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Preface

Progress in modelling and analysis of the crack problem in solids as well

as contact problems for elastic and elastoplastic plates and shells gives rise

to new attempts in using modern approaches to boundary value problems.

The novel viewpoint of traditional treatment to many such problems, like

the crack theory, enlarges the range of questions which can be clari�ed by

mathematical tools.

It is wellknown that the classical approach to the crack problem is char-

acterized by the equality type boundary conditions considered at the crack

faces; in particular, the crack faces are assumed to be stress-free. This

means that displacements found as solutions of these boundary value prob-

lems do not provide a nonpenetration condition between crack faces. There

are practical examples showing that interpenetration of crack faces may oc-

cur in these cases. An essential feature of the book is that a restriction

of Signorini type is considered at the crack faces which does not allow the

opposite crack faces to penetrate each other. The restriction can be written

as an inequality for the displacement vector. As a result a complete set of

boundary conditions at crack faces is written as a system of equations and

inequalities. The presence of inequality type boundary conditions implies

the boundary problems to be nonlinear, which requires the investigation of

corresponding boundary value problems.

In the book, two- and three-dimensional bodies, plates and shells with

cracks are considered. Properties of solutions are established: existence of

solutions, regularity up to the crack faces, convergence of solutions as pa-

rameters of a system are varying and so on. We analyse di�erent constitutive

laws: elastic, thermoelastic, elastoplastic. The book gives a new outlook on

the crack problem, displays new methods of studying the problems and

proposes new models for cracks in elastic and nonelastic bodies satisfying

physically suitable nonpenetration conditions between crack faces.

During the progress of the work on the problem concerned the authors

have accumulated the information and evidence which should be interest-

ing to broad specialists and mathematicians concerned with boundary value

problems for bodies with cracks. An emphasis is especially laid on bound-

ary value problems for plates and shallow shells with cracks. This is caused

by the following. On the one hand, the results of this kind are conceived



as being inadequately elucidated in papers and books on the subject, but

these problems are of active and particular interest to engineers and design-

ers. In particular, in the design of ight vehicles, it takes skill to describe

a shell possessing both good strength properties and weight-limitation re-

quirements. A similar interest is expressed in plates and shells in designing

and constructing some ground-based projects of industry.

When considering mathematical models of plates and shells, the authors

clearly perceived the necessity for a reasonable compromise so that, on

the one hand, the used models should describe the principle of a physical

phenomenon and, on the other, they should be quite simple in order that

the mathematical tool could be usefully employed.

The following topics are considered in the book:

1. Properties of solutions in contact problems for elastic plates and shells

having cracks.

2. Analysis of crack shape variations in solids.

3. Existence of solutions for elastoplastic bodies with cracks.

4. Approximate and analytical methods of solving boundary value prob-

lems for solids with cracks.

The new approach to crack theory used in the book is intriguing in that

it fails to lead to physical contradictions. Given a classical approach to the

description of cracks in elastic bodies, the boundary conditions on crack

faces are known to be considered as equations. In a number of speci�c

cases there is no di�culty in �nding solutions of such problems leading to

physical contradictions. It is precisely these crack faces for such solutions

that penetrate each other. Boundary conditions analysed in the book are

given in the form of inequalities, and they are properly nonpenetration

conditions of crack faces. The above implies that similar problems may be

considered from the contact mechanics standpoint.

We have to stress that the analysed problems prove to be free boundary

problems. Mathematically, the existence of free boundaries for the models

concerned, as a rule, is due to the available inequality restrictions imposed

on a solution. As to all contact problems, this is a nonpenetration condition

of two bodies. The given condition is of a geometric nature and should be

met for any constitutive law. The second class of restrictions is de�ned by

the constitutive law and has a physical nature. Such restrictions are typical

for elastoplastic models. Some problems of the elasticity theory discussed

in the book have generally allowable variational formulation

u 2 K : �

0

u

(�u� u) � 0 8 �u 2 K;

where �

0

u

is the derivative of the energy functional � evaluated at the point

u; and the convex set K is de�ned by a concrete type of restriction imposed

on the solution u.



Speci�cally, the nonpenetration condition between crack faces for an

elastic plate is as follows:

[W ]� � 2"

�

�

�

�

�

@w

@�

�

�

�

�

�

;

where 2" is the thickness of the plate; � is the normal unit vector to the

crack shape; w and W = (w

1

; w

2

) are vertical and horizontal displacements

of the plate, respectively; [�] is the jump of a function at the crack faces.

The authors express their deep gratitude to all persons who applied

much e�ort to the monograph in many di�erent ways. We are grateful to

Professor J. Sokolowski from Nancy for valuable contributions to the book.
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to express deep thanks to our colleagues from Lavrentyev Institute of Hydro-

dynamics in Novosibirsk, especially to Professors B. Annin, A. Kazhikhov,
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Chapter 1

Introduction

In this chapter, principal relations of solid mechanics, elements of convex

analysis and calculus of variations, and methods of approximation are con-

sidered.

Submitting the main topic, we deal with models of solids with cracks.

These models of mechanics and geophysics describe the stationary and

quasi-stationary deformation of elastic and inelastic solid bodies having

cracks and cuts. The corresponding mathematical models are reduced to

boundary value problems for domains with singular boundaries. We shall

use, if it is possible, a variational formulation of the problems to apply

methods of convex analysis. It is of importance to note the signi�cance

of restrictions stated a priori at the crack surfaces. We assume that non-

penetration conditions of inequality type at the crack surfaces are ful�lled,

which improves the accuracy of these models for contact problems. We also

include the modelling of problems with friction between the crack surfaces.

1.1 Modelling of solids with cracks

1.1.1 Small deformations. Hooke's law

Let a solid body occupy the domain 
 � R

3

with the smooth boundary �.

The solid particle coincides with the point x = (x

1

; x

2

; x

3

) 2 
. An elastic

solid is described by the following functions:

the displacements u(x) = (u

1

(x); u

2

(x); u

3

(x));

the strain tensor "

ij

(x); i; j = 1; 2; 3;

the stress tensor �

ij

(x); i; j = 1; 2; 3

at the point x 2 
. In what follows, we do not indicate the dependence on

x of the above values.

To formulate a model of the solid body, one needs the constitutive law

�

ij

("

kl

), the geometrical equation "

ij

= "

ij

(u) and equilibrium or motion

equations. Let f = (f

1

; f

2

; f

3

) be a given function describing an external
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force in the domain 
. The equilibrium equations are as follows:

��

ij;j

= f

i

; i = 1; 2; 3; (1:1)

where �

ij;j

= @�

ij

=@x

j

; the repeated indices j mean the sum over j = 1; 2; 3.

In the dynamical case all functions depend also on the time variable t, t � 0,

and we have the motion equations

�

@

2

@t

2

u

i

(t)� �

ij;j

(t) = f

i

(t); i = 1; 2; 3:

We assume that the formula for "

ij

(u) is provided by the Cauchy law of

small deformations

"

ij

=

1

2

(u

i;j

+ u

j;i

) ; i; j = 1; 2; 3: (1:2)

These are linear equations which give the symmetry of the strain tensor

"

ij

= "

ji

. In the general case, the strain tensor is nonlinear,

"

ij

=

1

2

(u

i;j

+ u

j;i

+ u

k;i

u

k;j

) ; i; j = 1; 2; 3:

The constitutive law �

ij

("

kl

) has a principal meaning for the de�nition

of solid models. The classical Hooke law

�

ij

= a

ijkl

"

kl

; i; j = 1; 2; 3; (1:3)

de�nes the linear elasticity model (Rabotnov, 1979; Timoshenko, Goodier,

1951; Parton, Perlin, 1981). The tensor a

ijkl

is assumed to be symmetrical,

a

ijkl

= a

jikl

= a

klij

;

which provides the symmetry �

ij

= �

ji

, and positive:

9c

1

; c

2

> 0 : c

1

�

ij

�

ij

� a

ijkl

�

kl

�

ij

� c

2

�

ij

�

ij

8�

ij

= �

ji

:

Generally, a

ijkl

depends on x. The isotropic solid is characterized by the

constant coe�cients a

ijkl

of the form

a

ijkl

= ��

ij

�

kl

+ � (�

ik

�

jl

+ �

il

�

jk

) ; i; j; k; l = 1; 2; 3;

with the Lam�e parameters � > 0, � > 0; �

ij

is Kronecker's symbol. Then

(1.3), (1.2) are reduced to

�

ij

= �u

k;k

�

ij

+ � (u

i;j

+ u

j;i

) ; i; j = 1; 2; 3;

and together with (1.1) give the Lam�e system

��u

i;kk

� (� + �) (u

k;k

)

;i

= f

i

; i = 1; 2; 3:
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By introducing the other constants

E = �

3� + 2�

� + �

> 0; � =

�

2(� + �)

; 0 < � <

1

2

;

we can rewrite the Lam�e system as

�

E

1 + �

�

1

2

�u

i

+

1

1� 2�

(divu)

;i

�

= f

i

; i = 1; 2; 3;

where �u

i

= u

i;kk

, divu = u

k;k

, E is Young's modulus and � is Poisson's

ratio.

1.1.2 Other constitutive laws

We shall also formulate inelastic constitutive laws considered in the book

(Rabotnov, 1979; Arutunyan et al., 1987).

Let us recall the dependence of solutions to dynamical and quasi-static

problems on the time parameter t. Then Hooke's law (1.3) takes the form

�

ij

(t) = a

ijkl

"

kl

(t); i; j = 1; 2; 3;

or, denoting by A

ijkl

an inverse tensor to a

ijkl

,

"

ij

(t) = A

ijkl

�

kl

(t); i; j = 1; 2; 3:

Instead of the Hooke law we assume the creep law

"

ij

(t) = A

ijkl

�

kl

(t) +

t

Z

0

�

A

ijkl

(t � � )�

kl

(� ) d�; i; j = 1; 2; 3; (1:4)

ful�lled for the given tensor

�

A

ijkl

, and obtain the quasi-static creep model

��

ij;j

(t) = f

i

(t); "

ij

(t) =

1

2

(u

i;j

(t) + u

j;i

(t)) ;

"

ij

(t) = A

ijkl

�

kl

(t) +

t

Z

0

�

A

ijkl

(t� � )�

kl

(� ) d�; i; j = 1; 2; 3:

The following condition,

�

ij

(t) = a

ijkl

"

kl

(t) +

t

Z

0

�a

ijkl

(t � � )"

kl

(� ) d�; i; j = 1; 2; 3; (1:5)

provides another creep model

��

ij;j

(t) = f

i

(t); "

ij

(t) =

1

2

(u

i;j

(t) + u

j;i

(t)) ;
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�

ij

(t) = a

ijkl

"

kl

(t) +

t

Z

0

�a

ijkl

(t � � )"

kl

(� ) d�; i; j = 1; 2; 3:

In the sequel, we will not indicate the dependence of functions on t for

convenience.

The viscoelastic law

�

ij

= a

ijkl

"

kl

+ b

ijkl

@

@t

"

kl

; i; j = 1; 2; 3; (1:6)

together with (1.1), (1.2) give the quasi-static viscoelastic model

��

ij;j

= f

i

; i = 1; 2; 3;

"

ij

=

1

2

(u

i;j

+ u

j;i

) ; �

ij

= a

ijkl

"

kl

+ b

ijkl

@

@t

"

kl

; i; j = 1; 2; 3:

In thermodynamic systems we must consider the temperature function

�. Then, in view of the Duhamel{Newmann law, the constitutive equations

have the form (Nowacki, 1962)

�

ij

= a

ijkl

"

kl

� �

ij

�; i; j = 1; 2; 3: (1:7)

Adding the heat equation

@

@t

� ��� + �

ij

@

@t

"

ij

= g (1:8)

with the given thermal expansion coe�cients �

ij

, we obtain the quasi-static

thermoelastic model

��

ij;j

= f

i

; i = 1; 2; 3;

@

@t

� ��� + �

ij

@

@t

"

ij

= g;

�

ij

= a

ijkl

"

kl

� �

ij

�; "

ij

=

1

2

(u

i;j

+ u

j;i

) ; i; j = 1; 2; 3;

where g is a heat inux in 
. If �

ij

= 0, then one obtains two separate

problems: the elastic equations (1.1){(1.3) and the classical heat equation

@

@t

� ��� = g

for the temperature �.

In elastoplastic models, it is assumed that there exist plastic deforma-

tions denoted by �

ij

. The Hencky law implies that the following relations

hold (Annin, Cherepanov, 1983; Duvaut, Lions, 1972):

"

ij

= A

ijkl

�

kl

+ �

ij

; i; j = 1; 2; 3: (1:9)

Meantime, the stresses lie inside the given yield surface, namely

�(�

ij

) � 0 (1:10)
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and the plastic deformations are orthogonal to this surface:

�

ij

(��

ij

� �

ij

) � 0 8��

ij

; �(��

ij

) � 0: (1:11)

The function � is assumed to be convex and continuous. Thus, we have the

static elastoplastic model

��

ij;j

= f

i

; i = 1; 2; 3; "

ij

= A

ijkl

�

kl

+ �

ij

; i; j = 1; 2; 3;

�(�

ij

) � 0; �

ij

(��

ij

� �

ij

) � 0 8��

ij

; �(��

ij

) � 0:

One can exclude �

ij

from the last relations and obtain the inequality

("

ij

� A

ijkl

�

kl

) (��

ij

� �

ij

) � 0 8��

ij

; �(��

ij

) � 0:

The following ow model is provided by the Prandtl{Reuss law (see

Sadovskii, 1992, 1997):

@

@t

"

ij

= A

ijkl

@

@t

�

kl

+ �

ij

; i; j = 1; 2; 3: (1:12)

Here �

ij

denotes a plastic deformation velocity. Adding the relations (1.10),

(1.11), we obtain the quasi-static elastoplastic model

��

ij;j

= f

i

; i = 1; 2; 3;

@

@t

"

ij

= A

ijkl

@

@t

�

kl

+ �

ij

; i; j = 1; 2; 3;

�(�

ij

) � 0; �

ij

(��

ij

� �

ij

) � 0 8��

ij

; �(��

ij

) � 0:

The considered constitutive laws for elastoplastic models generalize ones

used in elasticity. The main peculiarity of elastoplastic models consists

in an existence of inequality type restrictions imposed upon the stresses.

Omitting the mentioned restrictions, elastoplastic models turn into elastic

ones.

1.1.3 Linear plates and shells

In two-dimensional solids theory, the size of the solid in a �xed direction is

assumed to be small as compared to the other ones. Therefore, all character-

istics of the thin solid are referred to a so-called mid-surface, and one obtains

the two-dimensional model. Let us give the construction of plate and shell

models (Donnell, 1976; Vol'mir, 1972; Lukasiewicz, 1979; Mikhailov, 1980).

A three-dimensional body limited by two curvilinear surfaces is called a

shell if a distance called a thickness of the shell between the afore mentioned

surfaces is small enough. We assume that the thickness is the constant

2h > 0. The surface equidistant from the surfaces is called a mid-surface.

Thus, a shell can be uniquely de�ned introducing a mid-surface, a thickness

and a boundary contour.
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The two directions called principal directions could be found at every

point of the mid-surface, which satisfy the following property. Orthogonal

sections of the mid-surface along these directions de�ne the principal curva-

tures k

1

, k

2

of the surface. By that, the curvature lines could be de�ned on

the mid-surface with tangents to them coinciding with the principal direc-

tions. Let � and � be parameters such that the coordinate net � = const,

� = const on the mid-surface is orthogonal, and it coincides with the cur-

vature lines. Then a position of every point x located at the mid-surface is

de�ned by the parameters �; �:

x = x(�; �); (�; �) 2 
; 
 � R

2

: (1:13)

The length ds of a linear in�nitely small element can be found by the formula

ds

2

= a

2

d�

2

+ b

2

d�

2

: (1:14)

This expression is called the �rst quadric of the surface in the orthogonal

coordinates �; �, where a = a(�; �), b = b(�; �). The directions of x

;�

and

x

;�

(where x

;�

= @x=@�, x

;�

= @x=@�) coincide with the principal ones,

hence

ds

2

= jx

;�

j

2

d�

2

+ jx

;�

j

2

d�

2

:

Comparison of this equation and (1.14) gives

a

2

= x

i;�

x

i;�

; b

2

= x

i;�

x

i;�

:

Let the axis z be orthogonal to the mid-surface, and z = 0 correspond

to the mid-surface. By (1.13), functions depending on x are the functions of

�; �; z. Let the displacements of the mid-surface points along x

;�

, x

;�

, z be

denoted by u, v, w, respectively, �

ij

be components of the stress tensor, and

"

ij

denote the strains. By integrating across the thickness, let us introduce

the following functions depending only on �; �:

the integrated stresses N

ij

=

h

R

�h

�

ij

dz; i; j = 1; 2;

the moments M

ij

=

h

R

�h

�

ij

z dz; i; j = 1; 2;

the transverse forces Q

i

=

h

R

�h

�

i3

dz; i = 1; 2:

A reduction of three-dimensional models to two-dimensional ones is

based on the assumptions concerning character of deformations. Thus, the

Kirchho�{Love hypothesis is widely used in mechanics, and is as follows.

Every �bre is orthogonal to the mid-surface till the deformation remains

straight and orthogonal after the deformation. Furthermore, the normal

stresses along the �bre are assumed to be negligible. The utilization of the

Kirchho�{Love hypothesis leads to the following

geometrical equations:

"

11

=

1

a

u

;�

+

1

ab

a

;�

v + k

1

w; "

22

=

1

b

v

;�

+

1

ab

b

;�

u+ k

2

w;
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"

12

=

b

a

�

v

b

�

;�

+

a

b

�

u

a

�

;�

;

�

11

=

1

a

�

k

1

u�

1

a

w

;�

�

;�

+

1

ab

�

k

2

v �

1

b

w

;�

�

a

;�

;

�

22

=

1

b

�

k

2

v �

1

b

w

;�

�

;�

+

1

ab

�

k

1

u�

1

a

w

;�

�

a

;�

;

�

12

=

b

2a

�

1

b

�

k

2

v �

1

b

w

;�

��

;�

+

a

2b

�

1

a

�

k

1

u�

1

a

w

;�

��

;�

;

constitutive law equations:

N

ij

= a

ijkl

"

kl

; M

ij

= b

ijkl

�

kl

; i; j = 1; 2 (1:15)

with the symmetric and positively de�ned coe�cients a

ijkl

(�; �), b

ijkl

(�; �);

and equilibrium equations:

�

1

ab

�

(bN

11

)

;�

�N

22

b

;�

+

1

a

(a

2

N

12

)

;�

�

;�

� k

1

Q

1

= f

1

;

�

1

ab

�

(aN

22

)

;�

�N

11

a

;�

+

1

b

(b

2

N

12

)

;�

�

;�

� k

2

Q

2

= f

2

;

�

1

ab

�

(bQ

1

)

;�

+ (aQ

2

)

;�

�

� k

1

N

11

� k

2

N

22

= f

3

;

1

ab

�

1

a

(a

2

M

12

)

;�

+ (bM

11

)

;�

�M

22

b

;�

�

= Q

1

;

1

ab

�

1

b

(b

2

M

12

)

;�

+ (aM

22

)

;�

�M

11

a

;�

�

= Q

2

:

The functions f

1

; f

2

; f

3

are given and represent exterior forces acting along

the axes x

;�

; x

;�

; z, respectively. Thus, the linear model of a shell is de-

scribed by the functions u, v, w, N

ij

, M

ij

, Q

i

, "

ij

, �

ij

, i; j = 1; 2, satisfying

the above equations in the domain 
, (�; �) 2 
.

The simpler model can be derived to describe a shallow shell which is

characterized by the closeness of the mid-surface to the plane. In other

words, it is assumed that a = b = 1 and the coordinate system (�; �)

coincides with the Descartes system x

1

; x

2

. Then di�erentiating the fourth

and the �fth equilibrium equations with respect to x

1

and x

2

, respectively,

and combining with the third equilibrium equation give

�N

11;1

� N

12;2

� k

1

Q

1

= f

1

; �N

12;1

� N

22;2

� k

2

Q

2

= f

2

; (1:16)

�M

ij;ij

+ k

1

N

11

+ k

2

N

22

= f

3

:
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The geometrical equations also have the simpler form

"

11

= u

;1

+ k

1

w; "

22

= v

;2

+ k

2

w; "

12

= v

;1

+ u

;2

;

�

11

= (k

1

u�w

;1

)

;1

; �

22

= (k

2

v �w

;2

)

;2

; (1:17)

�

12

= �w

;12

+ 1=2 ((k

2

v)

;1

+ (k

1

u)

;2

) ;

and the constitutive law equations (1.15) keep their form.

The obtained model (1.15){(1.17) of a shallow shell can be simpli�ed

once more. The values of k

1

Q

1

, k

1

Q

2

are small enough very often, and they

can be omitted. By doing so, we obtain the simpli�ed model of a shallow

shell consisting of the following equilibrium equations:

�N

ij;j

= f

i

; i = 1; 2; �M

ij;ij

= f

3

; (1:18)

geometrical equations:

"

11

= u

;1

+ k

1

w; "

22

= v

;2

+ k

2

w; "

12

= v

;1

+ u

;2

; (1:19)

�

ij

= �w

;ij

; i; j = 1; 2; (1:20)

and constitutive equations:

N

ij

= a

ijkl

"

kl

; M

ij

= b

ijkl

�

kl

; i; j = 1; 2:

We call a plate the shallow shell when k

1

= k

2

= 0. This implies that the

plate mid-surface coincides with the plane z = 0, and the plate is limited

by the two parallel planes z = h, z = �h and a boundary contour. Let us

redenote the horizontal and vertical displacements of the plate mid-surface

by u = u

1

, v = u

2

, w. In this case, the plate horizontal and vertical

displacements are not coupled. Indeed, it follows from (1.18), (1.19), that

U = (u

1

; u

2

) is described by the following equilibrium equations:

�N

ij;j

= f

i

; i = 1; 2; (1:21)

constitutive equations:

N

ij

= a

ijkl

"

kl

; i; j = 1; 2; (1:22)

and geometrical equations:

"

ij

=

1

2

(u

i;j

+ u

j;i

) ; i; j = 1; 2: (1:23)

To �nd the normal displacements w we should consider the equilibrium

equation

�M

ij;ij

= f

3

(1:24)

and the constitutive equations

M

ij

= �b

ijkl

w

;kl

; i; j = 1; 2: (1:25)
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Substituting (1.22), (1.23) into (1.21), one can see that the di�erential equa-

tions (1.21) of second order with respect to U have the same structure as

those of the three-dimensional elasticity equations (1.1){ (1.3). The system

(1.24){(1.25) contains the fourth derivatives of w.

In the isotropic case the coe�cients a

ijkl

are as follows,

N

11

= G("

11

+ �"

22

); N

22

= G("

22

+ �"

11

); N

12

= G(1� �)"

12

; (1:26)

with the constant G = 2Eh=(1��

2

). Substituting (1.23), (1.26) into (1.21),

one gets the following system,

�G

�

1� �

2

�u

i

+

1 + �

2

(divu)

;i

�

= f

i

; i = 1; 2;

to �nd the plate horizontal displacements U = (u

1

; u

2

). For the isotropic

coe�cients b

ijkl

we have the formulae

M

11

= �D(w

;11

+ �w

;22

); M

22

= �D(w

;22

+ �w

;11

); (1:27)

M

12

= �D(1 � �)w

;12

with D = 2Eh

3

=3(1� �

2

). The substitution (1.27) into (1.24) provides the

biharmonic equation

D�

2

w = f

3

: (1:28)

The model discussed is called the Kirchho� model. Meantime there are

other approaches to describe the behaviour of a shell. For example, it can

be assumed that the �bre is not orthogonal to the mid-surface and the

corresponding angle between the mid-surface and the orthogonal direction

may vary. In this case the models are called Timoshenko or Reissner{

Timoshenko models (see Vol'mir, 1972; compare Ciarlet, Sanchez-Palencia,

1996). In particular, these approaches are used in Chapter 5.

1.1.4 Inelastic plates

Models of inelastic plates are introduced here, which are analysed in Chap-

ters 2, 3 and 5.

By the constitutive law (1.4), from (1.21){(1.25) we obtain the model of

a plate under the creep condition:

�N

ij;j

(t) = f

i

(t); i = 1; 2; �M

ij;ij

(t) = f

3

(t);

"

ij

(t) = A

ijkl

N

kl

(t) +

t

Z

0

�

A

ijkl

N

kl

(� ) d�; "

ij

(t) =

1

2

(u

i;j

(t) + u

j;i

(t)) ;

�w

;ij

(t) = B

ijkl

M

kl

(t) +

t

Z

0

�

B

ijkl

M

kl

(� ) d�; i; j = 1; 2;



10 Analysis of cracks in solids

considered in Sections 2.2 and 2.3.

Utilizing the constitutive law (1.5), the other model of a plate under the

creep condition follows:

�N

ij;j

(t) = f

i

(t); i = 1; 2; (1:29)

�M

ij;ij

(t) = f

3

(t); (1:30)

N

ij

(t) = a

ijkl

"

kl

(t) +

t

Z

0

�a

ijkl

"

kl

(� ) d�; i; j = 1; 2; (1:31)

M

ij

(t) = �b

ijkl

w

;kl

(t)�

t

Z

0

�

b

ijkl

w

;kl

(� ) d�; i; j = 1; 2: (1:32)

Let us consider the isotropic case. Instead of (1.26), the law (1.31) gives

N

11

(t) = G ("

11

(t) + �"

22

(t)) + G

t

Z

0

("

11

(� ) + �"

22

(� )) d�;

N

22

(t) = G ("

22

(t) + �"

11

(t)) + G

t

Z

0

("

22

(� ) + �"

11

(� )) d�;

N

12

(t) = G(1� �)"

12

(t) + G(1� �)

t

Z

0

"

12

(� ) d�:

Analogously, instead of (1.27), the equations (1.32) are as follows:

M

11

(t) = �D (w

;11

(t) + �w

;22

(t)) �D

t

Z

0

(w

;11

(� ) + �w

;22

(� )) d�;

M

22

(t) = �D (w

;22

(t) + �w

;11

(t)) �D

t

Z

0

(w

;22

(� ) + �w

;11

(� )) d�;

M

12

(t) = �D(1 � �)w

;12

(t) �D(1 � �)

t

Z

0

w

;12

(� ) d�:

Substitution of these equalities into (1.30) yields the equation

D�

2

w(t) +D

t

Z

0

�

2

w(� ) d� = f

3

(t):
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Let us introduce the notations

u

�

i

(t) = u

i

(t) +

t

Z

0

u

i

(� ) d�; i = 1; 2; w

�

(t) = w(t) +

t

Z

0

w(� ) d�

which imply the model for an isotropic plate under the creep condition writ-

ten in the simpler form

�N

ij;j

(t) = f

i

(t); i = 1; 2; D�

2

w

�

(t) = f

3

(t);

N

11

(t) = G("

11

(t) + �"

22

(t)); N

22

(t) = G("

22

(t) + �"

11

(t));

N

12

(t) = G(1� �)"

12

(t); "

ij

(t) =

1

2

�

u

�

i;j

(t) + u

�

j;i

(t)

�

; i; j = 1; 2:

This model is analysed in Section 3.1.

For the viscoelastic law (1.6), instead of (1.24), (1.25) the same argu-

ments guarantee a validity of the following equations for the vertical dis-

placements w:

�M

ij;ij

= f

3

; M

ij

= �b

ijkl

w

;kl

�

�

b

ijkl

@

@t

w

kl

; i; j = 1; 2:

Substituting the moments into the equilibrium equation, we obtain the equa-

tion for an isotropic viscoelastic plate,

D�

2

w +D

@

@t

�

2

w = f

3

;

which is considered in Section 2.1.

In the thermoelasticity we can get the presentation of (1.7), (1.8) for

plates in the form (Nowacki, 1962)

N

ij

= a

ijkl

"

kl

� �

ij

�; M

ij

= �b

ijkl

w

;kl

� �

ij

�; i; j = 1; 2; (1:33)

@

@t

� ��� + �

ij

@

@t

"

ij

� �

ij

@

@t

w

;ij

= g:

Here we have assumed that the temperature � does not depend on z. Let

the plate be isotropic and �

ij

= �

ij

= �

2

�

ij

, where � is a constant. Then

(1.33) gives the quasi-static model of a thermoelastic plate:

�N

ij;j

= f

i

; i = 1; 2; �M

ij;ij

= f

3

;

@

@t

� ���+ �

2

@

@t

(divU ��w) = g;

N

11

= G("

11

+�"

22

)��

2

�; N

22

= G("

22

+�"

11

)��

2

�; N

12

= G(1��)"

12

;

"

ij

=

1

2

(u

i;j

+ u

j;i

) ; i; j = 1; 2;

M

11

= �D(w

;11

+ �w

;22

)� �

2

�; M

22

= �D(w

;22

+ �w

;11

)� �

2

�;
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M

12

= �D(1 � �)w

;12

:

Substituting the moments into the constitutive law equation, one deduces

the equation

D�

2

w + �

2

�� = f

3

:

Let us introduce the integrated stresses

�

11

= G("

11

+ �"

22

); �

22

= G("

22

+ �"

11

); �

12

= G(1� �)"

12

;

"

ij

=

1

2

(u

i;j

+ u

j;i

) ; i; j = 1; 2:

Then we can write the equilibrium equations in the form

��

ij;j

+ �

2

�

;i

= f

i

; i = 1; 2; D�

2

w + �

2

�� = f

3

;

@

@t

� ��� + �

2

@

@t

(divU ��w) = g:

This system is called a model of the thermoelastic plate which is analysed

in Sections 3.3 and 3.4. For more precise and, therefore, more cumbersome

relations for thermoelastic plates see (Nowacki, 1962).

Now we formulate the models for perfectly elastoplastic plates considered

in Chapter 5. By the Hencky law (1.9), the vertical component w of the

plate displacements satis�es the equations (Erkhov, 1978)

�w

;ij

= B

ijkl

M

kl

+ �

ij

; i; j = 1; 2;

where �

ij

are plastic parts of the curvatures �w

ij

. Similar to (1.10), (1.11),

we admit the following inequalities (Khludnev, 1988):

�(M

ij

) � 0; �

ij

�

�

M

ij

�M

ij

�

� 0 8

�

M

ij

; �(

�

M

ij

) � 0:

The given function � is assumed to be convex and continuous. By adding

the equilibrium equation

�M

ij;ij

= f

3

;

we obtain the Hencky model of elastoplastic plate. One can exclude �

ij

and

obtain the equivalent inequality

(w

;ij

+ B

ijkl

M

kl

)

�

�

M

ij

�M

ij

�

� 0 8

�

M

ij

; �(

�

M

ij

) � 0:

In this case we cannot directly substitute M

ij

into the equilibrium equation

as it was done for the previous elastic and inelastic models. So w, M

ij

cannot be found in consecutive order, in general.

The ow model of Prandtl{Reuss for elastoplastic plate is as follows:

�M

ij;ij

= f

3

; �

@

@t

w

;ij

= B

ijkl

@

@t

M

kl

+ �

ij

; i; j = 1; 2;
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�(M

ij

) � 0; �

ij

�

�

M

ij

�M

ij

�

� 0 8

�

M

ij

; �(

�

M

ij

) � 0:

Here �

ij

denotes a velocity of a plastic part of the curvature. This model is

quasi-static, and it reduces to the equivalent inequality

�

@

@t

w

;ij

+ B

ijkl

@

@t

M

kl

�

�

�

M

ij

�M

ij

�

� 0 8

�

M

ij

; �(

�

M

ij

) � 0:

In the sequel, we consider concrete boundary conditions for the above

models to formulate boundary value problems. Also, restrictions of the

inequality type imposed upon the solutions are introduced. We begin with

the nonpenetration conditions in contact problems (see Kravchuk, 1979;

Khludnev, Sokolowski, 1997; Duvaut, Lions, 1972).

1.1.5 Contact problems

The model describing interaction between two bodies, one of which is a de-

formed solid and the other is a rigid one, we call a contact problem. After

the deformation, the rigid body (called also punch or obstacle) remains in-

variable, and the solid must not penetrate into the punch. Meanwhile, it is

assumed that the contact area (i.e. the set where the boundary of the de-

formed solid coincides with the obstacle surface) is unknown a priori. This

condition is physically acceptable and is called a nonpenetration condition.

We intend to give a mathematical description of nonpenetration conditions

to diversi�ed models of solids for contact and crack problems. Indeed, as

one will see, the nonpenetration of crack surfaces is similar to contact prob-

lems. In this subsection, the contact problems for two-dimensional problems

characterizing constraints imposed inside a domain are considered.

Let a punch shape be described by the equation z =  (x), and x

1

; x

2

; z

be the Descartes coordinate system, x = (x

1

; x

2

). We assume that the

mid-surface of a plate occupies the domain 
 of the plane z = 0 in its non-

deformable state. Then the nonpenetration condition for the plate vertical

displacements w is expressed by the inequalities

w(x) �  (x) + h

for the below punch, or by

w(x) �  (x) � h

for the above punch. Here 2h is the plate thickness. Redenoting  + h by

 , we write the �rst nonpenetration condition in the form

w(x) �  (x); x 2 
: (1:34)

We can write the equilibrium equation for the plate

�M

ij;ij

� f = p; (1:35)
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where f is the external force and p � 0 denotes the pressure of the punch.

Assume that there is no contact at the point x, that is w(x)� (x) > 0. In

this case p(x) = 0 and thus

p(x)

�

�w(x)� w(x)

�

= 0 8 �w; �w �  :

Conversely, let a contact occur at the point x. This means w(x) =  (x)

and p(x) � 0. Consequently, in this case

p(x)

�

�w(x)� w(x)

�

� 0 8 �w; �w �  :

The above arguments prove that the inequality

p( �w �w) � 0 8 �w; �w �  

always holds. Substituting here (1.35), one obtains

w �  � 0; (�M

ij;ij

� f)( �w � w) � 0 8 �w; �w �  : (1:36)

In its own turn, the conditions (1.36) are equivalent to

w �  � 0; �M

ij;ij

� f � 0; (w �  )(M

ij;ij

+ f) = 0: (1:37)

The meaning of the relation (1.37) is the following. The punch pressure

p = �M

ij;ij

�f is equal to zero if a contact is absent. If the punch pressure

at the given point is positive, then we have a contact at the above-mentioned

point.

Thus, the relations (1.36) or (1.37) describe the interaction between a

plate and a punch. To derive the contact model for an elastic plate, one

needs to use the constitutive law (1.25). Contact problems for inelastic

plates are derived by the utilizing of corresponding inelastic constitutive

laws given in Section 1.1.4.

Let us consider both the vertical w and horizontal U = (u

1

; u

2

) displace-

ments of a plate. As previously, let z =  (x) be the equation of a punch

shape. We take the point (x

1

; x

2

; 0) on the mid-plane. The nonpenetration

condition could be written in the form

w(x

1

; x

2

) �  (x

1

+ u

1

(x

1

; x

2

); x

2

+ u

2

(x

1

; x

2

)) + h:

We can ful�l the Taylor expansion of the function  (x+U (x)) at the point

x. Retaining the linear terms, the restriction w �  +Ur +h is obtained.

Redenoting  + h by  , we �nally have

w � Ur �  : (1:38)

Variational inequality characterizing an interaction between the punch and

the plate can be written in the form

(�M

ij;ij

� f)( �w �w) + (�N

ij;j

� f

i

)(�u

i

� u

i

) � 0 (1:39)
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8(

�

U; �w); �w �

�

Ur �  :

To derive the last relation, we take the equilibrium equations

�M

ij;ij

� f = p; �N

ij;j

� f

i

= p

i

; i = 1; 2;

for the given exterior forces f

1

; f

2

; f ; p

1

; p

2

; p are punch's forces. Let us

multiply the equations by �w � w, �u

i

� u

i

, respectively, with an arbitrary

(

�

U; �w),

�

U = (�u

1

; �u

2

), satisfying (1.38) and sum. One gets

(�M

ij;ij

�f)( �w�w)+(�N

ij;j

�f

i

)(�u

i

�u

i

) = p( �w�w)+p

i

(�u

i

�u

i

): (1:40)

It is clear that the right-hand side of (1.40) is nonnegative. In fact, at the

noncontact point x we have p(x) = p

1

(x) = p

2

(x) = 0 and, therefore, the

assertion is true. Now let x be a contact point. In this case

w(x)� U (x)r (x) =  (x): (1:41)

On the other hand, we have

�w(x)�

�

U (x)r (x) �  (x): (1:42)

Subtracting (1.41) from (1.42), one �nds

0 � �w(x) �w(x)�

�

�

U (x)� U (x)

�

r (x) (1:43)

= (

�

U (x) � U (x); �w(x)� w(x)) � (�r (x); 1):

The normal to the surface z =  (x) has the coordinates

(�r (x); 1)=

p

1 + jr j

2

:

Taking into account that the vector p has the same direction, we conclude

from (1.43) that

p(x)( �w(x) �w(x)) + p

i

(x) (�u

i

(x)� u

i

(x)) � 0:

Thus, we have obtained that the right-hand side of (1.40) is always nonnega-

tive, which gives (1.39). To derive a complete system of relations describing

the interaction between the punch and the plate we should add to (1.38),

(1.39) the constitutive law equations of Sections 1.1.3 and 1.1.4.

We would like to stress at this point that the derivation of (1.36) and

(1.38){(1.39) is connected with the simulation of contact problems and

therefore contains some assumptions of a mechanical character. This re-

mark is concerned with the sign of the function p in the problem (1.36)

and with the direction of the vector (p

1

; p

2

; p) in the problem (1.38), (1.39).

Note that the classical approach to contact problems is characterized by a

given contact set (Galin, 1980; Kikuchi, Oden, 1988; Grigulyuk, Tolkachev,

1980). In contact problems considered in the book, the contact set is un-

known, and we obtain the so called free boundary problems. Other free

boundary problems can be found in (Ho�mann, Sprekels, 1990; Elliot, Ock-

endon, 1982; Antontsev et al., 1990; Kinderlehrer et al., 1979; Antontsev et

al., 1992; Plotnikov, 1995).
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1.1.6 Boundary conditions

Let a solid body occupy a domain
 � R

3

with the smooth boundary �. The

deformation of the solid inside 
 is described by equilibrium, constitutive

and geometrical equations discussed in Sections 1.1.1{1.1.5. To formulate

the boundary value problem we need boundary conditions at �. The prin-

cipal types of boundary conditions are considered in this subsection.

The following restriction imposed upon the boundary displacements u =

(u

1

; u

2

; u

3

),

u = 0; (1:44)

corresponds to the solid clamped on the boundary.

Let n = (n

1

; n

2

; n

3

) be a unit outer normal vector at �. The restriction

imposed upon the boundary stresses by

�

ij

n

j

= 0; i = 1; 2; 3; (1:45)

corresponds to the stress free boundary. It is convenient to rewrite (1.45)

for the tangential �

�

and the normal �

n

components of the boundary stress

vector �

ij

n

j

de�ned by the decomposition

�

ij

n

j

= �

n

n

i

+ �

�i

; i = 1; 2; 3; �

�

= (�

�1

; �

�2

; �

�3

);

where

�

n

= �

ij

n

j

n

i

; �

�i

= �

ij

n

j

� �

n

n

i

; i = 1; 2; 3:

Then (1.45) is equivalent to

�

n

= 0; �

�

= 0:

We now assume a validity of the unilateral boundary constraints pro-

vided that the nonpenetration of the boundary points over the given obstacle

takes place, namely

u

n

� 0: (1:46)

Here u

n

is a normal component of the boundary displacements vector u

de�ned by the decomposition

u

i

= u

n

n

i

+ u

�i

; i = 1; 2; 3; u

�

= (u

�1

; u

�2

; u

�3

);

u

n

= u

i

n

i

; u

�i

= u

i

� u

n

n

i

; i = 1; 2; 3:

The boundary inequality (1.46) is called a Signorini condition (Fichera,

1972).

Let F � 0 be a given friction coe�cient, and g � 0 be a known friction

force at the boundary. The conditions of given friction along the normal

implies

8

<

:

j�

n

j � Fg =) u

n

= 0;

�

n

= Fg =) u

n

� 0;

�

n

= �Fg =) u

n

� 0:
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The last relations can be generalized in the form

j�

n

j � Fg; �

n

u

n

+ Fgju

n

j = 0: (1:47)

This case is considered in Section 3.6. The given friction along the tangent

is more suitable from the standpoint of mechanics and is described by the

conditions similar to (1.47),

j�

�

j � Fg; �

�i

u

�i

+ Fgju

�

j = 0: (1:48)

The friction force g is unknown in general. The Coulomb law assumes

g = j�

n

j and provides the more general relations as compared with (1.48)

(Hlava�cek et al., 1988; Duvaut, Lions, 1972; Demkowicz, Oden, 1982;

Haslinger, Panagiotopoulos, 1984; Namm, 1995)

j�

�

j � Fj�

n

j; �

�i

u

�i

+ Fj�

n

jju

�

j = 0:

We formulate boundary conditions in the two-dimensional theory of

plates and shells. Denote by u = (U;w), U = (u

1

; u

2

), horizontal and

vertical displacements at the boundary � of the mid-surface 
 � R

2

. Then

the horizontal displacements U may satisfy the Dirichlet-type conditions

U = 0

or the Neumann-type conditions

N

ij

n

j

= 0; i = 1; 2:

Here N

ij

denote the integrated stresses; n = (n

1

; n

2

) is a unit outer normal

at �.

The vertical displacements w are described by the fourth order di�eren-

tial equation according to the equilibrium and the constitutive laws. The

following relations for w,

w =

@w

@n

= 0;

provide a jam condition of the boundary, where @w=@n = w

;i

n

i

. Let us

de�ne the bending moment m and transverse force t by the formulae

m = �M

ij

n

j

n

i

; t = �M

ij;k

�

k

�

j

n

i

�M

ij;j

n

i

;

where � = (�n

2

; n

1

) is the tangent vector at the boundary �. The hinge

conditions imply

w = m = 0;

and the stress free boundary is described by the equalities

m = t = 0:
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1.1.7 Crack in a solid. Nonpenetration conditions

Let a solid occupy a bounded domain 
 � R

3

with the smooth boundary

� (see Fig.1.1). Let 
 contain a smooth unclosed surface �

c

, probably

intersecting �. We assume that �

c

is an oriented surface such that there

exists a mapping

x

i

= x

i

(y

1

; y

2

); i = 1; 2; 3;

of  � R

2

onto �

c

which sets up a one-to-one correspondence and has a

positive Jacobian. Here x 2 �

c

; (y

1

; y

2

) are coordinates of the point y 2 ,

 =  [ @. We assume that  is a bounded simply connected domain in

R

2

with a smooth boundary @.

Fig.1.1. 3D-body with a crack

Let us denote by n = (n

1

; n

2

; n

3

) a unit outer normal to � and choose

the direction � = (�

1

; �

2

; �

3

) of a unit normal vector to �

c

. Then � de�nes

the positive side �

+

c

of the surface �

c

with the outer normal �� and the

negative side �

�

c

of �

c

with the outer normal �. Thus we get the domain




c

= 
n�

c

disposed between the outer boundary � and the inner boundary

�

+

c

[ �

�

c

. In the sequel we call 


c

a solid with a crack.

Let v be some known function de�ned in the domain 


c

. If v and the

boundary @


c

= � [ �

+

c

[ �

�

c

are su�ciently smooth, then we can de�ne

values of v at the boundary (the exact smoothness conditions are studied in

Section 1.4). In particular, having the values vj

�

+

c

and vj

�

�

c

, we introduce

the jump of v at �

c

by the formula

[v] = vj

�

+

c

� vj

�

�

c

:

Now we are in a position to formulate suitable boundary conditions at �

c

.

As before, let u = (u

1

; u

2

; u

3

) denote the displacement �eld in the do-

main 


c

. If the boundary is clamped then (1.44) provides

u = 0

at �

c

. The condition for zero opening of the crack is as follows:

[u] = 0:
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The stress free boundary condition (1.45) for crack surfaces implies

�

ij

�

j

= 0; i = 1; 2; 3:

The nonpenetration condition of the crack faces is easily derived,

[u]� = [u

�

] � 0: (1:49)

Thus we obtain the crack model obeying the unilateral constraint (1.49) of

the Signorini type.

Now we intend to derive nonpenetration conditions for plates and shells

with cracks. Let a domain 
 � R

2

with the smooth boundary � coincide

with a mid-surface of a shallow shell. Let �

 

be an unclosed curve in 


perhaps intersecting � (see Fig.1.2). We assume that �

 

is described by

a smooth function x

2

=  (x

1

). Denoting 


 

= 
 n �

 

we obtain the

description of the shell (or the plate) with the crack. This means that the

crack surface is a cylindrical surface in R

3

, i.e. it can be described as

x

2

=  (x

1

), �h � z � h, where (x

1

; x

2

; z) is the orthogonal coordinate

system, and 2h is the thickness of the shell. Let us choose the unit normal

vector � = (�

1

; �

2

) at �

 

,

� = (� 

0

; 1)=

p

1 + j 

0

j

2

;

which de�nes the positive �

+

 

and the negative �

�

 

sides of the curve �

 

.

Then the jump [v] of v at �

 

is equal to vj

�

+

 

� vj

�

�

 

.

Fig.1.2. Middle surface of the plate

Studying separately the equations (1.21){ (1.23) for the shell horizontal

displacements U = (u

1

; u

2

) and (1.24), (1.25) for the shell vertical displace-

ments w at the mid-surface, we can apply (1.49) and deduce the nonpene-

tration condition

[U

�

] = [U ]� = [u

i

]�

i

� 0 (1:50)

for the shell horizontal displacements. On the other hand, we may consider

(1.50) as a simpli�ed nonpenetration condition.
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Fig.1.3. Vertical cross-section of the plate

Let us derive a condition of nonpenetrating in general case (see Fig.1.3).

The Kirchho�{Love hypothesis provides the linear dependence of the shell

horizontal displacements on a distance from the mid-surface, namely

U (z) = U � zrw; w(z) = w; �h � z � h: (1:51)

Substituting (1.51) into (1.49), one has

0 � [(U (z); w(z))] � (�; 0) = [U � zrw]� = [U ]� � z

�

@w

@�

�

: (1:52)

The arbitrariness of �h � z � h implies that the relation (1.52) is ful�lled

for z = h:

0 � [U ]� � h [@w=@�]

and for z = �h:

0 � [U ]� + h [@w=@�] :

These inequalities can be written as

[U ]� � h

�

�

�

�

�

@w

@�

�

�

�

�

�

: (1:53)

Conversely, the linear dependence of (1.52) on z guarantees ful�lment of

(1.52) provided that (1.53) holds.

Thus, (1.53) is a complete nonpenetration condition of the crack surfaces

for the Kirchho�{Love plates and shallow shells. By putting the thickness

2h to be zero, one reduces (1.53) to the simpli�ed nonpenetration condition

(1.50).

