO are fixed in this example,

according to Corollary 5.2 we calculate Dε
3 at the moving boundary Σt,h, and D1 at Σt,h∩ΓD:

(D1)t,h = [[∇(uεt,h)
⊤σ(vεt,h) +∇(vεt,h)

⊤σ(uεt,h)]]τt(2x1 − 1),

(Dε
3)t,h = [[σ(uεt,h) · ϵ(vεt,h)]] + κt

(
ρ− (pf)t,h − (pεc)t,h

)
− νt ·

(
(∇pf)t,h + (∇pεc)t,h

)
, (7.7)

where ρ = 1/µL is set, (qf)t,h = (qεc)t,h = 0 by the virtue of (7.3), (7.4). Relying on a flat
shape approximation we take ∇νt = ∇τt = 0 and

(pf)t,h = (α′
f)h([[u

ε
t,h]]1) [[v

ε
t,h]]1, (pεc)t,h = [(α′

c)h + (βε)h]([[u
ε
t,h]]2) [[v

ε
t,h]]2,

(∇pf)t,h = [[∇vεt,h]]⊤τt (α′
f)h([[u

ε
t,h]]1),

(∇pεc)t,h = [[∇vεt,h]]⊤νt [(α′
c)h + (βε)h]([[u

ε
t,h]]2) + [[∇uεt,h]]⊤νt (β′

ε)h([[u
ε
t,h]]2) [[v

ε
t,h]]2. (7.8)

The discrete velocity ΛH at interface Σt is defined on a coarse grid of size H > 0.
According to Corollary 6.1 we get a descent direction by setting (ΛH)1 = 0 and

(ΛH)2 =
k√
h
(2x1 − 1)νt · (D1)t,h at Σt,h ∩ ΓD, (ΛH)2 = −k(Dε

3)t,h at Σt,h \ ΓD, (7.9)

where the scaling k = 0.1h/∥(ΛH)2∥C(Σt,h)
is chosen, and the weight 1/

√
h at ΓD was found

empirically as in [20]. Based on formulas (7.7)–(7.9) we formulate the shape optimization
algorithm of breaking line identification for the discretized version of (4.8) .

Algorithm 1 (breaking line identification)

(0) Initialize the constant grid function ψ
(0)
H = 0.25 at points sH ∈ [0, 1]. Determine the line

segment Σ(0) = {x1 ∈ (0, 1), x2 = ψ(0)(x1)}, where ψ(0) is the linear interpolate of ψ
(0)
H ;

set n = 0.
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(1) Set the interface Σt,h = Σ(n) and construct triangulations Ω1
t,h, Ω

2
t,h; find solutions uεt,h,

vεt,h of the discrete penalty and adjoint equations (7.5), (7.6).

(2) Calculate a velocity (ΛH)2 by formula (7.9); update the grid function

ψ
(n+1)
H = ψ

(n)
H + (ΛH)2 at points sH ∈ [0, 1]. (7.10)

From linear interpolation ψ(n+1) of ψ
(n+1)
H determine the piecewise-linear segment

Σ(n+1) = {x1 ∈ (0, 1), x2 = ψ(n+1)(x1)}. (7.11)

(3) If stopping criterion holds, then STOP; else set n = n+ 1 and go to Step (1).

For 11 equidistant points sH as H = 0.1, the numerical result of Algorithm 1 after
#n = 200 iterations (the stopping criterion) is depicted in Figure 6. In plot (a) the selected
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Fig. 6 Iterations of Σ(n) (a); objective function ratio J (n)/J (0) (b); shape error ratio (c).

iterations n = 0, 10, 20, 40, 100, 200 of Σ(n) from (7.11) are drawn in Ω in comparison with
the true interface Σ (the thick solid line). In plot (b) of Figure 6 we plot the ratio J (n)/J (0)

of the objective function during iterations of Σt,h = Σ(n), where we recall

J (n)(uεt,h;Ω \Σ(n)) =
1

2

∫
ΓO

|uεt,h − zh|2 dSx + ρ|Σ(n)| subject to (7.5). (7.12)

The computed ratio attains as minimum 0, 6%. In plot (c) of Figure 6 the ratio of shape
error ∥Σ(n) −Σ∥/∥Σ(0) −Σ∥ is plotted versus n ∈ [0, 200], where according to (7.10)

∥Σ(n) −Σ∥ := ∥ψ(n) − ψ∥C([0,1]). (7.13)

Here the accuracy of shape identification attains only 46%. It is worth noting that the
computation is presented for small penalty parameter ε = 10−8, while insufficiently small
value ε = 10−5 causes some increase of the ratio curves after reaching the minimum; see
Figure 6 (b), (c).