1.1.8 Variational formulation of the problems

Let a solid with a crack occupy the domain 


c

in the sense shown in the

previous subsection, and f = (f

1

; f

2

; f

3

) be a given external force. We de�ne

the functional of potential energy for the solid,

� =

1

2

Z




c

�

ij

"

ij

d


c

�

Z




c

f

i

u

i

d


c

: (1:54)
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Utilizing the geometrical equations "

ij

= "

ij

(u) and the constitutive law

relations �

ij

("

kl

) discussed in Section 1.1.1, the formula (1.54) de�nes the

functional � depending on the displacements u, i.e. � = �(u). Considering

boundary conditions listed in Section 1.1.6 at the outer boundary � and the

nonpenetration condition (1.49) at the crack �

c

, we de�ne the admissible

displacements set K. Then the equilibrium problem for the elastic solid with

a crack consists in the following minimization problem:

�(u) = inf

�u2K

�(�u); (1:55)

which is equivalent to the variational inequality

u 2 K; �

0

u

(�u � u) � 0 8�u 2 K; (1:56)

provided that K is convex. Here �

0

u

is the derivative of the functional �

at the point u. In the sequel, we intend to show that (1.56) provides the

ful�lment of the equilibrium equations (1.1),

��

ij;j

(u) = f

i

; i = 1; 2; 3;

holding in the domain 


c

, and general boundary conditions holding at the

crack faces. It is of importance that the presence of the nonpenetration

condition is considered. Without this constraint one obtains stress free

boundary conditions at the crack faces. For displacements obeying the

friction condition (1.48) at the boundary part �

F

, the potential energy

functional takes the form

� =

1

2

Z




c

�

ij

"

ij

d


c

�

Z




c

f

i

u

i

d


c

+

Z

�

F

Fgju

�

j d�

F

:

In the two-dimensional theory of solids, the potential energy functional

for the shallow shell with the mid-surface 


 

is as follows:

� =

1

2

Z




 

(N

ij

"

ij

+M

ij

�

ij

) d


 

�

Z




 

(f

i

u

i

+ fw) d


 

:

Substituting here the corresponding geometrical and constitutive relations

of Sections 1.1.3 and 1.1.4, we obtain � = �(U;w). The set of admissible

displacements K is de�ned by the boundary conditions at � and nonpene-

tration conditions at the crack �

 

stated in Section 1.1.7. The variational

form of the equilibrium problem is the following:

�(U;w) = inf

(

�

U; �w)2K

�(

�

U; �w): (1:57)

If U and w are not coupled, one can separately analyse the following two

problems:

inf

�

U2K

�(

�

U; �w); inf

�w2K

�(

�

U; �w):
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The minimization problem (1.57) also provides the ful�lment of the equi-

librium equations

�N

ij;j

(U;w) = f

i

; i = 1; 2; �M

ij;ij

(U;w) = f

in 


 

and general boundary conditions holding at the crack faces.

Let us emphasize that not model can be presented as a minimization

problem like (1.55) or (1.57). Thus, elastoplastic problems considered in

Chapter 5 can be formulated as variational inequalities, but we do not

consider any minimization problems in plasticity. In all cases, we have

to study variational problems or variational inequalities. It is a principal

topic of the following two sections. As for general variational principles in

mechanics and physics we refer the reader to (Washizu, 1968; Chernous'ko,

Banichuk, 1973; Ekeland, Temam, 1976; Telega, 1987; Panagiotopoulos,

1985; Morel, Solimini, 1995).

1.2 Elements of convex analysis

1.2.1 Minimization problem. Variational inequalities

Let V be a normed space, and J : V ! R be an arbitrary functional. We

assume that there exists a linear and continuous functional J

0

u

such that for

each v 2 V

J

0

u

(v) = lim

�!0

J(u+ �v) � J(u)

�

:

It is said in this case that the functional J has the derivative J

0

u

at the point

u. Let V

?

be the space dual of V , i.e. the space of all linear continuous

functionals on V . If the operator J

0

: V ! V

?

is de�ned such that for each

u 2 V the derivative J

0

u

can be found at the point u, then the functional J

is called di�erentiable.

A set K � V is called a convex set if the inclusion �u

1

+ (1� �)u

2

2 K

is valid for all u

1

; u

2

2 K, � 2 (0; 1). Let K � V be a convex set, and J be

a di�erentiable functional on V . We consider a minimization problem

inf

u2K

J(u): (1:58)

An element u

0

2 K is called the solution of the problem (1.58) if

J(u

0

) = inf

u2K

J(u) (i:e: J(u)� J(u

0

) � 0 8u 2 K):

We take u

1

2 K, � 2 (0; 1), and put the element �u

1

+ (1� �)u

0

instead of

u. Then the relation

1

�

(J(u

0

+ �(u

1

� u

0

))� J(u

0

)) � 0
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follows. Passing to the limit as �! 0, we �nd

u

0

2 K : J

0

u

0

(u

1

� u

0

) � 0 8u

1

2 K: (1:59)

The inequality like (1.59) is called a variational inequality. It was obtained

from a minimization problem of the functional J over the set K. In the

sequel we will look more attentively at a connection between a minimiza-

tion problem and a variational inequality. Now we want to underline one

essential point. We see that the problem (1.58) is more general in compar-

ison with the minimization problem on the whole space V . It is wellknown

that the necessary condition in the last problem coincides with the Euler

equation. The variational inequality (1.59) generalizes the Euler equation.

Moreover, for K = V the Euler equation follows from (1.59). To obtain

it we take u

1

= u

0

+ u and substitute in (1.59) with an arbitrary element

u 2 V . It gives

J

0

u

0

(u) = 0 8u 2 V:

This exactly coincides with the Euler equation.

A functional J : V ! R is called a convex functional if

J(�u

0

+ (1� �)u

1

) � �J(u

0

) + (1� �)J(u

1

) (1:60)

for all u

0

; u

1

2 V , � 2 (0; 1). The functional J is called a strictly convex

one if it is convex and the equality in (1.60) is nonadmissible for u

0

6= u

1

.

Let the functional J be convex and di�erentiable. We can prove the

validity of the inequality

J(u

0

)� J(u

1

) � J

0

u

1

(u

0

� u

1

) 8u

0

; u

1

2 V: (1:61)

Thus, it follows from (1.60) that

J(u

1

+ �(u

0

� u

1

)) � J(u

1

) � � (J(u

0

) � J(u

1

)) :

After dividing this relation by � and passing to the limit as � ! 0 the

inequality

J

0

u

1

(u

0

� u

1

) � J(u

0

)� J(u

1

)

follows. It coincides with (1.61).

We have pointed out the following fact. If K � V is a convex set then

the variational inequality

u

0

2 K : J

0

u

0

(u

1

� u

0

) � 0 8u

1

2 K (1:62)

provides a necessary condition of a minimumattainability for the functional

J over the set K at the point u

0

2 K. It proved that the condition (1.62)

is a su�cient one in the case of the convex functional J . Let us justify it.

Assuming the validity of (1.62) it follows from (1.62), (1.61) that

J(u

1

) � J(u

0

) � J

0

u

0

(u

1

� u

0

) � 0 8u

1

2 K:
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This means

J(u

1

) � J(u

0

) � 0 8u

1

2 K: (1:63)

The established statement will be formulated as a theorem.

Theorem 1.1. The inequality (1.62) gives necessary and su�cient conditions

of the minimum over the set K for a convex and di�erentiable functional

J .

The following lemma will be useful below.

Lemma 1.1. For every convex and di�erentiable functional J the function

�

�1

(J(u+ �u

0

)� J(u))

of the variable � is nondecreasing.

Proof. We introduce the notation

�(�) =

1

�

(J(u+ �u

0

) � J(u)) :

Our goal is to prove that �

0

(�) � 0. We have

�

0

(�) =

1

�

2

�

�

d

d�

J(u+ �u

0

)� J(u+ �u

0

) + J(u)

�

: (1:64)

It is easy to �nd

d

d�

J(u+ �u

0

) = J

0

u+�u

0

(u

0

):

Thus, it follows from (1.64) that

�

0

(�) =

1

�

2

�

�J

0

u+�u

0

(u

0

)� J(u+ �u

0

) + J(u)

�

:

The right-hand side is nonnegative here in view of (1.61), therefore �

0

(�) �

0. Lemma 1.1 is proved.

It was stated above that the inequality

J(u

0

)� J(u

1

) � J

0

u

1

(u

0

� u

1

) 8u

0

; u

1

2 V (1:65)

is valid for convex and di�erentiable functionals. Let us prove the converse.

We shall state that a convexity of J follows from (1.65). To verify this we

take u; u

0

2 V and substitute u

1

= (1� �)u + �u

0

in the inequality (1.65).

This gives

J(u

0

)� J((1� �)u + �u

0

) � J

0

(1��)u+�u

0

((1� �)(u

0

� u)) : (1:66)

The same reasonings provide the inequality

J(u) � J((1� �)u+ �u

0

) � J

0

(1��)u+�u

0

(�(u� u

0

)) : (1:67)
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Let us multiply (1.66), (1.67) by �, 1��, respectively, and sum the obtained

relations. The result can be written in the form

�J(u

0

) + (1� �)J(u) � J((1� �)u + �u

0

) � 0: (1:68)

This means that the functional is convex.

The previous considerations can be speci�ed. Namely, if J is a strictly

convex functional then

J(u

0

)� J(u

1

) > J

0

u

1

(u

0

� u

1

); u

0

6= u

1

; (1:69)

and conversely. To prove this we assume the validity of (1.69). Then the

inequalities (1.66), (1.67) will be strict for u

0

6= u. Consequently, the in-

equality (1.68) will also be strict. Conversely, let J be a strictly convex

functional. Then

J(u+ �(u

0

� u)) < �J(u

0

) + (1� �)J(u); u 6= u

0

:

Whence

1

�

(J(u+ �(u

0

� u)) � J(u)) < J(u

0

) � J(u):

Taking into account Lemma 1.1, we conclude that the left-hand side of this

inequality converges from above to J

0

u

(u

0

� u). Thus

J

0

u

(u

0

� u) < J(u

0

)� J(u):

The statement is proved.

1.2.2 Convex functionals

Convex functionals have a convenient description in terms of their deriva-

tives. We briey discuss this question.

Let V be a normed space and V

?

be its dual. An operator A : V ! V

?

is called a monotonous operator if

(Au� Au

1

)(u � u

1

) � 0 8u; u

1

2 V:

As it was pointed out in Section 1.2.1 one can construct the operator J

0

:

V ! V

?

which assigns the derivative J

0

u

for each u 2 V . The following

statement is valid.

Theorem 1.2. The functional J is convex if and only if the operator J

0

is

monotonous.

Proof. By virtue of the above statements,

J(u)� J(u

1

) � J

0

u

1

(u� u

1

); J(u

1

) � J(u) � J

0

u

(u

1

� u):

Summing up these inequalities we �nd the required

(J

0

u

� J

0

u

1

)(u� u

1

) � 0 8u; u

1

2 V: (1:70)
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Conversely. Let the inequality (1.70) be valid. We introduce the notation

�(�) = J(u

1

+ �(u� u

1

)); � 2 (0; 1)

for arbitrary �xed elements u; u

1

2 V and prove that the value

� � �J(u) + (1� �)J(u

1

)� J(�u+ (1 � �)u

1

)

is nonnegative. One has

� = �(�(1)� �(�)) + (1� �)(�(0) � �(�)) = �(1� �) (�

0

(�

1

)� �

0

(�

2

)) :

The well-known theorem of �nite di�erences was used here. In particular,

�

1

2 (�; 1), �

2

2 (0; �), and therefore �

1

> �

2

. At the same time

�

0

(�

i

) = J

0

u

1

+�

i

(u�u

1

)

(u � u

1

); i = 1; 2:

Hence, in view of (1.70),

�

0

(�

1

) � �

0

(�

2

) � 0:

This means � � 0, which proves the convexity of the functional J . The

proof of Theorem 1.2 is completed.

Let K � V be a convex set, and J : V ! R be a convex di�erentiable

functional. As it was shown, the minimization problem of J over the set K

is equivalent to the following variational inequality:

u 2 K : J

0

u

(u

1

� u) � 0 8u

1

2 K: (1:71)

It turns out that an equivalent form of the variational inequality (1.71) can

be given. Namely, the following theorem is valid.

Theorem 1.3. Let J

0

: V ! V

?

be a continuous mapping. Then the inequal-

ity (1.71) is ful�lled if and only if

u 2 K : J

0

u

1

(u

1

� u) � 0 8u

1

2 K: (1:72)

Proof. By virtue of the convexity of J , the operator J

0

is monotonous.

Thus

(J

0

u

� J

0

u

1

)(u � u

1

) � 0 8u; u

1

2 K: (1:73)

If the element u satis�es the inequality (1.71) then, summing (1.71) and

(1.73), we obtain (1.72). Conversely, let (1.72) be ful�lled. Taking u

1

=

(1 � �)u+ �u

0

, u

0

2 K, we �nd

�J

0

(1��)u+�u

0

(u

0

� u) � 0:

Dividing this inequality by � and passing to the limit as �! 0 on the basis

of the continuity of J

0

, we obtain the desired inequality

J

0

u

(u

0

� u) � 0 8u

0

2 K:



Introduction 27

This proves the theorem.

To conclude this subsection we consider a case of nonsmooth functionals.

Let, as before, K � V be a convex set, and J : V ! R be a convex

functional. We assume that J is represented as a sum of di�erentiable and

nondi�erentiable functionals. Namely, let J = J

1

+ J

2

, where J

1

; J

2

are

convex functionals, J

1

is di�erentiable and, moreover, J

0

1

: V ! V

?

is a

continuous operator. Consider the problem

inf

u2K

J(u): (1:74)

The following statement is valid.

Theorem 1.4. Three conditions formulated below are equivalent:

u 2 K is the solution of (1:74); (1:75)

u 2 K : (J

1

)

0

u

(u

0

� u) + J

2

(u

0

)� J

2

(u) � 0 8u

0

2 K; (1:76)

u 2 K : (J

1

)

0

u

0

(u

0

� u) + J

2

(u

0

)� J

2

(u) � 0 8u

0

2 K: (1:77)

Proof. First of all we prove the equivalence of (1.75) and (1.76). Let

u 2 K be the solution of (1.74). Then

J(u) � J((1 � �)u+ �u

0

) 8u

0

2 K; � 2 (0; 1):

By the convexity of the functional J

2

, from this inequality we obtain the

�rst relation,

J

1

(u) + J

2

(u) � J

1

((1� �)u+ �u

0

) + (1� �)J

2

(u) + �J

2

(u);

and after division by � we obtain the second one,

1

�

(J

1

((1 � �)u+ �u

0

)� J

1

(u)) + J

2

(u

0

) � J

2

(u) � 0:

Let us pass here to the limit as �! 0. This gives (1.76). Conversely, let u

satisfy the variational inequality (1.76). Then, by the convexity of J

1

, one

has

J

1

(u

0

)� J

1

(u) � (J

1

)

0

u

(u

0

� u) 8u

0

2 K:

We sum this relation with (1.76) and �nd

J(u

0

)� J(u) � 0 8u

0

2 K:

This means that u is a solution of problem (1.74).

Now let us prove the equivalence of (1.76) and (1.77). We assume that

(1.76) is valid. It follows from the monotonicity of J

0

1

that

�

(J

1

)

0

u

0

� (J

1

)

0

u

�

(u

0

� u) � 0:
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Summing up this inequality with (1.76), we obtain (1.77) exactly. Con-

versely, let (1.77) be ful�lled. We take u

1

2 K and substitute (1��)u+�u

1

as the test element which provides

�(J

1

)

0

(1��)u+�u

1

(u

1

� u) + J

2

((1� �)u+ �u

1

) � J

2

(u) � 0:

The left-hand side of this inequality can be estimated from above by using

the convexity of J

2

. Then we derive the obtained inequality by � and pass

to the limit as �! 0. The resulting relation coincides with (1.76). Theorem

1.4 is completely proved.

1.2.3 Compactness properties

Let V be a normed space and V

?

be its dual. A sequence of elements u

n

2 V

is called weakly converging to an element u if for every �xed u

?

2 V

?

u

?

(u

n

) ! u

?

(u); n!1:

We can consider a dual space V

??

with respect to V

?

. For an arbitrary �xed

element u 2 V the functional u

?

! u

?

(u) can be de�ned, where u

?

2 V

?

.

This functional is linear and continuous on V

?

and therefore is an element

of the space V

??

. For every u 2 V the functional u

??

2 V

??

can be pointed

out such that

u

??

(u

?

) = u

?

(u) 8u

?

2 V

?

:

Thus we obtain the imbedding of the space V into the second dual one

V

??

. The imbedding operator is denoted by �. If �V = V

??

, the space

V is called reexive (Kantorovich, Akilov, 1984). The simplest example of

reexive spaces are L

p

(
) for 1 < p <1 since

(L

p

(
))

?

= L

q

(
); 1=p+ 1=q = 1:

At the same time the spaces L

1

(
) and L

1

(
) are nonreexive: a space

dual of L

1

(
) coincides with L

1

(
), but a dual one of L

1

(
) is wider as

compared with L

1

(
). The notion of ?{weak convergence will be used for

nonreexive spaces. Namely, the sequence of elements u

?

n

2 V

?

is called

?{weakly convergent to the element u

?

2 V

?

if for every �xed u 2 V

u

?

n

(u) ! u

?

(u); n!1:

The compactness properties are closely connected with the reexivity of

spaces. On that score we formulate two theorems widely used in this book

(Vainberg, 1972).

Theorem 1.5. A bounded set of reexive Banach spaces is weakly compact.

Theorem 1.6. A bounded set of the space dual of the separable normed one

is ?{weakly compact.

Using the term weakly compact we mean only that every bounded se-

quence contains a weakly converging subsequence. The same is related to

the term ? - weakly compact.
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1.2.4 Semicontinuous functionals

A functional J : V ! R is called weakly lower semicontinuous at the point

u if the condition u

n

! u weakly in V implies

lim inf J(u

n

) � J(u):

The weak convergence can be compared with the strong one (convergence

in the norm). It is easily seen that if u

n

! u strongly in V then u

n

! u

weakly in V . We have to indicate also that a continuity of the functional

does not imply, in general, its weak lower semicontinuity. Of course, the

weak lower semicontinuity does not imply a continuity. At the same time a

weak lower semicontinuous functional is strongly lower semicontinuous, i.e.

the condition u

n

! u strongly in V implies

lim inf J(u

n

) � J(u):

This property is obvious in so far as the strongly converging sequence u

n

is

weakly converging.

Now let us prove two theorems containing su�cient conditions of weak

lower semicontinuity of the functionals.

Theorem 1.7. Let the inequality

J(u) � J(u

0

) � J

0

u

0

(u� u

0

) 8u 2 V (1:78)

be ful�lled at the point u

0

2 V . Then the functional J is weakly lower

semicontinuous at the point u

0

.

Proof. Let u

n

! u

0

weakly in V . By virtue of the inclusion J

0

u

0

2 V

?

we have

J

0

u

0

(u

n

� u

0

) ! 0:

Then it follows from (1.78) that

lim inf (J(u

n

)� J(u

0

)) � lim J

0

u

0

(u

n

� u

0

) = 0:

Hence

lim inf J(u

n

) � J(u

0

):

The theorem is proved.

The second assertion is formulated as follows.

Theorem 1.8. Let the functional J : V ! R satisfy the condition

�

J

0

u

� J

0

u

0

�

(u� u

0

) � 0 8u; u

0

2 V: (1:79)

Then the functional J is weakly lower semicontinuous on V .

Proof. It was proved that the inequality (1.79) is equivalent to the

convexity of J . On the other hand, the convexity is equivalent to (1.78).

Hence the result follows from the previous theorem.
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We formulate one more theorem concerning the weak lower semiconti-

nuity.

Theorem 1.9. Let V be a Banach space, and J : V ! R be a convex

functional. Then J is weakly lower semicontinuous on V .

1.2.5 Existence of solution to minimization problems

A functional J : V ! R is called a coercive if

J(u) ! +1 as kuk !1:

A set K � V is called weakly closed if the conditions u

n

! u weakly in

V , u

n

2 K, imply u 2 K. The following statement is valid.

Theorem 1.10. A closed convex set of a reexive Banach space is weakly

closed.

Now we can prove the statement of solution existence to minimization

problems.

Theorem 1.11 Let V be a reexive Banach space, and K � V be a closed

convex set. Assume that J : V ! R is a coercive and weakly lower semi-

continuous functional. Then the problem

inf

u2K

J(u) (1:80)

has a solution.

Proof. Let us take a minimizing sequence u

n

, i.e. a sequence possessing

the property

J(u

n

) ! inf

u2K

J(u):

The functional J is coercive, hence the sequence u

n

is bounded,

ku

n

k � c;

where the constant c is independent of n. If the converse is valid, the

chosen sequence can not be a minimizing one. By the reexivity of V , one

can choose a subsequence u

i

from the sequence u

n

such that u

i

! u weakly

in V . We have u

i

2 K, whence by Theorem 1.10, the inclusion u 2 K

follows. Let us denote

j = inf

u2K

J(u):

Then

j = lim inf J(u

n

) = lim inf J(u

i

) � J(u):

The inequality used here follows from the weak lower semicontinuity of the

functional J . Thus, the element u is found such that

j = J(u); u 2 K:
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This means that u is the solution of problem (1.80). The proof of Theorem

1.11 is completed.

Let V be a reexive Banach space. We consider a bilinear continuous

functional B : V � V ! R such that B(u; u

1

) = B(u

1

; u), B(u; u) � 0 for

all u; u

1

2 V . Let also F : V ! R be a linear continuous functional, and

K � V be a closed convex set. We de�ne the functional

J(u) =

1

2

B(u; u) � F (u)

and investigate the minimization problem

inf

u2K

J(u): (1:81)

Theorem 1.12. The solution of the problem (1.81) exists if and only if there

exists a solution of the variational inequality

u 2 K : B(u; �u� u) � F (�u� u) 8�u 2 K: (1:82)

Proof. First of all we �nd the derivative J

0

u

of the functional J . It is

easily seen that

lim

�!0

J(u+ ��u) � J(u)

�

= B(u; �u) � F (�u):

We have used here the symmetry of the functional B. Thus

J

0

u

(�u) = B(u; �u)� F (�u):

Hence the mapping u! J

0

u

is monotonous. Consequently, the functional J

is convex. As it was proved in Theorem 1.1, the problem (1.81) is equivalent

to

u 2 K : J

0

u

(�u� u) � 0 8�u 2 K: (1:83)

Taking into account the obtained formula for J

0

u

, we complete the proof of

Theorem 1.12.

Let us formulate su�cient conditions of solvability to the problem (1.82).

We additionally assume that there exists a constant c > 0 such that

B(u; u) � ckuk

2

8u 2 V:

It will be proved that all conditions of Theorem 1.11 are ful�lled. It provides

the solvability of the problem (1.81) and therefore of the problem (1.82).

We �rst show that the functional J is weakly lower semicontinuous. The

function B(u; u

0

) is linear and continuous over u

0

for each �xed u 2 V . Now

let u

n

! u weakly. Then

B(u

n

; u

n

) = B(u; u) + 2B(u; u

n

� u) +B(u

n

� u; u

n

� u):
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The second term of the right-hand side of this relation converges to zero in

view of the weak convergence of u

n

; the third term is nonnegative. Hence

lim inf B(u

n

; u

n

) � B(u; u):

The linear functional F obviously possesses the needful property of the weak

continuity. Thus we obtain the weak lower semicontinuity of the functional

J .

By the inequality jF (u)j � kFk

?

kuk, the functional J is also coercive.

Indeed,

J(u) �

c

2

kuk

2

� kFk

?

kuk ! +1

as kuk !1. Hence we obtain the following statement.

Theorem 1.13. Let the above assumptions be ful�lled. Then there exists a

unique solution to the problem (1.81).

The set K in Theorem 1.11 may coincide with the space V . For a

di�erentiable functional J it guarantees the solvability of the Euler equation

J

0

u

(�u) = 0 8�u 2 V: (1:84)

1.2.6 Existence of solutions to operator equations and

inequalities

Let us formulate assertions related to a solvability of problems which are

not variational ones in general (Lions, 1969).

Firstly, consider the operator equation

Au = u

?

(1:85)

for which solvability means Au(v) = u

?

(v) for all v 2 V , for the �xed

element u

?

2 V

?

. An operator A : V ! V

?

is called a semicontinuous

operator if the function �(�) = A(u+�v)(w) of the variable � is continuous

from R to R for all �xed u; v; w 2 V . The following theorem holds.

Theorem 1.14. Let V be a reexive separable Banach space. Assume that

an operator A : V ! V

?

possesses the following properties:

1. A is bounded and semicontinuous;

2. A is monotonous;

3. A is coercive, i.e. there exists u

0

2 V such that

1

kuk

A(u)(u � u

0

) ! +1 as kuk !1:

Then the equation (1.85) has at least one solution u 2 V for every �xed

u

?

2 V

?

. This solution is unique if A is strictly monotonous.
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Let K be a closed convex subset of V . We consider the operator inequal-

ity

u 2 K : Au(v � u) � u

?

(v � u) 8v 2 K (1:86)

for �xed u

?

2 V

?

, where A : V ! V

?

. Note that (1.86) coincides with

variational inequality (1.59) if Au = J

0

u

, i.e. A is a potential operator. But

it does not always hold and therefore (1.86) is a more general inequality as

compared to (1.59). For inequalities the following existence theorem takes

place.

Theorem 1.15. Let V be a reexive separable Banach space, and K be

a closed convex subset in V . Assume that an operator A : V ! V

?

is

bounded, semicontinuous, monotonous, and A is coercive or K is bounded.

Then the inequality (1.86) has at least one solution u 2 K for every �xed

u

?

2 V

?

. This solution is unique if A is strictly monotonous.

We will prove this theorem in Section 1.3 by a penalty method.

An operator A : V ! V

?

is called pseudomonotonous if A is bounded

and the conditions u

n

! u

0

weakly in V , lim supAu

n

(u

n

� u

0

) � 0, imply

that

lim inf Au

n

(u

n

� v) � Au

0

(u

0

� v) 8v 2 V: (1:87)

In general, a pseudomonotonous operator is not monotonous but is contin-

uous. Indeed, let u

n

! u

0

strongly in V . By the boundedness of A, we

have Au

n

! f weakly in V

?

. Then lim supAu

n

(u

n

�u

0

) = 0. Hence (1.87)

gives

lim inf Au

n

(u

n

� v) = f(u

0

� v) � Au

0

(u

0

� v) 8v 2 V;

i.e. Au

0

= f means that the operator A is a continuous mapping of the

space V with the strong topology onto the space V

?

with the weak topology.

Following (Lions, 1969), the next assertion can be proved.

Theorem 1.16. Let V be a reexive separable Banach space, and K be

a closed convex subset in V . Assume that an operator A : V ! V

?

is

pseudomonotonous, and A is coercive or K is bounded. Then the inequality

(1.86) has a solution.

The proof of Theorem 1.16 is based on the following property of pseudo-

monotonous operators. If u

n

! u

0

weakly in V , Au

n

! f weakly in V

?

and lim supAu

n

(u

n

) � f(u

0

), then lim supAu

n

(u

n

� u

0

) � 0, and (1.87)

gives

Au

0

(u

0

� v) � lim sup Au

n

(u

n

� v) � f(u

0

� v) 8v 2 V:

Hence f = Au

0

.

This section is concluded with some remarks related to a connection

between normed spaces. Let V;W be two normed spaces such that V � W ,

V is dense in W and

kuk

W

� ckuk

V

8u 2 V; c = const > 0:
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Then every element w

?

2W

?

considered only on V de�nes some linear and

continuous functional on V , i.e. w

?

V

2 V

?

. It is clear that the correspon-

dence w

?

! w

?

V

is one-to-one, since due to the afore mentioned density the

functional w

?

is uniquely de�ned by its values on V . Hence the space W

?

can be identi�ed with some subspace of V

?

. Moreover,

w

?

(v) � kw

?

k

W

?

kvk

W

� ckw

?

k

W

?

kvk

V

8v 2 V;

that is kw

?

k

V

?

� ckw

?

k

W

?

, and the injection W

?

� V

?

is ful�lled. It can

also be shown that for reexive spaces V the injection W

?

� V

?

is dense.

Now let V be a reexive Banach space, and H be a Hilbert space. As-

sume that V � H, V is dense in H and

kuk

H

� ckuk

V

8u 2 V; c = const > 0:

According to the above arguments, the dual space H

?

can be considered as

a subspace of V

?

. By the reexivity of V , the space H

?

is dense in V

?

and,

moreover,

ku

?

k

V

?

� cku

?

k

H

?

8u

?

2 H

?

:

Taking into account the Riesz theorem for Hilbert spaces, the spaces H and

H

?

could be identi�ed. Thus

V � H � V

?

;

and H is continuously and densely injected in V

?

.

1.3 Approximation methods

In this section we analyse some approximation methods for variational in-

equalities considered in Section 1.2. We discuss the penalty and the projec-

tion methods and their consequences. As for numerical methods, we refer

the reader to (Glowinski et al., 1976).

1.3.1 Duality mapping. Projection

Let V be a reexive Banach space, and V

?

be a space dual of V . We assume

that the functionals u ! kuk, u

?

! ku

?

k

?

de�ned on V , V

?

, respectively,

are strictly convex. In this case the spaces V , V

?

are called strictly convex.

A value of a functional u

?

2 V

?

on elements u 2 V is denoted by hu

?

; ui. An

operator I : V ! V

?

is called a duality mapping if the following conditions

hold (Gajewski et al., 1974):

hIu; ui = kIuk

?

kuk; kIuk

?

= kuk 8u 2 V: (1:88)

We note that Iu is a linear and continuous functional on V ; meanwhile the

operator I is not linear, in general.
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The existence of a unique duality mapping could easily be proved. In-

deed, let E = fu 2 V j kuk = 1g be a unit sphere in V . According to the

Hahn{Banach theorem, for every �xed u 2 E there exists a unique element

u

?

2 V

?

such that ku

?

k

?

= 1, hu

?

; ui = 1 due to the strict convexity of V

?

.

Let us de�ne

Iu = kuk (u=kuk)

?

;

where (u=kuk)

?

is found according to the above theorem. Then it is clear

that the properties (1.88) are ful�lled.

A unique inverse duality mapping I

�1

: V

?

! V exists such that

I(I

�1

) = (I

�1

)I = 1, where 1 is a unit operator. By substituting u = I

�1

u

?

in (1.88), for any element u

?

2 V

?

, one has

hu

?

; I

�1

u

?

i = ku

?

k

?

kI

�1

u

?

k; kI

�1

u

?

k = ku

?

k

?

8u

?

2 V

?

: (1:89)

Now let V = H be a Hilbert space with a scalar product ( � ; � ). Fix any

element u 2 H. By Riesz's theorem, for Iu 2 H

?

, there exists an element

j 2 H such that

hIu; vi = (j; v) 8v 2 H; kIuk

?

= kjk: (1:90)

Therefore, applying (1.88), (1.90), one can write

kuk

2

= kIuk

?

kuk = hIu; ui = (j; u) � kjkkuk = kIuk

?

kuk;

which implies (j; u) = kuk

2

= kjk

2

. Hence, we have

kj � uk

2

= kjk

2

+ kuk

2

� 2(j; u) = 0;

i.e. j = u. Substituting j = u into (1.90), we have the formulae

hIu; vi = (u; v) 8v 2 H; kIuk

?

= kuk; (1:91)

for arbitrary u 2 H. On the other hand, from (1.89) and (1.91) a similar

property of the inverse duality mapping I

�1

: H

?

! H follows:

hu

?

; vi = (I

�1

u

?

; v) 8v 2 V; kI

�1

u

?

k = ku

?

k

?

: (1:92)

Note that relations (1.91) and (1.92) mean linearity of the duality mapping

I and its inverse I

�1

in Hilbert spaces due to the linearity of the scalar

product.

Let K � V be a convex closed set. We assume that V is a strictly convex

reexive Banach space. For given u 2 V an element Pu 2 K is called a

projection of u onto the set K if

ku� Puk � ku� vk 8v 2 K: (1:93)

Then P : V ! K is called a projection operator. Thus �nding the projec-

tion (1.93) is equivalent to solving the minimization problem

inf

v2K

kv � uk

2

: (1:94)
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It is easily seen that Theorem 1.11 guarantees the solvability of problem

(1.94). This solution is unique due to the strict convexity of V .

Let V = H be a Hilbert space, and K � H be its convex closed subset.

Then ku� vk

2

= (u� v; u� v) and we can use Theorem 1.12 since (1.94) is

equivalent to the following inequality:

(u � Pu; Pu� v) � 0 8v 2 K: (1:95)

Lemma 1.2. P is a Lipschitz continuous operator, i.e.

kPu

1

� Pu

2

k � ku

1

� u

2

k 8u

1

; u

2

2 H: (1:96)

Indeed, the inequality (1.95) for �xed u

1

; u

2

2 H gives

(u

1

� Pu

1

; Pu

1

� v) � 0; (u

2

� Pu

2

; Pu

2

�w) � 0 8v; w 2 K:

Let us take here v = Pu

2

, w = Pu

1

and sum these inequalities; then

(u

1

� u

2

� Pu

1

+ Pu

2

; Pu

1

� Pu

2

) � 0: (1:97)

The consideration of the norm kPu

1

� Pu

2

k gives from (1.97) that

kPu

1

� Pu

2

k

2

= �(u

1

� u

2

� Pu

1

+ Pu

2

; Pu

1

� Pu

2

)

+(u

1

� u

2

; Pu

1

� Pu

2

) � (u

1

� u

2

; Pu

1

� Pu

2

) � ku

1

� u

2

kkPu

1

� Pu

2

k:

This estimate proves the lemma.

Lemma 1.3. P is a monotonous operator.

Indeed, we can write

(Pu

1

� Pu

2

; u

1

� u

2

)

= (Pu

1

� Pu

2

; u

1

� u

2

� Pu

1

+ Pu

2

) + kPu

1

� Pu

2

k

2

:

By (1.97), the right-hand side is nonnegative, which proves the assertion.

Lemma 1.4. The following estimate takes place:

ku

1

� u

2

� (Pu

1

� Pu

2

)k � ku

1

� u

2

k 8u

1

; u

2

2 H: (1:98)

Indeed, by (1.97) and Lemma 1.3,

ku

1

� u

2

� (Pu

1

� Pu

2

)k

2

= �(u

1

� u

2

� Pu

1

+ Pu

2

; Pu

1

� Pu

2

)

�(Pu

1

� Pu

2

; u

1

� u

2

) + ku

1

� u

2

k

2

� ku

1

� u

2

k

2

:
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1.3.2 Penalty operators

Let K � V be a convex closed subset of a reexive Banach space V , I be a

duality mapping, and P be a projection operator of V onto K. We are in

a position to give a de�nition of a penalty operator. An operator � : V !

V

?

is called a penalty operator connected with the set K if the following

conditions are ful�lled. Firstly, � is a monotonous bounded semicontinuous

operator. Secondly, a kernel of � coincides with K, i.e.

K = fv 2 V j �(v) = 0g:

The following existence theorem takes place.

Theorem 1.17. Operator �(v) = I(v � Pv) is a penalty operator connected

with the set K.

The proof of this theorem is based on the following lemmas.

Lemma 1.5. The inequality

h�(u); Pu� vi � 0 8v 2 K (1:99)

holds for arbitrary u 2 V .

Proof. We denote  (t) = t

2

=2. Then

 (kvk) �  (kuk) =

Z

kvk

kuk

� d� � kuk(kvk � kuk)

= kIuk

?

kvk � kIuk

?

kuk � hIu; vi � hIu; ui = hIu; v � ui;

i.e.

 (kvk) �  (kuk) � hIu; v � ui 8u; v 2 V: (1:100)

It follows from the de�nition of a projection that

ku� Puk � ku�wk 8w 2 K:

Choosing here w = (1� �)Pu + �v, v 2 K, � 2 (0; 1), by the convexity of

K, we �nd

ku� Puk � ku� Pu� �(v � Pu)k:

The monotonicity of  (t) yields

 (ku� Puk) �  (ku� Pu� �(v � Pu)k) 8v 2 K:

Consequently, taking into account (1.100), we obtain

0 �  (ku � Puk)�  (ku� Pu� �(v � Pu)k)

� hI(u� Pu� �(v � Pu)); �(v � Pu)i:
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Therefore the inequality

hI(u � Pu� �(v � Pu)); v � Pui � 0 8v 2 K; � > 0;

holds. Now let �! 0. Due to the semicontinuity of J the inequality

hI(u � Pu); v � Pui � 0 8v 2 K

takes place for arbitrary u 2 K. The lemma is proved. The converse

assertion is also valid.

Lemma 1.6. Let hI(u � w); w� vi � 0 for all v 2 K. Then w = Pu.

Proof. By (1.100), we have

 (ku� vk)�  (ku� wk) � hI(u �w); w � vi 8v 2 K:

The right-hand side is nonnegative here, hence in view of the monotony of

 (t) the relation

ku� vk � ku� wk 8w 2 K

holds, whence w = Pu. This completes the proof.

Lemma 1.7. The following inequality:

h�(u) � �(v); Pu� Pvi � 0 8u; v 2 V (1:101)

is valid.

Proof. In view of (1.99) we have

h�(u); Pu� wi � 0; h�(v); P v � wi � 0 8w 2 K:

Putting w = Pv in the �rst inequality, w = Pu in the second one and

summing we obtain (1.101).

Lemma 1.8. The penalty operator � is monotonous.

Proof. We can write

h�(u) � �(v); u � vi

= h�(u) � �(v); Pu� Pvi + h�(u) � �(v); (u � Pu)� (v � Pv)i:

The �rst term of the right-hand side is nonnegative here in view of (1.101).

The second term can be written in the form

hI(u� Pu)� I(v � Pv); (u� Pu)� (v � Pv)i:

It is nonnegative due to the monotonicity of I. The lemma is proved.

A boundedness and semicontinuity of the operator � follow from the

same properties of I and P . The veri�cation of the equivalence of conditions
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�(u) = 0 and u 2 K is obvious. Compiling these remarks with the above

lemmas we get the proof of Theorem 1.17.

As we can see, penalty operators can be built easier in Hilbert spaces.

In applications H is often a Hilbert space such that

V � H � V

?

;

where all injections are continuous and dense. Also, let K be a convex

closed set in V \H. In this case, an identity operator can be chosen as the

duality operator I : H ! H. Thus �(u) = u� Pu is the penalty operator

connected with the set K. Here P projects H onto K.

In what follows we give applications of the penalty and projection oper-

ators to variational inequalities (see Kovtunenko, 1994b, 1994c).

1.3.3 Iteration penalty method

We consider penalized operator equations approximating variational in-

equalities. For equations with strongly monotonous operators we construct

an iterative method, prove convergence of solutions, and obtain error esti-

mates.

Let K be a closed convex subset in a reexive Banach space V ; let an

operator A act from V into V

?

and let f 2 V

?

be given. Consider the

variational inequality

u 2 K; hAu; v � ui � hf; v � ui 8v 2 K; (1:102)

and assume that there exists a Hilbert space H such that

V � H � V

?

:

The imbeddings are continuous and dense, and there is a constant c > 0

such that

kuk

H

� ckuk 8u 2 V: (1:103)

We have denoted by kuk the norm of u in V , and by kuk

H

the norm of u

in H, (u; u) = kuk

2

H

. Suppose that K is a closed convex set in H. Let P

be the projection of H onto K. Introduce the penalty operator � : H ! H

by the formula �(u) = u � Pu for u 2 H. The operator � is monotonous

by Lemma 1.3 and continuous by Lemma 1.2.

Given a small parameter " > 0, we write down the penalized equation

Au

"

+ "

�1

�(u

"

) = f; (1:104)

which is to be understood as follows:

hAu

"

; vi + "

�1

(�(u

"

); v) = hf; vi 8v 2 V:

Fix " and construct the sequence of equations

Au

";n+1

+ "

�1

u

";n+1

= f + "

�1

Pu

";n

; (1:105)
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where n = 0; 1; 2; :::, and u

";0

2 V is an arbitrary function. Suppose that

the operator A is bounded semicontinuous and strongly monotonous, i.e.

there is a constant M > 0 such that

hAu� Av; u� vi � Mku� vk

2

8u; v 2 V:

This property obviously implies coercivity and strict monotonicity of A.

The right-hand side of (1.105) belongs to V

?

since H � V

?

. Then, by

Theorem 1.14, there exists a unique solution u

";n+1

2 V , n = 0; 1; 2; :::, to

problem (1.105).

Theorem 1.18. Under the above assumptions, there exists a unique solution

u

"

2 V of the problem (1.104) and

u

";n+1

! u

"

strongly in V as n!1;

where u

";n+1

is a solution to the problem (1.105). Moreover, the following

estimate holds:

ku

"

� u

";n+1

k �

c�

n=2

"M

2

kf � Au

";0

� "

�1

�(u

";0

)k

?

; � =

c

2

c

2

+ 2"M

< 1:

Proof. Consider (1.105) at the preceding step in n,

Au

";n

+ "

�1

u

";n

= f + "

�1

Pu

";n�1

;

and subtract this equality from (1.105); this gives

hAu

";n+1

�Au

";n

; u

";n+1

� u

";n

i + "

�1

ku

";n+1

� u

";n

k

2

H

= "

�1

(Pu

";n

� Pu

";n�1

; u

";n+1

� u

";n

):

By making use of the strong monotonicity of A, Holder's inequality, and

Lemma 1.2, we obtain the estimate

2ku

";n+1

� u

";n

k

2

+ ("M )

�1

ku

";n+1

� u

";n

k

2

H

(1:106)

� ("M )

�1

ku

";n

� u

";n�1

k

2

H

:

Introduce the equivalent norm in V as follows:

[u]

2

= kuk

2

+ ("M )

�1

kuk

2

H

; u 2 V:

By (1.103), from (1.106) we obtain

[u

";n+1

� u

";n

]

2

� �[u

";n

� u

";n�1

]

2

� �

n

[u

";1

� u

";0

]

2

: (1:107)

Thus,

u

";n+1

� u

";n

! 0 strongly in V as n!1: (1:108)
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It follows that there exists an element u

0

2 V such that

u

";n+1

! u

0

strongly in V as n!1: (1:109)

The mentioned properties of the operator A imply that A acts continuously

from V with the strong topology into V

?

with the weak topology; then

Au

";n+1

! Au

0

weakly in V as n!1: (1:110)

From the continuity of the penalty operator it follows that

�(u

";n

) ! �(u

0

) strongly in H as n!1: (1:111)

Representing (1.105) as

Au

";n+1

+ "

�1

�(u

";n

) + "

�1

(u

";n+1

� u

";n

) = f;

passing to the limit as n!1, and using (1.108){(1.111), we obtain (1.104).

Hence u

0

= u

"

.

Now we estimate the error. It follows from (1.105) that

Au

";1

�Au

";0

+ "

�1

(u

";1

� u

";0

) = f �Au

";0

� "

�1

�(u

";0

):

Multiply this equation by u

";1

� u

";0

. Then Holder's inequality implies the

estimate

[u

";1

� u

";0

] � M

�1

kf �Au

";0

� "

�1

�(u

";0

)k

?

: (1:112)

Now write (1.105) in the form

Au

";n+1

+ "

�1

�(u

";n+1

) = f + "

�1

(Pu

";n

� Pu

";n+1

);

subtract it from (1.104), and multiply the di�erence by u

"

� u

";n+1

. One

easily derives

hAu

"

�Au

";n+1

; u

"

� u

";n+1

i+ "

�1

�

�(u

"

)� �(u

";n+1

); u

"

� u

";n+1

�

= "

�1

(Pu

";n+1

� Pu

";n

; u

"

� u

";n+1

):

Applying Holder's inequality and using the strong monotonicity of A, the

monotonicity of �, Lemma 1.2 and the estimates for the norms, we obtain

ku

"

� u

";n+1

k � c("M )

�1

[u

";n+1

� u

";n

]: (1:113)

Combining (1.107), (1.112) and (1.113), we arrive at the required estimate.

The theorem is proved.

The approximate method developed is constructive in the following

sense. If A is a linear operator, then the equation (1.105) is linear too

and, therefore, it can be solved by standard numerical methods.
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Now let us pass to the limit in (1.104) as " ! 0 to obtain (1.102). The

operator u! Au+ "

�1

�(u) is coercive because A is coercive and

hAu; u� u

0

i+ "

�1

(�(u); u � u

0

)

= hAu; u� u

0

i + "

�1

(�(u) � �(u

0

); u� u

0

) � hAu; u� u

0

i

for any u

0

2 K (which implies �(u

0

) = 0). Therefore, we can deduce that

ku

"

k � c

1

uniformly in ". Operator A is bounded, hence

kAu

"

k � c

2

uniformly in ". By the reexivity of V , choosing a subsequence still denoted

by u

"

, we obtain

u

"

! u weakly in V; strongly in H (1:114)

as "! 0 because of the dense imbedding V � H. Rewriting (1.104) as

(�(u

"

); v) = "hf �Au

"

; vi 8v 2 H � V

?

;

by the boundedness of Au

"

2 V

?

, we conclude

�(u

"

) ! 0 strongly in H as "! 0;

i.e. the convergence u

"

� Pu

"

! 0 together with (1.114) provide Pu

"

! u.

Hence u 2 K.

Let us substitute u

"

� v as a test function in (1.104). In view of the

monotonicity of the penalty operator �, it gives

hAu

"

; u

"

� vi � hAu

"

; u

"

� vi + "

�1

(�(u

"

) � �(v); u

"

� v) � hf; u

"

� vi

for all v 2 K, i.e.

hAu

"

� f; u

"

� vi � 0 8v 2 K: (1:115)

Since u 2 K, we can substitute v = u in (1.115) and use the monotonicity

of A. This provides

hAu�f; u

"

�ui � hAu

"

�Au; u

"

�ui+hAu�f; u

"

�ui = hAu

"

�f; u

"

�ui � 0:

Note that hAu; u

"

� ui ! 0 and hf; u

"

� ui ! 0 as " ! 0 due to the weak

convergence (1.114). Therefore, the last inequality implies

hAu

"

; u

"

� ui ! 0: (1:116)

At the next step we consider the monotony condition

hAu

"

� Aw; u

"

�wi � 0 8w 2 V
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for the operator A and substitute here w = u + �(v � u), � > 0, v 2 V .

Then the inequality

�hAu

"

; u� vi � �hAw; u� vi + hAw; u

"

� ui � hAu

"

; u

"

� ui

follows. In view of the convergencies (1.114), (1.116), we obtain

� lim inf hAu

"

; u� vi � �hAw; u� vi 8v 2 V:

Let us divide this inequality by � and pass to the limit as � ! 0. By the

semicontinuity of A, we have Aw! Au as �! 0. Consequently

lim inf hAu

"

; u� vi � hAu; u� vi 8v 2 V:

Combining this estimate with (1.115), one deduces, with the help of (1.116),

hAu� f; u� vi � lim inf hAu

"

� f; u� vi = lim inf hAu

"

� f; u� vi

+ lim inf hAu

"

� f; u

"

� ui = lim inf hAu

"

� f; u

"

� vi � 0 8v 2 K:

Thus, we have obtained the inequality (1.102), u is its solution and u

"

! u

weakly in V . Uniqueness of the solution follows from the strict monotonicity

of A. Moreover, we can show the strong convergence of u

"

. Indeed, due to

(1.114), (1.116),

Mku

"

� uk

2

� hAu

"

�Au; u

"

� ui = hAu

"

; u

"

� ui � hAu; u

"

� ui ! 0:

Therefore, the following assertion is proved.

Theorem 1.19. There exists a unique solution u 2 K of the inequality

(1.102), and the convergence

u

"

! u strongly in V as "! 0

holds for the solutions u

"

to the penalty equation (1.104).

1.3.4 Iteration penalty method in Hilbert spaces

Let V be a Hilbert space, and V

?

be its dual. Denote by h � ; � i, ( � ; � ), k � k

and k �k

?

a duality pairing between V and V

?

, a scalar product in V , norms

in V and V

?

, respectively. Recall that the duality mapping I : V ! V

?

satis�es the relation

hIu; vi = (u; v) 8u; v 2 V;

and the inverse duality mapping I

�1

: V

?

! V satis�es (1.92).

Let K be a closed convex subset of V . An element f 2 V

?

and an opera-

tor A : V ! V

?

are given. We assume that A is a bounded semicontinuous

and strongly monotonous operator, i.e.

hAu�Av; u � vi � Mku� vk

2

8u; v 2 V; M > 0:
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In the sequel, the following variational inequality is analysed: to �nd u 2 K

such that

hAu; v � ui � hf; v � ui 8v 2 K: (1:117)

By Theorem 1.15, there exists a unique solution u of (1.117).

Let P : V ! K be the projection operator. By Lemma 1.2, P is

Lipschitz continuous, i.e.

kPv � Pwk � kv � wk 8v; w 2 V: (1:118)

Let us construct the standard penalty operator �(v) = I(v�Pv) and de�ne

the penalty problem depending on a small positive parameter ",

Au

"

+ "

�1

�(u

"

) = f: (1:119)

Repeating the proof of Theorem 1.19 for this case, one deduces that equation

(1.119) has a unique solution u

"

2 V which satis�es

u

"

! u strongly in V as "! 0:

To linearize the penalty operator in (1.119) we use the following iteration

scheme similar to (1.105),

Au

";n

+ "

�1

Iu

";n

= f + "

�1

IPu

";n�1

; (1:120)

for n = 1; 2; 3; :::, where u

";0

2 V is an arbitrary element. It follows from

Theorem 1.14 that there exists a unique solution u

";n+1

2 V of (1.120).

Lemma 1.9. The following estimates hold:

ku

";n

� uk

2

� �

n

"

ku

";0

� uk

2

+ �

"

(1� �

n

"

)kf � Auk

2

?

; (1:121)

ku

";n

� u

"

k

2

� �

n

"

ku

";0

� u

"

k

2

; (1:122)

for the solutions u; u

"

; u

";n

of the problems (1.117), (1.119), (1.120), respec-

tively. Here �

"

= (1 +M")

�2

< 1; �

"

= "M

�1

(2 +M")

�1

:

Proof. Let us rewrite (1.120) by adding (�Au� "

�1

Iu) to both parts.

Since I is linear, we have

Au

";n

� Au+ "

�1

I(u

";n

� u) = f �Au + "

�1

I(Pu

";n�1

� Pu):

Here u = Pu due to u 2 K. Application of the linear mapping I

�1

to this

equation gives

I

�1

(Au

";n

�Au) + "

�1

(u

";n

� u) = I

�1

(f � Au) + "

�1

(Pu

";n�1

� Pu):

Squaring the above equality, we obtain

kAu

";n

� Auk

2

?

+ 2"

�1

hAu

";n

� Au; u

";n

� ui+ "

�2

ku

";n

� uk

2

(1:123)
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= kf �Auk

2

?

+ 2"

�1

hf � Au;Pu

";n�1

� ui+ "

�2

kPu

";n�1

� Puk

2

:

According to the strong monotonicity of A, the left-hand side of (1.123) is

bounded from below by (M + "

�1

)

2

ku

";n

� uk

2

: The second term in the

right-hand side of (1.123) is negative due to (1.117). Further, using the

inequality (1.118), we have

ku

";n

� uk

2

� �

"

�

ku

";n�1

� uk

2

+ "

2

kf � Auk

2

?

�

:

Continuing this estimate as n tends to 1, we have

ku

";n

� uk

2

� �

n

"

 

ku

";0

� uk

2

+ "

2

n�1

X

i=0

�

i

"

kf �Auk

2

?

!

: (1:124)

With the sum of the geometrical series

n�1

X

i=0

�

i

"

= (1� �

n

"

)(1� �

"

)

�1

;

the estimate (1.124) gives the estimate (1.121). Let us next subtract (1.119)

from (1.120); then

Au

";n

� Au

"

+ "

�1

I(u

";n

� u

"

) = "

�1

I(Pu

";n�1

� Pu

"

):

Applying the operator I

�1

to both sides and squaring, we obtain

ku

";n

� u

"

k

2

� (1 +M")

�2

ku

";n�1

� u

"

k

2

:

This inequality reduces to the estimate (1.122) and completes the proof.

From Lemma 1.9 the following assertion is immediately deduced.

Theorem 1.20. The following convergencies take place:

u

";n

! u

"

strongly in V as n!1;

for �xed ", and (1.122) holds; u

"

! u strongly in V as "! 0 and

ku

"

� uk

2

� �

"

kf �Auk

2

?

;

where u

";n

, u

"

and u are the solutions of (1.120), (1.119) and (1.117), re-

spectively.

1.3.5 Projection methods

We keep the notations of the Hilbert space V , its dual space V

?

, with a

duality pairing h � ; � i, a scalar product ( � ; � ) and a norm k � k

2

= ( � ; � ) in

V . Let the duality mapping I : V ! V

?

and the inverse duality mapping
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I

�1

: V

?

! V be as before. We assume that K is a closed convex set in V ,

and P : V ! K is a projection operator, i.e.

(u � Pu; Pu� v) � 0 8v 2 K: (1:125)

An element f 2 V

?

and an operator A : V ! V

?

are given. Consider the

variational inequality

u 2 K; hAu; v � ui � hf; v � ui 8v 2 K: (1:126)

Lemma 1.10. The variational inequality (1.126) is equivalent to the equation

u = P

�

u+ �I

�1

(f � Au)

�

(1:127)

for arbitrary constant � > 0.

Proof. In view of (1.92) and the linearity of I

�1

, we can rewrite (1.126)

in the form

(I

�1

Au; v � u) � (I

�1

f; v � u) 8v 2 K;

or

�

I

�1

(f �Au); u� v

�

� 0 8v 2 K:

Multiplying by � > 0 and adding �u, this inequality takes the form

�

(u+ �I

�1

(f � Au))� u; u� v

�

� 0 8v 2 K:

The comparison of this relation with (1.125) leads to (1.127) due to the

uniqueness of the projection. The function u belongs to K because P :

V ! K. The lemma is proved.

Thus we give the presentation of variational inequalities as projection

equations. It is utilized to construct approximate solutions.

We will also use the theorem on contraction mappings. A mapping

S : V ! V is called a contraction mapping if it is Lipschitz continuous,

kSu � Svk � �ku� vk 8u; v 2 V; (1:128)

and 0 < � < 1. The following generalized Banach theorem is valid (see

Baiocchi, Capelo, 1984).

Theorem 1.21. If S is a contraction mapping in a Hilbert space V then there

exists a �xed point u such that Su = u and solutions u

n

of the equation

u

n

= Su

n�1

; n = 1; 2; :::; u

0

2 V

converge strongly to u in V as n!1. Moreover the estimate

ku

n

� uk � c(u; u

0

)�

n

holds with the constant � taken from (1.128).
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It is easy to see that c(u; u

0

) = ku� u

0

k.

Lemma 1.11. If the operator A : V ! V

?

is strongly monotonous, i.e.

9m > 0 : mku� vk

2

� hAu� Av; u� vi 8u; v 2 V (1:129)

and Lipschitz continuous, i.e.

9M > 0 : kAu�Avk

?

�Mku� vk 8u; v 2 V; (1:130)

then (1.127) is a contraction mapping for any 0 < � < 2m=M

2

with � = 1�

2m�+M

2

�

2

. A minimum value � =

p

1�m

2

=M

2

is reached as � = m=M

2

.

Proof. Applying the mapping (1.127) to any u; v, we have

u� v = P

�

u+ �I

�1

(f � Au)

�

� P

�

v + �I

�1

(f � Av)

�

:

Take the norm of both parts of this equality and use the Lipschitz continuity

of P (see Lemma 1.2). By the linearity of I

�1

, it provides

ku� vk

2

= kP

�

u+ �I

�1

(f �Au)

�

� P

�

v + �I

�1

(f �Av)

�

k

2

� ku+ �I

�1

(f �Au)� v + �I

�1

(f � Ab)k

2

= ku� v � �I

�1

(Au�Av)k

2

:

By (1.129), (1.130), we can obtain an additional estimate,

ku� vk

2

� ku� vk

2

� 2�

�

I

�1

(Au� Av); u� v

�

+ �

2

kI

�1

(Au� Av)k

2

= ku� vk

2

� 2�hAu �Av; u� vi + �

2

kAu�Avk

2

?

� (1� 2m� +M

2

�

2

)ku� vk

2

;

which yields the desired condition (1.128). The lemma is proved.

Theorem 1.21 and Lemmas 1.10, 1.11 provide the following assertion.

Theorem 1.22. For strongly monotonous and Lipschitz continuous operator

A satisfying (1.129), (1.130), there exists a unique solution u 2 K of the

variational inequality (1.126) and

u

n

! u strongly in V as n!1

with the estimate

ku

n

� uk � �

n

ku

0

� uk; � =

p

1�m

2

=M

2

;

where u

n

2 K are solutions of the iteration equation

u

n

= P

�

u

n�1

+

m

M

2

I

�1

(f � Au

n�1

)

�

; n = 1; 2; :::; (1:131)

for arbitrary u

0

2 V .
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Now let us consider the second presentation of the variational inequality

(1.126) by means of the projection operators. Suppose that A is a linear

operator such that

mkuk

2

� hAu; ui; kAuk

?

� Mkuk: (1:132)

These conditions obviously provide the ful�lment of (1.129), (1.130).

On the other hand, the duality mapping I is de�ned by the scalar prod-

uct in the Hilbert space V . Assume that the operator A is self-conjugate.

Then we can de�ne the scalar product in V as follows:

(u; v)

A

= hAu; vi = hAv; ui:

In view of the properties (1.132), the corresponding norm in V is kuk

2

A

=

(u; u)

A

, namely

mkuk

2

� kuk

2

A

= hAu; ui � kAuk

?

kuk � Mkuk

2

:

This means that A is the duality mapping connected with the introduced

scalar product ( � ; � )

A

. Then the variational inequality (1.126) can be

rewritten in the form

(u; v � u)

A

� (A

�1

f; v � u)

A

8v 2 K;

or

(A

�1

f � u; u� v)

A

� 0 8v 2 K

which together with (1.125) provide

u = P (A

�1

f): (1:133)

Let us denote A

�1

f = u

0

. We understand this equality as Au

0

= f , i.e.

u

0

2 V is a solution of the equation

hAu

0

; vi = hf; vi 8v 2 V: (1:134)

Then (1.133) yields the following theorem.

Theorem 1.23. If A : V ! V

?

is a linear, self-conjugate, strongly monoto-

nous and Lipschitz continuous operator in a Hilbert space V , then there

exists a unique solution u 2 K of the variational inequality (1.126) given by

the formula

u = Pu

0

for the solution u

0

= A

�1

f 2 V of (1.134).

To verify this theorem, it su�ces to note that a unique solution u

0

2 V

of (1.134) always exists due to the mentioned properties of the operator A

and Theorem 1.14.

Utilizing this approach, we construct the analytical solutions for a few

one-dimensional unilateral boundary value problems considered in Chapter

2.
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1.4 Problems with singular boundaries

In this section we de�ne trace spaces at boundaries and consider Green's for-

mulae. The statements formulated are applied to boundary value problems

for solids with cracks provided that inequality type boundary conditions

hold at the crack faces.

1.4.1 Smoothness of a boundary

Let 
 � R

m

be a bounded domain with a boundary �, 
 = 
[�, m = 2; 3.

The boundary � belongs to the class C

k;1

if there exist two real numbers

b > 0, h > 0, p coordinate systems

(y

j

; y

j

m

); y

j

= (y

j

1

; :::; y

j

m�1

); j = 1; :::; p; (1:135)

and p functions �

j

, j = 1; :::; p, such that in the cubes

4

j

= fy

j

2 R

m�1

j jy

j

i

j < b; i = 1; :::;m� 1g

the functions �

j

belong to C

k;1

(4

j

), and for

�

j

= f(y

j

; y

j

m

) 2 R

m

j y

j

2 4

j

; y

j

m

= �

j

(y

j

)g;




j

+

= f(y

j

; y

j

m

) 2 R

m

j y

j

2 4

j

; �

j

(y

j

) < y

j

m

< �

j

(y

j

) + hg;




j

�

= f(y

j

; y

j

m

) 2 R

m

j y

j

2 4

j

; �

j

(y

j

)� h < y

j

m

< �

j

(y

j

)g;

the following conditions hold:

� =

p

[

j=1

�

j

; 


j

+

� 
; 


j

�

� R

m

n 
; j = 1; :::; p:

Here C

k;1

(4

j

) is the space of functions having k Lipschitz continuous deriva-

tives in4

j

, where k � 0 is an integer. In other words, this de�nition implies

that the boundary � can be presented as a union of local graphs �

j

of the

functions �

j

from C

k;1

(4

j

), j = 1; :::; p, and the set 
 is locally the epi-

graph for these functions.

Now consider a domain 
 containing a surface �

c

, whose properties are

described in Section 1.1.7. Denote �

c

= �

c

n @�

c

, 


c

= 
 n �

c

. Introduce

the unit normal � to �

c

and de�ne the opposite faces �

�

c

of the surface �

c

.

The signs � �t positive and negative directions of �, respectively. Then

we denote the boundary of 


c

by @


c

= � [ �

�

c

. We assume that there

exists a closed extension � of �

c

dividing the domain 
 into two subdomains




1

;


2

with boundaries @


1

; @


2

and such that �

c

� �. It is assumed that

@


1

= �

�

, @


2

= �

+

[ �. We say that the boundary @


c

belongs to the

class C

k;1

if @


1

; @


2

belong to C

k;1

.
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1.4.2 Trace spaces at the boundary

Introduce the Sobolev spaces (Adams, 1975; Maz'ya, 1985)

H

k

(
) = fu j D

�

u 2 L

2

(
); 0 � j�j � kg; H

0

(
) = L

2

(
);

equipped with the norm and the scalar product

kuk

2

k;


=

k

X

j�j=0

kD

�

uk

2

0;


; (u; v)

k;


=

k

X

j�j=0

Z




D

�

uD

�

v;

where D

�

denotes derivatives of the order j�j, � = (�

1

; :::; �

m

), j�j =

m

P

i=1

�

i

,

k is an integer, and k � k

0;


is the norm in L

2

(
).

The spaces H

k

(�), where k � 1 is an integer, at the boundary � can

be introduced in the local coordinates (1.135) as follows (Lions, Magenes,

1968). Let � belong to the class C

k;1

. For a given function s(x), x 2 �, the

functions

s

j

(y

j

) = s(y

j

1

; :::; y

j

m�1

; �

j

(y

j

)); y

j

= (y

j

1

; :::; y

j

m�1

) 2 4

j

; j = 1; :::; p;

can be considered in the cubes 4

j

. Then we de�ne

H

k

(�) = fs 2 L

2

(�) j s

j

2 H

k

(4

j

); j = 1; :::; pg

with the norm

ksk

2

k;�

=

p

X

j=1

ks

j

k

2

k;4

j

:

Introduce also the spaces H

k�1=2

(�), k � 1, equipped with the norm

ksk

2

k�1=2;�

= ksk

2

k�1;�

(1:136)

+

k�1

X

j�j=0

p

X

j=1

Z

4

j

Z

4

j

jD

�

s

j

(y

j

)�D

�

s

j

(�

j

)j

2

jy

j

� �

j

j

m

dy

j

d�

j

:

Let n be a unit outer normal to the boundary �. Denote by @

i

=@n

i

the

ith order normal derivative at �. We formulate the general trace theorem

(Baiocchi, Capelo, 1984).

Theorem 1.24. Let the boundary � belong to the class C

k;1

, and a function

u belong to the space H

k

(
). Then there exists a linear continuous operator

 : H

k

(
) !

Q

k�1

i=0

H

k�i�1=2

(�), which uniquely de�nes the traces u =

(

0

u; :::; 

k�1

u) of u at �,



i

u 2 H

k�i�1=2

(�); 0 � i � k � 1:
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For smooth functions u de�ned in 
,



i

u =

@

i

u

@n

i

; 0 � i � k � 1; on �:

Conversely, there exists a linear continuous operator

Q

k�1

i=0

H

k�i�1=2

(�)!

H

k

(
) such that for any given �

i

2 H

k�i�1=2

(�), 0 � i � k� 1, a function

u 2 H

k

(
) can be found such that



i

u = �

i

; 0 � i � k � 1; on �:

For k = 1, the smoothness class of the boundary � can be reduced to C

0;1

.

In what follows, we use the notation @

i

u=@n

i

for 

i

u.

Consider the domain


c

with the boundary @


c

described in the previous

subsection. Let a function u 2 H

k

(


c

) be given. We assume that @


c

belongs to the class C

k;1

, i.e. 
 can be divided into two domains 


1

;


2

by

the closed surface � such that �

c

� �, and @


1

; @


2

belong to the class

C

k;1

. For every 


i

, i = 1; 2, we have u 2 H

k

(


i

) and, consequently, one

can apply Theorem 1.24 and de�ne the normal derivatives at @


i

. The

boundaries @


1

; @


2

consist of �

�

, � [ �

+

, respectively, and �

�

c

are the

corresponding parts of �

�

. This provides the following statement.

Lemma 1.12. If the boundary @


c

belongs to the class C

k;1

, and a function

u 2 H

k

(


c

) is given, then the normal derivatives at the boundary @


c

are

uniquely de�ned,

@

i

u

@n

i

2 H

k�i�1=2

(�);

@

i

u

�

@�

i

2 H

k�i�1=2

(�

c

); 0 � i � k � 1:

By Lemma 1.12, we de�ne the jumps of the function u 2 H

k

(


c

) at �

c

,

�

@

i

u

@�

i

�

=

@

i

u

+

@�

i

�

@

i

u

�

@�

i

2 H

k�i�1=2

(�

c

); 0 � i � k � 1:

The same notations are used for the closed extension �, �

c

� �, namely

�

@

i

u

@�

i

�

=

@

i

u

+

@�

i

�

@

i

u

�

@�

i

2 H

k�i�1=2

(�); 0 � i � k � 1:

Note that, by u 2 H

k

(


c

), the uniqueness of the traces implies

@

i

u

+

@�

i

=

@

i

u

�

@�

i

on � n�

c

; 0 � i � k � 1;

or

�

@

i

u

@�

i

�

= 0 on � n�

c

; 0 � i � k � 1: (1:137)

Condition (1.137) gives an additional property of the traces at �

c

which is

used in studying the space H

k�1=2

00

(�

c

) below.
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As before, � means the closed extension of �

c

belonging the class C

k;1

,

where k � 1 is an integer. Let the space H

k�1=2

0

(�

c

) be a completion in

the H

k�1=2

(�

c

)-norm of functions from C

k;1

(�

c

) having compact supports.

Introduce the Hilbert spaces

H

k�1=2

00

(�

c

) = fs 2 H

k�1=2

0

(�

c

) j �

�1=2

D

�

s 2 L

2

(�

c

); 0 � j�j � k� 1g;

equipped with the norm

ksk

2

k�1=2;00;�

c

= ksk

2

k�1=2;�

c

+

k�1

X

j�j=0

k�

�1=2

D

�

sk

2

0;�

c

;

where the function � satis�es the properties � 2 C

k;1

(�

c

), � > 0 in �

c

, � = 0

on @�

c

, lim

x!x

0

�(x)=d(x; @�

c

) = d 6= 0 for all x

0

2 @�

c

: Here d(x; @�

c

)

denotes the distance between the point x 2 �

c

and the boundary @�

c

.

We prove the statement characterizing the functions from H

k�1=2

00

(�

c

).

Lemma 1.13. The following equivalence takes place:

s 2 H

k�1=2

00

(�

c

) () �s =

�

s ; in �

c

0 ; in � n�

c

2 H

k�1=2

(�):

Proof. By utilizing the local coordinate systems (1.135), the assertion

of Lemma 1.13 reduces to the case

� = R

m�1

= fx = (x

1

; :::; x

m�1

)g;

�

c

= 4 = fx 2 R

m�1

j jx

i

j < b; 1 � i � m � 1g:

Let k = 1. Denote

4

i

= fx

j

j jx

j

j < b; 1 � j � m � 1; j 6= ig:

Instead of (1.136), we can use the following equivalent norms (see Lions,

Magenes, 1968):

k�sk

2

1=2;R

m�1

= k�sk

2

0;R

m�1

+

Z

R

Z

R

jt� � j

�2

m�1

X

i=1

Z

4

i

j�s(xj

x

i

=t

)� �s(xj

x

i

=�

)j

2

d4

i

dtd�;

ksk

2

1=2;4

= ksk

2

0;4

+

b

Z

�b

b

Z

�b

jt� � j

�2

m�1

X

i=1

Z

4

i

js(xj

x

i

=t

)� s(xj

x

i

=�

)j

2

d4

i

dtd�:

Since �s(x) = 0 for jx

i

j � b, 1 � i � m� 1, we obtain

k�sk

2

1=2;R

m�1

= ksk

2

0;4
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+

b

Z

�b

b

Z

�b

jt� � j

�2

m�1

X

i=1

Z

4

i

js(xj

x

i

=t

)� s(xj

x

i

=�

)j

2

d4

i

dtd�

+2

b

Z

�b

0

@

�b

Z

�1

+

1

Z

b

1

A

jt� � j

�2

m�1

X

i=1

Z

4

i

js(xj

x

i

=�

)j

2

d4

i

dtd�;

which implies

k�sk

2

1=2;R

m�1

= ksk

2

1=2;4

+ 2

b

Z

�b

m�1

X

i=1

Z

4

i

js(xj

x

i

=�

)j

2

0

@

�b

Z

�1

+

1

Z

b

1

A

jt� � j

�2

:

The integral in t can be calculated here for � 2 (�b; b),

0

@

�b

Z

�1

+

1

Z

b

1

A

jt� � j

�2

dt =

�b

Z

�1

(� � t)

�2

dt+

1

Z

b

(t� � )

�2

dt =

1

b+ �

+

1

b� �

:

Thus, we have

k�sk

2

1=2;R

m�1

= ksk

2

1=2;4

+

m�1

X

i=1

Z

4

i

b

Z

�b

�

(b� � )(b+ � )

4b

�

�1

js(xj

x

i

=�

)j

2

d�d4

i

:

Changing the variable � by x

i

in each 4

i

, 1 � i � m� 1, and denoting

�

�1

(x) =

m�1

X

i=1

�

(b� x

i

)(b + x

i

)

4b

�

�1

;

we obtain the equality

k�sk

2

1=2;R

m�1

= ksk

2

1=2;4

+

Z

4

�

�1

(x)js(x)j

2

dx (1:138)

which proves the assertion of Lemma 1.13 for k = 1.

Let k > 1. The above reasonings applied to D

�

s, j�j = 0; :::; k � 1,

provide the equalities similar to (1.138),

kD

�

�sk

2

1=2;R

m�1

= kD

�

sk

2

1=2;4

+

Z

4

�

�1

(x)jD

�

s(x)j

2

dx: (1:139)

Summing (1.139) from j�j = 0 up to j�j = k � 1, one obtains

k�sk

2

k�1=2;R

m�1

= ksk

2

k�1=2;4

+

k�1

X

j�j=0

k�

�1=2

D

�

sk

2

0;4

= ksk

2

k�1=2;00;4

:
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Lemma 1.13 is proved.

We have to note that H

k�1=2

00

(�

c

) is imbedded in H

k�1=2

0

(�

c

), and

extensions of functions from H

k�1=2

0

(�

c

) on � by zero do not belong to

H

k�1=2

(�), in general (Lions, Magenes, 1968).

By Lemmas 1.12, 1.13 and property (1.137), from Theorem 1.24 the next

statement follows.

Theorem 1.25. Let the boundary @


c

belong to the class C

k;1

, and a func-

tion u belong to the space H

k

(


c

). Then there exists a linear continuous

operator, which uniquely de�nes at @


c

the values

@

i

u

@n

i

2 H

k�i�1=2

(�);

@

i

u

�

@�

i

2 H

k�i�1=2

(�

c

);

�

@

i

u

@�

i

�

2 H

k�i�1=2

00

(�

c

)

for 0 � i � k�1. Conversely, there exists a linear continuous operator such

that for any given

�

�

i

2 H

k�i�1=2

(�

c

); [�

i

] 2 H

k�i�1=2

00

(�

c

); 0 � i � k � 1;

a function u 2 H

k

(


c

) can be found such that

@

i

u

�

@�

i

= �

�

i

; 0 � i � k � 1; on �

c

:

For k = 1, the smoothness class of the boundary @


c

can be reduced to C

0;1

.

Proof. Assume that � is the closed extension of �

c

from the class C

k;1

dividing 
 into two domains 


1

;


2

as before. The boundaries @


1

; @


2

consist of �

�

, � [ �

+

, respectively. By Theorem 1.24, for u 2 H

k

(


c

) we

have

@

i

u

�

@�

i

2 H

k�i�1=2

(�); 0 � i � k � 1:

In view of the property (1.137), one can write

�

@

i

u

@�

i

�

= 0 on � n�

c

;

�

@

i

u

@�

i

�

2 H

k�i�1=2

(�); 0 � i � k � 1:

By Lemma 1.13, this means that

�

@

i

u

@�

i

�

2 H

k�i�1=2

00

(�

c

); 0 � i � k � 1;

which proves the �rst assertion of Theorem 1.25.

Now we prove the converse assertion formulated in Theorem 1.25. Let

�

�

i

2 H

k�i�1=2

(�

c

) be given, [�

i

] 2 H

k�i�1=2

00

(�

c

), 0 � i � k � 1. One can

construct an arbitrary smooth extension of �

�

i

on �

�

such that

~

�

�

i

=

�

�

�

i

; on �

�

c

 

i

; on �

�

n�

�

c

2 H

k�i�1=2

(�); 0 � i � k � 1:
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Let us de�ne on �

+

the function

~

�

+

i

=

�

�

+

i

; on �

+

c

 

i

; on �

+

n�

+

c

; 0 � i � k � 1:

Since [�

i

] 2 H

k�i�1=2

00

(�

c

) and [

~

�

i

] = 0 at � n�

c

, then, by Lemma 1.13, we

obtain [

~

�

i

] 2 H

k�i�1=2

(�). In particular, this implies that

~

�

+

i

= [

~

�

i

]+

~

�

�

i

2

H

k�i�1=2

(�). Hence, by Theorem 1.24, there exist functions u

j

2 H

k

(


j

),

j = 1; 2, such that @

i

u

j

=@�

i

coincide with

~

�

�

i

on �

�

. In 


c

, de�ne the

function

u =

�

u

1

; in 


1

;

u

2

; in 


2

:

By the property

0 = [

~

�

i

] =

�

@

i

u

@�

i

�

on � n�

c

; 0 � i � k � 1;

we obtain u 2 H

k

(


c

). Theorem 1.25 is proved.

1.4.3 Green's formulae

Firstly, let us formulate an auxiliary statement concerning boundary val-

ues for the vector-functions having square integrable divergence (Baiocchi,

Capelo, 1984; Temam, 1979). Consider a bounded domain 
 � R

m

. Intro-

duce the Hilbert space

L

2

div

(
) = fu = (u

1

; :::; u

m

) 2 L

2

(
) j divu 2 L

2

(
)g

with the scalar product

(u; v) =

Z




(uv + divu � div v) :

Denote by H

�s

(�) the space dual of H

s

(�) with a duality pairing h � ; � i

s;�

,

s > 0.

Theorem 1.26. Let the boundary � of the domain 
 belong to the class C

0;1

,

n be a unit outward normal to �, and u 2 L

2

div

(
). There exists a linear

continuous operator � : L

2

div

(
) ! H

�1=2

(�) which uniquely de�nes at �

the value �u 2 H

�1=2

(�), and the generalized Green formula holds:

Z




u � rv = �

Z




divu � v + h�u; vi

1=2;�

8v 2 H

1

(
): (1:140)

For smooth functions u de�ned in 
,

�u = u � n on �:



56 Analysis of cracks in solids

Conversely, there exists a linear continuous operator H

�1=2

(�) ! L

2

div

(
)

such that, for any given � 2 H

�1=2

(�), a function u 2 L

2

div

(
) can be found

such that �u = � at �.

Note that, if the function u 2 L

2

div

(
) allows the presentation

u = rw; w 2 H

1

(
);

then (1.140) takes the form

Z




rw � rv = �

Z




v�u+ h

@w

@n

; vi

1=2;�

8v 2 H

1

(
);

where @w=@n denotes the element from H

�1=2

(�) which coincides with the

usual normal derivative for smooth functions w de�ned in 
.

Using Theorem 1.26, we can consider the Green formulae in domains

with regular boundaries, which are useful in the sequel.

Let 
 � R

3

be a bounded domain with a smooth boundary �, and

n = (n

1

; n

2

; n

3

) be a unit outward normal vector to �. Introduce the stress

and strain tensors of linear elasticity (see Section 1.1.1),

�

ij

(u) = a

ijkl

"

kl

(u); "

ij

(u) = 1=2 (u

i;j

+ u

j;i

); i; j = 1; 2; 3;

where u = (u

1

; u

2

; u

3

) are the displacements de�ned in 
.

By the symmetry �

ij

(u) = �

ji

(u), we can integrate by parts:

Z




�

ij

(u)"

ij

(v) = �

Z




�

ij;j

(u)v

i

+

Z

�

�

ij

(u)n

j

v

i

:

Decompose the vectors (�

1j

(u)n

j

; �

2j

(u)n

j

; �

3j

(u)n

j

), v = (v

1

; v

2

; v

3

) into

normal and tangential components at the boundary as follows:

�

ij

(u)n

j

= �

n

(u)n

i

+ �

�i

(u); i = 1; 2; 3; �

n

(u) = �

ij

(u)n

j

n

i

; (1:141)

v

i

= v

n

n

i

+ v

�i

; i = 1; 2; 3; v

n

= v

i

n

i

:

Since �

�i

(u)n

i

= �

ij

(u)n

j

n

i

� �

n

(u) = 0, v

�i

n

i

= v

i

n

i

� v

n

= 0, one has

�

ij

(u)n

j

v

i

= (�

n

(u)n

i

+ �

�i

(u))(v

n

n

i

+ v

�i

) = �

n

(u)v

n

+ �

�i

(u)v

�i

:

Thus, for smooth functions u; v, we obtain the following Green formula:

Z




�

ij

(u)"

ij

(v) = �

Z




�

ij;j

(u)v

i

+

Z

�

(�

n

(u)v

n

+ �

�i

(u)v

�i

):

Introduce the space

H

1

�

(
) = fu = (u

1

; u

2

; u

3

) 2 H

1

(
) j �

ij;j

(u) 2 L

2

(
); i = 1; 2; 3g
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equipped with the norm

kuk

2

H

1

�

(
)

=

3

X

i=1

�

ku

i

k

2

1;


+ k�

ij;j

(u)k

2

0;


�

:

The following result holds true.

Theorem 1.27. Let the boundary � belong to the class C

1;1

, and a function

u belong to the space H

1

�

(
). There exists a linear continuous operator

H

1

�

(
)! [H

�1=2

(�)]

3

which uniquely de�nes at the boundary � the values

�

n

(u); �

�i

(u) 2 H

�1=2

(�); i = 1; 2; 3; �

�i

(u)n

i

= 0;

and for all v 2 [H

1

(
)]

3

the generalized Green formula holds:

Z




�

ij

(u)"

ij

(v) = �

Z




�

ij;j

(u)v

i

(1:142)

+ h�

n

(u); v

n

i

1=2;�

+ h�

�i

(u); v

�i

i

1=2;�

:

For smooth functions u de�ned in 
, formula (1.141) arises. Conversely,

there exists a linear continuous operator [H

�1=2

(�)]

3

! H

1

�

(
) such that for

any given �

n

; �

�i

2 H

�1=2

(�), i = 1; 2; 3, �

�i

n

i

= 0, a function u 2 H

1

�

(
)

can be found such that

�

n

(u) = �

n

; �

�i

(u) = �

�i

; i = 1; 2; 3; on �:

Now we consider a two-dimensional solid occupying a bounded domain


 � R

2

with a smooth boundary �. Let the bilinear form B be introduced

by the formula

B(u; v) =

Z




(u

;11

v

;11

+ u

;22

v

;22

+ �(u

;11

v

;22

+ u

;22

v

;11

)

+ 2(1� �)u

;12

v

;12

);

where � is a constant, 0 < � < 1=2. Denote by n = (n

1

; n

2

) a unit outward

vector to �. We de�ne at the boundary � the values

m(u) = ��u+ (1� �)

@

2

u

@n

2

; t(u) =

@

@n

�

�u+ (1� �)

@

2

u

@�

2

�

: (1:143)

Here � = (�n

2

; n

1

) is the tangential unit vector at �. Integrating by parts,

one can obtain the Green formula (Temam, 1983; Khludnev, Sokolowski,

1997)

B(u; v) =

Z




v�

2

u+

Z

�

m(u)

@v

@n

�

Z

�

t(u)v:
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Introduce the space

H

2

�

2

(
) = fu 2 H

2

(
) j �

2

u 2 L

2

(
)g

equipped with the norm

kuk

2

= kuk

2

2;


+ k�

2

uk

2

0;


:

The following statement holds.

Theorem 1.28. Let the boundary � belong to the class C

2;1

, and a function

u belong to the space H

2

�

2

(
). There exists a linear continuous operator

� : H

2

�

2

(
)! H

�1=2

(�)�H

�3=2

(�) which uniquely de�nes at the boundary

� the values

�u = (m(u); t(u)); m(u) 2 H

�1=2

(�); t(u) 2 H

�3=2

(�);

and the generalized Green formula holds:

B(u; v) =

Z




v�

2

u+ hm(u);

@v

@n

i

1=2;�

�ht(u); vi

3=2;�

; v 2 H

2

(
): (1:144)

For smooth functions u de�ned in 
, formula (1.143) takes place. Con-

versely, there exists a linear continuous operator H

�1=2

(�) �H

�3=2

(�) !

H

2

�

2

(
) such that, for any given m 2 H

�1=2

(�), t 2 H

�3=2

(�), a function

u 2 H

2

�

2

(
) can be found such that �u = (m; t) on �.

In the two-dimensional theory of solids, the following theorem is also

useful. For vector-functions M = fM

ij

g

2

i;j=1

, introduce the space

W (
) = fM

ij

= M

ji

2 L

2

(
); i; j = 1; 2 j M

ij;ij

2 L

2

(
)g

equipped with the norm

kMk

2

W (
)

=

2

X

i;j=1

kM

ij

k

2

0;


+ kM

ij;ij

k

2

0;


:

Theorem 1.29. Let the boundary � belong to the class C

2;1

, and a function

M belong to the space W (
). There exists a linear continuous operator

� : W (
)! H

�1=2

(�)�H

�3=2

(�) which uniquely de�nes at the boundary

� the values

�M = (m; t); m 2 H

�1=2

(�); t 2 H

�3=2

(�);

and the generalized Green formula holds:

�

Z




M

ij

v

;ij

= �

Z




M

ij;ij

v + hm;

@v

@n

i

1=2;�

� ht; vi

3=2;�

(1:145)
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8v 2 H

2

(
):

For smooth functions M de�ned in 
,

m = �M

ij

n

j

n

i

; t = �M

ij;k

�

k

�

j

n

i

�M

ij;j

n

i

on �: (1:146)

Conversely, there exists a linear continuous operator �

�1

: H

�1=2

(�) �

H

�3=2

(�) ! W (
) such that, for any given � 2 H

�1=2

(�), � 2 H

�3=2

(�),

a function M 2W (
) can be found such that �M = (�; �).

Proof. On the space H

3=2

(�)�H

1=2

(�), consider the linear functional

L(�

0

; �

1

) =

Z




(�M

ij

v

;ij

+M

ij;ij

v) ; �

0

2 H

3=2

(�); �

1

2 H

1=2

(�);

(1:147)

where the function v 2 H

2

(
) is such that

v = �

0

; @v=@n = �

1

on �: (1:148)

It is clear that the functional L is well de�ned. By Theorem 1.24, one can

obtain the estimate

jL(�

0

; �

1

)j � ckMk

2

W (
)

�

k�

0

k

2

3=2;�

+ k�

1

k

2

1=2;�

�

:

Therefore, there exist m 2 H

�1=2

(�), t 2 H

�3=2

(�) such that

L(�

0

; �

1

) = hm;�

1

i

1=2;�

� ht; �

0

i

3=2;�

:

By (1.147), (1.148), this equality provides (1.145). For the smooth function

u de�ned in 
, integrating by parts, one can easily deduce (1.146).

Conversely, assume that � 2 H

�1=2

(�), � 2 H

�3=2

(�) are given. For a

constant c > 0, one can solve the problem

B(u; v) + c

Z




uv = h�;

@v

@n

i

1=2;�

� h�; vi

3=2;�

8v 2 H

2

(
):

By the Green formula (1.144), it is equivalent to the following problem:

�

2

u+ cu = 0 in 
; m(u) = �; t(u) = � on �:

Then the solution u belongs to H

2

�

2

(
). Let us de�ne

M

11

= �(u

;11

+ �u

;22

); M

22

= �(u

;22

+ �u

;11

); M

12

= �(1 � �)u

;12

:

These functions satisfy the conditions

M

ij

= M

ji

2 L

2

(
); �M

ij;ij

= �

2

u 2 L

2

(
):

By the Green formula (1.145), m = �, t = � on �. Theorem 1.29 is proved.
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Note that for isotropic plates we have the relations

M

11

= �(u

;11

+ �u

;22

); M

22

= �(u

;22

+ �u

;11

); M

12

= �(1 � �)u

;12

;

where u is a displacement. Then

�

Z




M

ij

v

;ij

= B(u; v); �M

ij;ij

= �

2

u; m = m(u); t = t(u);

and formula (1.145) coincides with (1.144). In this case, for smooth dis-

placements u de�ned in 
, we also have at �

�M

ij

n

j

n

i

= ��u+ (1� �)

@

2

u

@n

2

;

�M

ij;k

�

k

�

j

n

i

�M

ij;j

n

i

=

@

@n

�

�u+ (1� �)

@

2

u

@�

2

�

; � = (�n

2

; n

1

):

1.4.4 Solid with a crack

Let a solid occupy the domain 


c

� R

3

with the crack �

c

such that its

boundary @


c

belongs to the class C

1;1

in accord with Section 1.4.1. Intro-

duce the space

H

1;0

(


c

) = fu = (u

1

; u

2

; u

3

) 2 H

1

(


c

) j u = 0 on �g

equipped with the norm

kuk

2

1

=

3

X

i=1

ku

i

k

2

0;


c

+

3

X

i;j=1

ku

i;j

k

2

0;


c

:

This space corresponds to the solid clamped at the boundary,

u = 0 on �:

The nonpenetration condition of the crack surfaces has the form

[u

�

] = [u

i

]�

i

� 0 on �

c

:

Introduce the admissible displacements set

K = fu 2 H

1;0

(


c

) j [u

�

] � 0 on �

c

g

which is convex and closed. Here � = (�

1

; �

2

; �

3

) corresponds to a unit

normal vector at �

c

, and n = (n

1

; n

2

; n

3

) is a unit outward normal vector

to �.
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For a given force f = (f

1

; f

2

; f

3

) 2 L

2

(


c

), consider the potential energy

functional

�(u) =

1

2

Z




c

�

ij

(u)"

ij

(u) �

Z




c

f

i

u

i

:

The stress and strain tensors �

ij

(u); "

ij

(u) are de�ned by the Hooke and

Cauchy laws

�

ij

(u) = a

ijkl

"

kl

(u); "

ij

(u) = 1=2 (u

i;j

+ u

j;i

); i; j = 1; 2; 3;

a

ijkl

= a

jikl

= a

klij

; c

1

�

ij

�

ij

� a

ijkl

�

kl

�

ij

� c

2

�

ij

�

ij

; c

1

; c

2

> 0:

By Theorem 1.12, the equilibrium problem

�(u) = inf

�u2K

�(�u) (1:149)

is equivalent to the variational inequality

u 2 K; �

0

u

(v � u) � 0 8v 2 K: (1:150)

Note that the functional � is convex and continuous, and consequently, it

is weakly lower semicontinuous.

Extend �

c

up to the boundary � such that 
 is divided into two domains

with Lipschitz boundaries @


1

; @


2

. Assume that meas (� \ @


i

) > 0,

i = 1; 2. In each of these domains, for u 2 H

1;0

(


c

), the second Korn

inequality (see Reshetnyak, 1982; Hlavacheckcek, Ne�cas, 1970)

Z




i

"

ij

(u)"

ij

(u) � ckuk

2

1;


i

; i = 1; 2; u = (u

1

; u

2

; u

3

);

is ful�lled since u = 0 at � \ @


i

, i = 1; 2. Consequently, we have the

following estimate in 


c

,

Z




c

"

ij

(u)"

ij

(u) � ckuk

2

1

:

This estimate provides the coercivity of the functional �,

�(u) � ckuk

2

1

� kf

i

k

0;


c

ku

i

k

0;


c

! +1; kuk

1

!1:

Thus, all conditions of Theorem 1.11 are ful�lled, hence there exists

a unique solution u 2 K of the problem (1.149). One can calculate the

derivative

�

0

u

(v) =

Z




c

(�

ij

(u)"

ij

(v) � f

i

v

i

)
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and substitute in (1.150). This implies the following variational inequality

Z




c

�

ij

(u)"

ij

(v � u) �

Z




c

f

i

(v

i

� u

i

) 8v 2 K: (1:151)

Denote next by H

1=2

00

(�

c

)

?

the space dual of H

1=2

00

(�

c

).

Theorem 1.30. There exists a unique solution u 2 K to the problem (1.151)

such that

��

ij;j

(u) = f

i

; i = 1; 2; 3; in 


c

;

�

�

(u) = 0; [u

�

] � 0; [�

�

(u)] = 0; �

�

(u) � 0; �

�

(u)[u

�

] = 0 on �

c

:

Proof. The existence and uniqueness of u 2 K was already proved.

The substitution of v = u� �, � 2 [C

1

0

(


c

)]

3

in (1.151) as a test function

provides the identity

Z




c

�

ij

(u)"

ij

(�) =

Z




c

f

i

�

i

8� 2 [C

1

0

(


c

)]

3

: (1:152)

This means that the equilibrium equations

��

ij;j

(u) = f

i

; i = 1; 2; 3;

hold in the sense of distributions. Since f

i

2 L

2

(


c

), we have �

ij;j

(u) 2

L

2

(


c

), i = 1; 2; 3, i.e. u 2 H

1

�

(


c

) (see notations of Section 1.4.3).

Let us extend �

c

up to the closed surface �, �

c

� �, dividing 
 into

two domains 


1

;


2

with boundaries @


1

; @


2

of the class C

1;1

(see Section

1.4.1). In each 


k

, k = 1; 2, we have u 2 H

1

�

(


k

). Hence, we can apply

Theorem 1.27 which provides the existence of �

�

�

(u); �

�

�i

(u) 2 H

�1=2

(�),

i = 1; 2; 3, and obtain the Green formula

Z




c

�

ij

(u)"

ij

(v) = �

Z




c

�

ij;j

(u)v

i

(1:153)

�

�

h�

�

(u); v

�

i

1=2;�

�

�

�

h�

�i

(u); v

�i

i

1=2;�

�

:

Here the signs � correspond to the faces �

�

of the surface �, and h � ; � i

1=2;�

means the duality pairing between H

1=2

(�) and H

�1=2

(�). By (1.152),

(1.153), from (1.151) one deduces

�

h�

�

(u); v

�

� u

�

i

1=2;�

�

+

�

h�

�i

(u); v

�i

� u

�i

i

1=2;�

�

� 0 8v 2 K: (1:154)

For � 2 [H

1

0

(
)]

3

we have �

�

2 H

1=2

(�), [�] = 0 and v = u � � 2 K.

Substituting v = u� � in (1.154) as a test function, we obtain

h�

+

�

(u) � �

�

�

(u); �

�

i

1=2;�

+ h�

+

�i

(u)� �

�

�i

(u); �

�i

i

1=2;�

= 0 8� 2 [H

1

0

(
)]

3

:
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The independence between �

�

; �

�i

2 H

1=2

(�) provides

h�

+

�

(u) � �

�

�

(u);  i

1=2;�

= h�

+

�i

(u)� �

�

�i

(u);  i

1=2;�

= 0; (1:155)

i = 1; 2; 3; 8 2 H

1=2

(�):

These identities mean that

[�

�

(u)] = 0; [�

�

(u)] = 0 on �:

Using (1.155) and Lemma 1.13, let us de�ne the functionals �

�

(u); �

�i

(u) 2

H

1=2

00

(�

c

)

?

by the formulae

h�

�

(u);  i

1=2;�

c

= h�

�

�

(u);

�

 i

1=2;�

;

h�

�i

(u);  i

1=2;�

c

= h�

�

�i

(u);

�

 i

1=2;�

; i = 1; 2; 3;

8 2 H

1=2

00

(�

c

);

�

 =  in �

c

;

�

 = 0 in � n�

c

;

�

 2 H

1=2

(�):

Here h � ; � i

1=2;�

c

means the duality pairing between the spaces H

1=2

00

(�

c

)

and H

1=2

00

(�

c

)

?

. This allows us to rewrite (1.154) in the form

h�

�

(u); [v

�

� u

�

]i

1=2;�

c

+ h�

�i

(u); [v

�i

� u

�i

]i

1=2;�

c

� 0 8v 2 K: (1:156)

Take here v = u��, � 2 H

1;0

(


c

), �

�

= 0 at �

c

. Then v 2 K, and we have

h�

�i

(u);  

i

i

1=2;�

c

= 0 8 2 [H

1=2

00

(�

c

)]

3

;  

i

�

i

= 0: (1:157)

By utilizing (1.157), the inequality (1.156) provides

h�

�

(u); [v

�

]i

1=2;�

c

� h�

�

(u); [u

�

]i

1=2;�

c

8v 2 K:

Substituting here v = 0, v = 2u, one obtains

h�

�

(u); [u

�

]i

1=2;�

c

= 0: (1:158)

Consequently, h�

�

(u); [v

�

]i

1=2;�

c

� 0 for all v 2 H

1;0

(


c

), [v

�

] � 0. This

implies the inequality

h�

�

(u);  i

1=2;�

c

� 0 8 2 H

1=2

00

(�

c

);  � 0: (1:159)

The system (1.152), (1.155), (1.157){(1.159) gives the exact meaning of the

relations formulated in Theorem 1.30. The theorem is proved.

At this point we have to mention de�erent approaches to the crack prob-

lem with equality type boundary conditions (Osadchuk, 1985; Panasyuk et

al., 1977; Duduchava, Wendland, 1995).
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1.4.5 Solid with a crack and friction

We keep the notation of Section 1.4.4. Let us prove an auxiliary statement.