From the simulation we conclude the following. In Figure 6 (a) it can be observed that the
left part of curve Σ, where the constraints are inactive (see Figure 5 (a)), is recovered well
by the identification Algorithm 1, whereas the right part of interface, where either contact
or cohesion occurs, the initialized Σ(0) is almost not modified during the iteration.

To remedy the hidden part, we apply to the same physical and geometrical configuration
the traction force g2(x) = (1−5x1/4)(4x2−1)µL, which is more stretching than the one from
Figure 5 (a). Because of that, the whole Σ is open, neither contact nor cohesion occur at the
interface (see Figure 7 (a)). The corresponding result of Algorithm 1 is depicted in Figure 7.
Here plot (b) presents the selected iterations of Σ(n), and plot (c) shows the objective
function ratio J (n)/J (0) together with the shape error ratio ∥Σ(n) − Σ∥/∥Σ(0) − Σ∥. The
former ratio attains the minimum 0, 25%, and the latter one 23% of accuracy. Now we see in
Figure 7 (b) that the whole curve Σ is recovered well compared to that from Figure 6 (a).
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(a) current configuration x+u(x)
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Fig. 7 The true solution zh (a); iterations of Σ(n) (b); objective function ratio and shape error ratio (c).

8 Conclusions

The Barenblatt’s crack model assuming cohesion at a breaking line is stated as the variational
inequality due to the non-penetration condition and penalized using smooth Lavrentiev’s
approximation. For the geometry-dependent least-square function describing misfit of the
solution from a boundary measurement, the expression of shape derivative is derived in an
analytical form. On its basis, from our numerical simulation we make a conclusion that the
suggested breaking line identification algorithm is consistent within the setup of destructive
physical analysis (DPA).
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A Proof of Lemma 5.1

As s → 0, the following asymptotic expansion of terms in (5.12)–(5.10) holds (see e.g. [57, Chapter 2]):

z ◦ ϕs = z + s∇zΛ+ o(s), g ◦ ϕs = g + s∇gΛ+ o(s), C ◦ ϕs = g + s∇CΛ+ o(s),

∇ϕ−1
s ◦ ϕs = I − s∇Λ+ o(s), E(∇ϕ−1

s ◦ ϕs, ũ) = ϵ(ũ)− sE(∇Λ, ũ) + o(s),

ωd
s = 1 + s divΛ+ o(s), ωb

s = 1 + sdivτtΛ+ o(s)

νt+s ◦ ϕs = νt + s∇νtΛ+ o(s), [[ũ]]τ̃t+s
= [[ũ]]τt + s[[ũ]]∇τtΛ + o(s) (A.1)

for ũ ∈ V (Ωt). It is worth noting that ∇νtΛ and ∇τtΛ from (5.17) are just a notation used for short, which
does not require existence of the gradients here. The tangential divergence divτtΛ is defined in (5.18).

Inserting representations (A.1) into the objective J̃ (s, ũ;Ωt) and the perturbed Lagrangian L̃ε(s, uε
t , ũ, ṽ;Ωt)

given by (5.9), (5.11), we derive their expansions (5.14), (5.15) with respect to s. The asymptotic term
∂
∂s

L̃ε(0, uε
t , ũ, ṽ;Ωt) is from (5.16) at τ = 0 (implying that Λ|t = Λ). Since Λ|t+τ and ∇Λ|t+τ are contin-

uous functions of the argument t + τ , the partial derivative τ 7→ ∂
∂s

L̃ε(τ, · ) in (5.16) is continuous. This
finishes the proof.

B Proof of Lemma 5.2

The first inequality in (5.8) implies the optimality condition ∂vL̃ε(s, uε
t , ũ

ε
t+s, ṽ

ε
t+s;Ωt) = 0, that is∫

Ω\Σt

(
(C ◦ ϕs)E(∇ϕ−1

s ◦ ϕs, ũ
ε
t+s) · E(∇ϕ−1

s ◦ ϕs, ṽ)
)
ωd
s dx

+

∫
Σt

{(∫ 1

0
∇2αf([[ru

ε
t ]]τt )[[ũ

ε
t+s]]τ̃t+s

dr +∇αf(0)
)
· [[ṽ]]τ̃t+s

+
(∫ 1

0
[α′′

c + β′
ε](νt · [[ruε

t ]])(ν̃t+s · [[ũε
t+s]]) dr

+ [α′
c + βε](0)

)
(ν̃t+s · [[ṽ]])

}
ωb
s dSx =

∫
ΓN
t

(g ◦ ϕs) · ṽ ωb
s dSx for all ṽ ∈ V (Ωt). (B.1)

According to the asymptotic representation (5.15) and the mean value theorem, using the operator Aε from
(4.15) it is possible to express the equation (B.1) in the form

⟨Aε(u
ε
t )ũ

ε
t+s, ṽ⟩+

∫
Σt

(
∇αf(0) · [[ṽ]]τt + [α′

c + βε](0)(νt · [[ṽ]])
)
dSx

=

∫
ΓN
t

g · ṽ dSx + sRv(α
v
s , ũ

ε
t+s, ṽ) for all ṽ ∈ V (Ωt), αv

s ∈ (0, s), (B.2)
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with a bounded, bilinear residual Rv : V (Ωt)2 7→ R. Under assumption (4.14) the operator Aε(uε
t ) is coercive

(see (4.17)) and weakly continuous. Thus by the Brouwer fixed point theorem, for small s the variational
equation (B.2) has a unique solution ũε

t+s ∈ V (Ωt).

Similarly, the optimality condition ∂uL̃ε(s, uε
t , ũ

ε
t+s, ṽ

ε
t+s;Ωt) = 0 reads as∫

Ω\Σt

(
(C ◦ ϕs)E(∇ϕ−1

s ◦ ϕs, ũ) · E(∇ϕ−1
s ◦ ϕs, ṽ

ε
t+s)

)
ωd
s dx

+

∫
Σt

∫ 1

0

{(
∇2αf([[ru

ε
t ]]τt )[[ũ]]τ̃t+s

)
· [[ṽεt+s]]τ̃t+s

+ [α′′
c + β′

ε](νt · [[ruε
t ]]) (ν̃t+s · [[ũ]])(ν̃t+s · [[ṽεt+s]])

}
ωb
s dr dSx

=

∫
ΓO
t

(ũε
t+s − z ◦ ϕs) · ũ ωb

s dSx for all ũ ∈ V (Ωt). (B.3)

The second inequality in (5.8) admits the decomposition for a weight αu
s ∈ (0, s):

⟨Aε(u
ε
t )ũ, ṽ

ε
t+s⟩ =

∫
ΓO
t

(ũε
t+s − z) · ũ dSx + sRu(α

u
s , ṽ

ε
t+s, ũ) for all ũ ∈ V (Ωt), (B.4)

with bounded bilinear Ru : V (Ωt)2 7→ R, thus possesses a unique solution ṽεt+s ∈ V (Ωt), for s small enough.

C Proof of Lemma 5.3

Uniform estimate of ũε
t+s. Testing the variational equation (B.1) with ṽ = ũε

t+s and applying the
asymptotic expansion (B.2) it follows∫

Ω\Σt

σ(ũε
t+s) · ϵ(ũε

t+s) dx+

∫
Σt

{(∫ 1

0
∇2αf([[ru

ε
t ]]τt )[[ũ

ε
t+s]]τt dr +∇αf(0)

)
· [[ũt+s]]τt

+
(∫ 1

0
[α′′

c + β′
ε](νt · [[ruε

t ]])(νt · [[ũε
t+s]]) dr + [α′

c + βε](0)
)
(νt · [[ũt+s]])