Lemma 1.14. For s 2 H

1=2

00

(�

c

), if r 2 C

0;1

(�

c

), then rs 2 H

1=2

00

(�

c

).

Proof. This assertion is a consequence of the norm de�nition given in

Section 1.4.2. Indeed, we can write

krsk

2

1=2;00;�

c

= krsk

2

1=2;�

c

+ k�

�1=2

rsk

2

0;�

c

= krsk

2

0;�

c

+ k�

�1=2

rsk

2

0;�

c

+

p

X

j=1

m�1

X

i=1

b

Z

�b

Z

4

j

jr

j

(y

j

j

y

j

i

=t

)s

j

(y

j

j

y

j

i

=t

)� r

j

(y

j

)s

j

(y

j

)j

2

jt� y

j

i

j

2

dy

j

dt:

The following equality takes place:

r

j

(y

j

j

y

j

i

=t

)s

j

(y

j

j

y

j

i

=t

)� r

j

(y

j

)s

j

(y

j

)

= r

j

(y

j

j

y

j

i

=t

)

�

s

j

(y

j

j

y

j

i

=t

)� s

j

(y

j

)

�

+ s

j

(y

j

)

�

r

j

(y

j

j

y

j

i

=t

)� r

j

(y

j

)

�

:

By the Lipschitz continuity of r; r

j

in �

c

;4

j

, j = 1; :::; p, respectively, we

can evaluate the terms

krsk

2

0;�

c

� sup

x2�

c

jr(x)j

2

ksk

2

0;�

c

;

k�

�1=2

rsk

2

0;�

c

� sup

x2�

c

jr(x)j

2

k�

�1=2

sk

2

0;�

c

;

b

Z

�b

Z

4

j

jr

j

(y

j

j

y

j

i

=t

)j

2

js

j

(y

j

j

y

j

i

=t

)� s

j

(y

j

)j

2

jt� y

j

i

j

2

dy

j

dt

� sup

y

j

24

j

jr

j

(y

j

)j

2

b

Z

�b

Z

4

j

js

j

(y

j

j

y

j

i

=t

)� s

j

(y

j

)j

2

jt� y

j

i

j

2

dy

j

dt;

Z

4

j

js

j

(y

j

)j

2

b

Z

�b

jr

j

(y

j

j

y

j

i

=t

) � r

j

(y

j

)j

2

jt� y

j

i

j

2

dtdy

j

� sup

y

j

;�

j

24

j

�

jr

j

(y

j

)� r

j

(�

j

)j

jy

j

� �

j

j

�

2

� 2b � ks

j

k

2

0;4

j

:

Hence, we obtain the estimate

krsk

1=2;00;�

c

� ckrk

C

0;1

(�

c

)

ksk

1=2;00;�

c
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which proves the lemma.

Lemma 1.15. For s 2 H

1=2

00

(�

c

)

?

, if r 2 C

0;1

(�

c

), then rs 2 H

1=2

00

(�

c

)

?

.

Indeed, by Lemma 1.14, we de�ne rs from the formula

hrs; �i

1=2;�

c

= hs; r�i

1=2;�

c

8� 2 H

1=2

00

(�

c

)

which proves Lemma 1.15.

Let F 2 C

0;1

(�

c

) be a given friction coe�cient, and F 2 H

1=2

00

(�

c

)

?

be

a given friction force between the crack faces. Assume that F � 0 in the

following sense:

hF; �i

1=2;�

c

� 0 8� 2 H

1=2

00

(�

c

); � � 0:

For a given external force f = (f

1

; f

2

; f

3

) 2 L

2

(


c

), we introduce the po-

tential energy functional

P (u) = �(u) + hFF; j[u

�

]ji

1=2;�

c

; �(u) =

1

2

Z




c

�

ij

(u)"

ij

(u) �

Z




c

f

i

u

i

:

The properties of �(u) were discussed in Section 1.4.4. The functional

I(u) = hFF; j[u

�

]ji

1=2;�

c

is positive since F ; F are positive; it is continuous by Theorem 1.25, and

convex. Thus, P is a coercive, strictly convex, weakly lower semicontinuous

functional on H

1;0

(


c

).

We recall the admissible displacements set

K = fu 2 H

1;0

(


c

) j [u

�

] � 0 on �

c

g:

By Theorem 1.4, the equilibrium problem

P (u) = inf

�u2K

P (�u) (1:160)

is equivalent to the variational inequality

u 2 K; �

0

u

(v � u) + I(v) � I(u) � 0 8v 2 K;

which has the form

Z




c

�

ij

(u)"

ij

(v � u) + hFF; j[v

�

]j � j[u

�

]ji

1=2;�

c

(1:161)

�

Z




c

f

i

(v

i

� u

i

) 8v 2 K:
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By the properties of P , there exists a unique solution u 2 K to the problems

(1.160), (1.161).

Theorem 1.31. There exists a unique solution u 2 K to the problem (1.161)

such that

��

ij;j

(u) = f

i

; i = 1; 2; 3; in 


c

;

[u

�

] � 0; [�

�

(u)] = 0; �

�

(u) � 0; �

�

(u)[u

�

] = 0 on �

c

;

[�

�

(u)] = 0; j�

�

(u)j � FF; �

�i

(u)[u

�i

]� FF j[u

�

]j = 0 on �

c

:

Proof. Substituting v = u � �, � 2 [C

1

0

(


c

)]

3

in (1.161) as a test

function, one obtains

Z




c

�

ij

(u)"

ij

(�) =

Z




c

f

i

�

i

8� 2 [C

1

0

(


c

)]

3

: (1:162)

This means that the following equations hold:

��

ij;j

(u) = f

i

; i = 1; 2; 3; a.e. in 


c

;

and �

ij;j

(u) 2 L

2

(


c

), i = 1; 2; 3. By (1.162) and the Green formula

Z




c

�

ij

(u)"

ij

(v � u) = �

Z




c

�

ij;j

(u)(v

i

� u

i

) (1:163)

�

�

h�

�

(u); v

�

� u

�

i

1=2;�

�

�

�

h�

�i

(u); v

�i

� u

�i

i

1=2;�

�

;

from (1.161) one can deduce

hFF; j[v

�

]j � j[u

�

]ji

1=2;�

c

�

�

h�

�

(u); v

�

� u

�

i

1=2;�

�

(1:164)

�

�

h�

�i

(u); v

�i

� u

�i

i

1=2;�

�

� 0;

where v 2 K. For � 2 [H

1

0

(
)]

3

we have [�] = 0 at � and, therefore, we can

substitute v = u� � 2 K in (1.164) as a test function. This gives

h�

+

�

(u) � �

�

�

(u); �

�

i

1=2;�

+ h�

+

�i

(u)� �

�

�i

(u); �

�i

i

1=2;�

= 0 8� 2 [H

1

0

(
)]

3

:

Hence [�

�

(u)] = [�

�i

(u)] = 0, i = 1; 2; 3. Using Lemma 1.13, we introduce

�

�

(u); �

�i

(u) 2 H

1=2

00

(�

c

)

?

by the formulae

h�

�

(u);  i

1=2;�

c

= h�

�

�

(u);

�

 i

1=2;�

;

h�

�i

(u);  i

1=2;�

c

= h�

�

�i

(u);

�

 i

1=2;�

; i = 1; 2; 3;

8 2 H

1=2

00

(�

c

);

�

 =  in �

c

;

�

 = 0 in � n�

c

;

�

 2 H

1=2

(�):
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Utilizing these notations, by the independence between v

�

; v

�

, we rewrite

(1.164) in the form

h�

�

(u); [v

�

]i

1=2;�

c

� h�

�

(u); [u

�

]i

1=2;�

c

8v 2 K; (1:165)

hFF; j[v

�

]ji

1=2;�

c

� h�

�i

(u); [v

�i

]i

1=2;�

c

(1:166)

� hFF; j[u

�

]ji

1=2;�

c

� h�

�i

(u); [u

�i

]i

1=2;�

c

8v 2 K:

The arguments of Section 1.4.4 applied to the inequality (1.165) provide the

conditions

h�

�

(u); [u

�

]i

1=2;�

c

= 0; h�

�

(u);  i

1=2;�

c

� 0 (1:167)

8 2 H

1=2

00

(�

c

);  � 0

which imply the �rst line of boundary conditions formulated in Theorem

1.31.

Consider the inequality (1.166). We can replace v

�

by ��v

�

in (1.166),

where � � 0 is a constant, which gives

�

�

hFF; j[v

�

]ji

1=2;�

c

� h�

�i

(u); [v

�i

]i

1=2;�

c

�

� hFF; j[u

�

]ji

1=2;�

c

� h�

�i

(u); [u

�i

]i

1=2;�

c

:

By the arbitrariness of �, this inequality means that

hFF; j[u

�

]ji

1=2;�

c

� h�

�i

(u); [u

�i

]i

1=2;�

c

= 0; (1:168)

hFF; j[v

�

]ji

1=2;�

c

� h�

�i

(u); [v

�i

]i

1=2;�

c

� 0 8v 2 K:

The last relation implies

hFF; j ji

1=2;�

c

� h�

�i

(u);  

i

i

1=2;�

c

� 0 8 2 [H

1=2

00

(�

c

)]

3

;  

i

�

i

= 0;

i.e.

�

�

h�

�i

(u);  

i

i

1=2;�

c

�

�

� hFF; j ji

1=2;�

c

(1:169)

8 2 [H

1=2

00

(�

c

)]

3

;  

i

�

i

= 0:

Equations and inequalities (1.162), (1.155), (1.167){(1.169) give the ex-

act meaning of the relations formulated in Theorem 1.31. The theorem

is proved.
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Chapter 2

Cracks in plates and shells

In this chapter we analyse a wide class of equilibrium problems with cracks.

It is well known that the classical approach to the crack problem is character-

ized by the equality type boundary conditions considered at the crack faces,

in particular, the crack faces are considered to be stress-free (Cherepanov,

1979, 1983; Kachanov, 1974; Morozov, 1984). This means that displace-

ments found as solutions of these boundary value problems do not satisfy

nonpenetration conditions. There are practical examples showing that in-

terpenetration of crack faces may occur in these cases. An essential feature

of our consideration is that restrictions of Signorini type are considered at

the crack faces which do not allow the opposite crack faces to penetrate each

other. The restrictions can be written as inequalities for the displacement

vector. As a result a complete set of boundary conditions at crack faces is

written as a system of equations and inequalities. The presence of inequality

type boundary conditions implies the boundary problems to be nonlinear,

which requires the investigation of corresponding boundary value problems.

In the chapter, plates and shells with cracks are considered. Properties of

solutions are established: existence of solutions, regularity up to the crack

faces, convergence of solutions as parameters of a system are varying and

so on. We analyse di�erent constitutive laws: elastic, viscoelastic.

We start with contact problems for plates. The contact problems with

nonpenetration conditions can be viewed as a speci�c type of crack problem.

On the other hand, the analysis of solution properties when the contact

occurs is useful in the sequel.
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2.1 Viscoelastic contact problem for a plate

The viscoelastic contact problem for a plate with the constitutive law (see

Section 1.1.4)

M

ij

= �b

ijkl

w

;kl

�

@

@t

�

b

ijkl

w

;kl

; i; j = 1; 2; (2:1)

is considered in this section. Here M

ij

; w are bending moments and vertical

displacements, respectively. As we know the equilibrium relations for a plate

in contact with a punch have the following form (see Section 1.1.5):

w �  � 0; �M

ij;ij

� f � 0; (w �  )(M

ij;ij

+ f) = 0; (2:2)

where z =  (x) is the equation of the punch shape (see Fig.2.1). Assuming

that the plate is isotropic, the relations (2.1), (2.2) allow one to formulate

the following boundary value problem.

Fig.2.1. Contact of a plate with a punch

In the domainQ = 
�(0; T ) it is required to �nd a function w satisfying

the inequalities

w �  � 0; (2:3)

(�

2

w +�

2

w

t

� f)( �w � w) � 0 8 �w �  : (2:4)

We consider the following initial and boundary conditions:

w = w

0

at t = 0; (2:5)

w =

@w

@�

= 0 on �� (0; T ): (2:6)

Here 
 � R

2

is a bounded domain with boundary �, and � is the unit

exterior normal to �. The results of this section can be found in (Khludneva,

1990a).
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2.1.1 Solution existence

Let  2 H

2

(
). For simplicity the assumption  < 0 in 
 is used below.

This assumption does not restrict the generality. We introduce the closed

and convex set

K = fw 2 L

2

(0; T ;H

2

0

(
)) j w(t; x) �  (x) a.e. in Qg:

The brackets (�; �) denote the scalar product in L

2

(Q). The aim of further

reasonings is a proof of the following statement.

Theorem 2.1. Assume f 2 H

1

(Q), w

0

2 H

2

0

(Q), w

0

(x) �  (x), x 2 
.

Then, there exists a function w satisfying the initial condition (2.5) and the

relations

w

t

2 L

1

(0; T ;H

2

0

(
)); w 2 K; (2:7)

(�

2

w +�

2

w

t

; �w� w) � (f; �w � w) 8 �w 2 K: (2:8)

Proof. We introduce the penalty operator p(w) = �(w �  )

�

and

consider the auxiliary boundary value problem with the positive parameter

" > 0,

�

2

w +�

2

w

t

+ "

�1

p(w) = f; (2:9)

w = w

0

as t = 0; (2:10)

w =

@w

@�

= 0 on �� (0; T ): (2:11)

First of all, the solvability of (2.9){(2.11) is stated. To obtain an a priori

estimate we multiply (2.9) by w and integrate over 
�(0; T ). This provides

T

Z

0

k�wk

2

d� +

1

2

k�w(t)k

2

�

1

2

k�

2

w

0

k

2

(2:12)

+ "

�1

T

Z

0

hp(w); wi d� =

T

Z

0

hf; wi d�:

As usual, h�; �i denotes the scalar product in L

2

(
). The norm in H

s

(
) is

denoted by k �k

s

, k �k

0

= k �k. Since 0 2 K the penalty term of the left-hand

side of (2.12) is nonnegative. Hence, from (2.12) we obtain

max

0�t�T

kw(t)k

2

� c: (2:13)

The constant c depends only on T , f , w

0

. When t = 0, from (2.9) we obtain

the equation

�

2

w

0

+�

2

w

t

(0) + "

�1

p(w

0

) = f(0):
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Note that, by the imbedding theorems, there exists a constant c > 0 such

that

kf(0)k � ckfk

H

1

(Q)

:

Taking into account the property p(w

0

) = 0, we see that

�

2

w

t

(0) 2 H

�2

(
)

and hence

kw

t

(0)k

2

� c:

One can di�erentiate the equation (2.9) with respect to t and multiply

by w

t

. By the inequality (see Lions, 1969)

hp(w)

t

; w

t

(t)i � 0;

valid a.e. on (0; T ), we arrive at the estimate

max

0�t�T

kw

t

(t)k

2

� c: (2:14)

We use the Galerkin approach to prove the existence of the solution to the

boundary value problem (2.9){(2.11). It is well known that the eigenvalue

functions

�

2

�

i

= �

i

�

i

; �

i

2 H

2

0

(
);

form the basis in the space H

2

0

(
). The approximate solution of the problem

(2.9){(2.11) is sought in the form

w

n

(t) =

n

X

i=1

c

in

(t)�

i

;

where the functions c

in

(t) are found from the following system of ordinary

di�erential equations:

h�w

n

t

+�w

n

;��

j

i+ "

�1

hp(w

n

); �

j

i = hf; �

j

i; j = 1; 2; :::; n: (2:15)

The initial data for c

in

are de�ned from the representation

w

n

(0) =

n

X

i=1

b

in

�

i

;

where

P

n

i=1

b

in

�

i

! w

0

strongly in H

2

0

(
). A priori estimates (2.13), (2.14)

for w

n

can be reproduced in the usual way. To do this one has to multiply

(2.15) by c

jn

and to sum over j from 1 to n. Then, we di�erentiate these

equations with respect to t, multiply by c

0

jn

and sum over j. As a result,

the estimate

max

0�t�T

(kw

n

t

k

2

+ kw

n

(t)k

2

) � c (2:16)
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follows. It is of importance that the constant c does not depend on ", n.

The choice of the special basis allows one to write (2.15) in the normal

form. Moreover, the estimate (2.16) guarantees the solvability of (2.15)

on the interval (0; T ). Hence, the existence of w

n

(t) is proved. Taking into

account (2.16), one can choose a subsequence w

n

with the previous notation

such that as n!1

w

n

; w

n

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
));

w

n

! w strongly in L

2

(Q):

The second line is the corollary of the imbedding H

1

(Q) in L

2

(Q) which is

compact. Hence, we have

p(w

n

) ! p(w) strongly in L

2

(Q):

Using the above convergence, from (2.15) we get

(�w

t

+�w;��) + "

�1

(p(w); �) = (f; �) 8� 2 L

2

(0; T ;H

2

0

(
)): (2:17)

This means that equation (2.9) is ful�lled in the sense of distributions.

Moreover, in view of (2.13), (2.14) one has

w

n

(0) ! w(0) = w

0

weakly in H

2

0

(
):

Consequently, the initial condition (2.10) holds.

Now we have to justify the passage to the limit as " ! 0. As it was

mentioned the estimates (2.13), (2.14) are uniform in ". This means that

the constructed solutions denoted by w

"

satisfy the estimate

kw

"

k

L

1

(0;T ;H

2

0

(
))

+ kw

"

t

k

L

1

(0;T ;H

2

0

(
))

� c:

Choosing a subsequence, if necessary, we assume that as "! 0

w

"

; w

"

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
)):

The functions w

"

satisfy the identity (2.17). Let �w 2 K. We can substitute

�w � w

"

in (2.17) as a test function. Taking into account the monotonicity

of p, we arrive at the inequality

(�w

"

t

+�w

"

;��w��w

"

) � (f; �w � w

"

)

which can be written in the form

(�w

"

t

+�w

"

;��w) � k�w

"

k

2

L

2

(Q)

(2:18)

+

1

2

k�w

"

(T )k

2

�

1

2

k�w

0

k

2

+ (f; �w � w

"

):
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In addition to the above convergence of w

"

, we suppose that as "! 0

w

"

(T ) ! w(T ) weakly in H

2

0

(
):

Hence

lim inf

�

k�w

"

k

2

L

2

(Q)

+ k�w

"

(T )k

2

�

� k�wk

2

L

2

(Q)

+ k�w(T )k

2

:

This allows us to pass to the lower limit in (2.18) as "! 0, and we have

(�w

t

+�w;��w) � k�wk

2

L

2

(Q)

+

1

2

k�w

(

T )k

2

�

1

2

k�w

0

k

2

+ (f; �w �w) 8 �w 2 K:

This inequality coincides with (2.8). To conclude the proof we have to state

the inclusion w 2 K. From (2.9) it follows that as "! 0

p(w

"

) ! 0 in L

1

(0; T ;H

�2

(
)):

Meanwhile we know that p(w

"

) ! p(w) strongly in L

2

(Q). Hence p(w) = 0.

This means w 2 K. Theorem 2.1 is proved.

It is easy to see that the function w in (2.7){(2.8) is uniquely de�ned.

2.1.2 Optimal control of exterior forces

Let F � H

1

(Q) be a bounded, closed and convex set. As it was proved in

the previous subsection, for every f 2 F there exists a solution w � w

f

of

the problem (2.7){(2.8). We consider the cost functional

J(f) = kw

f

(T ) �w

?

k;

where w

?

2 L

2

(
) is given. The optimal control problem to be considered

here is formulated as follows:

inf

f2F

J(f): (2:19)

Theorem 2.2. There exists a solution of the problem (2.19).

Proof. Let f

n

2 F be a minimizing sequence. It is bounded in H

1

(Q).

Without loss of generality, we can assume that

f

n

! f weakly in H

1

(Q); strongly in L

2

(Q); f 2 F:

For every f

n

2 F , the solution w

n

� w

f

n

can be found such that

w

n

2 K; w

n

t

2 L

1

(0; T ;H

2

0

(
));
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(�w

n

+�w

n

t

;��w ��w

n

) � (f

n

; �w �w

n

) 8 �w 2 K;

w

n

= w

0

at t = 0:

By the boundedness of f

n

in H

1

(Q), the estimate

kw

n

k

L

1

(0;T ;H

2

0

(
))

+ kw

n

t

k

L

1

(0;T ;H

2

0

(
))

� c

takes place being uniform in n. Assume that a subsequence with the same

notation possesses the property

w

n

; w

n

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
));

w

n

(T ) ! w(T ) weakly in H

2

0

(
):

The inequality for w

n

can be written in the form

(�w

n

+�w

n

t

;��w) � k�w

n

k

2

L

2

(Q)

+

1

2

k�w

n

(T )k

2

�

1

2

k�w

0

k

2

+(f

n

; �w�w

n

):

The above convergence of w

n

, f

n

allows us to pass to the lower limit in the

last inequality. The resulting relation can be written as follows

(�w +�w

t

;��w��w) � (f; �w � w) 8 �w 2 K:

Since w 2 K we therefore have w = w

f

. Now it is easy to complete the

proof. Indeed,

lim inf kw

n

(T )� w

?

k � kw(T )� w

?

k = J(f):

Thus, the function f solves the optimal control problem (2.19). Theorem

2.2 is proved.

Di�erent optimal control problems can be found in the monographs and

papers (Khludnev, Sokolowski, 1997; Banichuk, 1980; Barbu, 1984; C�ea,

1971; Lions, 1968a, 1968b; Litvinov, 1987; Mignot, 1976; Puel, 1987; Bock,

Lovi�sek, 1987, Haslinger et al., 1986).

2.1.3 Optimal control in the regularized problem

As we know the vertical displacements of the plate de�ned from (2.7), (2.8)

can be found as a limit of solutions to the problem (2.9){(2.11). Two ques-

tions arise in this case. The �rst one is the following. Is it possible to

solve an optimal control problem like (2.19) when w � w

f

is de�ned from

(2.9){(2.11)? The second question concerns relationships between solutions

of (2.19) and those of the regularized optimal control problem. Our goal in

this subsection is to answer these questions.

First of all let us formulate the regularized optimal control problem.

If the set F is introduced in similar way and w

f

� w is found from the

equation

�

2

w +�

2

w

t

+ "

�1

p(w) = f; (2:20)
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w =

@w

@�

= 0 on �� (0; T ): (2:21)

w = w

0

at t = 0; (2:22)

we arrive at the problem

inf

f2F

J

"

(f); (2:23)

where J

"

(f) = kw(T )�w

?

k. At this step " is assumed to be �xed. Now we

can formulate the following statement.

Theorem 2.3. Let the above hypotheses be ful�lled. Then a solution of the

problem (2.23) exists.

Proof. We briey indicate the line of the proof in so far as it follows

the arguments of Theorem 2.2. It can be assumed for a minimizing sequence

f

n

that as n!1

f

n

! f weakly in H

1

(Q):

The solution w

n

of (2.20){(2.22) can be found for all f

n

2 F . Moreover the

estimate

kw

n

k

L

1

(0;T ;H

2

0

(
))

+ kw

n

t

k

L

1

(0;T ;H

2

0

(
))

� c

takes place being uniform in n. Choosing a subsequence, if necessary, one

can assume that as n!1

w

n

; w

n

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
));

w

n

(T ) ! w(T ) weakly in H

2

0

(
);

w

n

! w strongly in L

2

(Q):

This convergence allows one to pass to the limit in the identity for w

n

, as

n!1, and to obtain

(�w+�w

t

;��) + "

�1

(p(w); �) = (f; �) 8� 2 L

2

(0; T ;H

2

0

(
)):

This means w = w

f

and consequently

lim inf J

"

(f

n

) = lim inf kw

n

(T )� w

?

k � J

"

(f)

which guarantees that f is the solution of the problem (2.23). The proof of

Theorem 2.3 is completed.

Henceforth the solution of the problem (2.23) is denoted by f

"

. Accord-

ingly, w

"

is the solution of (2.20){(2.22) for f = f

"

. Denoting by f the

solution of the optimal control problem (2.19) we put

j = J(f); j

"

= J

"

(f

"

):
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Now we are in a position to study a connection between the solutions of

(2.23) and (2.19).

Theorem 2.4. From the sequence f

"

, w

"

, j

"

, one can choose a subsequence

such that as "! 0 (the notation for the subsequence is the same)

f

"

!

~

f weakly in H

1

(Q); j

"

! j;

w

"

; w

"

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
));

where w � w

~

f

and

~

f is the solution of the problem (2.19).

Proof. We consider the equations

�

2

w

"

+�

2

w

"

t

+ "

�1

p(w

"

) = f

"

: (2:24)

The boundedness of f

"

in H

1

(Q) provides the validity of the estimate

kw

"

k

L

1

(0;T ;H

2

0

(
))

+ kw

"

t

k

L

1

(0;T ;H

2

0

(
))

� c

uniformly in ". Choosing a subsequence we assume that, as "! 0,

w

"

; w

"

t

! w;w

t

? - weakly in L

1

(0; T ;H

2

0

(
));

w

"

! w strongly in L

2

(Q);

w

"

(T ) ! w(T ) weakly in H

2

0

(
):

Besides, one can suppose that

f

"

!

~

f weakly in H

1

(Q);

~

f 2 F:

Let �w 2 K be an arbitrary function. The multiplication of (2.24) by �w�w

"

implies

(�w

"

+�w

"

t

;��w��w

"

) � (f

"

; �w� w

"

):

This inequality can be rewritten in the form

(�w

"

+�w

"

t

;��w) � k�w

"

k

2

L

2

(Q)

+

1

2

k�w

"

(T )k

2

�

1

2

k�w

0

k

2

+(f

"

; �w�w

"

):

After the passage to the lower limit in both sides of this relation we arrive

at the inequality

(�w +�w

t

;��w��w) � (

~

f ; �w� w) 8 �w 2 K:

Moreover it is easily seen that w 2 K. Indeed, we have p(w

"

) ! p(w)

strongly in L

2

(Q). On the other hand, the equation (2.24) gives p(w

"

) ! 0

weakly in L

1

(0; T ;H

�2

(
)). Hence p(w) = 0, that is w 2 K. Thus we

conclude w = w

~

f

and consequently

lim inf j

"

� J(

~

f ): (2:25)
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We know that for a �xed f the solutions w

"

f

of the equation (2.20)

converge to the solution w

f

of the inequality (2.7){(2.8) as " ! 0 so that,

in particular,

w

"

f

(T ) ! w

f

(T ) strongly in L

2

(
):

This convergence means that

J

"

(f) � kw

"

f

(T ) �w

?

k ! kw

f

(T ) �w

?

k:

So we have proved the convergence

J

"

(f) ! J(f)

for every �xed f . Now let f be the solution of the problem (2.19). Then

j

"

= J

"

(f

"

) � J

"

(f):

By the above arguments,

lim supj

"

� J(f): (2:26)

The relations (2.25), (2.26) guarantee that

~

f is the solution of (2.19) and,

besides, j

"

! j. The equality w = w

~

f

has already been proved. The proof

is completed.

2.1.4 Other cost functional

Let w = w

f

be the solution of the inequality

w 2 K; w

t

2 L

1

(0; T ;H

2

0

(
)); (2:27)

(�w+�w

t

;��w��w) � (f; �w � w) 8 �w 2 K; (2:28)

w = w

0

at t = 0; (2:29)

and w

0

?

2 L

2

(Q) be a given function. We consider the cost functional

J(f) = kw

f

� w

0

?

k

L

2

(Q)

and formulate the optimal control problem

inf

f2F

J(f): (2:30)

In addition to this we put

J

"

(f) = kw

"

f

�w

0

?

k

L

2

(Q)

;

where w

"

f

is the solution of (2.20){(2.22), and introduce one more optimal

control problem

inf

f2F

J

"

(f): (2:31)
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Now we can formulate the assertion.

Theorem 2.5. The following statements are valid:

1. The solution of the problem (2.27){(2.30) exists.

2. The solution of the problem (2.31), (2.20){(2.22) also exists.

The proof follows the lines of those of Theorems 1.2, 1.3 and therefore is

omitted. We can also prove the statement on convergence like Theorem 2.4

concerning the optimal control problems (2.27){(2.30) and (2.31), (2.20){

(2.22).

2.2 A plate under creep conditions

2.2.1 Existence of solutions

Let 
 � R

2

be a bounded domain with smooth boundary �, Q = 
�(0; T ).

Our object is to study a contact problem for a plate under creep conditions

(see Khludneva, 1990b). The formulation of the problem is as follows. In

the domain Q, it is required to �nd functions w, M

ij

, i; j = 1; 2, satisfying

the relations

w �  � 0; �M

ij;ij

� f � 0; (w �  )(M

ij;ij

+ f) = 0; (2:32)

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

(� ) d�; i; j = 1; 2; (2:33)

w =

@w

@�

= 0 on �� (0; T ): (2:34)

Here f 2 L

2

(Q) is a given function, and the equation z =  (x) describes

a punch shape,  2 H

2

(
),  < 0 on �. It is assumed that a

ijkl

; b

ijkl

2

L

1

(
) depend only on x and possess the usual properties of symmetry and

positive de�niteness. As a matter of convenience we choose arbitrary �xed

functions w

0

2 H

2

0

(
) and M

0

ij

2 L

2

(Q) satisfying the conditions

w

0

(x) �  (x); x 2 Q; �M

0

ij;ij

= f in Q:

The equation for M

0

holds in the distribution sense. We are in a position

to formulate the existence result. The set of functions w 2 L

2

(0; T ;H

2

0

(
))

satisfying the inequality w �  a.e. in Q is denoted by K.

Theorem 2.6. Under the above hypotheses there exist unique functions w,

M = fM

ij

g such that:

w 2 K; M 2 L

2

(Q); (2:35)

a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d� + w

;ij

= 0; i; j = 1; 2; (2:36)



80 Analysis of cracks in solids

�(M

ij

; �w

;ij

� w

;ij

) � (f; �w � w) 8 �w 2 K: (2:37)

Proof. Let "; � be positive parameters, and p be the penalty operator

introduced in the previous section. We consider the auxiliary problem

"�

2

w �M

ij;ij

+ �

�1

p(w) = f; (2:38)

a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d� + w

;ij

= 0; i; j = 1; 2; (2:39)

w =

@w

@�

= 0 on �� (0; T ): (2:40)

First of all the solvability of the problem (2.38){(2.40) is established for

the �xed parameter "; �. In doing so the dependence of w, M

ij

on these

parameters is not indicated. To state an a priori estimate, we multiply

(2.38), (2.39) by w�w

0

, M

ij

�M

0

ij

, respectively, integrate over Q and sum

the obtained relations. This provides the inequality

"

T

Z

0

k�w(� )k

2

d� +

T

Z

0

kM (� )k

2

d� +

0

@

t

Z

0

b

ijkl

M

kl

d�;M

ij

1

A

�

0

@

t

Z

0

b

ijkl

M

kl

d�;M

0

ij

1

A

+ "(�w;�w

0

) + (a

ijkl

M

kl

;M

0

ij

) (2:41)

� (M

ij

; w

0

;ij

)� (f; w

0

):

Here we have used the notation

kMk

2

=

Z




a

ijkl

M

kl

M

ij

dx

which is correct by the properties of a

ijkl

. The nonnegative term containing

the penalty operator has been neglected. The third term on the left-hand

side of (2.41) is nonnegative since it is equal to

1

2

*

T

Z

0

b

ijkl

M

kl

d�;

T

Z

0

M

ij

d�

+

:

Thus we see that the estimate

"

T

Z

0

k�w(� )k

2

d� +

T

Z

0

kM (� )k

2

d� � c (2:42)
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follows from (2.41) with the constant c independent of " � "

0

, �. This means

that the operator could be constructed acting from L

2

(0; T ;H

2

0

(
))�L

2

(Q)

into the dual space, which puts to the pair (w;M

ij

) the left-hand side of

(2.38){(2.39). This operator satis�es all conditions of Theorem 1.14. Its

coercivity follows from the above reasonings used to obtain the estimate

(2.42). The monotonicity of the operator can be veri�ed by the following

way. We take two points (w

1

;M

1

ij

), (w

2

;M

2

ij

) and calculate the value of the

operator at these points. Denoting w = w

1

�w

2

, M = M

1

�M

2

we obtain

"

T

Z

0

k�w(� )k

2

d� +

T

Z

0

kM (� )k

2

d� +

1

2

*

T

Z

0

b

ijkl

M

kl

d�;

T

Z

0

M

ij

d�

+

+ �

�1

T

Z

0

hp(w

1

) � p(w

2

); w

1

�w

2

i d� � 0

which proves the assertion. The boundedness and the semicontinuity of the

operator are obvious. Thus the solution of the problem (2.38){(2.40) exists

such that

w 2 L

2

(0; T ;H

2

0

(
)); M 2 L

2

(Q):

In what follows the passage to the limit " ! 0, � ! 0 is justi�ed. First of

all we note that, in addition to (2.42), the estimate

T

Z

0

kw(� )k

2

2

d� � c (2:43)

pertains, as a consequence of (2.42) and (2.39). Denoting the solution of

(2.38){(2.40) by w

"

;M

"

, we can assume that for a subsequence, as "! 0

w

"

! w

�

weakly in L

2

(0; T ;H

2

0

(
));

M

"

! M

�

weakly in L

2

(Q):

After the passage to the limit the following identities are obtained:

�(M

�

ij

; �w

;ij

) + �

�1

(p(w

�

); �w) = (f; �w) 8 �w 2 L

2

(0; T ;H

2

0

(
)); (2:44)

0

@

a

ijkl

M

�

kl

+

t

Z

0

b

ijkl

M

�

kl

d� +w

�

;ij

;

�

M

ij

1

A

= 0 8

�

M 2 L

2

(Q): (2:45)

The functions w

�

;M

�

satisfy the same a priori estimate as w

"

;M

"

. Hence,

choosing a subsequence, if necessary, we can assume that as � ! 0

w

�

! w weakly in L

2

(0; T ;H

2

0

(
));
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M

�

! M weakly in L

2

(Q):

In this case the identity (2.45) implies

0

@

a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d� +w

;ij

;

�

M

ij

1

A

= 0 8

�

M 2 L

2

(Q): (2:46)

Let �w 2 K. We substitute �w � w

�

in (2.44) as a test function and derive

the inequality

�(M

�

ij

; �w

;ij

� w

�

ij

) � (f; �w � w

�

): (2:47)

Meantime the identity (2.45) provides the equalities

w

�

;ij

= �a

ijkl

M

�

kl

�

t

Z

0

b

ijkl

M

�

kl

d�; i; j = 1; 2:

Hence (2.47) can be written in the form

�(M

�

ij

; �w

;ij

) �

T

Z

0

kM

�

(� )k

2

d�+

1

2

*

T

Z

0

b

ijkl

M

�

kl

d�;

T

Z

0

M

�

ij

d�

+

+(f; �w�w

�

):

Passing to the lower limit on both sides of the last relation we arrive at the

inequality

�(M

ij

+ a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d�; �w

ij

) � (f; �w �w):

In view of (2.46) this means that

� (M

ij

; �w

;ij

�w

ij

) � (f; �w �w) 8 �w 2 K: (2:48)

The inclusion w 2 K follows from (2.44) in a standard way for variational

inequalities. Thus the existence of w;M satisfying (2.35){(2.37) is proved.

To verify the uniqueness we assume the existence of two solutions w

1

;M

1

and w

2

;M

2

. From (2.46), (2.48) we have

T

Z

0

kM (� )k

2

d� +

1

2

*

T

Z

0

b

ijkl

M

kl

d�;

T

Z

0

M

ij

d�

+

� 0;

where M = M

1

�M

2

. Hence M � 0. Taking into account the equalities

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

(� ) d�; i; j = 1; 2;

valid for w = w

1

� w

2

, we get w � 0. Theorem 2.6 is completely proved.
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2.2.2 Optimal control of exterior forces

We proceed with an investigation of the contact problem for a plate under

creep conditions. We know that for every �xed f 2 L

2

(Q) there exists a

unique solution w;M satisfying (2.35){(2.37). Let w

0

2 L

2

(Q) be a given

element and F � H

1

(Q) be a closed convex and bounded set. We introduce

the cost functional

J(f) = kw� w

0

k

L

2

(Q)

;

where w � w

f

is de�ned from (2.35){(2.37), and consider the optimal con-

trol problem

inf

f2F

J(f): (2:49)

The main result of this subsection can be formulated as follows.

Theorem 2.7. Under the above conditions, there exists a solution of the

optimal control problem (2.49).

Proof. First of all we note that the solution of (2.35){(2.37) satis�es

the estimate

T

Z

0

kM (� )k

2

d� +

T

Z

0

kw(� )k

2

2

d� � c (2:50)

with the constant c depending on kfk

L

2

(Q)

. Let f

n

2 F be a minimizing

sequence and M

n

; w

n

be the solutions of (2.35){(2.37) corresponding to f

n

.

By the boundedness of f

n

in H

1

(Q), the constant c in the inequality like

(2.50), written for M

n

; w

n

, is bounded uniformly in n. This means that the

solutions of the problems

w

n

2 K; M

n

2 L

2

(Q);

�(M

n

ij

; �w

;ij

� w

n

;ij

) � (f

n

; �w� w

n

) 8 �w 2 K; (2:51)

�w

n

;ij

= a

ijkl

M

n

kl

+

t

Z

0

b

ijkl

M

n

kl

d�; i; j = 1; 2; (2:52)

possess the properties: w

n

are bounded in L

2

(0; T ;H

2

0

(
)); M

n

are boun-

ded in L

2

(Q). Hence, it can be assumed that for a subsequence having the

same notation as n!1

w

n

! w weakly in L

2

(0; T ;H

2

0

(
));

M

n

! M weakly in L

2

(Q);

f

n

! f weakly in H

1

(Q); strongly in L

2

(Q):
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On the basis of this convergence, the passage to the limit as n ! 1 can

be justi�ed in (2.51), (2.52). Indeed, in view of (2.52) the inequality (2.51)

can be written as follows:

�(M

n

ij

; �w

;ij

) � (a

ijkl

M

n

kl

;M

n

ij

) +

0

@

t

Z

0

b

ijkl

M

n

kl

d�;M

n

ij

1

A

+ (f

n

; �w� w

n

):

(2:53)

The second term on the right-hand side of (2.53) is equal to

1

2

*

T

Z

0

b

ijkl

M

n

kl

d�;

T

Z

0

M

n

ij

d�

+

:

Hence the passage to the lower limit in (2.53) implies

�(M

ij

; �w

;ij

) � (a

ijkl

M

kl

;M

ij

) +

0

@

t

Z

0

b

ijkl

M

kl

d�;M

ij

1

A

+ (f; �w �w):

It is easily seen that the last relation can be written in the form

�(M

ij

; �w

;ij

�w

ij

) � (f; �w �w) 8 �w 2 K

provided that we use the limit equations obtained from (2.52),

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

(� ) d�; i; j = 1; 2:

Consequently w = w

f

. Now let

j = inf

f2F

J(f):

We see that

lim inf kw

n

�w

0

k

L

2

(Q)

� J(f)

which means that f is the solution of the optimal control problem (2.49).

Theorem 2.7 is proved.

2.2.3 Optimal control in the penalty problem

As we know, for every �xed f the solution of (2.35){(2.37) can be approxi-

mated by the solution of the following problem:

�M

ij;ij

+ �

�1

p(w) = f; (2:54)

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d�; i; j = 1; 2; (2:55)
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w =

@w

@�

= 0 on �� (0; T ); (2:56)

as � ! 0. Let us de�ne the cost functional

J

�

(f) = kw� w

0

k

L

2

(Q)

;

where w � w

f

is the solution of (2.54){(2.56), and consider the optimal

control problem

inf

f2F

J

�

(f): (2:57)

The goal of this subsection is to establish relationship between the solutions

of (2.54){(2.57) and (2.49), (2.35){(2.37). At the �rst stage of our consid-

eration we intend to prove the existence of a solution of (2.54){(2.57). Let

f

n

be a minimizing sequence. In view of the boundedness of f

n

in H

1

(Q),

without loss of generality, we assume that as n!1

f

n

! f weakly in H

1

(Q):

For every f

n

, there exists a solution w

n

;M

n

of the problem (2.54){(2.56).

This solution satis�es the identities

�(M

n

ij

; �w

;ij

) + �

�1

(p(w

n

); �w) = (f

n

; �w) 8 �w 2 L

2

(0; T ;H

2

0

(
)); (2:58)

0

@

a

ijkl

M

n

kl

+

t

Z

0

b

ijkl

M

n

kl

d� +w

n

;ij

;

�

M

ij

1

A

= 0 8

�

M 2 L

2

(Q): (2:59)

Moreover we know that the estimate

T

Z

0

kM

n

(� )k

2

d� +

T

Z

0

kw

n

(� )k

2

2

d� � c

holds being uniform in n. Choosing a subsequence, if necessary, we assume

that as n!1

w

n

! w

�

weakly in L

2

(0; T ;H

2

0

(
));

M

n

! M

�

weakly in L

2

(Q):

The above convergence of f

n

; w

n

;M

n

allows us to pass to the limit in (2.58),

(2.59) and to get w = w

f

�
. Hence

inf

�

f2F

J

�

(

�

f ) = lim inf

n!1

J

�

(f

n

) � J

�

(f

�

);

that is, f

�

solves the optimal control problem (2.54){(2.57). We denote j

�

=

J

�

(f

�

) and formulate the assertion characterizing a relationship between

optimal control problems under consideration.

Theorem 2.8. There exists a subsequence w

�

;M

�

; f

�

for which we use the

previous notation such that as � ! 0

w

�

! w weakly in L

2

(0; T ;H

2

0

(
));
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M

�

! M weakly in L

2

(Q);

f

�

! f weakly in H

1

(Q); lim inf j

�

� j;

where w;M correspond to f and can be de�ned from (2.35){(2.37).

Proof. We have the equations

�M

�

ij;ij

+ �

�1

p(w

�

) = f

�

; (2:60)

�w

�

;ij

= a

ijkl

M

�

kl

+

t

Z

0

b

ijkl

M

�

kl

d�; i; j = 1; 2: (2:61)

Since f

�

are bounded in H

1

(Q), the estimate

T

Z

0

kM

�

(� )k

2

d� +

T

Z

0

kw

�

(� )k

2

2

d� � c

is valid being uniform in �. We can suppose that a subsequence with the

previous notation possesses the following properties as � ! 0:

w

�

! w weakly in L

2

(0; T ;H

2

0

(
));

M

�

! M weakly in L

2

(Q);

f

�

! f weakly in H

1

(Q); strongly in L

2

(Q):

Equation (2.60) is ful�lled in the sense of the identity

�(M

�

ij

; �w

;ij

) + �

�1

(p(w

�

); �w) = (f

�

; �w);

valid for all test functions �w 2 L

2

(0; T ;H

2

0

(
)). Substituting �w � w

�

as a

test function, where �w 2 K, we obtain

�(M

�

ij

; �w

;ij

) � (a

ijkl

M

�

kl

;M

�

ij

) (2:62)

+

1

2

*

T

Z

0

b

ijkl

M

�

kl

d�;

T

Z

0

M

�

ij

d�

+

+ (f

�

; �w� w

�

):

It is easily seen that the above convergence provides the passage to the lower

limit in (2.62), i.e.

�(M

ij

; �w

;ij

) � (a

ijkl

M

kl

;M

ij

) +

1

2

*

T

Z

0

b

ijkl

M

kl

d�;

T

Z

0

M

ij

d�

+

(2:63)

+ (f; �w � w) =

0

@

a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

(� ) d�;M

ij

1

A

+ (f; �w � w):
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On the other hand, after the passage to the limit, from (2.61) one has

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

(� ) d�; i; j = 1; 2: (2:64)

Consequently, the substitution of these values w;M in (2.63) provides the

ful�lment of the inequality

�(M

ij

; �w

;ij

� w

ij

) � (f; �w � w) 8 �w 2 K: (2:65)

By (2.64), (2.65), one concludes that w = w

f

, M = M

f

, since the inclusion

w 2 K is veri�ed by standard arguments. To complete the proof we notice

lim inf kw

�

� w

0

k

L

2

(Q)

� kw � w

0

k

L

2

(Q)

;

that is, lim inf j

�

� J(f) � j: Theorem 2.8 is proved.

2.2.4 Other cost functional

In this subsection we consider the other cost functional which describes a

deection of the moments M

ij

from given functions M

0

ij

2 L

2

(Q). Namely,

let

J(f) = kM

f

�M

0

k

L

2

(Q)

be the cost functional, where M

f

=M is the solution of the problem

w 2 K; M 2 L

2

(Q);

�(M

ij

; �w

;ij

� w

;ij

) � (f; �w � w) 8 �w 2 K;

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d�; i; j = 1; 2:

We shall state the existence of a solution of the problem

inf

f2F

J(f): (2:66)

Theorem 2.9. There exists a solution of the problem (2.66).

Proof. Let f

n

be a minimizing sequence. Without loss of generality

we assume that

f

n

! f weakly in H

1

(Q); strongly in L

2

(Q):

As it was mentioned in the previous subsection the solution w

n

;M

n

of the

problem

w

n

2 K; M

n

2 L

2

(Q);
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�(M

n

ij

; �w

;ij

�w

n

;ij

) � (f

n

; �w� w

n

) 8 �w 2 K; (2:67)

�w

n

;ij

= a

ijkl

M

n

kl

+

t

Z

0

b

ijkl

M

n

kl

d�; i; j = 1; 2; (2:68)

possesses the property

kM

n

k

2

L

2

(Q)

+ kw

n

k

2

L

2

(0;T ;H

2

0

(
))

� c

with a constant c independent of n. Hence one can assume that as n!1

w

n

! w weakly in L

2

(0; T ;H

2

0

(
));

M

n

! M

�

weakly in L

2

(Q):

The convergence of f

n

; w

n

;M

n

allows us to pass to the limit in (2.67),

(2.68). It can be done as in Theorem 2.7. As a consequence we obtain

w = w

f

, M =M

f

, that is

�(M

ij

; �w

;ij

� w

;ij

) � (f; �w � w) 8 �w 2 K;

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

b

ijkl

M

kl

d�; i; j = 1; 2:

The inclusion w 2 K follows from the weak closeness of the set K. Hence

lim inf kM

n

�M

0

k

L

2

(Q)

� kM �M

0

k

L

2

(Q)

:

This means

inf

�

f2F

J(

�

f ) = lim inf J(f

n

) � J(f)

which proves that the element f solves the problem (2.66). Theorem 2.9 is

proved.