}
dSx

=

∫
ΓN
t

g · ũε
t+s dSx + sRv(α

v
s , ũ

ε
t+s, ũ

ε
t+s). (C.1)

We apply to (C.1) the Cauchy–Schwarz, Korn–Poincare (3.8) and trace inequalities (3.17). By the virtue of
boundedness of ∇αf , ∇2αf , α

′
c, α

′′
c , βε and β′

ε ≥ 0 in (3.3), (3.5), (4.1), we derive the estimate:

(Kfc2−C1|s|)∥ũε
t+s∥H1(Ω\Σt)d

≤
√
2Ktr

(
∥g∥L2(ΓN

t )d+(Kf1+Kc1−βϵ(0))
√

|Σt|
)
+C1|s|, C1 > 0, (C.2)

uniform in ε and s ≤ s0 for sufficiently small s0 > 0, where Kfc2 := KKP − (Kf2 +Kc2)2K2
tr > 0 due to the

assumption (4.14).

Uniform estimate of ṽεt+s. We test the variational equation (B.3) with ũ = ṽεt+s. and apply (B.4):∫
Ω\Σt

σ(ṽεt+s) · ϵ(ṽεt+s) dx+

∫
Σt

∫ 1

0

{(
∇2αf([[ru

ε
t ]]τt )[[ṽ

ε
t+s]]τt

)
· [[ṽεt+s]]τt

+ [α′′
c + β′

ε](νt · [[ruε
t ]])(νt · [[ṽεt+s]])

2
}
dr dSx =

∫
ΓO
t

(ũε
t+s − z) · ṽεt+s dSx + sRu(α

u
s , ṽ

ε
t+s, ṽ

ε
t+s). (C.3)

With the help of Cauchy–Schwarz, Korn–Poincare and trace inequalities (3.8), (3.17), due to the bondedness
of ∇2αf , α

′′
c , β

′
ε ≥ 0 in (3.3), (3.5), (4.1), from (C.3) we derive the uniform estimate: there exists C2 > 0

such that
(Kfc2 − C2|s|)∥ṽεt+s∥H1(Ω\Σt)d

≤
√
2Ktr∥ũε

t+s − z∥L2(ΓO
t )d + C2|s|. (C.4)

Thus, for small |s| < Kfc2/min(C1, C2) relations (C.2) and (C.4) together give

∥ũε
t+s∥H1(Ω\Σt)d

+ ∥ṽεt+s∥H1(Ω\Σt)d
≤ K, K ≥ 0. (C.5)

Weak convergence of (ũε
t+s, ṽ

ε
t+s). By the virtue of the uniform estimate (C.5), there exists a subsequence

sk → 0 as k → ∞, and a weak accumulation point (ũε
t , ṽ

ε
t ) ∈ V (Ωt)2 such that

(ũε
t+sk

, ṽεt+sk
) ⇀ (ũε

t , ṽ
ε
t ) weakly in H1(Ω \Σt)

2d, H1/2(∂Ω±
t )2d as sk → 0. (C.6)

By the compactness of embedding of the boundary traces it follows that

(ũε
t+sk

, ṽεt+sk
) → (ũε

t , ṽ
ε
t ) strongly in L2(∂Ω±

t )2d as sk → 0. (C.7)

Next we take the limit in (B.1) and (B.3) with s = sk as k → ∞. Due to the uniform continuity of ∇αf ,
α′
c, βε and ∇2αf , α

′′
c , β

′
ε, and using (4.9) we arrive at the variational equations (4.4) and (4.15), respectively.