2.3 A plate with vertical and horizontal dis-

placements

We continue the investigation of the contact problem for a plate under

creep conditions. In this section the case of both normal and tangential

displacements of the plate is considered.
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2.3.1 Existence of the solution

First of all we formulate the equilibrium problem. Let 
 � R

2

be a bounded

domain with smooth boundary �, Q = 
 � (0; T ). Denote by w

1

, w

2

, w

the horizontal and vertical displacements of the plate, � = (w

1

; w

2

; w). It is

assumed that the equation z =  (x) describes a punch shape, x 2 
. The

nonpenetration condition can be written in the form

w �Wr �  in 
; (2:69)

where W = (w

1

; w

2

). In the domain Q, we wish to �nd the functions w

1

,

w

2

, w, �

ij

, M

ij

, i; j = 1; 2, satisfying the relation (2.69) and

(M

ij;ij

+ f)( �w � w) + (�

ij;j

+ f

i

)( �w

i

� w

i

) � 0 (2:70)

8( �w

1

; �w

2

; �w); �w �

�

Wr �  ;

�w

;ij

= a

ijkl

M

kl

+

t

Z

0

a

0

ijkl

M

kl

d�; i; j = 1; 2; (2:71)

"

ij

(W ) = b

ijkl

�

kl

+

t

Z

0

b

0

ijkl

�

kl

d�; i; j = 1; 2; (2:72)

as well as the boundary conditions

w

1

= w

2

= w =

@w

@�

= 0 on �� (0; T ): (2:73)

Here "

ij

(W ) = (w

i;j

+w

j;i

)=2; f

1

; f

2

; f 2 L

2

(Q) are given functions; the co-

e�cients a

0

ijkl

, b

0

ijkl

, as well as a

ijkl

, b

ijkl

depend on x and possess the usual

properties of symmetry and positive de�niteness. It is assumed that these

coe�cients belong to L

1

(
). Let H(
) = H

1

0

(
) �H

1

0

(
) � H

2

0

(
). We

denote byK the set of all functions � = (w

1

; w

2

; w) from L

2

(0; T ;H(
)) sat-

isfying the inequality (2.69) and consider the penalty operator p connected

with K and acting from the space L

2

(0; T ;H(
)) into its dual.

For convenience we introduce the functions M

0

ij

; �

0

ij

2 L

2

(Q) satisfying

the equations

�M

0

ij;ij

= f; ��

0

ij;j

= f

i

; i = 1; 2; in Q:

In addition to this, a function �

0

= (w

0

1

; w

0

2

; w

0

) 2 H(
) is assumed to be

chosen satisfying the inequality (2.69). It can be done, in particular, when

 2 H

2

(
),  < 0 on �. Now we are in a position to formulate the existence

theorem.

Theorem 2.10. Let the above assumptions be ful�lled. Then there exist

functions � = (w

1

; w

2

; w), M = fM

ij

g, � = f�

ij

g such that the equations

(2.71), (2.72) hold and

� 2 K; M; � 2 L

2

(Q);
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�(M

ij

; �w

;ij

� w

;ij

) +

�

�

ij

; "

ij

(

�

W ) � "

ij

(W )

�

� (f; �w �w) + (f

i

; �w

i

� w

i

)

8�� 2 K:

Proof. We put p = (p

1

; p

2

; p

0

). Let ", � be positive parameters. The

following auxiliary boundary value problem is analysed at the �rst stage:

"�

2

w �M

ij;ij

+ �

�1

p

0

(�) = f; (2:74)

�"�w

i

� �

ij;j

+ �

�1

p

i

(�) = f

i

; i = 1; 2; (2:75)

a

ijkl

M

kl

+ w

;ij

+

t

Z

0

a

0

ijkl

M

kl

d� = 0; i; j = 1; 2; (2:76)

b

ijkl

�

kl

� "

ij

(W ) +

t

Z

0

b

0

ijkl

�

kl

d� = 0; i; j = 1; 2; (2:77)

w

1

= w

2

= w =

@w

@�

= 0 on � � (0; T ): (2:78)

At the �rst step of our reasonings the existence of a solution to the problem

(2.74){(2.78) is established. To obtain an a priori estimate, we multiply

(2.74){(2.77) by w�w

0

, w

i

�w

0

i

,M

ij

�M

0

ij

, �

ij

��

0

ij

, respectively, integrate

over Q and sum. In doing so we have to note that

0

@

t

Z

0

a

0

ijkl

M

kl

d�;M

ij

1

A

=

1

2

*

T

Z

0

a

0

ijkl

M

kl

d�;

T

Z

0

M

ij

d�

+

� 0:

Analogously,

0

@

t

Z

0

b

0

ijkl

�

kl

d�; �

ij

1

A

� 0:

Thus, after some simple calculations one has

"k�wk

2

L

2

(Q)

+ "krWk

2

L

2

(Q)

+ kMk

2

L

2

(Q)

+ k�k

2

L

2

(Q)

�

"

2

�

k�wk

2

L

2

(Q)

+ krWk

2

L

2

(Q)

�

+

1

2

�

kMk

2

L

2

(Q)

+ k�k

2

L

2

(Q)

�

+ c:

The constant c does not depend on w;W;M; � and is uniform in "; �, " � "

0

.

Whence

"k�wk

2

L

2

(Q)

+ "krWk

2

L

2

(Q)

+ kMk

2

L

2

(Q)

+ k�k

2

L

2

(Q)

� c: (2:79)

It is easy to prove the solvability of the problem (2.74){(2.78) for �xed

parameters ", � on the basis of (2.79). To do this, we consider the operator

acting from the space L

2

(0; T ;H(
)) � L

2

(Q) into the dual one, which
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puts a correspondence between every element (�;M; �) and the left-hand

side of (2.74){(2.77). The way we have used to get the estimate (2.79)

actually provides the coercivity of the operator. It is easily seen that the

operator is monotonous, bounded and semicontinuous. Hence Theorem 1.14

is applicable which provides the existence of the solution to the problem

(2.74){(2.78) such that

w 2 L

2

(0; T ;H

2

0

(
)); w

i

2 L

2

(0; T ;H

1

0

(
)); i = 1; 2;

M

ij

2 L

2

(Q); �

ij

2 L

2

(Q); i; j = 1; 2:

To indicate the dependence of the solution on the parameter " we write w

"

,

w

"

i

, M

"

, �

"

. To justify the passage to the limit as " ! 0 we should get

one more a priori estimate. First of all let us note that the solutions of

(2.74){(2.78) satisfy the following relations:

"(�w

"

;��w)� (M

"

ij

; �w

;ij

) + �

�1

(p

0

(�

"

); �w) = (f; �w) (2:80)

8 �w 2 L

2

(0; T ;H

2

0

(
));

"(rw

"

i

;r �w

i

) + (�

"

ij;j

; "

ij

(

�

W )) + �

�1

(p

i

(�

"

; �w

i

)) = (f

i

; �w

i

) (2:81)

8

�

W 2 L

2

(0; T ;H

1

0

(
));

a

ijkl

M

"

kl

+ w

"

;ij

+

t

Z

0

a

0

ijkl

M

"

kl

d� = 0; i; j = 1; 2; (2:82)

b

ijkl

�

"

kl

� "

ij

(W

"

) +

t

Z

0

b

0

ijkl

�

"

kl

d� = 0; i; j = 1; 2: (2:83)

The brackets (�; �) mean here both the scalar product in L

2

(Q) and the

duality pairing between L

2

(0; T ;H

k

0

(
)) and L

2

(0; T ;H

�k

(
)), k = 1; 2.

Let us recall the boundary conditions for w

"

, W

"

. By (2.82), (2.83), we see

that "

ij

(W

"

), w

"

ij

are bounded in L

2

(Q) uniformly in " � "

0

, �. Hence

kW

"

k

2

L

2

(0;T ;H

1

0

(
))

+ kw

"

k

2

L

2

(0;T ;H

2

0

(
))

� c: (2:84)

It follows from (2.79), (2.84) that a subsequence can be chosen such that as

"! 0

w

"

! w

�

weakly in L

2

(0; T ;H

2

0

(
));

W

"

! W

�

weakly in L

2

(0; T ;H

1

0

(
));

M

"

; �

"

! M

�

; �

�

weakly in L

2

(Q):

For convenience we keep the same notation for the subsequence. In doing

so we can ful�l the passage to the limit as "! 0 in (2.80){(2.83) and obtain

�(M

�

ij

; �w

;ij

) + �

�1

(p

0

(�

�

); �w) = (f; �w) 8 �w 2 L

2

(0; T ;H

2

0

(
)); (2:85)
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(�

�

ij;j

; "

ij

(

�

W ))+ �

�1

(p

i

(�

�

; �w

i

)) = (f

i

; �w

i

) 8

�

W 2 L

2

(0; T ;H

1

0

(
)); (2:86)

a

ijkl

M

�

kl

+ w

�

;ij

+

t

Z

0

a

0

ijkl

M

�

kl

d� = 0; i; j = 1; 2; (2:87)

b

ijkl

�

�

kl

� "

ij

(W

�

) +

t

Z

0

b

0

ijkl

�

�

kl

d� = 0; i; j = 1; 2: (2:88)

The weak convergence of p(�

"

) to p(�

�

) can be justi�ed by the standard

way on the basis of the monotonicity. As it was mentioned the estimates

(2.79), (2.84) are uniform in " � "

0

, �. This provides the boundedness of

the solutions w

�

, W

�

, M

�

, �

�

in the same spaces. In particular, choosing a

subsequence, if necessary, one can assume that as � ! 0

w

�

! w weakly in L

2

(0; T ;H

2

0

(
));

W

�

! W weakly in L

2

(0; T ;H

1

0

(
));

M

�

; �

�

! M;� weakly in L

2

(Q):

The passage to the limit in (2.87), (2.88) is obvious. We shall give the

explanations related to (2.85), (2.86). Let �� 2 K be an arbitrary �xed

element. Substituting �w�w

�

,

�

W �W

�

in (2.85), (2.86) as the test functions

and taking into account the monotonicity of p, we arrive at the inequality

�(M

�

ij

; �w

;ij

�w

�

;ij

) + (�

�

ij

; "

ij

(

�

W )� "

ij

(W

�

)) � (f; �w �w

�

) + (f

i

; �w

i

�w

�

i

):

We can substitute in this relation the values w

�

ij

, "

ij

(W

�

) taken from (2.87),

(2.88) and obtain

�(M

�

ij

; �w

;ij

) + (�

�

ij

; "

ij

(

�

W )) � (a

ijkl

M

�

kl

;M

�

ij

)

+(b

ijkl

�

�

kl

; �

�

ij

) +

1

2

*

T

Z

0

a

0

ijkl

M

�

kl

d�;

T

Z

0

M

�

ij

d�

+

(2:89)

+

1

2

*

T

Z

0

b

0

ijkl

�

�

kl

d�;

T

Z

0

�

�

ij

d�

+

+ (f; �w � w

�

) + (f

i

; �w

i

� w

�

i

):

The convergence, we have for w

�

, W

�

, M

�

, �

�

, and the properties of the

coe�cients a

ijkl

, a

0

ijkl

, b

ijkl

, b

0

ijkl

provide an opportunity to pass to the

lower limit in (2.89) as � ! 0. The limiting relation for the functions w,

W , M , � has the form exactly like (2.89). At the same time we know that

the passage to the limit in (2.87), (2.88) implies (2.71), (2.72). Hence the

values

a

ijkl

M

kl

+

t

Z

0

a

0

ijkl

M

kl

d�; b

ijkl

�

kl

+

t

Z

0

b

0

ijkl

�

kl

d�
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taken from (2.71), (2.72) can be substituted in the above limiting relation.

As a result we arrive at the inequality

�(M

ij

; �w

;ij

�w

;ij

) + (�

ij

; "

ij

(

�

W ) � "

ij

(W )) (2:90)

� (f; �w �w) + (f

i

; �w

i

� w

i

) 8�� 2 K:

The inclusion � = (w

1

; w

2

; w) 2 K is proved by the standard arguments.

Theorem 2.10 is proved.

To conclude this subsection we notice that the solution �;M; � is unique.

2.3.2 Optimal control of exterior forces

We intend to prove an existence theorem for the optimal control problem

of exterior forces. Let F = (f

1

; f

2

; f) 2 G, where G � H

1

(Q) is a convex

closed and bounded set. As it was proved for every F 2 G there exists a

solution � 2 K, M;� 2 L

2

(Q) satisfying (2.71), (2.72), (2.90). We take

�

0

2 L

2

(Q) and consider the cost functional

J(F ) = k�� �

0

k

L

2

(Q)

:

Our goal is to solve the optimal control problem

inf

F2G

J(F ): (2:91)

The main assertion to be proved is as follows.

Theorem 2.11. There exists a solution of the problem (2.91).

Proof. We choose a minimizing sequence F

n

. Due to its boundedness

one can assume that as n!1

F

n

! F weakly in H

1

(Q); strongly in L

2

(Q):

Of course, we have F 2 G. For every F

n

, the solution of the following

problem can be found:

�

n

2 K; M

n

; �

n

2 L

2

(Q);

�(M

n

ij

; �w

;ij

�w

n

;ij

) +

�

�

n

ij

; "

ij

(

�

W )� "

ij

(W

n

)

�

(2:92)

� (F

n

; ��� �

n

) 8�� 2 K;

a

ijkl

M

n

kl

+ w

n

;ij

+

t

Z

0

a

0

ijkl

M

n

kl

d� = 0; i; j = 1; 2; (2:93)

b

ijkl

�

n
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(W

n

) +

t

Z

0

b

0

ijkl

�

n

kl

d� = 0; i; j = 1; 2: (2:94)
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Moreover, the arguments we have used to prove the existence of the solutions

validate the estimate

kw

n

k

2

L

2

(0;T ;H

2

0

(
))

+ kW

n

k

2

L

2

(0;T ;H

1

0

(
))

+ kM

n

k

2

L

2

(Q)

+ k�

n

k

2

L

2

(Q)

� c:

The constant c can be chosen uniform in n since it depends on kF

n

k

L

2

(Q)

.

This means that there exists a subsequence such that as n!1

w

n

! w weakly in L

2

(0; T ;H

2

0

(
));

W

n

! W weakly in L

2

(0; T ;H

1

0

(
));

M

n

; �

n

! M;� weakly in L

2

(Q):

The convergence of F

n

; �

n

;M

n

; �

n

allows us to pass to the limit in (2.92){

(2.94). First of all we note that (2.93){(2.94) imply

a

ijkl

M

kl

+ w

;ij

+

t

Z

0

a

0

ijkl

M

kl

d� = 0; i; j = 1; 2; (2:95)

b

ijkl

�

kl

+ "

ij

(W ) +

t

Z

0

b

0

ijkl

�

kl

d� = 0; i; j = 1; 2: (2:96)

To justify the passage to the limit in (2.92) we substitute w

n

;ij

, "

ij

(W

n

) in

the inequality in accordance with (2.93), (2.94). This leads to the following

relation:

�(M

n

ij

; �w

;ij

) + (�

n

ij

; "

ij

(

�

W )) � (a

ijkl

M

n

kl

;M

n

ij

) + (b

ijkl

�

n

kl

; �

n

ij

)

+

1

2

*

T

Z

0

a

0

ijkl

M

n

kl

d�;

T

Z

0

M

n

ij

d�

+

+

1

2

*

T

Z

0

b

0

ijkl

�

n

kl

d�;

T

Z

0

�

n

ij

d�

+

+(F

n

; ��� �

n

):

We see that after the passage to the lower limit on both sides of this relation

the following inequality holds:

�(M

ij

; �w

;ij

) + (�

ij

; "

ij

(

�

W )) �

�

a

ijkl

M

kl

+

T

Z

0

a

0

ijkl

M

kl

d�;M

ij

�

+

�

b

ijkl

�

kl

+

T

Z

0

b

0

ijkl

�

kl

d�; �

ij

�

+ (F; ��� �

n

):

Taking into account (2.95), (2.96) it can be written in the following form:

�(M

ij

; �w

;ij

�w

;ij

)+

�

�

ij

; "

ij

(

�

W )� "

ij

(W )

�

� (F; ����) 8�� 2 K: (2:97)
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Therefore, we have established that � = �

F

. This allows us to complete the

proof. Indeed,

lim inf k�

n

� �

0

k

L

2

(Q)

� k�� �

0

k

L

2

(Q)

;

and hence

inf

�

F2G

J(

�

F ) = lim inf J(F

n

) � J(F );

which proves that F is the solution of the optimal control problem (2.91).

Theorem 2.11 is proved.

2.4 Contact problem for a plate having

a crack

A contact problem for a plate having a vertical crack is considered. The

solution satis�es two restrictions of the inequality type. The �rst restriction

is imposed in the domain and represents the mutual nonpenetration con-

dition in the plate{punch system; the second one is put on the crack faces

and corresponds to the nonpenetration of these faces. The corresponding

variational inequality describing the equilibrium of the plate has its fourth

order along the normal to the plate and its second order in the horizontal

direction. The regularity of the solution is analysed. Boundary conditions

having a natural physical interpretation are found on the crack faces. The

existence of extreme crack shapes is also investigated. Speci�cally, the cost

functional is de�ned on the feasible set of functions describing the crack

shapes. The functional characterizes the deviation of the displacement vec-

tor from a given function. The problem consists in maximizing this func-

tional. The existence of solutions of the formulated problem is proved. This

section follows (Khludnev, 1995a).

The results on contact problems for plates without cracks can be found in

(Ca�arelli, Friedman, 1979; Ca�arelli et al., 1982). Properties of solutions

to elliptic problems with thin obstacles were analysed in (Frehse, 1975;

Schild, 1984; Ne�cas, 1975; Kovtunenko, 1994a). Problems with boundary

conditions of equality type at the crack faces are investigated in (Friedman,

Lin, 1996).

2.4.1 Problem formulation

The model of the plate considered in this section actually corresponds to a

shallow shell having zeroth curvatures. The gradient of the punch surface is

assumed to be rather small, so that the nonpenetration condition imposed

in the domain is the same as in the usual case for a plate. Meanwhile,

the restriction imposed on the crack faces contains three components of the

displacement vector.
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Let 
 � R

2

be a bounded domain with a smooth boundary �, and the

equation y =  (x), x 2 [0; 1], describe a crack shape on the plane x; y. The

graph of the function y =  (x) is denoted by �

 

,  2 H

3

0

(0; 1), 


 

= 
n�

 

.

Denote next by � = (W;w) a displacement vector of the mid-surface points

of the plate, where W = (w

1

; w

2

) is horizontal displacements and w is

a vertical one. Let "

ij

= "

ij

(W ) be the strain tensor of the mid-surface

points, and �

ij

= �

ij

(W ) be the integrated stresses,

"

ij

=

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; i; j = 1; 2; x

1

= x; x

2

= y;

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1� �)"

12

;

0 < � < 1=2; � = const:

Introduce the energy functional of the plate,

�

 

(�) =

1

2

B

 

(w;w) +

1

2

h�

ij

(W ); "

ij

(W )i

 

� hf; �i

 

:

Herein

f = (f

1

; f

2

; f

3

) 2 L

2

(
); hp; qi

 

=

Z




 

pq d


 

and the bilinear form B

 

(�; �) is as follows:

B

 

(w; �w) =

Z




 

(w

xx

�w

xx

+w

yy

�w

yy

+�w

xx

�w

yy

+�w

yy

�w

xx

+2(1��)w

xy

�w

xy

):

Assume that the equation z = �(x; y) describes a punch shape, (x; y) 2 
,

� 2 C

1

(
). A nonpenetration condition for the plate{punch system can be

written as

w � � in 


 

(2:98)

provided r� is small enough (see Section 1.1.5). Denote next by

� = (� 

x

; 1)=

p

1 +  

2

x

the normal vector to the curve y =  (x) and by 2h the thickness of the plate,

� = (�

1

; �

2

). Taking into account the linear dependence of the horizontal

displacements W (z) = (w

1

(z); w

2

(z)) on the distance z from the mid-plane

(see Vol'mir, 1972),

w

i

(z) = w

i

� zw

x

i

; i = 1; 2; jzj � h;

the nonpenetration condition of crack faces takes the form (see Section 1.1.7)

[W � zrw]� � 0 on �

 

; jzj � h; (2:99)
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where [U ] = U

+

� U

�

is the jump of U on �

 

and U

�

correspond to

the positive and negative directions of �. For simplicity we put h = 1.

The following boundary conditions are assumed to be given at the external

boundary:

w =

@w

@n

= W = 0 on �:

Here n is the unit external vector to �. Let the subspace H

1;0

(


 

) �

H

1

(


 

) consist of the functions equal to zero on �, and the subspace

H

2;0

(


 

) � H

2

(


 

) consist of functions equal to zero on � with the �rst

derivatives, H(


 

) = H

1;0

(


 

)�H

1;0

(


 

)�H

2;0

(


 

). Consider the con-

vex and closed set

K

 

(


 

) = f(W;w) 2 H(


 

) j (W;w) satisfy (2:98); (2:99)g

assuming that the boundary value � provides the nonemptiness of K

 

(


 

).

The equilibrium problem for the plate contacting with the punch z = �(x; y)

and having the crack shape y =  (x) can be formulated as variational,

inf

�2K

 

(


 

)

�

 

(�):

In view of the convexity and the di�erentiability of �

 

this problem is equiv-

alent to the next one: �nd the function � = (W;w) 2 K

 

(


 

) satisfying

the inequality

B

 

(w; �w� w) + h�

ij

(W ); "

ij

(

�

W �W )i

 

� hf; ��� �i

 

(2:100)

8�� 2 K

 

(


 

):

Note that the following inequalities hold:

B

 

(w;w) � ckwk

2

2;


 

8w 2 H

2;0

(


 

); (2:101)

h�

ij

(W ); "

ij

(W )i

 

� ckWk

2

1;


 

8W 2 H

1;0

(


 

) (2:102)

with the constants independent of w and W , respectively. The inequalities

(2.101), (2.102) provide the coercivity and the weak lower semicontinuity of

the functional �

 

on H(


 

), and hence the problem (2.100) has a unique

solution (see Theorems 1.11, 1.12).

2.4.2 Boundary conditions at the crack faces

Let us elucidate the boundary conditions on �

 

for the solution (W;w) of

(2.100) assuming that w > � in some neighbourhood W of the graph �

 

.

To this end, we �rst note that the equation

�

2

w = f

3

(2:103)
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holds in W n �

 

in the sense of distributions (Schwartz, 1967; Vladimirov,

1981). Indeed, to verify this equation, the test elements of the form (W;w)+

(0; "') are substituted in (2.100), where ' is a smooth function having a

compact support in W n �

 

and " is a small parameter. Moreover, the

following equations hold in 


 

:

�

@�

ij

@x

j

= f

i

; i = 1; 2; (2:104)

in the sense of distributions. We next denote F = (f

1

; f

2

) and assume

that the solution (W;w) is quite regular. This assumption means that the

arguments given below are formal. The restriction (2.99) can be written in

the equivalent form as

[W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

 

: (2:105)

Let us put functions of the form (

�

W;w) as test ones in (2.100), where w is

the third component of the solution (W;w). This yields

h�

ij

(W ); "

ij

(

�

W �W )i

 

� hF;

�

W �W i

 

: (2:106)

In so doing, the test functions

�

W should satisfy the inequality

[

�

W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

 

;

�

W 2 H

1;0

(


 

):

One can represent the vector f�

ij

�

j

g on �

�

 

as a sum of the normal and

tangential components

f�

ij

�

j

g = �

�

� + �

s

s; s = (��

2

; �

1

):

A similar formula can be written on �

+

 

. Choosing the functions

~

W having

the property [

~

W ]� � 0 on �

 

, the test elements

�

W = W +

~

W can be substi-

tuted in (2.106). Since the boundary @


 

of domain 


 

is a combination

of the sets �, �

+

 

, �

�

 

, the integration by parts is easily carried out. This

implies

�

s

= 0; �

�

� 0; on �

 

: (2:107)

On the other hand, let the functions �� = (W; �w) be chosen as the test ones

in (2.100). This leads to the relation

B

 

(w; �w� w) � hf

3

; �w �wi

 

(2:108)

satis�ed for test functions �w such that

[W ]� �

�

�

�

�

�

@ �w

@�

�

�

�

�

�

on �

 

; �w 2 H

2;0

(


 

): (2:109)
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Consider the following boundary operators on �

 

:

m(u) = ��u+ (1� �)

@

2

u

@�

2

;

t(u) =

@

@�

�u+ (1� �)

@

3

u

@�@s

2

; s = (��

2

; �

1

):

Making use of the Green formula

B

 

(u; v) = hm(u);

@v

@�

i

�

 

� ht(u); vi

�

 

+ h�

2

u; vi

 

the relations (2.108), (2.109) imply

t(w) = 0; m(w)

�

@w

@�

�

+ �

�

[W ]� = 0 on �

 

: (2:110)

In particular, the strict inequality in (2.105) provides m(w) = 0. We have

to note at this point that the boundary conditions (2.107), (2.110) hold on

�

�

 

and

[�

�

] = 0; [m(w)] = 0:

Besides, (2.107) holds good irrespective of the inequality w > � in W, i.e.

this condition takes place in the general case w � �. At the same time, to

derive (2.110), we make use of the equation (2.103) in W n �

 

, which takes

place provided that w > � in W. Moreover, the inequality w > � in W

provides one more relation

jm(w)j � ��

�

:

As a result, we obtained a complete system of boundary conditions on �

 

,

provided that w > � in W:

[W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

; �

s

= 0; �

�

� 0;

t(w) = 0; m(w)

�

@w

@�

�

+ �

�

[W ]� = 0;

[�

�

] = 0; [m(w)] = 0; jm(w)j � ��

�

:

The completeness of this system of boundary conditions and its detailed

derivation and discussion will be presented later on, in Sections 3.1, 3.3,

3.4, where more complicated constitutive laws are considered.
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2.4.3 Solution regularity

Let x

0

2 �

 

n @�

 

be any �xed point. Assume that � = c in some neigh-

bourhood O(x

0

) of the point x

0

, c = const, and �

 

\O(x

0

) be a segment

parallel to the x-axis (see Fig.2.2).

Fig.2.2. Smoothness of the solution

Denote next by R

�

(x

0

) the ball of the radius � centred at the point x

0

.

The following assertion holds.

Theorem 2.12. Let the above hypotheses be ful�lled. Then the inclusions

W 2 H

2

(R

�

(x

0

) \ 


 

);

@w

@x

2 H

2

(R

�

(x

0

) \ 


 

)

take place for � small enough.

Proof. Choose a smooth function ' such that ' � 1 in R

�

(x

0

), ' � 0

outside of R

3�=2

(x

0

), 0 � ' � 1 everywhere, @'=@y = 0 on �

 

\O(x

0

). The

inclusion R

2�

(x

0

) � O(x

0

) is assumed to be valid. Introduce the notations

d

��

p(�x) = �

�1

(p(�x� �e)� p(�x)); �

�

= �d

��

d

�

;

where e is a unit vector of the axis x, 0 < j� j < �=2. In this case the

functions

w

i

�

= w

i

+

�

2

2

'

2

�

�

w

i

; i = 1; 2; w

�

= w +

�

2

2

'

2

�

�

w

can be considered in 


 

. By virtue of the assumptions, the normal � has

the coordinates (0; 1) near x

0

, hence the nonpenetration condition (2.105)

on �

 

\O(x

0

) is of the form

[w

2

] �

�

�

�

�

�

@w

@y

�

�

�

�

�

: (2:111)

Let us notice the following. Assuming that a function p � 0 on �

 

\O(x

0

),

it is easy to check that with the above function ' the relation

p+

�

2

2

'

2

�

�

p � 0 on �

 

\O(x

0

)
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holds. In fact, one has for �x 2 �

 

\O(x

0

)

p(�x) +

�

2

2

'

2

(�x)�

�

p(�x)

= (1� '

2

(�x))p(�x) +

'

2

(�x)

2

[p(�x� �e) + p(�x+ �e)] � 0:

Bearing in mind this fact the vector �

�

= (w

1

�

; w

2

�

; w

�

) is easily proved to

satisfy the restriction (2.111); that is,

[w

2

�

] �

�

�

�

�

�

@w

�

@y

�
�

�

�

�

on �

 

\O(x

0

):

Consequently

[W

�

]� �

�

�

�

�

�

@w

�

@�

�

�

�

�

�

on �

 

:

Moreover, w

�

� � in 


 

, since � = c in O(x

0

). To state this, we �rst notice

that w

�

= w outside of R

2�

(x

0

), so that w

�

� � in 


 

n R

2�

(x

0

). On the

other hand, one has in R

2�

(x

0

)

w � c+

�

2

2

'

2

�

�

w = (w � c) +

�

2

2

'

2

�

�

(w � c) � 0:

The above arguments show that �

�

2 K

 

(


 

). Substitute �

�

in (2.100) as

a test function. In this case we easily arrive at the inequality

B

 

(w;'

2

�

�

w) + h�

ij

(W ); "

ij

('

2

�

�

W )i

 

� 2�

�2

hf; �

�

� �i

 

: (2:112)

It can be veri�ed that the di�erence between the terms B

 

(w;'

2

�

�

w) and

�B

 

(d

�

('w); d

�

('w)) can be estimated from above by the value being in

the right-hand side of the inequality (2.113) below. Analogously, the di�er-

ence between h�

ij

(W ); "

ij

('

2

�

�

W )i

 

and �h�

ij

(d

�

'W ); "

ij

(d

�

'W )i

 

can

be estimated from above by the same quantity. Thus, the relation (2.112)

implies

B

 

(d

�

('w); d

�

('w)) + h�

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

(2:113)

� c

�

k�k

2

H(


 

)

+ kd

�

('�)k

H(


 

)

(k�k

H(


 

)

+ kfk

0;


 

)

�

:

In view of (2.101), (2.102) the estimate

kd

�

('�)k

H(


 

)

� c

follows, being uniform in � . It clearly yields

@

@x

('�) 2 H(


 

):
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So, the assertion of Theorem 2.12 related to w is proved. Meanwhile, equa-

tions (2.104) can be written down as

W

yy

= G:

The function G depends on f

1

; f

2

;W

xy

;W

xx

linearly, so that in view of the

above result, we have G 2 L

2

(R

�

(x

0

)\


 

). Hence, all derivatives of W up

to the second order belong to L

2

(R

�

(x

0

)\


 

). Theorem 2.12 is completely

proved.

In what follows we prove the solution regularity in a neighbourhood of

points belonging to the crack faces and not having contact with the punch.

Let x

0

2 �

 

n @�

 

be any �xed point such that w

�

(x

0

) > �(x

0

); moreover,

a neighbourhood O(x

0

) of the point x

0

is assumed to be chosen such that

�

 

\ O(x

0

) is a segment parallel to the axis x. The following statement is

valid.

Theorem 2.13. Let the above hypotheses be ful�lled. Then the inclusions

W 2 H

2

(R

�

(x

0

) \ 


 

); w 2 H

3

(R

�

(x

0

) \ 


 

)

hold provided � is small enough.

Proof. The condition w

�

(x

0

) > �(x

0

) implies the ful�lment of the

equation

�

2

w = f

3

(2:114)

in R

2�

(x

0

) \ 


 

for small �. Take the function ' and construct the vector

�

�

= (w

1

�

; w

2

�

; w

�

) as in Theorem 2.12, 0 < j� j < �=2. The parameter � is

supposed to be �xed such that R

2�

(x

0

) � O(x

0

) and w

�

� � in R

3�=2

(x

0

).

In this case it is seen that w

�

� � in 


 

. Moreover, it has been proved

that �

�

satis�es the restriction (2.105). Hence, the inclusion �

�

2 K

 

(


 

)

holds. Substituting �

�

in (2.100) as a test function results in the relation

like (2.112). Further arguments are those of Theorem 2.12, so that

W 2 H

2

(R

�

(x

0

) \ 


 

);

@w

@x

2 H

2

(R

�

(x

0

) \ 


 

): (2:115)

Meantime, equation (2.114) can be written as

w

yyyy

= Q:

According to (2.115) the inclusion Q 2 H

�1

(R

�

(x

0

) \ 


 

) holds. Whence,

taking into account the relations w

yyy

; w

yyyx

2 H

�1

(R

�

(x

0

) \ 


 

) and the

results of (Duvaut, Lions, 1972, Ch.3, Sect.3, Th.3.2) we arrive at the desired

conclusion:

w

yyy

2 L

2

(R

�

(x

0

) \ 


 

):

Theorem 2.13 is proved.

Remark. Seemingly, the hypothesis relating to �

 

\O(x

0

) in Theorem

2.12 and Theorem 2.13 may be omitted, but it is not proved.
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2.4.4 Extreme crack shapes

Suppose that the crack shape is described by the equation y = � (x) with

a parameter � (see Fig.2.3). The space H(


�

) and the set K

�

(


�

) are

introduced analogously to H(


 

) and K

 

(


 

), respectively.

Fig.2.3. Perturbations of the crack shape

In the following we analyse the behaviour of the solution as � ! 0. It

will enable us in the sequel to prove the existence of extreme crack shapes.

The formulation of this problem is given below. So, for every �xed � there

exists a solution �

�

= (W

�

; w

�

) of the problem

B

�

(w

�

; �w �w

�

) + h�

ij

(W

�

); "

ij

(

�

W �W

�

)i

�

� hf; ��� �

�

i

�

; (2:116)

�

�

2 K

�

(


�

); 8�� 2 K

�

(


�

):

In order to study the solution convergence as � ! 0 we carry out the

mapping of 


�

onto 


0

. Of course, the graphs y = � (x) are assumed to

belong to 
 for all 0 � � � �

0

. Extend the function  beyond [0; 1] by zero,

then choose domains 


1

, 


2

such that 


1

� 


2

, 


2

� 
, �

�

� 


1

for all �

small enough and a function � possessing the properties: � � 1 in 


1

, � � 0

in 
 n 


2

. The following transformation of the independent variables can

be considered:

~x = x; ~y = y � �� : (2:117)

It is clear that the Jacobian q

�

= 1� � �

y

of this transformation converges

uniformly to the unit on 
 as � ! 0. Introduce the notations

U

�

(~x; ~y) =W

�

(x; y); u

�

(~x; ~y) = w

�

(x; y); !

�

= (U

�

; u

�

):

A substitution of a �xed test function �� in (2.116) results in the relation

B

�

(w

�

; w

�

) + h�

ij

(W

�

); "

ij

(W

�

)i

�

� B

�

(w

�

; �w) + h�

ij

(W

�

); "

ij

(

�

W )i

�

+ hf; �

�

� ��i

�

:
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Omitting the sign � in the functions it is easy to rewrite this inequality in

the new variables

Z




0

�

u

2

~x~x

+ u

2

~y~y

+ 2�u

~x~x

u

~y~y

+ 2(1� �)u

2

~x~y

�

q

�1

�

d


0

+ h�

ij

(U ); "

ij

(U )q

�1

�

i

0

� hf

�

; (! � �!)q

�1

�

i

0

(2:118)

+ �

Z




0

g(~x; ~y; �;D

�

u;D

�

�u;D

�

U;D

�

�

U ) d


0

� 0:

Herein f

�

(~x; ~y) = f(x; y), j�j � 2, j�j � 1. A dependence of the function

g on its arguments is fully determined by the transformation (2.117). It is

of importance that this function has quadratic growth in the higher order

derivatives. In view of the inequality q

�1

�

> 1=2 holding for small �, from

(2.118) we conclude that

k!

�

k

H(


0

)

� c

uniformly in � � �

0

. Choosing a subsequence, if necessary, one can assume

that as � ! 0

!

�

! ! weakly in H(


0

): (2:119)

The solution (U

�

; u

�

) satis�es the inequalities (2.98), (2.99) written in the

new variables. To be more precise, we denote �

�

(~x; ~y) = �(x; y). Then the

inequality (2.98) takes the form

u

�

� �

�

in 


0

; (2:120)

and the inequality (2.99) can be written as

�

U

�

� z(u

�

~x

� � 

x

u

�

~y

; u

�

~y

)

�

(�� 

x

; 1) � 0 on �

0

; jzj � 1: (2:121)

Let the set of all functions (U; u) from the space H(


0

) satisfying (2.120),

(2.121) be denoted by K

�

(


0

). The following statement is useful for further

consideration.

Lemma 2.1. For any �xed (

�

U; �u) 2 K

0

(


0

) there exists a sequence

(

�

U

�

; �u

�

) 2 K

�

(


0

) such that as � ! 0

(

�

U

�

; �u

�

) ! (

�

U; �u) strongly in H(


0

): (2:122)

Proof. We make use of Lemma 4.4. Namely, for any �xed function

(

�

U; �u) 2 H(


0

) satisfying the inequality

�

�

U � zr�u

�

� � 0 on �

0

; jzj � 1; � = (0; 1);

a sequence (

�

U

�

; �u

�

) 2 H(


0

) can be constructed such that (

�

U

�

; �u

�

)! (

�

U; �u)

strongly in H(


0

) and, moreover, the inequality (2.121) holds for (

�

U

�

; �u

�

),
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and �u

�

= �u for all �. Let us take a �xed element (

�

U; �u) 2 K

0

(


0

) and

bearing in mind the above arguments, construct a sequence ��

�

= (

�

U

�

; �u)

having the above properties. We show that the appropriate substitution

of the third component of ��

�

by �u

�

will imply that the sequence (

�

U

�

; �u

�

)

is needed, that is (

�

U

�

; �u

�

) 2 K

�

(


0

), and (2.122) arises. Since �

�

! �

uniformly on 
 and �

�

= � near � there exists a function �

�

such that

�

�

� j�

�

� �j in 
; �

�

! 0 strongly in H

2

(
):

We should remark at this step that �u � � in 


0

. Putting �u

�

= �u+ �

�

it is

easily veri�ed that the sequence (

�

U

�

; �u

�

) satis�es all conditions. Indeed, the

restriction (2.120) for �u

�

holds by the construction of �

�

. Since the jump

�

(�

�

~x

� � 

x

�

�

~y

; �

�

~y

)

�

is equal to zero on �

0

the restriction (2.121) for (

�

U

�

; �u

�

)

also holds. The convergence (2.122) is evident. Lemma 2.1 is proved.

Let us now rewrite (2.116) in the new variables ~x; ~y. The convergence

(2.119) and Lemma2.1 allow us to carry out the limiting procedure as � ! 0.

Moreover, the limiting function ! = (U; u) is a solution of the variational

inequality

B

0

(u; �u� u) + h�

ij

(U ); "

ij

(

�

U � U )i

0

� hf; �! � !i

0

; (2:123)

! 2 K

0

(


0

); 8�! 2 K

0

(


0

):

So, the following statement is proved.

Theorem 2.14. From the sequence �

�

= !

�

of solutions of the problem

(2.116) one can choose a subsequence, still denoted by !

�

; such that as � ! 0

the convergence (2.119) takes place and, moreover, the limiting function

satis�es (2.123).

This result enables us to investigate the extreme crack shape problem.

The formulation of the last one is as follows. Let 	 � H

3

0

(0; 1) be a convex,

closed and bounded set. Assume that for every  2 	 the graph y =  (x)

describes the crack shape. Consequently, for a given  2 	 there exists a

unique solution of the problem

B

 

(w; �w �w) + h�

ij

(W ); "

ij

(

�

W �W )i

 

� hf; ��� �i

 

; (2:124)

� = (W;w) 2 K

 

(


 

); 8�� 2 K

 

(


 

):

Consider the cost functional

J( ) = k�� �

0

k

0;


 

where �

0

2 L

2

(
) is a prescribed element. We have to �nd a solution of

the maximization problem

sup

 2	

J( ): (2:125)
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The following assertion holds.

Theorem 2.15. Let the above hypotheses be ful�lled. Then, there exists a

solution of the problem (2.125).

We shall con�ne ourselves to short remarks. A maximizing sequence

 

n

2 	 is evidently bounded in H

3

0

(0; 1). Hence, without any loss, one can

assume that as n!1

 

n

!  weakly in H

3

0

(0; 1);  2 	; (2:126)

j 

n

xx

�  

xx

j < 1=n on [0; 1]:

The second line here follows from the imbedding theorem. For any n, there

exists a solution (W

n

; w

n

) of the problem

B

 

n

(w

n

; �w� w

n

) + h�

ij

(W

n

); "

ij

(

�

W �W

n

)i

 

n

(2:127)

� hf; ��� �

n

i

 

n

8�� 2 K

 

n

(


 

n

):

The domains 


1

;


2

and the function � can be chosen as in the proof of

Theorem 2.14. The transformation of the independent variables is of the

form

~x = x; ~y = y + ( �  

n

)�:

We prove that the solution U

�

(~x; ~y) = W

�

(x; y), u

�

(~x; ~y) = w

�

(x; y) satis�es

the following estimate:

kU

n

k

1;


 

+ ku

n

k

2;


 

� c:

Without loss of generality, one can suppose that as n!1

(U

n

; u

n

) ! (U; u) weakly in H(


0

); strongly in L

2

(


0

): (2:128)

To justify the passage to the limit in the relations obtained from (2.127)

by a change of variables, we use the convergence (2.128) and the statement

analogous to Lemma 2.1. The limiting function � = (U; u) is a solution of

the variational inequality (2.100) with the function  from (2.126), that is

� = �

 

. Finally, it is easy to verify that

J( ) = sup

�

 2	

J(

�

 ):

This precisely means that the limiting function  is a solution of the extreme

crack shape problem (2.125).

As for approximate methods of �nding crack shapes we refer the reader

to (Banichuk, 1970). Qualitative properties of solutions to boundary value

problems in nonsmooth domains are in (Oleinik et al., 1981; Nazarov, 1989;

Nazarov, Plamenevslii, 1991; Nicaise, 1992; Maz'ya, Nazarov, 1987; Gris-

vard, 1985, 1991; Kondrat'ev et al., 1982; Kondrat'ev, Oleinik, 1983; Dauge,

1988; Costabel, Dauge, 1994; S�andig et al., 1989; Movchan A.B., Movchan

N.V., 1995).
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2.5 Cracks of minimal opening in plates

This section concerns the equilibrium problem for a plate contacting a rigid

punch and having a vertical crack. Two conditions of inequality type are

assumed to be imposed on the solution. These conditions describe a mutual

nonpenetration in the plate{punch system and a nonpenetration of crack

faces. The �rst one is of the form w � ', where w is the vertical displace-

ment of the plate, and ' corresponds to the punch shape. The second one

can be written as [W ]� � "j[@w=@�]j, where W = (w

1

; w

2

) is the horizontal

displacement, � is the normal to the crack shape curve, 2" is the thickness

of the plate, and [ � ] is the jump of a function at crack faces. The aim of the

section is to study the solution properties of the optimal control problem

of the punch shape '. The existence theorem is proved as providing the

minimal jump of the displacement � = (W;w). The solution regularity up

to the interior crack points is analysed. In particular, the inclusion � 2 C

1

is stated to be valid for the crack points having a zeroth jump. The conver-

gence of solution is investigated as " ! 0. The results of this section can

be found in (Khludnev, 1996a).

2.5.1 Formulation of the problem

Our aim is to analyze the solution properties of the variational inequality

describing the equilibrium state of the elastic plate. The plate is assumed

to have a vertical crack and, simultaneously, to contact with a rigid punch.

Considering the crack, we impose the nonpenetration condition of the

inequality type at the crack faces. The nonpenetration condition for the

plate{punch system also is the inequality type. It is well known that, in

general, solutions of problems having restrictions of inequality type are not

smooth. In this section, we establish existence and regularity results re-

lated to the problem considered. Namely, the following questions are under

consideration:

1. The existence of punch shape which provides the minimal opening of

the crack.

2. The regularity of solutions in the case of minimal opening of the

crack.

3. The solutions properties related to the case where the thickness of

the plate tends to zero.

We consider the Kirchho�{Love model of the plate for which both verti-

cal and horizontal displacements of the mid-surface points are to be found.

Let us introduce the notations and give the appropriate formulae of the

Kirchho�{Love model which can be found, for instance, in (Vol'mir, 1972).

Denote a bounded domain with a smooth boundary � by 
 � R

2

, and

y =  (x) signi�es the function describing a crack face, x 2 [0; 1], (x; y) 2 
.

Let �

 

be the graph of the function y =  (x), and 


 

= 
n�

 

. The domain




 

is identi�ed with the mid-surface of the plate in its nondeformable state.
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The displacement vector of the mid-surface points is denoted by � = (W;w),

where W = (w

1

; w

2

) is the horizontal displacement and w is the vertical

one.

Fig.2.4. Cracked plate in contact with the punch

We next assume that the graph z = '(x; y) corresponds to the punch

shape, (x; y) 2 
 (see Fig.2.4). Then the nonpenetration condition for the

plate{punch system can be written as

w � ' in 


 

: (2:129)

The Kirchho�{Love model of the plate is characterized by the linear depen-

dence of the horizontal displacements on the distance from the mid-surface,

that is

W (z) = W � zrw; �" � z � ";

where z = 0 corresponds to the mid-surface, and the axis z is orthogonal

to the (x; y)-plane, and 2" is the thickness of the plate. Denote the normal

to the graph �

 

by � = (� 

x

; 1)=

p

1 +  

2

x

, � = (�

1

; �

2

). In this case, the

nonpenetration condition of Signorini type imposed at the crack faces is as

follows:

[W � zrw]� � 0 on �

 

; jzj � ";

where [V ] = V

+

� V

�

is the jump of V , and V

�

correspond to the positive

and negative directions of �, respectively. As evident from the above, the

nonpenetration condition can be rewritten in the equivalent form

[W ]� � "

�

�

�

�

�

@w

@�

�
�

�

�

�

on �

 

: (2:130)

Thus, we see that there is no penetration for all points of the crack faces

since condition (2.130) is independent of z 2 [�"; "].

The strain and integrated stress tensors are denoted by e

ij

= e

ij

(W ),

�

ij

= �

ij

(W ), respectively:

e

ij

=

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; i; j = 1; 2; x

1

= x; x

2

= y;
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�

11

= e

11

+ �e

22

; �

22

= e

22

+ �e

11

; �

12

= (1� �)e

12

:

Here � = const is Poisson's ratio, 0 < � < 1=2.

The following boundary conditions are assumed to be ful�lled at the

external boundary

w =

@w

@n

= W = 0 on �:

Let the subspace H

1;0

(


 

) of the Sobolev space H

1

(


 

) consist of functions

equal to zero on �. Analogously, the functions of H

2;0

(


 

) are equal to zero

on � together with the �rst derivatives, H

2;0

(


 

) � H

2

(


 

). De�ne the

space H(


 

) = H

1;0

(


 

) �H

1;0

(


 

) �H

2;0

(


 

) and consider the energy

functional of the plate

�(�) =

1

2

B(w;w) +

1

2

h�

ij

(W ); e

ij

(W )i � hf; �i:

Here f = (f

1

; f

2

; f

3

) 2 L

2

(
) is the given vector of exterior forces, the

brackets h � ; � i mean the integration over 


 

;

B(u; v) =

Z




 

(u

xx

v

xx

+ u

yy

v

yy

+ �u

xx

v

yy

+ �u

yy

v

xx

+ 2(1� �)u

xy

v

xy

) d


 

:

The above formula for �(�) contains three di�erent terms which correspond

to the bending energy of the plate, to the deformation energy of the mid-

surface, and to the work of the exterior force f , respectively. Also, we

introduce the set of admissible displacements

K

'

"

= f(W;w) 2 H(


 

) j (W;w) satisfy (2:129); (2:130)g :

The equilibrium problem for the plate can be formulated as variational,

namely, it corresponds to the minimum of the functional � over the set of

admissible displacements. To minimize the functional � over the set K

'

"

we

can consider the variational inequality

B(w; �w � w) + h�

ij

(W ); e

ij

(

�

W �W )i � hf; �� � �i; (2:131)

� = (W;w) 2 K

'

"

; 8 �� 2 K

'

"

:

Nonemptiness of the set K

'

"

depends on the values of the function ' on �.