Therefore, (ũε
t , ṽ

ε
t ) = (uε

t , v
ε
t ).
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Strong convergence of ũε
t+s. With the help of asymptotic relation (C.1) and equation (4.4) with u = uε

t ,
using the Korn–Poincare inequality (3.8), we rearrange the terms as follows

KKP∥ũε
t+s − uε

t∥2H1(Ω\Σt)d
≤

∫
Ω\Σt

σ(ũε
t+s − uε

t ) · ε(ũε
t+s − uε

t ) dx

=

∫
Ω\Σt

{
σ(ũε

t+s) · ε(ũε
t+s)− σ(uε

t ) · ε(uε
t )− 2σ(ũε

t+s − uε
t ) · ε(uε

t )
}
dx =

∫
ΓN
t

g · (ũε
t+s − uε

t ) dSx

− 2

∫
Ω\Σt

σ(ũε
t+s − uε

t ) · ε(uε
t ) dx−

∫
Σt

{(
∇αf([[ũ

ε
t+s]]τt ) · [[ũε

t+s]]τt −∇αf([[u
ε
t ]]τt ) · [[uε

t ]]τt
)

+
(
[α′

c + βε](νt · [[ũε
t+s]])(νt · [[ũε

t+s]]− [α′
c + βε](νt · [[uε

t ]])(νt · [[uε
t ]]
)}

dSx +O(|s|). (C.8)

Taking the limit in (C.8) as sk → 0, due to the convergence established in (C.6) and (C.7), we conclude that

∥ũε
t+sk

− uε
t∥H1(Ω\Σt)d

→ 0 as sk → 0. (C.9)

Strong convergence of ṽεt+s. We subtract equation (4.15) from (B.3) and use asymptotic expansions
(A.1) such that

∫
Ω\Σt

ε(ṽ) · σ(ṽεt+s − vεt ) dx =

∫
Σt

∫ 1

0

{(
∇2αf([[rũ

ε
t+s]]τt )[[ṽ

ε
t+s]]τt −∇2αf([[ru

ε
t ]]τt )[[v

ε
t ]]τt

)
· [[ṽ]]τt

+
(
[α′′

c + β′
ε](νt · [[rũε

t+s]])(νt · [[ṽεt+s]])− [α′′
c + β′

ε](νt · [[ruε
t ]])(νt · [[vεt ]])

)
(νt · [[ṽ]])

}
dr dSx +O(|s|). (C.10)

Applying to (C.10) the Cauchy–Schwarz inequality, due to the properties of ∇2αf , α
′′
c , β

′
ε in (3.3), (3.5),

(4.1), we obtain the upper bound

∫
Ω\Σt

ε(ṽ) · σ(ṽεt+s − vεt ) dx ≤ Kf2∥[[ṽεt+s − vεt ]]τt∥L2(Σt)d
∥[[ṽ]]τt∥L2(Σt)d

+

∫ 1

0

{∥∥∇2αf([[rũ
ε
t+s)]]τt −∇2αf([[ru

ε
t ]]τt )

∥∥
L2(Σt)d×d∥[[vεt ]]τt∥L4(Σt)d

∥[[ṽ]]τt∥L4(Σt)d

+
∥∥[α′′

c + β′
ε](νt · [[rũε

t+s)]]− [α′′
c + β′

ε](νt · [[ruε
t ]])

∥∥
L2(Σt)

∥νt · [[vεt ]]∥L4(Σt)
∥νt · [[ṽ]]∥L4(Σt)

}
dr

+
(
Kc2 +

Kβ1

ε

)
∥νt · [[ṽεt+s − vεt ]]∥L2(Σt)

∥νt · [[ṽ]]∥L2(Σt)
+ C|s|, C > 0. (C.11)

By the Sobolev embedding theorem the continuity property holds:

∥u∥
L4(∂Ω±

t )d
≤ Kemb∥u∥H1/2(∂Ω±

t )d
, u ∈ H1(Ω±

t )d, d = 2, 3. (C.12)

Then (C.12), Korn–Poincare and trace inequalities (3.8), (3.17), together with convergences (C.6), (C.7)
guarantee that for fixed ε:

KKP∥ṽεt+sk
−vεt ∥H1(Ω\Σt)d

≤ sup
ṽ∈V (Ωt)

1

∥ṽ∥H1(Ω\Σt)d

∫
Ω\Σt

ε(ṽ) ·σ(ṽεt+sk
−vεt ) dx → 0 as sk → 0. (C.13)

The proof of Lemma 5.3 is complete.