For further consideration we should note that the following inequality holds

in 


 

B(w;w) � ckwk

2

2;


 

8 w 2 H

2;0

(


 

); (2:132)

and the �rst Korn inequality takes place,

h�

ij

(W ); e

ij

(W )i � ckWk

2

1;


 

8 W 2 H

1;0

(


 

); (2:133)
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with the constants independent of w;W; respectively. The relations (2.132),

(2.133) provide the coercivity of the functional � on H(


 

). Thus, consid-

ering the weak lower semicontinuity of �, one concludes that there exists a

solution of (2.131). Moreover, the solution is unique.

In the sequel we shall study an optimal control problem. Let � � H

2

(
)

be a convex, bounded and closed set. Assume that ' < 0 on � for each

' 2 �. In particular, this condition provides nonemptiness for K

'

"

. Denote

the solution of (2.131) by � = �(') , and introduce the cost functional

which characterizes the opening of the crack (Goldshtein, Entov, 1989)

J

"

(') =

Z

�

 

j[�]j d�

 

:

The problem of �nding an obstacle providing the minimal opening of the

crack can be formulated as follows:

inf

'2�

J

"

('): (2:134)

The crack shape is de�ned by the function  . This function is assumed to be

�xed. It is noteworthy that the problems of choice of the so-called extreme

crack shapes were considered by Khludnev, 1994, Khludnev, Sokolowski

(1997). We also address this problem in Sections 2.4 and 4.9. The solution

regularity for biharmonic variational inequalities was analysed by Frehse

(1973), Ca�arelli et al. (1979), Schild (1984). The last paper also contains

the results on the solution smoothness in the case of thin obstacles. As for

general solution properties for the equilibrium problem of the plates having

cracks, one may refer to the book by Morozov (1984). Referring to this

book, the boundary conditions imposed on crack faces have the equality

type. In this case there is no interaction between the crack faces.

In the next two subsections the parameter " is supposed to be �xed. The

convergence of solutions of the optimal control problem (2.134) as " ! 0

will be analysed in Section 2.5.4. For this reason the "-dependence of the

cost functional is indicated.

2.5.2 Existence of minimal opening cracks

Let " be �xed. Before proving the theorem an auxiliary statement is to be

established. It is formulated as a lemma.

Lemma 2.2. Let a sequence '

m

2 � possess the properties

'

m

! ' weakly in H

2

(
); uniformly in 
: (2:135)

Then for any �xed function �� = (

�

W; �w) 2 K

'

"

there exists a sequence

��

m

= (

�

W

m

; �w

m

) from K

'

m

"

such that

��

m

! �� strongly in H(


 

): (2:136)
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Proof. Without loss, the following inequality,

j'

m

� 'j <

1

m

in 
;

is supposed to be held. Set ~w

m

= �w + 1=m. In this case ~w

m

� '

m

in 


 

.

There exists a neighbourhood O of the boundary � such that ' < �� < 0

in O \ 
 with a constant � > 0. Let �

 

\ O = ;. In view of the uniform

convergence of '

m

the estimate '

m

< ��=2 holds in O \ 
. It is easy to

construct a sequence �

m

2 C

1

such that the supports of �

m

belong to O

and

�

m

=

1

m

; r�

m

= 0 on �;

jD

�

�

m

j �

c

m

in O; j�j � 2;

with a constant c independent of m. Now, we can de�ne

�w

m

= ~w

m

� �

m

:

It is clear that �w

m

� '

m

in 


 

and [@ �w

m

=@�] = [@ �w=@�] on �

 

. Thus

the functions ��

m

= (

�

W; �w

m

) belong to K

'

m

"

for all m. Moreover, the

convergence (2.136) takes place. The proof is completed. Note that in

(Mosco, 1969) general results on convergence of convex sets can be found.

We now are in a position to establish the solvability of the optimal

control problem (2.134), (2.131).

Theorem 2.16. There exists a solution of the problem (2.134), (2.131).

Proof Let '

m

2 � be a minimizing sequence. It is bounded in H

2

(
),

and hence the convergence (2.135) can be assumed. For every m, the solu-

tion of the following variational inequality can be found:

B(w

m

; �w

m

� w

m

) + h�

ij

(W

m

); e

ij

(

�

W

m

�W

m

)i � hf; ��

m

� �

m

i; (2:137)

�

m

= (W

m

; w

m

) 2 K

'

m

"

; 8 ��

m

2 K

'

m

"

:

By virtue of the uniform convergence of '

m

there exists a function �� such

that �� 2 K

'

m

"

for all m. Substituting this function in (2.137) as ��

m

implies

k�

m

k

H(


	

)

� c

uniformly in m. Deriving this estimate we make use of the inequalities

(2.132), (2.133). Hence choosing a subsequence, if necessary, we assume as

m!1

�

m

! � weakly in H(


 

): (2:138)

Let �� 2 K

'

"

be any �xed element where ' is the function from (2.135).

Lemma 2.2 provides an existence of a sequence ��

m

2 K

'

m

"

strongly con-

verging to �� in H(


 

). Bearing in mind (2.138), this allows us to carry out
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the limiting procedure in (2.137). The resulting relation precisely coincides

with (2.131), i.e. � = �('). An additional assumption,

�

�

m

! �

�

weakly in L

1

(�

 

);

easily yields the relations

inf

�'2�

J

"

( �') = lim inf

Z

�

 

j[�

m

]j d�

 

�

Z

�

 

j[�]jd�

 

� inf

�'2�

J

"

( �'):

This means that the function ' is a solution of the problem (2.134), (2.131),

which completes the proof.

2.5.3 Solution regularity

Let Q � R

2

be a bounded domain with a smooth boundary . An external

normal to  is denoted by n = (n

1

; n

2

). Introduce the following operators

de�ned at  by

m(u) = ��u+ (1 � �)

@

2

u

@n

2

;

t(u) =

@

@n

�u+ (1� �)

@

3

u

@n@s

2

; s = (�n

2

; n

1

):

We know (see Section 1.4.3) that for any �xed u 2 H

2

(Q), �

2

u 2 L

2

(Q) the

values m(u); t(u) can be considered as elements of H

�1=2

() and H

�3=2

(),

respectively. Moreover, the Green formula

B

Q

(u; v) =

�

m(u);

@v

@n

�

1=2;

� ht(u); vi

3=2;

+ h�

2

u; vi

Q

(2:139)

takes place for all v 2 H

2

(Q). Here, the integration is carried out over Q,

and h � ; � i

p;

means a duality pairing between H

�p

() and H

p

(). Besides,

once more Green's formula holds good (see Section 1.4.3). Namely, for any

U 2 H

1

(Q), �

ij

= �

ij

(U ), @�

ij

=@x

j

2 L

2

(Q), i = 1; 2, one has �

ij

n

j

2

H

�1=2

() and

�

@�

ij

@x

j

; v

�

Q

= h�

ij

n

j

; vi
1

2

;

�

�

�

ij

;

@v

@x

j

�

Q

(2:140)

8v 2 H

1

(Q); i = 1; 2:

Assume next that

w > ' in W; (2:141)

where W is a neighbourhood of the graph �

 

. In this case the inequality

(2.131) implies that the following equations are satis�ed in the sense of

distributions in W n �

 

:

�

2

w = f

3

; (2:142)
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�

@�

ij

@x

j

= f

i

; i = 1; 2; (2:143)

where �

ij

= �

ij

(W ). The relation (2.141) means, in particular, that the

inequality w > ' holds at both crack faces. This last fact will be written

as w > ' on �

�

 

.

Consider a closed curve such that it con�nes the bounded simply con-

nected domain Q � W n �

 

and contains �

 

as a part of its boundary.

According to the above the equations (2.142), (2.143) hold in Q, and hence

m(w) 2 H

�1=2

(); t(w) 2 H

�3=2

(); �

ij

n

j

2 H

�1=2

(); i = 1; 2: (2:144)

Obviously, the domainQ can be constructed in di�erent ways. Nevertheless,

in any case one of the inclusions �

+

 

� , �

�

 

�  will be valid, and (2.144)

will take place. The exact form of the boundary conditions on �

 

was

obtained in Section 2.4. We omit the derivation of these conditions here.

All we want to do is to discuss briey their general form in connection with

the subsequent regularity result. These conditions are as follows. Let

f�

ij

�

j

g = �

�

� + �

s

s; s = (��

2

; �

1

);

be a decomposition of the vector f�

ij

�

j

g, i = 1; 2; into the sum of normal

and tangential components on �

�

 

. Then, assuming " = 1 on account of the

reasons shown at the beginning of Section 2.5.4, we have on �

 

:

�

s

= 0; t(w) = 0; [m(w)] = 0; [�

�

] = 0; �

�

� 0;

jm(w)j � ��

�

; m(w)

�

@w

@�

�

+ �

�

[W ]� = 0:

Here t(w) = 0 means that for any smooth function � in 
 with a compact

trace on �

 

n @�

 

the relation

ht(w); �i

3=2;

+ = 0 (2:145)

holds, where a domainQ

+

is chosen in such a way that �

+

 

� 

+

. A similar

relation takes place in the case �

�

 

� 

�

. The zeroth jumps of m(w), �

ij

�

j

on �

 

mean that

�

m(w);

@�

@�

�

1=2;

+

=

�

m(w);

@�

@�

�

1

2

;

�

;

h�

ij

�

j

; �i

1=2;

+ = h�

ij

�

j

; �i

1=2;

� ; i = 1; 2:

In general, the above boundary conditions hold provided that (2.141) is

ful�lled and the solution is quite regular. In fact, some part of the boundary

conditions can be considered as holding in the strong sense without any

additional assumptions on regularity. In particular, as proved in Section 2.4,
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if x

0

2 �

 

n @�

 

and O(x

0

) is a neighbourhood of x

0

such that O(x

0

) � W

and �

 

\O(x

0

) is a segment of a straight line, the following inclusions take

place:

W 2 H

2

(O(x

0

) \ 


 

); w 2 H

3

(O(x

0

) \ 


 

):

Hence

m(w); �

ij

�

j

2 L

2

(�

�

 

\O(x

0

)); i = 1; 2:

The condition [�] = 0 on �

 

implies that the cost functional of the problem

(2.134), (2.131) is equal to zero, i.e.

J

"

(') =

Z

�

 

j[�]jd�

 

= 0:

In this case the crack is said to have a zeroth opening. The cracks of a zeroth

opening prove to possess a remarkable property which is the main result

of the present section. Namely, the solution � is in�nitely di�erentiable

in a vicinity of �

 

n @�

 

provided that f is in�nitely di�erentiable. This

statement is interpreted as a removable singularity property. In what follows

this assertion is proved. Let x

0

2 �

 

n @�

 

and w > ' in O(x

0

), where

O(x

0

) is a neighbourhood of x

0

. For convenience, the boundary of the

domain O(x

0

) ia assumed to be smooth.

Theorem 2.17. Let f 2 C

1

(O(x

0

)) and [�] = 0 on O(x

0

) \ �

 

. Then

� = (W;w) 2 C

1

(O(x

0

)):

Proof. In view of (2.130) the hypotheses of the theorem imply that

[@w=@�] = 0 on O(x

0

) \ �

 

. Consequently (see Mikhailov, 1976),

W 2 H

1

(O(x

0

)); w 2 H

2

(O(x

0

)): (2:146)

Incidentally, the equations (2.142), (2.143) hold in O(x

0

) \


 

in the sense

of distributions, and hence

�

2

w 2 L

2

(O(x

0

) \ 


 

);

@�

ij

@x

j

2 L

2

(O(x

0

) \ 


 

); i = 1; 2:

Let us show that the equation

�

2

w = f

3

(2:147)

holds in O(x

0

). The brackets (�; �) will mean the value of a distribution

evaluated at the point �. The inclusions (2.146) are essential in our further

reasoning. Let � 2 C

1

0

(O(x

0

)) be any �xed function. In view of the Green

formula (2.139) one has

(�

2

w � f

3

; �) = B(w; �) � (f

3

; �) = B

+

(w; �) +B

�

(w; �)� (f

3

; �) (2:148)

=

�

m(w);

@�

@�

�

�

1=2

�

�

m(w);

@�

@�

�

+

1=2

� ht(w); �i

�

3

2

+ ht(w); �i

+

3

2
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+h�

2

w � f

3

; �i

�

:

The signs +;� mean that the formulae are concerned with the domains

O

+

(x

0

), O

�

(x

0

), respectively, where

O

+

(x

0

) = O(x

0

) \ fy >  (x)g

and O

�

(x

0

) is de�ned in a similar way. The presence of two corner points

at the boundaries @O

�

(x

0

) is not essential since � has a compact support

in O(x

0

). In view of (2.145) the boundary terms of (2.148) containing t(w)

are equal to zero. Besides, the equation (2.142) holds in O

�

(x

0

) so that the

two last terms of (2.148) are equal to zero. Lastly, the condition [m(w)] = 0

on O(x

0

) \ �

 

provides two vanishing terms of (2.148) containing m(w).

Thus, (2.148) yields

(�

2

w � f

3

; �) = 0:

The proof of (2.147) is completed.

Analogously, the Green formula (2.140) and the �rst relation of (2.146)

imply

�

�

@�

ij

@x

j

� f

i

; �

�

=

�

�

ij

;

@�

@x

j

�

� (f

i

; �) =

�

�

ij

;

@�

@x

j

�

�

� (f

i

; �)

= h�

ij

�

j

; �i

�

1=2

� h�

ij

�

j

; �i

+

1=2

� (f

i

; �) �

�

@�

ij

@x

j

; �

�

�

=

�

�

@�

ij

@x

j

� f

i

; �

�

�

= 0

for i = 1; 2. In so doing the equations (2.143) are used as holding good in

O

�

(x

0

). The equations [�

ij

�

j

] = 0 on O(x

0

) \ �

 

are also used. Conse-

quently, the following equations,

�

@�

ij

@x

j

= f

i

; i = 1; 2; (2:149)

hold in O(x

0

) in the sense of distributions. The results on the internal

solution regularity of (2.147), (2.149) (see Fichera, 1972, Lions, Magenes,

1968) provide the validity of the theorem assertion. The proof is completed.

2.5.4 Convergence of solutions

Consider the limit case corresponding to " = 0 in (2.130). The restriction

obtained in such a way describes approximately a mutual nonpenetration

of the crack faces. Note that in reality a complete account of the thickness

implies the dependence of the energy functional on ". This dependence is

as follows (Vol'mir, 1972):

�(�) =

"

3

2

B(w;w) +

"

2

h�

ij

(W ); e

ij

(W )i � hf; �i: (2:150)
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Moreover, in this case m(w); t(w); e

ij

(W ) should also depend on ". In spite

of this, in this section the parameter " is equal to 1 in the formula (2.150)

just as in the previous subsections. Thus, the case " = 0 in (2.130), in fact,

means both the approximate description of the nonpenetration condition

and a �xed thickness. Hence, in the case under consideration a solution

should satisfy the following restriction:

w � ' in 


 

; (2:151)

[W ]� � 0 on �

 

: (2:152)

As a result the set of feasible displacements is as follows:

K

'

0

= f(W;w) 2 H(


 

) j (W;w) satisfy (2:151); (2:152)g :

Herewith the problem of minimizing � over the set K

'

0

is equivalent to the

variational inequality

B(w; �w � w) + h�

ij

(W ); e

ij

(

�

W �W )i � hf; �� � �i; (2:153)

� = (W;w) 2 K

'

0

; 8 �� 2 K

'

0

:

Let the set � be the same as in Section 2.5.2. Consider the optimal control

problem

inf

'2�

J

"

(') = inf

'2�

Z

�

 

j[�]j d�

 

: (2:154)

There exists a solution of (2.154), (2.153). We omit the arguments.

So, instead of precise nonpenetration condition (2.130) we consider the

approximate condition (2.152) in this subsection. In application this ap-

proach is interesting since it is easier to �nd the solutions of (2.153) as

compared to (2.131). In particular, it is possible to �nd solutions of (2.153)

by using the penalty operator relative to the restriction (2.152). The dis-

placements W and w are uncoupled in (2.153), and one can write down two

variational inequalities for �nding W and w, respectively. Meanwhile, when

the optimal control problem (2.154) is solved, the solution ' depends on the

pair (W;w), which actually means the coupling of W and w. The problem

is to prove the solution proximity of (2.134), (2.131) and (2.154), (2.153),

as "! 0:

A relationship between the solutions of (2.134), (2.131) and (2.154),

(2.153) is characterized by the following statement. Introduce the notation

j

0

= inf

'2�

J

0

('); j

"

= inf

'2�

J

"

('):

Let '

"

be the solution of (2.134), (2.131), and �

"

correspond to '

"

.

Theorem 2.18. From the sequence '

"

; �

"

one can choose a subsequence such

that

'

"

! ' weakly in H

2

(
); �

"

! � weakly in H(


 

); j

"

! j

0
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as "! 0, where ' is a solution of (2.154), (2.153) and � = �(') is de�ned

from (2.153).

Proof. Consider �rst any �xed element ' 2 � and prove that

J

"

(') ! J

0

('); "! 0: (2:155)

Let �

"

(') be the solution of (2.131). There exists an element �� such that

�� 2 K

'

"

for all ". Substituting �� in (2.131) as a test function implies

k�

"

(')k

H(


 

)

� c

with a constant c independent of ". Without loss of generality as "! 0 we

assume that

�

"

(') ! ~� weakly in H(


 

); (2:156)

�

�

"

(') ! ~�

�

strongly in L

1

(�

 

):

Moreover, the pair ('; ~�) is a solution of the variational inequality

B( ~w; �w � ~w) + h�

ij

(

~

W ); e

ij

(

�

W �

~

W )i � hf; ��� ~�i;

~� = (

~

W; ~w) 2 K

'

0

; 8 �� 2 K

'

0

:

To verify this it su�ces to ful�l the limiting transition in (2.131) as "! 0.

Thus, ~� = �('). In view of (2.156) we arrive at the desired convergence

(2.155).

Let ' be a solution of the optimal control problem (2.154), (2.153). The

above arguments imply

j

"

� J

"

(') ! J

0

(') = j

0

:

Whence

lim supj

"

� J

0

(') = j

0

: (2:157)

On the other hand, the boundedness of the set � provides the estimate

k'

"

k

2;


� c (2:158)

which is uniform in ". Consequently, the inequality

B(w

"

; �w� w

"

) + h�

ij

(W

"

); e

ij

(

�

W �W

"

)i � hf; ��� �

"

i; (2:159)

�

"

= (W

"

; w

"

) 2 K

'

"

"

; 8 �� 2 K

'

"

"

enables us to derive the following estimate,

k�

"

k

H(


 

)

� c; (2:160)

being uniform in ". Choosing subsequences, still denoted by '

"

; �

"

, we

assume that

'

"

! ~' weakly in H

2

(
); uniformly in 
;
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�

"

! ~� weakly in H(


 

); "! 0:

Moreover, it can be proved that for every �xed �� 2 K

~'

0

there exists a

sequence ��

"

2 K

'

"

"

such that

��

"

! �� strongly in H(


 

):

Combining this convergence and Lemma 2.2, one can pass on to the limit

in (2.159). Hence the following relation is obtained:

B( ~w; �w � ~w) + h�

ij

(

~

W ); e

ij

(

�

W �

~

W )i � hf; ��� ~�i;

~� = (

~

W; ~w) 2 K

~'

0

; 8 �� 2 K

~'

0

;

that is ~� = �( ~'). Furthermore, just as in the proof of (2.155), the conver-

gence J

"

('

"

)! J

0

( ~') holds. Hence

lim inf j

"

� J

"

( ~'): (2:161)

A comparison of (2.157) and (2.161) results in the conclusion that ~' is

a solution of (2.154), (2.153) and j

"

! j

0

. As noted above, ~� = �( ~').

Theorem 2.18 is proved.

The condition [�] = 0 is shown to provide the in�nite di�erentiability

of the solution only for " > 0. For the problem (2.153), corresponding to

" = 0, one cannot state that w 2 H

2

(O(x

0

)) provided that [�] = 0 on

O(x

0

) \ �

 

, since, in general, in this case @w=@� 6= 0 on O(x

0

) \ �

 

. The

result of Theorem 2.17 on C

1

-regularity actually shows that the condition

[�] = 0 provides the disappearance of singularity which takes place in view

of the presence of a crack. It means that under the condition mentioned,

we can `forget' about the crack since the behaviour of the plate is the same

as that without the crack.

2.6 Solving methods for plates with cracks

In this section we proceed to study the plate model with the crack described

in Sections 2.4, 2.5. The corresponding variational inequality is analysed

provided that the nonpenetration condition holds. By the principles of Sec-

tion 1.3, we propose approximate equations in the two-dimensional case and

analytical solutions in the one-dimensional case (see Kovtunenko, 1996b,

1997b).

2.6.1 Iteration penalty method

Let a plate occupy a bounded domain 
 � R

2

with smooth boundary

�. Inside 
 there is a graph �

c

of a su�ciently smooth function. The

graph �

c

corresponds to the crack in the plate (see Section 1.1.7). A unit

vector � = (�

1

; �

2

) being normal to �

c

de�nes the surfaces of the crack,
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positive �

+

c

and negative �

�

c

. Denote 


c

= 
n�

c

. The unknown vector

� = (W;w) of horizontal W = (w

1

; w

2

) and vertical w displacements of the

mid-surface points of the plate meets the following boundary conditions:

�rst, the clamping condition at the outer boundary

w =

@w

@n

= w

1

= w

2

= 0 on �; (2:162)

with n standing for the normal to �; second, the nonpenetration condition

at the crack surfaces

[W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

c

; (2:163)

with [s] denoting the jump of a function s across �

c

, i.e. [s] = sj

�

+

c

� sj

�

�

c

.

Introduce the linear functions

'(�) = [W ]� +

�

@w

@�

�

;  (�) = [W ]� �

�

@w

@�

�

:

Then condition (2.163) is equivalent to the following inequalities: '(�) � 0

and  (�) � 0. De�ne the Hilbert space

H(


c

) = f� = (W;w) 2 H

1

(


c

)�H

1

(


c

)�H

2

(


c

) j � satis�es (2:162)g

and the closed convex set

K = f� 2 H(


c

) j '(�) � 0;  (�) � 0g:

Denote by H(


c

)

?

the space dual of H(


c

). Let us recall the following

bilinear forms from Sections 2.4, 2.5:

a(�; ��) = B(W;

�

W ) + b(w; �w); �� = (

�

W; �w);

�

W = ( �w

1

; �w

2

);

B(W;

�

W ) =

Z




c

�

ij

(W )"

ij

(

�

W ) d


c

;

b(w; �w) =

Z




c

(w

xx

�w

xx

+w

yy

�w

yy

+ �(w

xx

�w

yy

+w

yy

�w

xx

)

+2(1� �)w

xy

�w

xy

) d


c

:

The Poisson ratio 0 < � < 1=2 is given. By the �rst Korn inequality, we

have

B(W;W ) � c

1

kWk

2

1

; c

1

> 0:

We also know that

b(w;w) � c

2

kwk

2

2

; c

2

> 0;
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with k � k

k

to be the norm in H

k

(


c

), k = 1; 2. Therefore, we have the

inequality

a(�; �) � c

3

k�k

2

; c

3

> 0; (2:164)

with k � k to be the norm in H(


c

). So we can introduce the scalar product

(�; ��) = a(�; ��) +

Z

�

c

�

'(�)'(��) +  (�) (��)

�

d�

c

and the equivalent norm k�k

2

= (�; �) in H(


c

). Let f = (f

1

; f

2

; f

3

) 2

L

2

(


c

) be some given functions of the external forces. The equilibrium

problem for a plate with a crack is formulated as the following variational

inequality:

� 2 K; a(�; ��� �) � hf; ��� �i 8�� 2 K: (2:165)

The angular brackets h � ; � i denote the integration over 


c

. In virtue of

the linearity, boundedness, and coercivity of the form a( � ; � ), there exists

a unique solution to (2.165).

We shall use the Green formula

a(�; ��) = hA�; ��i �

Z

�

c

�

�

�

(W )

�

W� + �

�

(W )

�

W� +m(w)

@ �w

@�

� t(w) �w

�

d�

c

;

where

A� =

�

��

1j;j

(W ); ��

2j;j

(W ); �

2

w

�

;

�

�

(W ) = �

ij

(W )�

j

�

i

; �

�i

(W ) = �

ij

(W )�

j

� �

�

(W )�

i

; i = 1; 2;

m(w) = ��w+ (1� �)

@

2

w

@�

2

; t(w) =

@

@�

�

�w+ (1� �)

@

2

w

@�

2

�

:

Here � = (��

2

; �

1

) is the unit tangent vector to �

c

. Let a solution � possess

a su�cient smoothness. Then we can rewrite (2.165) as

hA� � f; ��� �i �

Z

�

c

�

[�

�

(W )(

�

W �W )�] +

�

m(w)

@( �w � w)

@�

�

+ [�

�

(W )(

�

W �W )� ]� [t(w)( �w� w)]

�

d�

c

� 0 8�� 2 K:

Further, we vary the test functions �� and use the relation

�

�

(W )[

�

W �W ]� +m(w)

�

@( �w � w)

@�

�

=

1

2

(�

�

(W ) +m(w))'(��� �) +

1

2

(�

�

(W )�m(w)) (�� � �):
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Then it follows that the solution of the variational inequality (2.165) is

characterized by the equilibrium equation

A� = f in 


c

;

and the boundary conditions at �

c

[�

�

(W )] = 0; [m(w)] = 0; �

�

(W ) = 0;

t(w) = 0; [W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

; ��

�

(W ) � jm(w)j;

�

�

�

(W ) +m(w)

�

'(�) = 0;

�

�

�

(W )�m(w)

�

 (�) = 0:

Note that, summing the two last equalities, we obtain the condition

�

�

(W )[W ]� +m(w)

�

@w

@�

�

= 0;

which has the same form as in Section 2.5.

We now construct a penalized problem. To this end, de�ne the penalty

operator � : H(


c

)! H(


c

)

?

by the formula

h�(�); ��i = �

Z

�

c

�

'

�

(�)'(��) +  

�

(�) (��)

�

d�

c

:

Here the angular brackets denote the duality pairing between H(


c

) and

H(


c

)

?

; the superscript `-' signi�es the negative part of a function, i.e.

s = s

+

� s

�

, s

+

; s

�

� 0, s

+

s

�

= 0. It is seen that � is a monotonous and

semicontinuous operator. Denote by �

"

2 H(


c

) a solution of the equation

a(�

"

; ��) + "

�1

h�(�

"

); ��i = hf; ��i 8�� 2 H(


c

) (2:166)

depending on a small parameter " > 0. Supposing the solution �

"

to be

su�ciently smooth, penalized equation (2.166) is equivalent to the following

boundary value problem:

A�

"

= f in 


c

;

[�

�

(W

"

)] = 0; [m(w

"

)] = 0; �

�

(W

"

) = 0; t(w

"

) = 0;

�

�

(W

"

) = �"

�1

('

�

(�

"

) +  

�

(�

"

)); m(w

"

) = �"

�1

('

�

(�

"

)�  

�

(�

"

)):

Fix the parameter ". To linearize the left-hand side of (2.166), for ar-

bitrary �

";0

2 H(


c

), we construct the following iterative procedure for

n = 0; 1; 2; :::,

a(�

";n+1

; ��) + "

�1

(�

";n+1

; ��) (2:167)

= hf; ��i+ "

�1

(�

";n

; ��)� "

�1

h�(�

";n

); ��i:
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By the above properties for the operator of (2.167), there exists a unique so-

lution �

";n+1

2 H(


c

) to the problem (2.167). Then, for �

";n+1

su�ciently

smooth, the corresponding boundary value problem takes the form

A

�

�

";n+1

+

1

"

(�

";n+1

� �

";n

)

�

= f in 


c

;

�

�

�

�

W

";n+1

+

1

"

(W

";n+1

�W

";n

)

��

= 0;

�

m

�

w

";n+1

+

1

"

(w

";n+1

�w

";n

)

��

= 0;

�

�

�

W

";n+1

+

1

"

(W

";n+1

�W

";n

)

�

= 0;

t

�

w

";n+1

+

1

"

(w

";n+1

�w

";n

)

�

= 0;

�

�

�

W

";n+1

+

1

"

(W

";n+1

�W

";n

)

�

�

2

"

[W

";n+1

�W

";n

]

= �

1

"

('

�

(�

";n

) +  

�

(�

";n

)) ;

m

�

w

";n+1

+

1

"

(w

";n+1

�w

";n

)

�

�

2

"

�

@(w

";n+1

�w

";n

)

@�

�

= �

1

"

�

'

�

(�

";n

)�  

�

(�

";n

)

�

:

Theorem 2.19. We have �

";n+1

! �

�

strongly in H(


c

) as n ! 1.

Moreover,

k�

";n+1

� �

"

k

2

� (1 + 2c

3

")

�(n+1)

k�

";0

� �

"

k

2

(2:168)

and �

"

! � strongly in H(


c

) as " ! 0, where �

";n+1

, �

"

, � are the

solutions of (2.167), (2.166), (2.165), respectively.

Proof. Subtract (2.166) from (2.167) and add the term �"

�1

(�

"

; ��) to

both sides of the obtained inequality. It gives

a(�

";n+1

� �

"

; ��) + "

�1

(�

";n+1

� �

"

; ��) = "

�1

a(�

";n

� �

"

; ��)

+ "

�1

Z

�

c

�

�

'(�

";n

)� '(�

"

) + '

�

(�

";n

)� '

�

(�

"

)

�

'(��) (2:169)

+

�

 (�

";n

)�  (�

"

) +  

�

(�

";n

)�  

�

(�

"

)

�

 (��)

�

d�

c

:
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Since s � t + s

�

� t

�

= s

+

� t

+

� js � tj, by using the Holder inequality,

we can estimate the right-hand side of (2.169) from above by the value

1

2"

�

a(�

";n

� �

"

; �

";n

� �

"

) + a(��; ��) +

Z

�

c

('

2

(�

";n

� �

"

) + '

2

(��)

+ 

2

(�

";n

� �

"

) +  

2

(��)) d�

c

�

=

1

2"

�

k�

";n

� �

"

k

2

+ k��k

2

�

:

Consider this relation at the point �� = �

";n+1

��

"

. By (2.164), from (2.169)

we have the inequality

(c

3

+ "

�1

)k�

";n+1

� �

"

k

2

� (2")

�1

(k�

";n

� �

"

k

2

+ k�

";n+1

� �

"

k

2

):

Thus,

k�

";n+1

� �

"

k

2

� (1 + 2c

3

")

�1

k�

";n

� �

"

k

2

:

Repeating this estimate for n tending to 0, we obtain (2.168) and the �rst

assertion of Theorem 2.19 on strong convergence.

In a standard way (see Section 1.3), the properties of the operators

a( � ; � ) and �( � ) imply that

�

"

! � weakly in H(


c

) as "! 0: (2:170)

Subtract a(�; ��) from (2.166) and consider the obtained equation at the

element �� = �

"

� �. It gives

a(�

"

� �; �

"

� �)� "

�1

Z

�

c

�

'

�

(�

"

)'(�

"

� �) +  

�

(�

"

) (�

"

� �)

�

d�

c

= hf; �

"

� �i � a(�; �

"

� �):

We estimate the left-hand side of this equality from below which provides

c

3

k�

"

��k

2

+"

�1

Z

�

c

�

('

�

(�

"

))

2

+ ( 

�

(�

"

))

2

�

d�

c

� hf; �

"

��i�a(�; �

"

��):

Therefore, (2.170) implies the second assertion of Theorem 2.19 on strong

convergence. The theorem is proved.

Unlike (2.166), the constructed iterative equation (2.167) is linear, which

allows us to apply the standard numerical methods to solve it.

2.6.2 A bar with a cut

We consider here a one-dimensional case corresponding to a bar with a cut.

Let the mid-line of a bar coincide with the segment [0; 1], and the bar have a

vertical cut at the �xed point y, 0 < y < 1. Denote 


y

= (0; y)[ (y; 1). We
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have to �nd the vector � = (W;w) of horizontal displacements W = W (x)

and vertical displacements w = w(x) of the bar points x 2 


y

under the

action of the external forces f = (f

1

; f

2

).

The clamping conditions

W = w = w

x

= 0 at x = 0; 1 (2:171)

are assumed to hold. In accordance with the Kirchho�{Love kinematic

hypothesis, the displacements �eld along the thickness z 2 [�"; "] of the bar

is given by the following formulae:

W (x; z) = W (x)� zw

x

(x); w(x; z) = w(x):

The condition providing the nonpenetration of the cut faces along the cut

thickness is as follows:

W (y + 0; z)�W (y � 0; z) � 0 8z; jzj � ":

Substituting here the function values, one gets

[W ] � z[w

x

] 8z; jzj � ";

where [s] denotes the jump of the function s(x) at the point y, i.e. [s] =

s(y + 0)� s(y � 0). Obviously, the last inequality is equivalent to

[W ] � "

�

�

�

�

[w

x

]

�

�

�

�

:

Thus, we obtain the nonpenetration condition of the cut faces, the same as

for a plate with a crack. Later on, for simplicity we consider the case " = 1,

i.e.

[W ] �

�

�

�

�

[w

x

]

�

�

�

�

: (2:172)

Consider the linear functions �(�) = [W ] + [w

x

];  (�) = [W ]� [w

x

]. In

this case (2.172) is equivalent to the inequalities

�(�) � 0;  (�) � 0: (2:173)

De�ne next the Hilbert space

H(


y

) = f� = (W;w) 2 H

1

(


y

) �H

2

(


y

) j � satis�es (2:171)g;

its dual space H(


y

)

?

and a closed convex subset

K = f� 2 H(


y

) j � satis�es (2:173)g:

Also, we introduce the scalar product in H(


y

) as follows,

(�; ��) =

Z




y

W

x

�

W

x

dx+

Z




y

w

xx

�w

xx

dx; �� = (

�

W; �w);
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and the corresponding norm (�; �) = k�k

2

in agreement with the estimates

Z




y

W

2

dx �

Z




y

W

2

x

dx;

Z




y

w

2

dx �

Z




y

w

2

x

dx �

Z




y

w

2

xx

dx:

Let f 2 H(


y

)

?

. The equilibrium problem for the clamped elastic bar

with the cut is formulated as the following variational inequality:

� 2 K; (�; ��� �) � hf; ��� �i 8�� 2 K: (2:174)

Here the brackets h � ; � i denote the duality pairing between H(


y

) and

H(


y

)

?

. It is easy to see that there exists a unique solution to (2.174).

2.6.3 Construction of analytical solutions

Let I

�1

: H(


y

)

?

! H(


y

) be the inverse duality mapping; then

(I

�1

f; ��) = hf; ��i 8�� 2 H(


y

): (2:175)

We denote �

0

= I

�1

f . Let f = (f

1

; f

2

) 2 L

2

(


y

) be given. Integrating

by parts, we see that (2.175) is equivalent to the following boundary value

problem,

�W

0

xx

= f

1

; w

0

xxxx

= f

2

; in 


y

;

W

0

x

(y) = w

0

xx

(y) = w

0

xxx

(y) = 0; (2:176)

W

0

(0) = w

0

x

(0) = w

0

xx

= W

0

(1) = w

0

x

(1) = w

0

xx

(1) = 0;

and there exists a unique solution �

0

= (W

0

; w

0

) 2 H(


y

), �

0

2 H

2

(


y

)�

H

4

(


y

).

By the above notation, the variational inequality (2.174) is equivalent

to

� 2 K; (�

0

� �; �� ��) � 0 8�� 2 K: (2:177)

Let P be the projection operator of H(


y

) onto K, i.e. for any s 2 H(


y

)

the unique projection Ps 2 K exists such that

(s � Ps; Ps� ��) � 0 8�� 2 K: (2:178)

Comparing (2.177) and (2.178), it is clear that (2.177) is equivalent to the

following equation (see Section 1.3):

� = P�

0

: (2:179)

To construct this projection, we introduce the function � 2 H(


y

)\C

1

(


y

)

by the formula

�(x) =

1

2

�

x

2

; x 2 [0; y)

(x� 1)

2

; x 2 (y; 1]
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and introduce the function �(�

0

) = (�

1

(�

0

); �

2

(�

0

)) from H(


y

)\C

1

(


y

)

as follows:

�

1

(�

0

) =

1

2

�

�

�

(�

0

) +  

�

(�

0

)

�

�

x

; �

2

(�

0

) =

1

2

�

�

�

(�

0

) �  

�

(�

0

)

�

�:

Here the superscript `-' means the negative part of a number, i.e. a =

a

+

�a

�

; a

+

; a

�

� 0; a

+

a

�

= 0. We indicate the following properties of the

constructed functions:

�

1

(�

0

)

xx

= �

2

(�

0

)

xxx

= 0; in 


y

; (2:180)

�

1

(�

0

)

x

(y) =

1

2

�

�

�

(�

0

) +  

�

(�

0

)

�

; (2:181)

�

2

(�

0

)

xx

(y) =

1

2

�

�

�

(�

0

) �  

�

(�

0

)

�

; (2:182)

�(�(�

0

)) = ��

�

(�

0

);  (�(�

0

)) = � 

�

(�

0

): (2:183)

Theorem 2.20. The function

� = �

0

� �(�

0

) (2:184)

is the unique solution of the variational inequality (2.174), where �

0

is the

solution of (2.176).

Proof. Taking into account (2.179), we have to prove that

P�

0

= �

0

� �(�

0

):

Note that �

0

� �(�

0

) belongs to K. Actually, in view of the linearity for �

and  , (2.183) provides

�(�

0

��(�

0

)) = �(�

0

)��(�(�

0

)) = �

+

(�

0

)��

�

(�

0

)+�

�

(�

0

) = �

+

(�

0

) � 0

and, similarly,  (�

0

� �(�

0

)) =  

+

(�

0

) � 0.

We next verify (2.178), i.e.

(�(�

0

); �

0

� �(�

0

)� ��) � 0; 8�� 2 K:

By the smoothness of �(�

0

), the following formula holds for every �� =

(

�

W; �w) 2 H(


y

):

(�(�

0

); ��) = �

Z




y

(�

1

(�

0

)

xx

�

W + �

2

(�

0

)

xxx

�w

x

) dx

�

�

�

1

(�

0

)

x

�

W + �

2

(�

0

)

xx

�w

x

�

:
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Relations (2.180){(2.182) imply

(�(�

0

); ��) = �

1

2

�

�

�

�

(�

0

) +  

�

(�

0

)

�

[

�

W ] +

�

�

�

(�

0

)�  

�

(�

0

)

�

[ �w

x

]

�

= �

1

2

�

�

�

(�

0

)�(��) +  

�

(�

0

) (��)

�

:

Taking into account (2.183), by the inclusion �� 2 K, we get

(�(�

0

); �

0

� �(�

0

)� ��) = �

1

2

�

�

�

(�

0

)

�

�

+

(�

0

)� �(��)

�

+ 

�

(�

0

)

�

 

+

(�

0

) �  (��)

�

�

=

1

2

�

�

�

(�

0

)�(��) +  

�

(�

0

) (��)

�

� 0:

The proof is completed.

It follows from (2.184) and (2.176) that, if f 2 H

n

(


y

) � H

m

(


y

) for

n;m � 0, then u 2 H

n+2

(


y

) �H

m+4

(


y

).

By the above properties of �

0

; �(�

0

), one can easily verify that the con-

structed function � = (W;w) justi�es the following boundary value problem:

�W

xx

= f

1

; w

xxxx

= f

2

; in 


y

;

W

x

(y) = �

1

2

�

�

�

(�

0

) +  

�

(�

0

)

�

;

w

xx

(y) = �

1

2

�

�

�

(�

0

)�  

�

(�

0

)

�

; w

xxx

(y) = 0;

[W ] =

1

2

�

�

+

(�

0

) +  

+

(�

0

)

�

; [w

x

] =

1

2

�

�

+

(�

0

)�  

+

(�

0

)

�

:

Let some function � = (W;w) belong to H(


y

) \

�

H

2

(


y

) �H

4

(


y

)

�

,

and the following boundary conditions be ful�lled:

[W

x

] = [w

xx

] = 0; w

xxx

(y) = 0; (W

x

(y) +w

xx

(y)) �(�) = 0;

(W

x

(y) �w

xx

(y)) (�) = 0; �(�) � 0;  (�) � 0; �W

x

(y) � jw

xx

(y)j:

Then � is the solution of the variational inequality (2.174) with the right-

hand side f = (�W

xx

; w

xxxx

). For instance, this holds provided that u 2

H(


y

) \

�

H

2

0

(


y

)�H

4

0

(


y

)

�

.

We give some examples of exact solutions for given f .

Example 1. Let f

1

(x) � a, a > 0, f

2

(x) � 0; then w(x) � 0. There

are two cases. If 0 < y � 1=2, then

W (x) = �

a

2

�

x

2

� 2yx ; x 2 [0; y);

(x� 1)

2

� 2(y � 1)(x� 1) ; x 2 (y; 1];
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with [W ] = (1=2� y)a � 0. If 1=2 � y < 1, then

W (x) = �1=2 ax(x� 1); [W ] = 0:

Example 2. Let y = 1=2, f

2

(x) � 0,

f

1

(x) =

�

a

1

; x 2 [0; 1=2);

a

2

; x 2 (1=2; 1]:

Therefore, w(x) � 0. If a

2

� a

1

, then

W (x) = �

1

8

�

4a

1

x

2

� (3a

1

+ a

2

)x ; x 2 [0; 1=2);

4a

2

(x � 1)

2

+ (3a

2

+ a

1

)(x� 1) ; x 2 (1=2; 1];

and [W ] = 0. If a

2

� a

1

, then

W (x) = �1=2x(x� 1) f

1

(x); [W ] = 1=8(a

2

� a

1

) � 0:

Example 3. Let f

1

(x) � 0, y = 1=2,

f

2

(x) =

�

b

1

; x 2 [0; 1=2);

b

2

; x 2 (1=2; 1]:

If b

1

+ b

2

� 0, then

W (x) = �

b

1

+ b

2

96

�

x ; x 2 [0; 1=2);

x� 1 ; x 2 (1=2; 1];

w(x) =

1

192

�

8b

1

x

4

� 16b

1

x

3

+ (11b

1

� b

2

)x

2

;

8b

2

(x� 1)

4

+ 16b

2

(x� 1)

3

+ (11b

2

� b

1

)(x� 1)

2

;

and

[W ] =

1

96

(b

1

+ b

2

) � 0; [w] =

1

128

(b

2

� b

1

); [w

x

] = �

1

96

(b

1

+ b

2

) � 0:

We come to the following conclusions: the presentation (2.184) gives

that f

2

(x) � 0 entails w(x) � 0 (Examples 1, 2); f

1

(x) � 0 does not

necessarily entail W (x) � 0 (Example 3); [f

1

] = 0 or [f

2

] = 0 do not

guarantee [W ] = 0, [w] = 0, [w

x

] = 0 (Examples 1, 3).

2.7 Contact problem for a shell with a crack

The contact problem for a shallow shell containing a vertical crack is con-

sidered. The solution of the problem satis�es two inequality restrictions

describing the mutual nonpenetration of the shell and a punch, and the

condition of nonpenetration for the crack faces. The purpose of this section

is to investigate a control problem using external loading with an objective

functional describing the crack opening. The regularity of the solution is

investigated near the tips of the crack. In particular, for a crack with zero

opening the solution is shown to belong to the class C

1

. The convergence of

the solutions of the optimal control problems is analysed provided that the

parameters of the model are perturbed. The results proved in this section

were obtained in (Khludnev, 1995b).
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2.7.1 Statement of the problem

Consider a shallow shell whose mid-surface occupies the domain 


 

= 
 n

�

 

, where 
 � R

2

is a bounded domain with smooth boundary �, and �

 

is the graph of the function y =  (x), x 2 [0; 1], (x; y) 2 
. Let � = (W;w)

be the displacement vector for points of the mid-surface of the shell, and

W = (w

1

; w

2

). We introduce the following notation for the components of

the strain and stress tensors,

e

ij

= "

ij

(W ) + k

ij

w; "

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; (x

1

= x; x

2

= y)

�

11

= e

11

+ �e

22

; �

22

= e

22

+ �e

11

; �

12

= (1� �)e

12

;

where � = const, 0 < � < 1=2. Assume that the curvatures of the shell

satisfy the inclusions k

ij

2 C

1

(


 

). Here and throughout i; j = 1; 2. The

energy functional of the shell can be written in the form

�

u

(�) =

1

2

B(w;w) +

1

2

h�

ij

(W ); e

ij

(W )i � hu; �i;

where u = (u

1

; u

2

; u

3

) is the external force vector, the brackets h�; �i denote

integration over 


 

, and the bilinear form describing the bending properties

of the shell has the form

B(w; v) =

Z




 

(w

xx

v

xx

+w

yy

v

yy

+�w

xx

v

yy

+�w

yy

v

xx

+2(1��)w

xy

v

xy

) d


 

:

By simplicity we specify the following boundary conditions on the outer

boundary:

w = @w=@n = W = 0 on �:

The model of the shell under consideration is therefore described by the fact

that its mid-surface is identi�ed with a plane domain, while at the same

time the curvature of the shell is not in general zero (see Section 1.1.3). Let

 2 H

3

0

(0; 1), and � be the normal to the curve y =  (x), x 2 (0; 1). Then

the condition of mutual nonpenetration for the crack faces can be written

as follows:

[W ]� � �

�

�

�

�

�

@w

@�

�
�

�

�

�

on �

 

: (2:185)

We assume that the surface z = �(x; y) describes the shape of the punch,

(x; y) 2 
, � 2 C

1

(
) \ C

1

(
). In this case the mutual nonpenetration

condition for the shell and the punch, in the linear approximation, has the

form (see Section 1.1.5)

w �Wr� � � in 


 

: (2:186)
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Suppose further that the subspace H

1;0

(


 

) of the Sobolev space H

1

(


 

)

consists of elements which vanish on �. Elements from H

2;0

(


 

) vanish

similarly together with their �rst derivatives on �, H

2;0

(


 

) � H

2

(


 

). We

denote by H(


 

) the space H

1;0

(


 

)�H

1;0

(


 

)�H

2;0

(


 

) and introduce

the set of admissible displacements of the shell,

K

�

= f(W;w) 2 H(


 

) j (W;w) satisfy (2:185); (2:186)g:

Here inequalities (2.185), (2.186) are assumed to be satis�ed almost every-

where in the Lebesgue sense on �

 

and in 


 

. We assume that � < 0 on �,

so that the set K

�

is nonempty. The equilibrium problem for a shallow shell

with a solution satisfying the nonpenetration conditions (2.185), (2.186) can

be formulated as follows:

inf

�2K

�

�

u

(�): (2:187)

Because of the convexity and di�erentiability of the functional �

u

onH(


 

),

problem (2.187) is equivalent to the variational inequality

�

0

u

(�)(�� � �) � 0; � 2 K

�

; 8 �� 2 K

�

;

where �

0

u

(�) is the derivative of the functional �

u

at the point �. This

inequality has the form

B(w; �w�w)+ hk

ij

�

ij

; �w�wi+ h�

ij

; "

ij

(

�

W �W )i� hu; ����i � 0 (2:188)

� 2 K

�

; 8 �� = (

�

W; �w) 2 K

�

:

It can be proved that the functional �

u

is coercive on H(


 

). Using the

weak lower semicontinuity of this functional, we verify that a solution of the

equilibrium problem (2.188) exists. It will be unique.