D Proof of Corollary 5.1

Let (uε
t , v

ε
t ) ∈ H2(Ω+

t )2d ∩H2(Ω−
t )2d be a solution to (4.4) and (4.15). We integrate by parts the domain

integral over Ω \Σt from (5.20) at τ = 0 so that

I(Ω \Σt) := −
∫
Ω±

t

(
(divΛC +∇CΛ)ϵ(uε

t ) · ϵ(vεt )− σ(uε
t ) · E(∇Λ, vεt )− σ(vεt ) · E(∇Λ, uε

t )
)
dx

= −
∫
∂Ω±

t

Λ ·
(
n±
t σ(uε

t ) · ϵ(vεt )−∇(uε
t )

⊤σ(vεt )n
±
t −∇(vεt )

⊤σ(uε
t )n

±
t

)
dSx =

∫
Σt

Λ ·
(
νt[[σ(u

ε
t ) · ϵ(vεt )]]

− [[∇(uε
t )

⊤σ(vεt )]]νt − [[∇(vεt )
⊤σ(uε

t )]]νt
)
dSx +

∫
ΓD
t ∪ΓN

t

Λ ·
(
∇(uε

t )
⊤σ(vεt )nt +∇(vεt )

⊤σ(uε
t )nt

)
dSx,
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where we use the assumption nt ·Λ = 0 at ∂Ω. Using boundary conditions from (4.5), (4.16) and the notation
D1 from (5.24) it follows that

I(Ω \Σt) =

∫
Σt

Λ ·
(
νt[[σ(u

ε
t ) · ϵ(vεt )]]− [[∇vεt ]]

⊤(
∇αf([[u

ε
t ]]τt ) + [α′

c + βε](νt · [[uε
t ]]) νt

)
− [[∇uε

t ]]
⊤
∫ 1

0

(
∇2αf([[ru

ε
t ]]τt ) [[v

ε
t ]]τt + [α′′

c + β′
ε](νt · [[ruε

t ]]) (νt · [[vεt ]]) νt
)
dr

)
dSx

+

∫
ΓO
t

Λ ·
(
∇(uε

t )
⊤(uε

t − z)
)
dSx +

∫
ΓN
t

Λ · (∇(vεt )
⊤g) dSx +

∫
ΓD
t

Λ · D1(u
ε
t , v

ε
t ) dSx. (D.1)

After substitution of (D.1) into (5.20), the integrand at Σt is gathered in the expression:

IΣt := −divτtΛ
{
∇αf([[u

ε
t ]]τt ) · [[vεt ]]τt + [α′

c + βε](νt · [[uε
t ]]) (νt · [[vεt ]])

}
+ Λ ·

{
νt[[σ(u

ε
t ) · ϵ(vεt )]]−

(
[[∇vεt ]]

⊤ − (νt · [[vεt ]])∇ν⊤t −∇ν⊤t [[vεt ]]ν
⊤
t

)
∇αf([[u

ε
t ]]τt )

−
(
[[∇vεt ]]

⊤νt +∇ν⊤t [[vεt ]]
)
[α′

c + βε](νt · [[uε
t ]])−

(
[[∇uε

t ]]
⊤νt +∇ν⊤t [[uε

t ]]
) ∫ 1

0
[α′′

c + β′
ε](νt · [[ruε

t ]])(νt · [[vεt ]]) dr

−
(
[[∇uε

t ]]
⊤ − (νt · [[uε

t ]])∇ν⊤t −∇ν⊤t [[uε
t ]]ν

⊤
t

) ∫ 1

0
∇2αf([[ru

ε
t ]]τt )[[v

ε
t ]]τt dr

}
. (D.2)

In order to combine like terms, we exploit the calculus

Λ · ∇(ξ · η) = Λ · (∇ξ⊤η +∇η⊤ξ) = η · ∇ξΛ+ ξ · ∇ηΛ for ξ, η ∈ Rd. (D.3)

With the help of (D.3), the gradient of the product due to friction term is calculated:

pf(ũ, ṽ) := ∇αf([[ũ]]τt ) · [[ṽ]]τt , ∇pf(ũ, ṽ) = ∇([[ṽ]]τt )
⊤∇αf([[ũ]]τt ) +∇([[ũ]]τt )