We shall investigate the problem of controlling the external forces with

an objective functional describing the crack opening

J

�

(u) =

Z

�

 

j[�]jd�

 

;

where � = �(u) is the solution of the variational inequality (2.188).

Let U � L

2

(
)

3

be a convex closed and bounded set. The problem of

�nding the crack with the least opening can be formulated as follows:

inf

u2U

J

�

(u): (2:189)

Here and below we emphasize the dependence of the objective functional

on �, because later we shall investigate the convergence of the solutions of

problem (2.189) as � ! 0.
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Suppose that � is �xed for the time being. We shall prove that a solution

of the optimal control problem (2.189), (2.188) exists. We choose a mini-

mizing sequence u

m

2 U . It is bounded in L

2

(
), and so we can assume

that

u

m

! u weakly in L

2

(
); u 2 U: (2:190)

For every m one can �nd a unique solution �

m

2 K

�

of the problem

�

0

u

m

(�

m

)(�� � �

m

) � 0 8 �� 2 K

�

: (2:191)

Fixing the test function ��, we derive the estimate

k�

m

k

H(


 

)

� c;

which is uniform with respect to m. Having by necessity to choose a subse-

quence, we assume that as m!1

�

m

! � weakly in H(


 

); strongly in L

2

(


 

): (2:192)

The convergence of (2.190) and (2.192) enables us to pass to the limit

in (2.191) and thus show that � = �(u). Moreover, additionally assuming

that �

�

m

! �

�

weakly in L

1

(�

 

), we obtain

inf

�u2U

J

�

(�u) = lim inf

m!1

J

�

(u

m

) � J

�

(u) � inf

�u2U

J

�

(�u):

This means that u is a solution of problem (2.189), (2.188). The assertion

is proved.

2.7.2 Regularity of solutions up to the crack faces

We note that if the crack opening is zero on �

 

, i.e. [�] = 0, the value of the

objective functional J

�

(u) is zero. We also assume that near �

 

the punch

does not interact with the shell. It turns out that in this case the solution

� = (W;w) of problem (2.188) is in�nitely di�erentiable in a neighbourhood

of points of the crack. This property is local, so that a zero opening of the

crack near the �xed point guarantees in�nite di�erentiability of the solution

in some neighbourhood of this point. Here it is undoubtedly necessary to

require appropriate regularity of the curvatures k

ij

and the external forces

u. The aim of the following discussion is to justify this fact. At this point

the external force u is taken to be �xed.

Let O � R

2

be a bounded domain with smooth boundary  and outward

normal n = (n

1

; n

2

). We introduce the following notation for the bending

moment and transverse forces on :

m(w) = ��w + (1 � �)

@

2

w

@n

2

;

t(w) =

@

@n

�w+ (1� �)

@

3

w

@n@s

2

; s = (�n

2

; n

1

):
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The quantities m(w) and t(w) can be interpreted as elements from the

spaces H

�

1

2

() and H

�

3

2

(), respectively, if w 2 H

2

(O), �

2

w 2 L

2

(O).

Moreover, the following generalized Green's formula holds:

B

O

(w; v) = hm(w);

@v

@n

i
1

2

;

� ht(w); vi
3

2

;

+ h�

2

w; vi

O

(2:193)

8v 2 H

2

(O):

The symbol O means that the integration is performed over O, while the

brackets h�; �i

p;

denote the duality pairing between H

�p

() and H

p

().

Another Green formula is also needed. Suppose that � = (�

1

; �

2

) 2 L

2

(O),

div � 2 L

2

(O). Then the quantity �n is de�ned on the boundary as an

element of H

�

1

2

(), and we have the formula

hdiv �; wi

O

= h�n;wi
1

2

;

� h�;rwi

O

8w 2 H

1

(O): (2:194)

We shall investigate the regularity of the solution in a neighbourhood of

the crack tip x

0

� (1; 0). Suppose, �rst, that (W;w) is a solution of the

equilibrium problem (2.188). We assume that a neighbourhood W of the

graph �

 

exists such that for any function ' 2 C

1

0

(W) there is an " > 0,

for which

"'+ w �Wr� � � almost everywhere in W n �

 

: (2:195)

Condition (2.195) can be interpreted as the absence of contact between the

shell and the punch in W n �

 

.

We smoothly continue the function  (x) for x > 1, keeping the previous

notation. We take an arbitrary function ' 2 C

1

0

(R(x

0

)), where R(x

0

) is a

ball centred at the point x

0

such that R(x

0

) � W. Then

[@'=@�] = 0 on R(x

0

) \ �

 

:

From what has been said, for small " > 0 the function (W; "'+w) belongs

to the set K

�

. Outside R(x

0

) the function ' can be taken to be zero. We

now substitute (W; "'+ w) in (2.188). We arrive at the inequality

B

+

(w;') + B

�

(w;') + hk

ij

�

ij

; 'i � hu

3

; 'i: (2:196)

The plus and minus subscripts denote integration over O

+

and O

�

, re-

spectively, where O

+

= R(x

0

) \ fy >  (x)g, and similarly for O

�

. The

boundaries of the domains O

�

are denoted 

�

. Note that when (2.195)

holds, the equation

�

2

w + k

ij

�

ij

= u

3

(2:197)

is satis�ed in W n �

 

in the distribution sense.

In order to verify this, it is su�cient to substitute test functions of the

form �+ "� into (2.188), where � is an in�nitely di�erentiable function with
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support Wn�

 

and " is a small parameter. Thus, applying Green's formula

(2.193) to B

�

(w;') in (2.196) and using equation (2.197), we obtain

hm(w);

@'

@n

�

i

1=2;

�
� ht(w); 'i

3=2;

�
(2:198)

+hm(w);

@'

@n

+

i

1=2;

+ � ht(w); 'i

3=2;

+ � 0:

Note that the function �

2

w+k

ij

�

ij

�u

3

is zero almost everywhere inWn�

 

and so the integral over the domain vanishes.

Below, � will also denote the normal to the continued graph

~

�

 

of the

function  (x). Using the arbitrariness and the �niteness of ' in R(x

0

), from

(2.198) we �nd

h[m(w)]; @'=@�i

1=2;

= 0; h[t(w)]; 'i

3=2;

= 0 (2:199)

8' 2 C

1

0

(R(x

0

));

where  can be taken to be either 

+

or 

�

. The proven identities (2.199)

mean that

[m(w)] = 0; [t(w)] = 0 on

~

�

 

: (2:200)

When conditions (2.195) are satis�ed we also have the following distribution

equations:

�@�

ij

=@x

j

= u

i

in W n �

 

: (2:201)

This is proved simultaneously with (2.197).

Suppose that the function � � (�

1

; �

2

) belongs toC

1

0

(
) and has support

in R(x

0

). Then, as before, for small " > 0 we have (W + "�; w) 2 K

�

. We

substitute (W + "�; w) into (2.188) as a test function. This implies

h�

ij

; "

ij

(�)i

+

+ h�

ij

; "

ij

(�)i

�

� hu

i

; �

i

i:

Using Green's formula (2.194), it follows from this that

�h[�

ij

�

j

]; �

i

i

1=2;

� h@�

ij

=@x

j

; �

i

i

+

� h@�

ij

=@x

j

; �

i

i

�

� hu

i

; �

i

i;

where one can take either 

+

or 

�

to be . Bearing in mind equation

(2.201), the relation obtained gives

h[�

ij

�

j

]; �

i

i

1=2;

= 0; 8 � 2 C

1

0

(R(x

0

));

i.e.

[�

ij

�

j

] = 0 on

~

�

 

: (2:202)

The established properties (2.200) and (2.202) enable us to investigate the

regularity of the solution in a neighbourhood of the crack tip x

0

in the case
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when there is no contact between the shell and the punch near to x

0

, and

the crack opening is zero.

Theorem 2.21. Suppose that k

ij

; u 2 C

1

(R(x

0

)), that condition (2.195) is

satis�ed, and [�] = 0 on R(x

0

) \ �

 

. Then � 2 C

1

(R(x

0

)).

Proof. We shall show that equation (2.197) is satis�ed in the dis-

tribution sense in R(x

0

). The condition of the theorem and inequality

(2.185) ensure the validity of [@w=@�] = 0 on R(x

0

) \ �

 

. Bearing in

mind that w 2 H

2

(O

�

) and that [w] = 0 on R(x

0

) \ �

 

, we conclude

that w 2 H

2

(R(x

0

)). Note that equation (2.197) is satis�ed in O

�

, and so

�

2

w 2 L

2

(O

�

):

Let the brackets (�; ') denote the action of the distribution on the ele-

ment '. We choose ' 2 C

1

0

(R(x

0

)). Using formula (2.193) we have

(�

2

w;') = B

+

(w;') +B

�

(w;') = �h[m(w)]; @'=@�i

1=2;

+ h[t(w)]; 'i

3=2;

+ h�

2

w;'i

+

+ h�

2

w;'i

�

:

The jumps [m(w)], [t(w)] are zero, from which the necessary equation that

proves the assertion follows:

(�

2

w + k

ij

�

ij

� u

3

; ') = h�

2

w + k

ij

�

ij

� u

3

; 'i

+

+ h�

2

w + k

ij

�

ij

� u

3

; 'i

�

= 0; 8 ' 2 C

1

0

(R(x

0

))

We shall now show that equations (2.201) are satis�ed in R(x

0

). Because

[W ] = 0 on R(x

0

) \ �

 

and W 2 H

1

(O

�

), we have W 2 H

1

(R(x

0

)).

Consequently, �

ij

� �

ij

(�) 2 L

2

(R(x

0

)). From the validity of equations

(2.201) in O

�

, we conclude that @�

ij

=@x

j

2 L

2

(O

�

). This means that one

can apply Green's formula (2.194) to the domain O

�

. Let ' 2 C

1

0

(R(x

0

)).

We have

�(@�

ij

=@x

j

+ u

i

; ') = h�

ij

; @'=@x

j

i

+

+ h�

ij

; @'=@x

j

i

�

� (u

i

; ') (2:203)

= �h[�

ij

�

j

]; 'i

1=2;

� h@�

ij

=@x

j

+ u

i

; 'i

+

� h@�

ij

=@x

j

+ u

i

; 'i

�

= 0:

However, the jumps [�

ij

�

j

] are zero, and equations (2.201) are satis�ed

in O

�

. Hence the right-hand side of (2.203) vanishes, which con�rms the

validity of

�@�

ij

=@x

j

= u

i

in R(x

0

) (2:204)

in the distribution sense. Equations (2.204) can be written as linear equa-

tions in the two-dimensional theory of elasticity,

L(W ) = F in R(x

0

); (2:205)

with right-hand side F = (f

1

; f

2

), where f

1

= u

1

+(k

11

w+�k

22

w)

x

+(k

12

w)

y

and f

2

is de�ned similarly. Moreover, equation (2.197) can be conveniently

represented in the form

�

2

w = u

3

� k

ij

�

ij

in R(x

0

): (2:206)
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The right-hand side of equation (2.205) belongs to H

1

(R(x

0

)) and the right-

hand side (2.206) belongs to L

2

(R(x

0

)). Applying in turn the results on the

internal regularity of the solutions of equations (2.205) and (2.206) (Lions,

Magenes, 1968, Fichera, 1972), we obtain the necessary inclusion

� = (W;w) 2 C

1

(R(x

0

)): (2:207)

The theorem is proved.

We make a number of remarks. For the inclusion (2.207) to be valid

it is su�cient only to require that (2.195) is satis�ed in R(x

0

) n �

 

or

' 2 C

1

0

(R(x

0

)).

According to the imbedding theorems the function w is continuous in




 

. Hence if r� � 0 in some neighbourhood W of the graph �

 

and

w > � in W (and, in particular, w

�

> � on �

 

), then condition (2.195) is

obviously satis�ed.

If x

0

is an internal point of the crack, i.e. x

0

2 �

 

n @�

 

, condition

(2.195) is satis�ed and [�] = 0 near x

0

, then the corresponding assertion on

the in�nite di�rentiability of � can be proved more simply.

2.7.3 Convergence of the solutions

We consider the limiting case corresponding to � = 0 in (2.185). A re-

striction obtained in this manner corresponds to the condition of mutual

nonpenetration of the crack faces without including the thickness of the

shell. We note that in taking full account of the thickness one must bear

in mind that the stresses �

ij

, the moments m(w) and the transverse forces

t(w) depend on �. Thus � = 0 in (2.185) carries the implication that the

thickness of the shell is taken to be �xed, and the nonpenetration conditions

on the crack faces are described approximately. At this point we mention

other problems of a passage to limit (Attouch, Picard, 1983; Schuss, 1976;

Roubi�cek, 1997; Oleinik et al., 1992; Moet, 1982; Telega, Lewinski, 1994).

Thus, in the case under consideration the solution satis�es the following

restrictions:

[W ]� � 0 on �

 

; w �Wr� � � in 


 

: (2:208)

The set of admissible displacements in this case has the form

K

0

= f(W;w) 2 H(


 

) j (W;w) satisfy (2:208)g:

Here the solution of the problem of minimizing the functional �

u

over the

set K

0

is equivalent to the following variational inequality:

�

0

u

(�)(��� �) � 0; � 2 K

0

; 8 �� 2 K

0

: (2:209)

Let the set U be chosen as before. We consider the optimal control problem

inf

u2U

J

0

(u); J

0

(u) =

Z

�

 

j[�]j d�

 

; (2:210)
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where � is de�ned in (2.209) for given u. A solution of problem (2.210),

(2.209) exists (but we will not dwell on the proof).

We introduce the following notation:

j

�

= inf

u2U

J

�

(u); j

0

= inf

u2U

J

0

(u): (2:211)

The connection between solutions of the problems (2.210), (2.209) and

(2.189), (2.188) is characterized by the theorem given below. Let u

�

be

the solution of problem (2.189), (2.188), while �

�

corresponds to u

�

and is

de�ned by (2.188).

Theorem 2.22. Let r� � 0 in some neighbourhood W of the graph �

 

: From

the sequence (u

�

; �

�

) one can choose a subsequence such that as � ! 0

u

�

! u

0

weakly in L

2

(
); �

�

! �

0

weakly in H(


 

); j

�

! j

0

;

where u

0

is a solution of the problem (2.210), (2.209), and �

0

corresponds

to u

0

and is de�ned by (2.209).

Proof. Let �

�

(u) be a solution of the variational inequality (2.188)

with given �xed u 2 U . We take an arbitrary element �� 2 K

�

0

. Then

�� 2 K

�

for all � � �

0

. We substitute �� into (2.188) as a test element. We

arrive at the estimate

k�

�

(u)k

H(


 

)

� c

which is uniform with respect to � � �

0

. Consequently, one can assume that

as � ! 0

�

�

(u) ! ~� weakly in H(


 

); (2:212)

[�

�

(u)] ! [ ~�] strongly in L

1

(�

 

); (2:213)

� j[@w

�

(u)=@�]j ! 0 strongly in L

2

(�

 

): (2:214)

We choose an arbitrary element �� 2 K

0

and construct, in accordance with

Lemma 2.3 (see below), a sequence ��

�

2 K

�

which strongly converges to ��

in H(


 

). Substituting the ��

�

as the test functions into inequality (2.188)

and using (2.212) we pass to the limit as � ! 0. Condition (2.214) ensures

the inclusion ~� 2 K

0

. The limiting variational inequality has the form

�

0

u

(~�)(��� ~�) � 0; ~� 2 K

0

; 8 �� 2 K

0

which means ~� = �(u). Here, from (2.213) we obtain

J

�

(u) ! J

0

(u); � ! 0: (2:215)

Suppose that u is now a solution of the optimal control problem (2.210),

(2.209). From (2.215) we have j

�

� J

�

(u)! J

0

(u) = j

0

; hence

lim supj

�

� j

0

: (2:216)
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On the other hand, bearing in mind the boundedness of the set U , we can

assume

ku

�

k

L

2

(
)

� c (2:217)

uniformly with respect to �. Then from the variational inequalities

�

0

u

�

(�

�

)(��� �

�

) � 0; �

�

2 K

�

; 8 �� 2 K

�

(2:218)

we derive the estimate

k�

�

k

H(


 

)

� c (2:219)

uniform in �. According to (2.217) and (2.219), we can assume without loss

of generality that

u

�

! u

0

weakly in L

2

(
); � j[@w

�

=@�]j ! 0 strongly in L

2

(�

 

):

�

�

! �

0

weakly in H(


 

); strongly in L

2

(


 

):

This convergence and Lemma 2.3 enable us to pass to the limit in inequality

(2.218) and thus obtain

�

0

u

0

(�

0

)(�� � �

0

) � 0; �

0

2 K

0

; 8 �� 2 K

0

;

so that �

0

= �(u

0

). As in the proof of relation (2.215), it can be shown in

our case that J

�

(u

�

)! J

0

(u

0

) and therefore

lim inf j

�

� J

0

(u

0

): (2:220)

Comparing (2.216) and (2.220), we conclude that u

0

is a solution of the

optimal control problem (2.210), (2.209) and j

�

! j

0

. The theorem is

proved.

It remains to establish the assertion used in the proof of Theorem 2.22.

Lemma 2.3. Let r� � 0 in some neighbourhood W of the graph �

 

. Then

for every �xed element �� = (

�

W; �w) 2 K

0

one can construct a sequence

��

�

= (

�

W

�

; �w

�

) 2 K

�

such that

(

�

W

�

; �w

�

) ! (

�

W; �w) strongly in H(


 

): (2:221)

Proof. We construct a function

~

W from the space [H

1;0

(


 

)]

2

equal

to zero outside W and with the property

[

~

W ]� = j[@ �w=@�]j on �

 

:

If such a function is constructed, the sequence (

�

W

�

; �w

�

) = (

�

W +�

~

W; �w) will

be needed. Indeed, the convergence of (2.221) is obvious, and moreover

�w

�

�

�

W

�

r� � � in 


 

; [

�

W

�

]� � � j[@ �w

�

=@�]j on �

 

:
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We therefore choose a simply connected domain O, O � 
, with smooth

boundary  such that �

 

is a part of , and the outward normal n = (n

1

; n

2

)

to  coincides with � on �

 

. We put g = �j[@ �w=@n]j. Then g 2 H

1=2

(),

with g � 0 outside �

 

. Since the components of the normal n belong to

C

1

(), we have gn 2 [H

1=2

()]

2

. Hence a function W

0

2 [H

1

(O)]

2

exists

such that W

0

= gn on . We put W

0

� 0 outside O. Let ' be an in�nitely

di�erentiable function on 
 such that ' = 1 on �

 

and ' � 0 outside W.

The required function

~

W is obtained as

~

W = 'W

0

. The lemma is proved.

In conclusion we note that the conditions of Theorem 2.21 do not, in

general, ensure the validity of the inclusion (2.207) for the solution � =

(W;w) of problem (2.209). Indeed, in the case of problem (2.209) the jump

[@w=@�] is not, in general, zero on �

 

\ R(x

0

), and hence for [�] = 0 one

cannot assert that w 2 H

2

(R(x

0

)).

2.8 Signorini problem for cracks in shells

We consider an equilibrium problem for a shell with a crack. The faces of

the crack are assumed to satisfy a nonpenetration condition, which is an

inequality imposed on the horizontal shell displacements. The properties of

the solution are analysed { in particular, the smoothness of the stress �eld

in the vicinity of the crack. The character of the contact between the crack

faces is described in terms of a suitable nonnegative measure. The stability

of the solution is investigated for small perturbations to the crack geometry.

The results presented were obtained in (Khludnev, 1996b).

2.8.1 Setting the problem

Consider a shell whose mid-surface occupies a domain 


 

= 
 n �

 

, where


 � R

2

is a bounded domain with a smooth boundary �, �

 

is a graph of

the function y =  (x); x 2 [0; 1]; (x; y) 2 
. The horizontal displacements

of the mid-surface points are denoted by W = (w

1

; w

2

) and the vertical

displacements are denoted by w.

In what follows the Kirchho�{Love model of the shell is used. We iden-

tify the mid-surface with the domain 


 

in R

2

. However, the curvatures

of the shell are assumed to be small but nonzero. For such a con�guration,

following (Vol'mir, 1972), we introduce the components of the strain tensor

for the mid-surface,

e

ij

= "

ij

(W ) + k

ij

w; i; j = 1; 2;

where k

ij

= k

ji

2 C

1

(

�


) are the given curvatures of the shell, and

"

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; x

1

= x; x

2

= y:
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The components of the stresses integrated across the shell can be written

as follows:

�

11

= e

11

+ �e

22

; �

22

= e

22

+ �e

11

; �

12

= (1� �)e

12

;

where � = const is Poisson's ratio, 0 < � < 1=2. Let � = (W;w). Then the

energy functional of the shell is

�

 

(�) =

1

2

B

 

(w;w) +

1

2

h�

ij

; e

ij

i

 

� hf; �i

 

;

where f = (f

1

; f

2

; f

3

) 2 L

2

(
) is a given vector of exterior forces, the

brackets h�; �i

 

denote the integral over 


 

, and the bilinear form B

 

(�; �) is

de�ned by the formula

B

 

(w; �w) =

Z




 

(w

xx

�w

xx

+w

yy

�w

yy

+�w

xx

�w

yy

+�w

yy

�w

xx

+2(1��)w

xy

�w

xy

):

The above representation for the shell energy contains three di�erent terms

describing the bending energy of the shell, the deformation energy of the

middle surface, and the work done by the exterior force f , respectively.

Let �

 

= (� 

x

; 1)=

p

1 +  

2

x

be the normal vector to the curve y =  (x),

�

 

= (�

1

 

; �

2

 

). To avoid interpenetration of the crack faces, we consider the

following condition of the Signorini type:

[W ]�

 

� 0 on �

 

: (2:222)

Here [W ] = W

+

� W

�

, where W

�

are the quantities of W evaluated at

the positive and negative crack faces with respect to �

 

. Notice that the

function w also has di�erent values at the opposite crack faces of �

 

, in

general.

At the external boundary we consider the following conditions, corre-

sponding to clamping the shell:

w =

@w

@n

= W = 0 on �:

The equilibrium problem for the shell corresponds to minimization of

the energy functional over the set of admissible displacements. To this end,

introduce the convex sets

K(


 

) = f� = (W;w) 2 H(


 

) j W satisfying (2:222)g;

K

1

(


 

) = fW 2 H

1;0

(


 

)

2

j W satisfying (2:222)g;

where H

1;0

(


 

) is the space of functions from H

1

(


 

) which are equal

to zero on �, H

2;0

(


 

) is introduced analogously, H(


 

) = H

1;0

(


 

) �
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H

1;0

(


 

) � H

2;0

(


 

). We assume that  2 H

3

0

(0; 1) and consider the

minimization problem

inf

�2K(


 

)

�

 

(�): (2:223)

The functional �

 

is convex and di�erentiable, hence the problem (2.223)

is equivalent to the variational inequality

� 2 K(


 

) : h�

0

 

(�); ��� �i � 0 8 �� 2 K(


 

); (2:224)

where �

0

 

(�) is a derivative of �

 

at the point �. In view of the coercivity

and the weak lower semicontinuity of �

 

on the space H(


 

), it is easy to

prove the solvability of the problem (2.223) or the problem (2.224). Letting

F = (f

1

; f

2

), the inequality (2.224) can be written as

B

 

(w; �w) + hk

ij

�

ij

� f

3

; �wi

 

= 0 8 �w 2 H

2;0

(


 

); (2:225)

h�

ij

; "

ij

(

�

W �W )i

 

� hF;

�

W �W i

 

8

�

W 2 K

1

(


 

): (2:226)

This form of (2.224) is more convenient for further consideration and, more-

over, (2.225), (2.226) imply the following equilibrium equations in 


 

in the

sense of distributions:

�

2

w + k

ij

�

ij

= f

3

; (2:227)

�

@�

ij

@x

j

= f

i

; i = 1; 2: (2:228)

To prove this, it su�ces to substitute �� = � + �

0

in inequality (2.224),

where �

0

2 C

1

0

(


 

):

The structure of the section is as follows. In Section 2.8.2 we give neces-

sary de�nitions and construct a Borel measure � which describes the work

of the interaction forces, i.e. for a set A � �

 

n@�

 

; the value �(A) charac-

terizes the forces at the set A. The next step is a proof of smoothness of the

solution provided the exterior data are regular. In particular, we prove that

horizontal displacements W belong to H

2

in a neighbourhood of the crack

faces. Consequently, the components of the strain and stress tensors belong

to the space H

1

: In this case the measure � is absolutely continuous with

respect to the Lebesgue measure. This con�rms the existence of a locally

integrable function q called a density of the measure � such that

�(A) =

Z

A

q d�

 

:

Given W 2 H

2

we have q = ��

ij

�

i

 

�

j

 

� 0, and hence, the density q

is de�ned by the normal component of the surface forces at �

 

: At the

end, in Section 2.8.3, we establish the stability of solutions with respect to

perturbations in the crack shape.
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2.8.2 Construction of a measure. Regularity of solu-

tions

We recall some de�nitions which are useful in the work to follow. The

smallest �-algebra containing all compact sets in �

 

n@�

 

is called the Borel

�-algebra (Landkof, 1966). Any �-additive real-valued function de�ned on

the Borel �-algebra which is �nite for all compact sets B � �

 

n@�

 

is called

a measure on �

 

n@�

 

: Thus, for a measure � and a set A, the �-additivity

means

�(A) =

X

k

�(A

k

); A =

[

k

A

k

; A

i

\A

j

= ;; i 6= j:

Let C

0

(�

 

) be the space of continuous functions de�ned on �

 

n@�

 

and

having compact support in �

 

n@�

 

. Convergence in this space is introduced

in the usual way: we say '

n

! ' in C

0

(�

 

) if the supports of all '

n

belong

to a �xed compact set B � �

 

n @�

 

and if, in addition, '

n

converge to '

uniformly. Denote by H

s;0

(


 

) \ C

0

(�

 

) the space of functions such that

each of its elements belongs to H

s;0

(


 

) and is continuous and has compact

support at both crack faces �

 

n @�

 

.

Let � = (W;w) be the solution of (2.225){(2.226). Then W +

�

W 2

K

1

(


 

) for every element

�

W 2 [H

1;0

(


 

)]

2

such that [

�

W ]�

 

� 0 on �

 

.

Hence it follows from (2.226) that for the above

�

W the inequality

h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

(2:229)

is satis�ed. Now we are in a position to prove the following statement.

Theorem 2.23. On the �-algebra of Borel sets of �

 

n@�

 

, we can construct

a nonnegative measure � such that, for all �� = (

�

W; �w) 2 H(


 

) \ C

0

(�

 

);

a representation

h�

0

 

(�); ��i =

Z

�

 

n@�

 

[

�

W ]�

 

d� (2:230)

holds .

Proof. Let us consider a linear space W of functions de�ned on �

 

n

@�

 

:

W = f

�

W

�

g;

where

�

W

�

= [

�

W ]�

 

,

�

W 2 [H

1;0

(


 

)\C

0

(�

 

)]

2

. A linear functional can be

de�ned on W as

L(

�

W

�

) = h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

:

It is easily seen that the functional L is well-de�ned. In fact, if

�

W

�

1

=

�

W

�

2

;

then, in view of (2.229), L(

�

W

�

1

) = L(

�

W

�

2

):

Let us next show that the space C

1

0

(�

 

) is included inW. By C

1

0

(�

 

) we

denote the space of continuously di�erentiable functions de�ned on �

 

n@�
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and having compact supports. To this end, we choose an arbitrary function

� 2 C

1

0

(�

 

). Extend the function  beyond (0; 1) by zero and de�ne a

smooth function  along the normal �

 

:

(~x) =

�

1 ; if ~x = �x+ "�

 

(�x); �x 2 �

 

; 0 � " � "

0

=2;

0 ; if " > "

0

:

The function  is well-de�ned since the function  is smooth. Now one

can construct a function � in the domain y >  (x) assuming that � is also

extended by zero. Speci�cally, we put, in the domain y >  (x),

�(~x) = �(�x)(~x)�

 

(�x); ~x = �x+ "�

 

(�x); �x 2 �

 

; " � 0:

Then

�(�x)�

 

(�x) = �(�x); �x 2 �

 

:

We have to remark that the graph of the extended function y =  (x) has

intersections with � so that the points such as ~x = �x + "�

 

(�x) may not

belong to 


 

, in general. This should present no problems since � is equal

to zero near the ends of the extended graph y =  (x). Assuming that

the function � is identically equal to zero for y <  (x), we conclude that

� 2 [H

1;0

(


 

) \ C

0

(�

 

)]

2

and

[�]�

 

= � on �

 

n @�

 

:

Thus, we have C

1

0

(�

 

) � W. This implies that the functional L can be cor-

rectly de�ned on the space C

0

(�

 

) since it is positive on C

1

0

(�

 

) (Landkof,

1966). Consequently, there exists a measure � � 0 de�ned on Borel subsets

of �

 

n @�

 

and moreover

L(') =

Z

�

 

n@�

 

'd� 8' 2 C

0

(�

 

):

Taking into account the structure of the formula h�

0

(�); ��i and the validity

of (2.225), we arrive at the conclusion that the representation (2.230) holds

for any function �� = (

�

W; �w) 2 H(


 

) \ C

0

(�

 

). The proof is complete.

The properties of our measure � depend on the regularity of the solution.

The inequality (2.226) is actually a Signorini-type problem for �nding W

provided that the function w is already known. It can be written as follows:

hn

ij

; "

ij

(

�

W �W )i

 

+ hl

1

; �w

1

x

�w

1

x

i

 

+ hl

2

; �w

2

y

�w

2

y

i

 

(2:231)

�hF;

�

W �W i

 

� 0:

Here n

ij

= n

ij

(W ) coincide with �

ij

if we put k

ij

= 0, and l

1

= (k

11

+

�k

22

+ (1� �)k

12

)w, l

2

can be obtained by replacing k

11

on k

22

.
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Let us assume that k

ij

= 0 on �

 

. This enables us to integrate by parts

in the second and the third terms of (2.231) and to obtain the inequality

hn

ij

; "

ij

(

�

W �W )i

 

� h

�

F ;

�

W �W i

 

(2:232)

with the function

�

F 2 L

2

(


 

) . In this case one can use the results (Khlud-

nev, 1983) on the regularity of solutions for problems like (2.232). In par-

ticular, for any point x

0

2 �

 

n @�

 

there exists a neighbourhood O(x

0

)

such that

W 2 H

2

(O(x

0

) \ 


 

):

By making use of this result, the density of the measure � can be found.

In view of (2.230), the representation

h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

=

Z

�

 

n@�

 

[

�

W ]�

 

d� (2:233)

holds for all

�

W 2 [H

1;0

(
)\C

0

(�

 

)]

2

. Using equations (2.228), integration

by parts in (2.233) implies

�

Z

�

+

 

�

+

ij

�

j

 

�w

i

d�

 

+

Z

�

�

 

�

�

ij

�

j

 

�w

i

d�

 

=

Z

�

 

n@�

 

[

�

W ]�

 

d�: (2:234)

Here the values �

�

 

correspond to the positive and negative directions of

�

 

, respectively. Denote by �

�

�

� 0 the tangent components of the vectors

f�

�

kj

�

j

 

g and make use of the formulae

f�

�

kj

�

j

 

g = (�

�

ij

�

i

 

�

j

 

)�

 

+ �

�

�

:

Taking into account the equality �

+

ij

�

i

 

�

j

 

= �

�

ij

�

i

 

�

j

 

we derive from (2.234)

that

�

Z

�

 

(�

ij

�

i

 

�

j

 

)[

�

W ]�

 

d�

 

=

Z

�

 

n@�

 

[

�

W ]�

 

d�:

The quantity �

+

ij

�

i

 

�

j

 

has been herein denoted by �

ij

�

i

 

�

j

 

. Thus, the above

formula implies that the density of the measure � is equal to q = ��

ij

�

i

 

�

j

 

:

Moreover, the regularity of (W;w) provides the inclusion q 2 L

2

loc

(�

 

n@�

 

):

Now we shall prove the H

2

-regularity of W up to the points of �

 

n@�

 

without the condition k

ij

= 0 on �

 

. For simplicity, only the case  (x) � 0,

x 2 [0; 1]; will be considered. Let x

0

2 �

 

n @�

 

be any �xed point and R

�

be the ball of radius � centred at the point x

0

.

Theorem 2.24. We have W 2 H

2

(R

�

\


 

) provided that � is small enough.

Proof. Let R

3�=2

; R

2�

be balls with centre x

0

. Choose a smooth func-

tion ' such that ' � 1 in R

�

, ' � 0 outside R

3�=2

, 0 � ' � 1 everywhere.
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Since the normal �

 

has the coordinates (0; 1), the nonpenetration condition

[W ]�

 

� 0 can be written as

[w

2

] � 0; W = (w

1

; w

2

):

Let e be the unit vector in the x-direction,

d

��

h(�x) = [h(�x� �e) � h(�x)]�

�1

; �

�

= �d

��

d

�

; 0 <j � j< �=2:

De�ne the function W

�

= (w

1

�

; w

2

�

) with components

w

i

�

= w

i

+

�

2

2

'�

�

('w

i

); i = 1; 2:

It is easily veri�ed that [w

2

�

] � 0 on �

 

. Consequently, W

�

2 K

1

(


 

). Let

us substitute W

�

in (2.231) as a test function. Dividing by �

2

=2 we see that

hl

2

; ('�

�

'w

2

)

y

i

 

= hl

2

'

y

;�

�

('w

2

)i

 

� hd

�

(l

2

'); d

�

('w

2

)

y

i

 

:

The term corresponding to l

1

can be estimated easily since one can directly

integrate by parts:

hl

1

; ('�

�

'w

1

)

x

i

 

= �h'l

1

x

;�

�

'w

1

i

 

:

Moreover, the di�erence between the terms

hn

ij

(W ); "

ij

('�

�

('W ))i

 

and � hn

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

can be estimated from the above by the right-hand side of the inequality

(2.235) below. As a result we arrive at the inequality

hn

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

(2:235)

� c

�

kfk

2

0;


 

+ kd

�

('W )k

1;


 

(k�k

1;


 

+ kFk

0;


 

)

�

with a constant c independent of � . We can then use the �rst Korn inequality

in 


 

:

kd

�

('W )k

2

1;


 

� chn

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

:

With (2.235), this implies

kd

�

('W )k

1;


 

� c

uniformly in � . Consequently, D('W ) have �rst derivatives with respect to

x, which belong to L

2

(


 

). This yields that the second derivatives of 'W

with the exception of ('W )

yy

belong to L

2

(


 

). Meanwhile, it is evident

that the equation

W

yy

= G

holds in 


 

with G 2 L

2

(R

�

\ 


 

). The proof is complete.
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The internal regularity of the solution follows from (2.227), (2.228). In

particular, (2.227) implies w 2 H

4

loc

(


 

). It is seen that (2.228) are the

equations of two-dimensional elasticity with respect to (w

1

; w

2

) and the

right-hand side

�

f from L

2

(


 

):

�

@n

ij

@x

j

=

�

f

i

; i = 1; 2;

whence W 2 H

2

loc

(


 

). Moreover, (W;w) 2 H

2

�H

4

near � provided that

� 2 C

4

and w 2 H

4

in an appropriate neighbourhood of any �xed point

x

0

2 �

 

n @�

 

provided  2 C

4

(0; 1).

2.8.3 Stability of the solution

We now aim to study the stability of the solution with respect to the crack

shape. Let y = � (x) be the crack shape, and � be a parameter which will

subsequently tend to zero.

For any �xed � the solution of the problem

�

�

2 K(


�

) : h�

0

�

(�

�

); ��� �

�

i � 0 8 �� 2 K(


�

) (2:236)

can be found. Here 


�

;�

�

are introduced analogously to those of 


 

;�

 

.

The inequality (2.236) can be written as follows:

B

�

(w

�

; �w) + hk

ij

�

�

ij

� f

3

; �wi

�

= 0 8 �w 2 H

2;0

(


�

); (2:237)

h�

�

ij

; "

ij

(

�

W �W

�

)i

�

� hF;

�

W �W

�

i

�

8

�

W 2 K

1

(


�

): (2:238)

To derive an estimate for the solution, we put �w = �w

�

in (2.237) and

�

W = 0 in (2.238). Simple reasoning implies

2�

�

(�

�

) + hf; �

�

i

�

� 0: (2:239)

Let us next transform the independent variables to map 


�

onto 


0

. To

this end, we extend the function  by zero beyond the interval (0; 1). Let




1

, 


2

be domains such that 


1

� 


2

, 


2

� 
, �

�

� 


1

for all � small

enough. We can choose a function � 2 C

1

0

(


2

) with the property � � 1 on




1

and consider the transformation

~x = x; ~y = y � � � (2:240)

which has a positive Jacobian q

�

for a small �. This transformation sets

up a one-to-one correspondence between 


�

and 


0

. Let us denote u

�

(~x,

~y) = W

�

(x; y), U

�

(~x; ~y) = W

�

(x; y), !

�

= (U

�

; u

�

). For the structure of the

following relations to be clear we write down one of the second derivatives

of w

�

:

w

�

xx

= u

�

~x~x

� 2�u

�

~x~y

( �)

x

+ �

2

u

�

~y~y

( �)

2

x

� �u

�

~y

( �)

xx

:
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Thus, the inequality (2.239) can be written as

Z




0

�

u

2

~x~x

+ u

2

~y~y

+ 2�u

~x~x

u

~y~y

+ 2(1� �)u

2

~x~y

�

q

�1

�

d


0

(2:241)

+ h�

�

ij

; e

�

ij

q

�1

�

i

0

� hf

�

; !q

�1

�

i

0

+ �

Z




0

g(~x; ~y; �;D

�

u;D

�

U ) d


0

� 0:

For simplicity the superscript � in U

�

, u

�

is omitted; we have also used the

notation

e

�

ij

= "

ij

(U ) + k

�

ij

u; k

�

ij

(~x; ~y) = k

ij

(x; y); f

�

(~x; ~y) = f(x; y):

The arguments of g are determined by the transformation (2.240). Note

that the higher order terms are quadratic in D

�

u, D

�

U , j�j � 2, j�j � 1.

Since the inequality q

�1

�

> 1=2 holds for small �; we derive from (2.241) that

�

�

0

(!) + �

Z




0

g(~x; ~y; �;D

�

u;D

�

U ) d


0

� 0: (2:242)

Here

�

�

0

(!) =

1

2

B

0

(u; u) +

1

2

h�

�

ij

; e

�

ij

i

0

� hf

�

; !q

�1

�

i

0

:

Let us prove a complementary statement concerning the coercivity of the

functional �

�

0

(compare Vorovich, Lebedev, 1972). We should remark at

this point that the coercivity of �

 

has been used to prove the solvability

of the problem (2.223).

Lemma2.4. The functional �

�

0

is coercive on H(


0

) uniformly in �, j�j � �

0

,

that is

�

�

0

(!) ! 1 as k!k

H(


0

)

!1; j�j � �

0

:

Proof. Consider the nonlinear part of �

�

0

:

�

�

(!) =

1

2

B

0

(u; u) +

1

2

h�

�

ij

; e

�

ij

i

0

; ! = (U; u):

A transformation of the unit sphere S can be de�ned for r > 0 by the

formulae

~

U ! �r

~

U; ~u! r~u;

~

U = (~u

1

; ~u

2

); (

~

U; ~u) 2 S

with the constant � > 0 to be de�ned later on. By virtue of the �rst Korn

inequality, the square norm in [H

1;0

(


0

)]

2

is equal to

kUk

2

1;


0

= h�

ij

(U ); "

ij

(U )i

0

:
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In addition to this we can assume that kuk

2

2;


0

= B

0

(u; u); so that

k!k

2

H(


0

)

= kUk

2

1;


0

+ kuk

2

2;


0

:

Now let (

~

U; ~u) 2 S and k~uk

2;


0

� 1=2. The image of (

~

U; ~u) for the above

transformation is denoted by !. Then �

�

(!) � r

2

=8 uniformly in �. As-

suming k

~

Uk

1;


0

�

p

3=2, the inequality �

�

(!) � 3�

2

r

2

=8 � c

0

�r

2

=2 easily

follows, and is uniform in �. The constant c

0

bounds the integral

2




u; k

�

11

u

1

~x

+ k

�

22

u

2

~y

+ �(k

2

11

u

2

~y

+ k

�

22

u

1

~x

)

�

0

on S uniformly in �, j�j � �

0

. Choosing the constant � from the equation

3�

2

=8� c

0

�=2 = 1, the above arguments provide the estimate �

�

(!) � r

2

=8

for all images of the sphere S. This implies

�

�

0

(!) �

r

2

8

� cr

uniformly in �, j�j � �

0

. The proof of Lemma 2.4 is complete.

With Lemma 2.4, we easily conclude from (2.242) that

k!

�

k

H(


0

)

� c

uniformly in �, j�j � �

0

. Without any loss of generality, one can assume

that there exists a subsequence, still denoted by U

�

; u

�

, such that as � ! 0

U

�

! U weakly in H

1;0

(


0

); u

�

! u weakly in H

2;0

(


0

): (2:243)

The inequality (2.236) can be rewritten in the variables ~x; ~y. The structure

of the relation obtained in this way is analogous to (2.241), that is the

smaller order terms are proportional to �

i

, i � 1. The convergence (2.243)

enables us to pass to the limit in (2.237){(2.238). To complete the reasoning,

we should consider in detail the transformation of K

1

(


�

). After a change

of variables in (2.238), the test functions belong to the set

K

1

�

(


0

) = fW 2 [H

1;0

(


0

)]

2

j [W ]�

�

� 0 on �

0

g:

Here �

�

= (�� 

x

; 1)=

p

1 + �

2

 

2

x

is the normal vector to the curve y =

� (x). For the passage to the limit to be justi�ed, the following property

must be proved: for any �xed

�

W 2 K

1

(


0

), there exists a sequence

�

W

�

2

K

1

�

(


0

) such that

�

W

�

!

�

W strongly in H

1;0

(


0

):

Indeed, let

�

W = ( �w

1

; �w

2

). Choosing � just as in (2.240) we put

�

W

�

=

�

W + (0; � 

x

� �w

1

). In so doing the function

�

W

�

will satisfy all the necessary

properties. Really, the condition

�

W 2 K

1

(


0

) means the validity of the

inequality [ �w

2

] � 0 on �

0

. At the same time, for the function

�

W

�

to belong



148 Analysis of cracks in solids

to the setK

1

�

(


0

), the relation [ �w

1

�

](�� 

x

)+[ �w

2

�

] � 0 on �

0

must be satis�ed.

Obviously, our function satis�es this condition. The strong convergence of

�

W

�

to W

�

is evident. So, the limit of the relations obtained by changing

the variables in (2.237), (2.238) leads to the problem

U 2 K

1

(


0

); u 2 H

2;0

(


0

) :

B

0

(u; �u) + hk

ij

�

ij

� f

3

; �ui

0

= 0 8 �u 2 H

2;0

(


0

); (2:244)

h�

ij

; "

ij

(

�

U � U )i

0

� hF;

�

U � U i

0

8

�

U 2 K

1

(


0

):

This means that the limiting function (U; u) is the solution of the problem

corresponding to the crack shape y =  (x) � 0, x 2 [0; 1].

In conclusion we formulate the statement which has just been proved.

Theorem 2.25. From the solution �

�

= !

�

of the problem (2.236) one can

choose a subsequence which weakly converges to ! = (U; u) in H(


0

). The

function ! is the solution of the problem (2.244).

The nonpenetration condition considered in this section leads to new

e�ects such as the appearance of interaction forces between crack faces.

It is of interest to establish the highest regularity of the solution up to the

crack faces and thus to analyse the smoothness of the interaction forces. The

regularity of the solution stated in this section entails the components of

the strain and stress tensors to belong to H

1

in the vicinity of the crack and

the interaction forces to belong to L

2

: If the crack shape is not regular, i.e.

 62 H

3

0

(0; 1); the interaction forces can be characterized by the nonnegative

measure � de�ned on the subsets of the crack faces.

2.9 Simpli�ed nonpenetration conditions in

contact problems

We consider a problem similar to the one considered in Section 2.8. The

nonpenetration condition between crack faces is taken in simpli�ed form.

Our aim is to obtain some qualitative properties of solutions for a contact

problem for a plate having a crack.

2.9.1 Formulation of the problem

Let 
 � R

2

be a bounded domain with a smooth boundary �, and y =  (x)

be a crack shape on the (x; y)-plane, (x; y) 2 
; x 2 [0; 1]. A displacement

vector of the mid-surface points of the plate is denoted by � = (W;w),

W = (w

1

; w

2

). Herewith the functions W;w are horizontal and vertical

displacements, respectively, 


 

= 
n�

 

, and �

 

is the graph of the function

y =  (x). Assume that  2 H

3

0

(0; 1). Let "

ij

= "

ij

(W ), f = (f

1

; f

2

; f

3

) 2
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L

2

(
), hp; qi

 

=

R




 

pq d


 

;

"

ij

=

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; i; j = 1; 2; x

1

= x; x

2

= y:

The energy functional of the plate is as follows:

�(�) =

1

2

B(w;w) +

1

2

h�

ij

; "

ij

i

 

� hf; �i

 

;

where

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1� �)"

12

;

the constant � such that 0 < � < 1=2. The bilinear form B( � ; � ) charac-

terizing the bending properties of the plate is de�ned by a formula

B(w; �w) =

Z




 

(w

xx

�w

xx

+w

yy

�w

yy

+ �w

xx

�w

yy

+ �w

yy

�w

xx

+ 2(1� �)w

xy

�w

xy

):

The following boundary conditions are supposed to be given at the external

boundary

w =

@w

@n

= W = 0 on �: (2:245)

The nonpenetration condition is imposed both in the domain 


 

and on �

 

.

Thus, let the equation z = �(x; y) describe the punch shape, (x; y) 2 
,

� 2 C

1

(

�


). Then the nonpenetration condition for the plate{punch system

in a linear approach takes the form

w �Wr� � � in 


 

: (2:246)

Denote by � = (� 

x

; 1)=

p

1 +  

2

x

the normal vector to the curve y =  (x).

Let [W ] = W

+

�W

�

be the jump of the function W on �

 

. The signs

+;� correspond to the positive and negative directions with respect to �.

In this case the simpli�ed nonpenetration condition for the crack faces can

be written as

[W ]� � 0 on �

 

: (2:247)

We next introduce the subspace H

1;0

(


 

) � H

1

(


 

) whose elements are

equal to zero on �; the subspace H

2;0

(
) is de�ned analogously, H(


 

) =

H

1;0

(


 

) �H

1;0

(


 

) �H

2;0

(


 

). In particular, the condition � 2 H(


 

)

provides the ful�lment of (2.245). The norm in H

s;0

(


 

) is denoted by

k � k

s;


 

. Consider the convex and closed set in H(


 

):

K = f(W;w) 2 H(


 

) j (W;w) satisfy (2:246); (2:247)g:
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In so doing, the boundary value of � on � is assumed to provide nonempti-

ness of the set K. The equilibrium problem for the plate contacting with

the punch and having the crack can be formulated as a variational one:

inf

�2K

�(�):

In view of the convexity and di�erentiability of � this problem has an equiv-

alent form

B(w; �w�w)+h�

ij

; "

ij

(

�

W�W )i

 

� hf; ����i

 

; � 2 K; 8 �� 2 K; (2:248)

which precisely means the following inequality:

h�

0

(�); ��� �i � 0; � 2 K; 8 �� 2 K:

Herein �

0

(�) is a derivative of � evaluated at the point �.