⊤∇2αf([[ũ]]τt ) [[ṽ]]τt , (D.4)

where ∇([[ũ]]τt )
⊤ = [[∇ũ]]⊤ − (νt · [[ũ]])∇ν⊤t −∇(νt · [[ũ]])ν⊤t at Σt according to (3.1). Similarly, we compute

the gradient for the cohesive term

pεc(ũ, ṽ) := [α′
c + βε](νt · [[ũ]]) (νt · [[ṽ]]), ∇pεc(ũ, ṽ) = ([[∇ṽ]]⊤νt +∇ν⊤t [[ṽ]]) [α′

c + βε](νt · [[ũ]])

+ ([[∇ũ]]⊤νt +∇ν⊤t [[ũ]]) [α′′
c + β′

ε](νt · [[ũ]]) (νt · [[ṽ]]). (D.5)

By (D.4) and (D.5), the integrand (D.2) is expressed as

IΣt = −divτtΛ [pf + pεc ](u
ε
t , v

ε
t ) +Λ ·

{
νt[[σ(u

ε
t ) · ϵ(vεt )]]−∇[pf + pεc ](u

ε
t , v

ε
t )− [[∇vεt ]]

⊤νt
(
νt · ∇αf([[u

ε
t ]]τt )

)
− [[∇uε

t ]]
⊤νt

(
νt ·

∫ 1

0
∇2αf([[ru

ε
t ]]τt )[[v

ε
t ]]τtdr

)
−∇(νt · [[uε

t ]])
⊤
∫ 1

0

(
[α′′

c + β′
ε](νt · [[ruε

t ]])

− [α′′
c + β′

ε](νt · [[uε
t ]])

)
(νt · [[vεt ]]) dr

}
−∇([[uε

t ]]τt )
⊤
∫ 1

0

(
∇2αf([[ru

ε
t ]]τt )−∇2αf([[u

ε
t ]]τt )

)
[[vεt ]]τt dr. (D.6)

Introducing for short the notation of qf , q
ε
c in (5.26) which is based on (D.6), we rearrange the terms in the

shape derivative in the form

∂
∂s

L̃ε(0, uε
t , u

ε
t , v

ε
t ;Ωt) =

1

2

∫
ΓO
t

(
divτtΛ |uε

t − z|2 + Λ · ∇(|uε
t − z|2)

)
dSx + ρ

∫
Σt

divτtΛdSx

+

∫
Σt

{
−divτtΛ [pf + pεc ](u

ε
t , v

ε
t ) + Λ ·

(
νt[[σ(u

ε
t ) · ϵ(vεt )]]− [∇(pf + pεc) + qf + qεc ](u

ε
t , v

ε
t )
)}

dSx

+

∫
ΓN
t

(
divτtΛ(g · vεt ) + Λ · ∇(g · vεt )

)
dSx +

∫
ΓD
t

Λ · D1(u
ε
t , v

ε
t ) dSx. (D.7)

Since the tangential velocity, its tangential divergence, and the curvature are equal to

Λτt = Λ− (n±
t · Λ)n±

t , divτtΛτt = divτtΛ− (n±
t · Λ)κ±

t , κ±
t = divτtn

±
t at ∂Ω±

t , (D.8)

for smooth p the integration along a boundary Γt ⊂ ∂Ω±
t is given by the formula (see e.g. [57, (2.125)]):

∫
Γt

(divτtΛp+ Λ · ∇p) dSx =

∫
Γt

(nt · Λ)(κtp+ nt · ∇p) dSx +

(τt · Λ)p|∂Γt in 2D,∫
∂Γt

(bt · Λ)p dLx in 3D.
(D.9)

In (D.9) τt is a tangential vector at ∂Γt positively oriented to nt in 2D, and bt = τt×nt is a binomial vector
within the moving frame at ∂Γt in 3D. Applying (D.9) to (D.7), decomposing the vectors in (5.21) into the
normal and tangential components, and recalling that vεt = 0 at ∂ΓN

t ∩ ΓD
t , we conclude with the assertion

of Corollary 5.1.