2.9.2 Construction of the measures

We �rst note that the coercivity and weak lower semicontinuity of the func-

tional � imply that the problem (2.248) has a (unique) solution � 2 K.

The coercivity is provided by the following two inequalities,

B(w;w) � ckwk

2

2;


 

8 w 2 H

2;0

(


 

); (2:249)

h�

ij

; "

ij

(W )i

 

� ckWk

2

1;


 

8W 2 H

1;0

(


 

); (2:250)

where �

ij

= �

ij

(W ). Denote next by

N = (�r�; 1)=

p

1+ j r� j

2

the normal vector to the surface z = �(x; y). The space of continuous

functions in 


 

with compact supports is designated by C

0

(


 

). The con-

vergence in this space can be introduced as follows: �

n

! � in C

0

(


 

), if

�

n

converges to � uniformly and the supports of all �

n

belong to a �xed

compact S � 


 

. The �-algebra of Borel's subsets of 


 

is denoted here-

inafter by �(


 

). In what follows we prove the existence of a measure

characterizing the interaction forces between the plate and the punch.

Lemma 2.5. There exists a nonnegative measure � 2 �(


 

) such that for

all �� 2 H(


 

) \ C

0

(


 

) the following representation holds:

h�

0

(�); ��i =

Z




 

��N d�: (2:251)

Proof. Let us take any �xed element �� 2 H(


 

) \ C

0

(


 

) satisfying

the inequality ��N � 0 in 


 

. In this case the inclusion �+�� 2 K is evident.

Let us substitute the function � + �� in (2.248) as a test one. This implies

h�

0

(�); ��i � 0: (2:252)
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Consider next the variety V of all functions ��

�

such that ��

�

= ��N; �� 2

H(


 

) \ C

0

(


 

); and de�ne a linear and positive functional on V :

L(��

�

) = h�

0

(�); ��i:

By the inequality (2.252), valid for all functions �� possessing the property

��N � 0 in 


 

, this de�nition of L is correct. Similar to (Landkof, 1966)

the functional L can be extended on C

0

(


 

). The extended functional is

linear and positive, and hence it is continuous. This implies that there

exists a nonnegative measure � 2 �(


 

) such that for all ' 2 C

0

(


 

) a

representation

L(') =

Z




 

'd�

holds. This formula exactly coincides with (2.251) for ' = ��N , �� 2 H(


 

)\

C

0

(


 

). Lemma 2.5 is proved.

Now, let us prove the existence of the measure which characterizes an

interaction of the crack faces. The space of continuous functions having

compact supports in �

 

n @�

 

is denoted by C

0

(�

 

), F = (f

1

; f

2

). We next

denote by �(�

 

n @�

 

) the Borel �-algebra of subsets of �

 

n @�

 

. If a

function p is de�ned in 


 

and has the traces on �

 

belonging to C

0

(�

 

)

we shall write p 2 C

0

(�

 

). Let W

 

be a neighbourhood of the graph �

 

and W =W

 

n �

 

.

Lemma 2.6. Assume that r� = 0 in W. Then, there exists a nonnegative

measure  2 �(�

 

n @�

 

) such that for all

�

W 2 (H

1;0

(


 

) �H

1;0

(


 

)) \

C

0

(�

 

),

�

W � 0 outside of W; the following representation holds:

h�

0

(�); (

�

W; 0)i =

Z

�

 

n@�

 

[

�

W ]� d: (2:253)

Proof. First of all, we note that the function �+ (

�

W; 0) is an element

of the set K provided that

�

W belongs to the space shown in the Lemma 2.6

formulation and [

�

W ]� � 0 on �

 

. It should be recalled at this point that

� = (W;w) 2 K is the solution of the problem (2.248). Hence, substituting

�+ (

�

W; 0) in (2.248) as a test function yields

h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

� 0: (2:254)

The variety of all functions de�ned on �

 

n @�

 

by the formula

�

W

�

= [

�

W ]�

is denoted by U . Here

�

W 2 (H

1;0

(


 

)�H

1;0

(


 

))\C

0

(�

 

),

�

W � 0 outside

W: It is easily seen that the functional M de�ned on U by the formula

M (

�

W

�

) = h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

is positive. To verify this we use the inequality (2.254). The same inequality

provides the de�nition of M to be correct, so that the equality

�

W

�

1

=

�

W

�

2
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impliesM (

�

W

�

1

) = M (

�

W

�

2

). Continuously di�erentiable functions belonging

to C

0

(�

 

) are further denoted by C

1

0

(�

 

). Let us state that the variety

U contains the space C

1

0

(�

 

). To this end we choose any �xed function

' 2 C

1

0

(�

 

). Then, the function  is assumed to be extended by zero

beyond [0; 1] and a function � to be introduced:

�(~x) =

�

1 ; if ~x = �x+ ��(�x); �x 2 �

 

; 0 � � �

�

0

2

;

0 ; if � > �

0

:

The parameter �

0

is supposed to be rather small, so that � is well de�ned.

In so doing there is no problem to construct a function � in the domain

y >  (x) provided that ' is also extended by zero along the new graph of

the function y =  (x). Namely, we put for y �  (x):

�(~x) = '(�x)�(~x)�(�x); ~x = �x+ ��(�x); �x 2 �

 

; � � 0:

In this case one clearly has

�(�x)�(�x) = '(�x); �x 2 �

 

:

It is seen that the graph of the extended function y =  (x) has joint points

with � and consequently the points like ~x = �x+ ��(�x) may not belong to




 

. It should present no problems since ' is equal to zero near �. As for

the domain y <  (x) one can easily put

�(~x) � 0; ~x � (x; y); y <  (x):

Hence, the function � is de�ned in 


 

and the condition

[�]� = ' on �

 

n @�

 

holds. Moreover, � � 0 outside W for �

0

small enough. Thus, the inclusion

C

1

0

(�

 

) � U is proved. The functionalM can be extended on C

0

(�

 

) by its

positiveness (Landkof, 1966). This implies that there exists a nonnegative

measure  2 �(�

 

n @�

 

) such that forall ' 2 C

0

(�

 

)

M (') =

Z

�

 

n@�

 

'd:

Hence, the representation (2.253) follows provided that ' =

�

W

�

, and

�

W 2

(H

1;0

(


 

)�H

1;0

(


 

))\C

0

(�

 

),

�

W � 0 outside W. Lemma 2.6 is proved.

Making use of the above lemmas the following statement can be estab-

lished.

Theorem 2.26. Let r� = 0 in W. Then, there exist nonnegative measures

� 2 �(


 

) and  2 �(�

 

n @�

 

) such that for all �� = (

�

W; �w) 2 H(


 

) \

C

0

(�

 

), �w 2 C

0

(


 

), a representation

h�

0

(�); ��i =

Z




 

��Nd�+

Z

�

 

n@�

 

[

�

W ]� d (2:255)
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holds.

Proof. Let us �rst state that any �xed function �� = (

�

W; �w) 2 H(


 

)\

C

0

(�

 

), �w 2 C

0

(


 

), can be represented as

�� = (

~

W; 0) + (

�

W �

~

W; �w); (2:256)

where

~

W � 0 outsideW and

~

W =

�

W near �

 

. To this end the closed curve

l

 

= f�x j dist (�x;�

 

) = �g

is considered for � small enough. Let

�

W j

l

 

be the trace of the function

�

W on l

 

. The function

�

W j

l

 

can be easily extended in a small outer

neighbourhood of l

 

, being equal to zero beyond this neighbourhood. The

extended function is denoted by

�

W

 

. Then, we put

~

W (�x) =

�

�

W (�x) ; if �x is inside l

 

;

�

W

 

(�x) ; if �x is outside l

 

:

The function

~

W satis�es all the desired conditions provided that � is small

enough. Hence, the representation (2.256) takes place. Since the function

�

W �

~

W has a compact support in 


 

, one can use Lemma 2.5 and Lemma

2.6. So, the following relations hold for all �� satisfying the conditions of

Theorem 2.26:

h�

0

(�); ��i = h�

0

(�); (

�

W �

~

W; �w)i + h�

0

(�); (

~

W; 0)i

=

Z




 

(

�

W �

~

W; �w)N d�+

Z

�

 

n@�

 

[

~

W ]� d =

Z




 

��N d�+

Z

�

 

n@�

 

[

�

W ]� d:

Theorem 2.26 is proved.

2.9.3 Solution regularity

The properties of the constructed measures � and  depend largely on the

solution regularity. We thus prove some statements.

Theorem 2.27. Let x

0

2 


 

and jr�(x

0

)j > 0. Then, there exists a neigh-

bourhood O(x

0

) of the point x

0

such that the solution � = (W;w) of (2.248)

satis�es the inclusion

(W;w) 2 H

2

(O(x

0

)) �H

4

(O(x

0

)):

Proof. Introduce the following notation:

d

��k

p(�x) = �

�1

(p(�x � �j

k

) � p(�x)); �

�k

= �d

��k

d

�k

; k = 1; 2:

Here j� j > 0 and j

k

is a unit vector of the axis x

k

. We next notice the

following. Let ' 2 C

1

0

(


 

), and p, q be any functions, 0 � ' � 1. Then

the inequality

p+

�

2

2

'�

�k

('p � 'q) � q in 


 

(2:257)
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holds for small � provided that the inequality p � q in 


 

takes place.

It is evident that the left-hand side of (2.257) makes sense if the distance

between the support of ' and @


 

is more than j� j. To prove (2.257) we

write down the left side of (2.257) taken at the point �x as follows:

(1 � '

2

(�x))p(�x) +

'(�x)

2

(('p)(�x+ �j

k

) + ('p)(�x � �j

k

))

�

�

2

2

'(�x)�

�k

('q)(�x):

It is seen that this quantity is more than or equal to

(1 � '

2

(�x))q(�x) +

'(�x)

2

(('q)(�x + �j

k

)

+ ('q)(�x � �j

k

))�

�

2

2

'(�x)�

�k

('q)(�x) = q(�x);

i.e. the proof of (2.257) is obtained.

Without decreasing a generality one can assume �

x

k

(x

0

) 6= 0, k = 1; 2.

Let B

2r

(x

0

) � 


 

be a ball of radius 2r centred at the point x

0

such that

j�

x

k

(�x)j > 0, �x 2 B

2r

(x

0

), k = 1; 2. We choose a smooth function ' with

the properties: ' � 1 on B

r

(x

0

), ' � 0 outside B

3r=2

(x

0

), and 0 � ' � 1

everywhere. Construct next a vector �

�

= (w

1

�

; w

2

�

; w

�

) with the following

components (there is no a summation over i):

w

i

�

= w

i

+

�

2

2

	

i

; 	

i

= '�

�1

x

i

�

�k

(w

i

'�

x

i

); i = 1; 2;

w

�

= w +

�

2

2

'�

�k

('w � '�):

It is clear that (w

1

�

; w

2

�

; w

�

) 2 K for j� j < r=2. To verify this, one can apply

the arguments used to prove (2.257). This yields the inequality

w

�

�W

�

r� � � in 


 

; W

�

= (w

1

�

; w

2

�

):

In so doing we take into account the inequality (2.246) for the solution

(W;w). Moreover, the relation �

�

= 0 on �

 

holds. This implies �

�

2 K.

Substituting �

�

in (2.248) as a test function gives the relation

B(w;'�

�k

('w � '�)) + h�

ij

; "

ij

(	)i

 

� 2�

�2

hf; �

�

� �i

 

: (2:258)

Herein �

ij

= �

ij

(W );	 = (	

1

;	

2

). We have to notice that the di�erence

between the terms (the summation over k is absent)

B(w;'�

�k

('w)) and � B(d

�k

('w); d

�k

('w))
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can be estimated from the above by the value being on the right-hand side

of (2.259) (see below). The di�erence between the terms

h�

ij

; "

ij

(	)i

 

and h�

ij

(d

�k

('W )); "

ij

(d

�k

('W ))i

 

can also be estimated from the above by the same value. The right-hand

side of (2.258) does not depend on � and can be estimated easier. Thus, it

follows from (2.258) that

B(d

�k

('w); d

�k

('w)) + h�

ij

(d

�k

('W )); "

ij

(d

�k

('W ))i

 

(2:259)

� c

�

k�k

2

H(


 

)

+ kd

�k

('�)k

H(


 

)

(k�k

H(


 

)

+ kfk

0;


 

)

�

with a constant c independent of � . In view of (2.249), (2.250) the estimate

(2.259) results in the relation

kd

�k

('�)k

H(


 

)

� c

uniformly in � . Whence

@

@x

k

('�) 2 H(


 

); k = 1; 2;

that is,

(W;w) 2 H

2

(B

r

(x

0

)) �H

3

(B

r

(x

0

)):

Actually, the function w has four square integrable derivatives in a neigh-

bourhood of x

0

. For this assertion to be proved one can choose the ball

B

r

(x

0

), as before. Let ' 2 C

1

0

(B

r

(x

0

)) be an arbitrary function, and

� > 0: It is clear that

�

�

� (w

1

+ �'�

�1

x

1

; w

2

; w + �') 2 K:

Since the functional � reaches a minimum over the set K at the point

(w

1

; w

2

; w) the inequality

�(�

�

)� �(�) � 0

takes place. Dividing this relation by � and passing to the limit as � ! 0

the following equation is obtained in B

r

(x

0

):

�

2

w � f

3

=

�

@�

1j

@x

j

+ f

1

�

�

�1

x

1

;

being ful�lled in the sense of distributions. By deriving this equation we

take into account the arbitrariness of '. According to the foregoing the

right side of the above equation belongs to L

2

(B

r

(x

0

)); hence

w 2 H

4

(B

r=2

(x

0

)):
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Theorem 2.27 is proved.

Let us state one more result relating to the regularity of the solution in

a neighbourhood of �

 

n @�

 

. Let x

0

2 �

 

n @�

 

. Assume that the graph

�

 

has a rectilinear section near x

0

which is parallel to the axis x.

Theorem 2.28. Let r� = 0 in some neighbourhood of the point x

0

. Then

there exists a neighbourhood O(x

0

) of the point x

0

such that

W 2 H

2

(O(x

0

) \ 


 

);

@w

@x

2 H

2

(O(x

0

) \ 


 

):

Proof. Let us choose a smooth function ' such that ' � 1 on B

r

(x

0

),

' � 0 outside of B

3r=2

(x

0

), 0 � ' � 1 everywhere, assuming that r is

chosen to be small enough, so that r� = 0 in B

2r

(x

0

). De�ne the functions

w

i

�

= w

i

+

�

2

2

'�

�

('w

i

); i = 1; 2; w

�

= w;

where d

�

� d

�1

, �

�

� �

�1

, j� j <

r

2

. It is easily checked that (w

1

�

; w

2

�

; w

�

) 2

K. Indeed, for this inclusion to be valid one has to verify the inequalities

(2.246), (2.247). The relation (2.246) obviously takes place since r� � 0

in some neighbourhood of x

0

. So, it su�ces to examine (2.247). To do this,

we take into account that the graph �

 

has a rectilinear section near x

0

.

The last condition implies [w

2

] � 0 on �

 

\ B

2r

(x

0

). Hence, it su�ces to

prove

[w

2

�

] � 0 on �

 

\B

3r=2

(x

0

):

This inequality holds since

[w

2

�

] = [w

2

] +

�

2

2

'[�

�

('w

2

)] = (1� '

2

)[w

2

]

+

'

2

�

('w

2

)(�x + �j

1

) + ('w

2

)(�x � �j

1

)

�

� 0

on �

 

\ B

3r=2

(x

0

): Substituting (w

1

�

; w

2

�

; w

�

) in (2.248) as a test function

yields the relation

h�

ij

; "

ij

('�

�

('W ))i

 

� hF; '�

�

('W )i

 

: (2:260)

Meantime, it is easily seen that the di�erence between the terms

h�

ij

; "

ij

('�

�

('W ))i

 

and � h�

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

can be estimated from the above by the value being on the right-hand side

of the inequality (2.261). It enables us to obtain from (2.260) the following

relation

hn

ij

(d

�

('W )); "

ij

(d

�

('W ))i

 

(2:261)

� c

�

kWk

2

1;


 

+ kd

�

('W )k

1;


 

(kWk

1;


 

+ kFk

0;


 

)

�

:
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Again, by the �rst Korn inequality, the relation (2.261) results in the esti-

mate

kd

�

('W )k

1;


 

� c;

which is uniform in � . This implies that all the second derivatives of 'W

with the exception of ('W )

yy

belong to L

2

(


 

). At the same time the

relation (2.248) provides the validity of the equation

W

yy

= G

holding in B

2r

(x

0

)\


 

in the sense of distributions. To verify this equation,

the vector �� = (

~

W;w) is to be substituted in (2.248) as a test function,

where w is the third component of the solution (W;w) and

~

W = ( ~w

1

; ~w

2

) is

an arbitrary smooth function with a compact support in B

2r

(x

0

) \ 


 

. In

view of the proved smoothness of the solution, we have G 2 L

2

(B

r

(x

0

)\


 

).

Hence W

yy

2 L

2

(B

r

(x

0

) \ 


 

), that is

W 2 H

2

(B

r

(x

0

) \ 


 

):

Let us now prove the second part of Theorem 2.28 concerning the smooth-

ness of w. The function ' is assumed to be chosen as before, d

�

= d

�1

,

�

�

= �

�1

. We put

W

�

= W; w

�

= w +

�

2

2

'�

�

('w � '�):

Taking into account the identity r� � 0 ful�lled in B

2r

(x

0

) the inequality

w

�

� � in B

3r=2

(x

0

) \ 


 

follows provided that j� j < r=2. Consequently, the vector (W

�

; w

�

) belongs

to the set K. So, one can consider this vector as a test function in (2.248).

This implies

B(w;'�

�

('w � '�)) � hf

3

; '�

�

('w � '�)i

 

:

The arguments similar to those used to prove Theorem 2.27 allow us to

obtain from here the inequality

B(d

�

('w); d

�

('w)) � c

with a constant c uniform in � , whence kd

�

('w)k

2;


 

� c: Thus, one has

@w

@x

2 H

2

(B

r

(x

0

) \ 


 

):

Theorem 2.28 is proved.

Under the conditions of Theorem 2.26, i.e. assuming that r� = 0 in

W, one can �nd a density of the measure . In this case the measure  is
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absolutely continuous with respect to the Lebesgue measure on �

 

. Indeed,

let us choose �� in (2.255) as (

�

W; 0), (

�

W; 0) 2 H(


 

) \ C

0

(�

 

),

�

W � 0

outside W. We arrive at the relation

h�

ij

; "

ij

(

�

W )i

 

� hF;

�

W i

 

=

Z

�

 

n@�

 

[

�

W ]� d: (2:262)

In view of the obtained regularity of W up to �

 

n @�

 

the integration by

parts can be ful�lled in (2.262). This yields

�

Z

�

+

 

n

+

ij

�

j

�w

i

d�

 

+

Z

�

�

 

n

�

ij

�

j

�w

i

d�

 

=

Z

�

 

n@�

 

[

�

W ]� d: (2:263)

Of course, in so doing, we take into account the equations

@�

ij

@x

j

+ f

i

= 0; i = 1; 2;

holding in W. The signs +;� correspond to the positive and negative

directions with respect to the normal �. Since the tangent components �

�

�

of the vectors fn

�

ij

�

j

g are equal to zero on �

�

 

and n

+

ij

�

j

�

i

= n

�

ij

�

j

�

i

, the

relation (2.263) implies

�

Z

�

 

[

�

W ]�(�

ij

�

j

�

i

) d�

 

=

Z

�

 

n@�

 

[

�

W ]� d:

Hence, we conclude herefrom that the density p



of the measure  is equal

to ��

ij

�

j

�

i

and, moreover, p



2 L

2

loc

(�

 

n @�

 

). We should remark at this

point that the assumption  2 H

3

0

(0; 1) was used to prove the regularity of

W . Meanwhile, Theorem 2.26 still remains valid for the case  2 C

1

0

(0; 1).

But in this last case the assertion p



2 L

2

loc

(�

 

n@�

 

) is not valid, in general.

The density of the measure � can be also found in neighbourhoods of

points x

0

2 


 

satisfying the inequality j r�(x

0

) j> 0. As we know, the

function w has four derivatives near such points. Let a function �� = (0; 0; �w)

be substituted in (2.255) as a test element, where �w 2 H

2;0

(


 

) and a

support of �w is situated in a small neighbourhood of the �xed point x

0

.

This results in the equation

B(w; �w) � hf

3

; �wi

 

=

Z




 

�w=

p

1 + jr�j

2

d�:

Integrating by parts on the left-hand side implies

Z




 

(�

2

w � f

3

) �w dx =

Z




 

�w=

p

1 + jr�j

2

d�:
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Consequently, the density p

�

of the measure � is equal to

(�

2

w � f

3

)

p

1 + jr�j

2

:

As it is seen from Theorem 2.27, p

�

2 L

2

(O(x

0

)) for some neighbourhood

O(x

0

) of the point x

0

.

2.10 Solving methods for the simpli�ed mod-

els

In this section we deal with the simpli�ed nonpenetration condition of the

crack faces considered in the previous section. We formulate the model

of a plate with a crack accounting for only horizontal displacements and

construct approximate equations using penalty and iterative methods. The

convergence of these solutions is proved and its application to the one-

dimensional problem is discussed. Analytical solutions for the model of a

bar with a cut are obtained. The results of this section can be found in

(Kovtunenko, 1996c, 1996d).

2.10.1 Formulation of the model

A thin isotropic homogeneous plate is assumed to occupy a bounded do-

main 
 � R

2

with the smooth boundary �. The crack �

c

inside 
 is

described by a su�ciently smooth function. The chosen direction of the

normal � = (�

1

; �

2

) to �

c

de�nes positive �

+

c

and negative �

�

c

crack faces.

Let us denote 


c

= 
n�

c

. The function W = (w

1

; w

2

) of the plate hori-

zontal displacements is sought to satisfy the following boundary conditions.

First, the jam conditionW = 0 must hold on �. Second, the simpli�ed non-

penetration condition of the crack faces is imposed at the internal boundary

�

c

,

[W ]� � 0;

where [W ] is the jump of W on �

c

, i.e. [W ] =W j

�

+

c

�W j

�

�

c

.

Let us de�ne the Hilbert space

H(


c

) = fW = (w

1

; w

2

) 2 H

1

(


c

) j W = 0 on �g

and the closed convex set

K = fW 2 H(


c

) j [W ]� � 0 on �

c

g:

Using the �rst Korn inequality

h�

ij

(W ); "

ij

(W )i � c

1

kWk

2

H

1

(


c

)

;
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valid for W 2 H(


c

), we de�ne the scalar product in H(


c

) by the formula

(W;

�

W ) = h�

ij

(W ); "

ij

(

�

W )i+

Z

�

c

([W ]�)

�

[

�

W ]�

�

d�

c

and the norm in H(


c

) by kWk

2

= (W;W ). Here �

ij

(W ), "

ij

(W ) are the

usual linear stress and strain tensors; h � ; � i denotes integration over 


c

.

Therefore, by Korn's inequality and the continuity of the trace operators,

the following estimate is valid:

h�

ij

(W ); "

ij

(W )i � c

2

kWk

2

; 0 < c

2

< 1: (2:264)

Let f = (f

1

; f

2

) 2 L

2

(


c

) be given external forces. The equilibrium

problem for the thin elastic plate with the crack is formulated as follows:

h�

ij

(W ); "

ij

(

�

W �W )i � hf;

�

W �W i 8

�

W 2 K: (2:265)

There exists a unique solution W 2 K of the variational inequality (2.265).

Assume that the solution W of (2.265) is su�ciently smooth. We use

Green's formula

h�

ij

(W ); "

ij

(

�

W )i = h��

ij;j

(W ); �w

i

i �

Z

�

c

�

�

�

(W )

�

W� + �

�

(W )

�

W�

�

d�

c

;

where �

�

(W ) = �

ij

(W )�

j

�

i

, �

i

�

(W ) = �

ij

(W )�

j

� �

�

(W )�

i

, i = 1; 2, and

rewrite (2.265) as follows:

h��

ij;j

(W ) � f

i

; �w

i

� w

i

i

�

Z

�

c

�

�

�

(W )(

�

W �W )� + �

�

(W )(

�

W �W )�

�

d�

c

� 0:

By varying the test function

�

W 2 K, one can deduce that the variational

inequality (2.265) is equivalent to the equilibrium equations in 


c

,

��

ij;j

(W ) = f

i

; i = 1; 2;

and boundary conditions at �

c

,

[�

�

(W )] = 0; �

�

(W ) = 0; [W ]� � 0; �

�

(W ) � 0; �

�

(W )[W ]� = 0:

2.10.2 Approximate equations

To construct a penalty problem, we introduce the penalty operator � :

H(


c

)! H(


c

)

?

by the relation

h�(W );

�

W i = �

Z

�

c

([W ]�)

�

�

[

�

W ]�

�

d�

c

:
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Here h � ; � i means a duality pairing between H(


c

) and its dual space

H(


c

)

?

. By the superscribed minus we have denoted the negative part

of a function, i.e. s = s

+

� s

�

; s

+

; s

�

� 0; s

+

s

�

= 0. It is seen that � is a

monotonous operator.

By W

"

2 H(


c

), we denote the unique solution of the following penalty

equation depending on a small parameter " > 0,

h�

ij

(W

"

); "

ij

(

�

W )i + "

�1

h�(W

"

);

�

W i = hf;

�

W i 8

�

W 2 H(


c

): (2:266)

The last equation is interpreted as follows:

��

ij;j

(W

"

) = f

i

; i = 1; 2; in 


c

;

[�

�

(W

"

)] = 0; �

�

(W

"

) = 0; �

�

(W

"

) = �"

�1

([W

"

]�)

�

on �

c

:

Let us �x ". To linearize the left-hand side of (2.266), we construct the

following iterations for an arbitrary W

";0

2 H(


c

), n = 0; 1; 2; :::;

h�

ij

(W

";n+1

); "

ij

(

�

W )i+ "

�1

(W

";n+1

�W

";n

;

�

W ) (2:267)

= hf;

�

W i � "

�1

h�(W

";n

);

�

W i:

It is obvious that there exists a unique solution W

";n+1

2 H(


c

). The

appropriate boundary problem is of the form

��

ij;j

�

W

";n+1

+ "

�1

(W

";n+1

�W

";n

)

�

= f

i

; i = 1; 2; in 


c

;

�

�

�

�

W

";n+1

+ "

�1

(W

";n+1

�W

";n

)

��

= 0;

�

�

�

W

";n+1

+ "

�1

(W

";n+1

�W

";n

)

�

= 0;

�

�

�

W

";n+1

+ "

�1

(W

";n+1

�W

";n

)

�

� "

�1

�

W

";n+1

�W

";n

�

�

= �"

�1

([W

";n

]�)

�

:

Theorem 2.29. We have W

";n+1

! W

"

strongly in H(


c

) as n!1 and

kW

";n+1

�W

"

k

2

� (1 + 2c

2

")

�(n+1)

kW

";0

�W

"

k

2

; (2:268)

W

"

! W strongly in H(


c

) as "! 0;

where W

";n+1

;W

"

;W are the solutions of (2.267), (2.266), (2.265), respec-

tively.

Proof. By subtracting (2.266) from (2.267) and adding �"

�1

(W

"

;

�

W )

to both parts, we obtain

h�

ij

(W

";n+1

�W

"

); "

ij

(

�

W )i+ "

�1

(W

";n+1

�W

"

;

�

W )

= "

�1

(W

";n

�W

"

;

�

W )� "

�1

h�(W

";n

)� �(W

"

);

�

W i:
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Let us consider this equation with the test function

�

W = W

";n+1

�W

"

and

rewrite its right-hand side as follows:

"

�1

h�

ij

(W

";n

�W

"

); "

ij

(W

";n+1

�W

"

)i (2:269)

+ "

�1

Z

�

c

�

[W

";n

�W

"

]� + ([W

";n

]�)

�

� ([W

"

]�)

�

�

[W

";n+1

�W

"

]� d�

c

:

Since s

1

�s

2

+s

�

1

�s

�

2

= s

+

1

�s

+

2

� js

1

�s

2

j, the right-hand side of (2.269),

by the Holder inequality, is less than or equal to

(2")

�1

�

kW

";n

�W

"

k

2

+ kW

";n+1

�W

"

k

2

�

:

On the other hand, by (2.264), the left-hand side of (2.269) is no less than

(c

2

+ "

�1

)kW

";n+1

�W

"

k

2

:

Therefore,

kW

";n+1

�W

"

k

2

� (1 + 2c

2

")

�1

kW

";n

�W

"

k

2

:

By repeating the last estimate as n goes to 0, we derive that (2.268) holds

and, therefore, the �rst assertion of Theorem 2.29 on the convergence is

true.

The convergence

W

"

! W weakly in H(


c

) as "! 0 (2:270)

is proved by the usual method as in Section 1.3. Indeed, equation (2.266)

with

�

W =W

"

� �, � 2 K (i.e. �(�) = 0), gives

h�

ij

(W

"

); "

ij

(W

"

� �)i � h�

ij

(W

"

); "

ij

(W

"

� �)i

+ "

�1

h�(W

"

) � �(�);W

"

� �i = hf;W

"

� �i:

Hence, kW

"

k is uniformly bounded in ", and a subsequence exists such that

W

"

!

~

W weakly in H(


c

) as "! 0:

Then

h�

ij

(W

"

); "

ij

(�)i ! h�

ij

(

~

W ); "

ij

(�)i;

lim inf h�

ij

(W

"

); "

ij

(W

"

)i � h�

ij

(

~

W ); "

ij

(

~

W )i;

h�(W

"

); �i = "

�

hf; �i � h�

ij

(W

"

); "

ij

(�)i

�

! 0 as "! 0:

Therefore, we can obtain that �(

~

W ) = 0, i.e.

~

W 2 K, and pass to a lower

limit in the following inequality:

h�

ij

(W

"

); "

ij

(

�

W �W

"

)i � hf;

�

W �W

"

i
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= "

�1

h�(

�

W )� �(W

"

);

�

W �W

"

i � 0 8

�

W 2 K:

This provides

h�

ij

(

~

W ); "

ij

(

�

W �

~

W )i � hf;

�

W �

~

W i 8

�

W 2 K

and

~

W =W owing to the uniqueness property of the solution.

Subtracting h�

ij

(W ); "

ij

(

�

W )i from (2.266) and considering this equation

with the test element

�

W = W

"

�W , one obtains

h�

ij

(W

"

�W ); "

ij

(W

"

�W )i � "

�1

Z

�

c

([W

"

]�)

�

[W

"

�W ]� d�

c

= hf;W

"

�W i � h�

ij

(W ); "

ij

(W

"

�W )i:

Owing to relations

� ([W

"

]�)

�

[W

"

�W ]� =

�

([W

"

]�)

�

�

2

+ ([W

"

]�)

�

[W ]�; [W ]� � 0;

and the inequality (2.264), we have the following estimate:

c

2

kW

"

�Wk

2

+ "

�1

Z

�

c

�

([W

"

]�)

�

�

2

d�

c

� hf;W

"

�W i � h�

ij

(W ); "

ij

(W

"

�W )i:

Therefore, (2.270) leads to the second strong convergence shown in Theorem

10.1. The proof is complete.

2.10.3 A bar with a cut

We will consider the one-dimensional crack problem describing a thin bar

which occupies the set 


y

= (a; y) [ (y; b). The bar has a cut at the point

y, a < y < b, i.e. �

y

= fyg, 
 = (a; b),

H(


y

) = fW 2 H

1

(


y

) j W (a) = W (b) = 0g;

K = fW 2 H(


y

) j [W ] � W (y + 0)�W (y � 0) � 0g:

In this case the equilibrium problem (2.265) takes the form

W 2 K; hW

x

;

�

W

x

�W

x

i � hf;

�

W �W i 8

�

W 2 K;

where f 2 L

2

(


y

). The corresponding boundary problem is as follows:

�W

xx

= f in 


y

; (2:271)

[W

x

] = 0; [W ] � 0; W

x

(y) � 0; W

x

(y)[W ] = 0:
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The penalty equation (2.266) is transformed to

hW

"

x

;

�

W

x

i � "

�1

[W

"

]

�

[

�

W ] = hf;

�

W i 8

�

W 2 H(


y

)

or, equivalently,

�W

"

xx

= f in 


y

; (2:272)

[W

"

x

] = 0; W

"

x

(y) + "

�1

[W

"

]

�

= 0:

The iterations (2.267) are as follows:

(1 + "

�1

)hW

";n+1

x

;

�

W

x

i+ "

�1

[W

";n+1

][

�

W ]

= hf;

�

W i + "

�1

hW

";n

x

;

�

W

x

i+ "

�1

[W

";n

]

+

[

�

W ]:

We can also write the iterative boundary problem

�(1 + "

�1

)W

";n+1

xx

= f � "

�1

W

";n

xx

in 


y

; [W

";n+1

x

] = 0; (2:273)

(1 + "

�1

)W

";n+1

x

(y) � "

�1

[W

";n+1

] = "

�1

W

";n

x

(y) � "

�1

[W

";n

]

+

:

Lemma 2.7. The boundary value problem

�s

xx

= f in 


y

;

s(a) = s(b) = 0; [s

x

] = 0; c

1

s

x

(y) � c

2

[s] = g

has a unique solution represented by the formula

s(x) =W

0

(x) +

g + c

2

[W

0

]

c

1

+ c

2

(b� a)

�(x); (2:274)

where W

0

2 H

2

(


y

)\H(


y

) is a unique solution of the following boundary

value problem ,

�W

0

xx

= f in 


y

;

W

0

(a) = W

0

(b) = 0; [W

0

x

] = 0; W

0

x

(y) = 0;

and the function � 2 C

1

(


y

) \H(


y

) is as follows:

�(x) =

�

x� a ; x 2 (a; y);

x� b ; x 2 (y; b):

This lemma can be easily proved in view of the following properties of

�:

[�] = �(b� a); �

x

(x) � 1; �

xx

(x) � 0:

Now it seems to be natural to seek a solution of (2.273) as W

";n+1

= W

0

+

c

n+1

(")�, c

n+1

(") 2 R, n = 0; 1; 2; :::. Indeed, then equation (2.273) is

ful�lled in the domain 


y

for any c

n+1

("):

�(1 + "

�1

)W

";n+1

xx

= (1 + "

�1

)(�W

0

xx

� c

n+1

(")�

xx

) = (1 + "

�1

)f
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= f � "

�1

(W

0

xx

+ c

n

(")�

xx

) = f � "

�1

W

";n

xx

:

Theorem 2.30. Solutions of the problems (2.271), (2.272), (2.273) have the

following presentation:

W = W

0

�

[W

0

]

�

b� a

�; W

"

= W

0

�

[W

0

]

�

" + b� a

�;

W

";n+1

= W

0

�

(1� �

n+1

)[W

0

]

�

" + b� a

�; � =

1

1 + "+ b� a

:

Proof. Let us choose W

";0

= W

0

for simplicity. One can substitute

W

";0

x

(y) � [W

";0

]

+

= �[W

0

]

+

in (2.273) and obtain, by (2.274),

W

";1

= W

0

+

�[W

0

]

+

+ [W

0

]

1 + "+ b� a

� =W

0

� �[W

0

]

�

�:

We next �nd

W

";1

x

(y) � [W

";1

]

+

= ��[W

0

]

�

� ([W

0

] + (b� a)�[W

0

]

�

)

+

= ��[W

0

]

�

� ([W

0

]

+

� (1 + ")�[W

0

]

�

)

+

= ��[W

0

]

�

� [W

0

]

+

:

Consequently, equations (2.273), (2.274) give

W

";2

= W

0

+

��[W

0

]

�

� [W

0

]

+

+ [W

0

]

1 + " + b� a

� = W

0

� (�+ �

2

)[W

0

]

�

�:

Iterating, as n increases, we obtain by a similar method that

W

";n

= W

0

� (� + �

2

+ ::::+ �

n

)[W

0

]

�

�

= W

0

�

�(1 � �

n

)

1� �

� = W

0

�

1� �

n

"+ b� a

[W

0

]

�

�:

Then, by Theorem 2.29, we pass to the limit in the last relation as n!1,

"! 0. The proof is completed.

Theorem 2.30 can also be veri�ed by the direct substitution of the ob-

tained solutions in (2.271), (2.272) and (2.273), respectively. We apply this

result to the following example. Let

f(x) =

�

c ; x 2 (a; y);

�c ; x 2 (y; b);

which corresponds to the uniform compression for c > 0, and to the exten-

sion for c < 0. Then

W

0

(x) =

c

2

�

�(x� a)

2

+ 2(y � a)(x� a) ; x 2 (a; y);

(x� b)

2

� 2(y � b)(x� b) ; x 2 (y; b);
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and [W

0

] = �c((y � a)

2

+ (y � b)

2

)=2.

If c � 0, then [W

0

] � 0, [W

0

]

�

= 0 and W = W

0

. If c > 0, then

W = W

0

� [W

0

]

�

=(b� a)�, i.e. [W ] = 0 and

W (x) =

c

2

8

>

>

<

>

>

:

�(x� a)

2

�

�

(y � a)

2

+ (y � b)

2

b� a

� 2(y � a)

�

(x� a);

(x� b)

2

�

�

(y � a)

2

+ (y � b)

2

b� a

+ 2(y � b)

�

(x� b):

2.10.4 Another presentation of the solution

We consider the problem for the bar with the cut and give another presen-

tation of the solution as compared with the previous one. For convenience

the dependence of the functions obtained on the cut point y is indicated.

For f 2 L

2

(a; b), we de�ne the unique solution U 2 H

2

(a; b) \H

1

0

(a; b)

of the following boundary value problem:

�U

xx

= f in (a; b); U (a) = U (b) = 0: (2:275)

The function U is continuous in (a; b). Let [W ]

y

= W (y + 0) �W (y � 0).

Introduce the closed convex set describing the nonpenetration condition

K

y

= fW 2 H(


y

) j [W ]

y

� 0g

and consider the variational inequality

W 2 K

y

; hW

x

;

�

W

x

�W

x

i � hf;

�

W �W i 8

�

W 2 K

y

: (2:276)

Theorem 2.31. The function

W (x) = U (x)� U

+

x

(y)�

y

(x) (2:277)

is a unique solution of the problem (2.276), where

�

y

(x) =

�

x� a ; x 2 (a; y);

x� b ; x 2 (y; b)

and U is a solution to the problem (2.275).

Proof. Recalling the following properties of the function �

y

from the

space C

1

(


y

) \H(


y

):

[�

y

]

y

= �(b � a); �

y

x

(x) � 1; �

y

xx

(x) � 0 (x 6= y);

and integrating by parts, for a test function � 2 H(


y

) we obtain

h�

y

x

; �

x

i = �h�

y

xx

; �i � [�

y

x

�]

y

= �[�]

y

:
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Therefore, it follows from (2.275), (2.277) that

hf; �i = h�U

xx

; �i = hU

x

; �

x

i+ U

x

(y)[�]

y

;

hW

x

; �

x

i = hU

x

; �

x

i � U

+

x

(y)h�

y

x

; �

x

i = hU

x

; �

x

i+ U

+

x

(y)[�]

y

:

One can also calculate

[W ]

y

= [U ]

y

� U

+

x

(y)[�

y

]

y

= (b� a)U

+

x

(y):

Thus, we have

hW

x

;

�

W

x

�W

x

i � hf;

�

W �W i =

�

U

+

x

(y) � U

x

(y)

�

[

�

W �W ]

y

= U

�

x

(y)[

�

W ]

y

� (b� a)U

�

x

(y)U

+

x

(y) = U

�

x

(y)[

�

W ]

y

� 0 8

�

W 2 K

y

:

Since [W ]

y

� 0, the functionW given by the formula (2.277) belongs to K

y

and is a solution of (2.276). The theorem is proved.

It follows from (2.275) that the function U and, hence, the solution W

belong to the space H

2

(


y

). Then, by virtue of the properties of U and

�

y

, the function provided by (2.277) is a solution of the following boundary

value problem,

�W

xx

= f; in 


y

;

[W ]

y

= (b� a)U

+

x

(y); [W

x

]

y

= 0; W

x

(y) = �U

�

x

(y):

The smoothness of the solution is as follows. If f 2 H

n

(


y

) (n � 0), we

have W 2 H

n+2

(


y

).

We can also consider the inverse problem to (2.276). Let an arbitrary

function W belong to the space H

2

(


y

) \H(


y

) and satisfy the relations

[W

x

]

y

= 0; W

x

(y)[W ]

y

= 0; [W ]

y

� 0; W

x

(y) � 0:

Then W is a solution of the problem (2.276) for f = �W

xx

. Indeed, W 2

K

y

, and integrating by parts we obtain

hW

x

;

�

W

x

�W

x

i � hf;

�

W �W i = h�W

xx

� f;

�

W �W i � [W

x

(

�

W �W )]

y

= �W

x

(y)[

�

W ]

y

+W

x

(y)[W ]

y

= �W

x

(y)[

�

W ]

y

� 0 8

�

W 2 K

y

:

Having found the displacement function W (x) = U (x) � U

+

x

(y)�

y

(x),

one can �nd the other values: the strain "(x) and the stress �(x),

"(x) = �(x) = W

x

(x) = U

x

(x)� U

+

x

(y);

which are continuous on (a; b); the contact force is nonnegative, namely

p = ��(y) = U

�

x

(y) � 0:
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The potential energy is as follows:

�(W ) =

1

2

kWk

2

� hf;W i = �

1

2

kWk

2

� [W

x

W ]

y

= �

1

2

kU

x

� U

+

x

(y)k

2

0

:

Here k � k

0

denotes the norm in L

2

(a; b).

Example 1. Let f(x) � c, c � 0; then

U (x) = �

c

2

(x� a)(x� b); U

x

(y) =

c

2

(a+ b� 2y):

If a < y � (a + b)=2, we have

W (x) = �

c

2

�

(x � a)(x+ a� 2y) ; x 2 (a; y);

(x� b)(x+ b� 2y) ; x 2 (y; b)

and [W ]

y

= c(b� a)(a+ b� 2y)=2 � 0, �(x) = c(y � x), p = 0.

If (a + b)=2 � y < b, then

W (x) = U (x) = �

c

2

(x� a)(x� b);

and [W ]

y

= 0, �(x) = c(a + b� 2x)=2, p = c(2y � (a + b))=2.

Example 2. Let f(x) = sin k(x� a), k = �=(b� a); then

U (x) = k

�2

sin k(x� a); U

x

(x) = k

�1

cos k(x� a):

Therefore, by Theorem 2.31, we have

W (x) =

1

k

2

�

sin k(x� a) ; y � (a+ b)=2;

sin k(x� a)� k cos k(y � a)�

y

(x) ; y � (a+ b)=2;

�(x) =

1

k

�

cos k(x� a) ; y � (a+ b)=2;

cos k(x� a)� cos k(y � a) ; y � (a+ b)=2;

p =

1

k

�

� cos k(y � a) ; y � (a+ b)=2;

0 ; y � (a+ b)=2;

[W ]

y

=

b� a

k

�

0 ; y � (a+ b)=2;

cos k(y � a) ; y � (a+ b)=2:

2.10.5 Optimal control of the cut

Let us consider the problem of minimization of the crack opening

inf

a<y<b

[W ]

y

; (2:278)

where W is a solution to the problem (2.276). By virtue of (2.277), the

problem (2.278) is equivalent to

inf

a<y<b

U

+

x

(y): (2:279)
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Let us de�ne the following sets:

I

+

(U ) = fy 2 (a; b) j U

x

(y) > 0g; I

�

(U ) = fy 2 (a; b) j U

x

(y) � 0g;

where I

+

(U ) [ I

�

(U ) = (a; b). By the imbedding theorems, U 2 C

1

(a; b),

i.e. U

x

is a continuous function. Since U (a) = U (b) = 0, the set I

�

(U ) is

not empty. Thus, by virtue of U

+

x

(y) � 0, we obtain inf

a<y<b

[W ]

y

= 0 for any

y 2 I

�

(U ).

Example 1. For f(x) � c, c � 0, and for any (a + b)=2 � y < b, the

function W (x) = �c(x � a)(x� b)=2 is a solution to the problem (2.278).

Example 2. For f(x) = sin k(x � a), k = �=(b � a) and for any (a +

b)=2 � y < b, the function W (x) = k

�2

sin k(x � a) is a solution to the

problem (2.278).

We consider next the problem of the stress optimization

inf

a<y<b

J(y); J(y) = k� � �

0

k

2

0

; (2:280)

where �

0

2 L

2

(a; b) is a given stress function, � = W

x

, and W is a solution

of the problem (2.276). In view of (2.277), we can rewrite

J(y) = kU

x

� U

+

x

(y) � �

0

k

2

0

= kU

x

� �

0

k

2

0

+ 2U

+

x

(y)

b

Z

a

�

0

dx+ (b� a)(U

+

x

(y))

2

:

If

b

R

a

�

0

dx � 0, then U

+

x

(y) = 0 provides

inf

a<y<b

J(y) = kU

x

� �

0

k

2

0

8y 2 I

�

(U ):

If

b

R

a

�

0

dx < 0 and I

+

(U ) is not empty, then the in�mum is attained at y

?

such that

U

+

x

(y

?

) +

1

b� a

b

Z

a

�

0

dx ! inf :

If there exists y

?

2 I

+

(U ) such that the equality

U

+

x

(y

?

) = �(b � a)

�1

b

Z

a

�

0

dx

is valid, we have

J(y

?

) = kU

x

� �

0

k

2

0

�

1

b� a

�

b

Z

a

�

0

dx

�

2

:



170 Analysis of cracks in solids

We take the case, where �

0

(x) � const, �

0

< 0; then (b�a)

�1

b

R

a

�

0

dx = �

0

.

Example 1. Let f(x) � c, c � 0. Then

U

+

x

(y) =

�

c(a+ b� 2y)=2 ; a < y � (a + b)=2;

0 ; (a+ b)=2 � y < b:

If ��

0

< c(b � a)=2, then at the point y

?

= (a + b)=2 + �

0

=c, we have

U

+

x

(y

?

) = ��

0

, and the in�mum in (2.280) is reached,

J(y

?

) =







c

2

(a+ b� 2x)







2

0

=

c

2

(b� a)

3

12

:

If ��

0

� c(b � a)=2, then y

?

= a, the in�mum of J(y) is not reached, and

it is equal to

J(a) =







c

2

(a + b� 2x)�

c

2

(b� a) � �

0







2

0

=

c

2

(b� a)

3

12

 

1 + 3

�

1 +

2�

0

c(b� a)

�

2

!

:

If �

0

� 0, then for any y

?

2 I

�

(U ) the in�mum of (2.280) is

J(y

?

) =







c

2

(a+ b� 2x)� �

0







2

0

=

c

2

(b� a)

3

12

 

1 + 3

�

2�

0

c(b � a)

�

2

!

:

Example 2. Let f(x) = sin k(x� a), k = �=(b� a). Then

U

+

x

(y) =

1

k

�

cos k(y � a) ; a < y � (a+ b)=2;

0 ; (a + b)=2 � y < b:

Let �

0

< 0. If ��

0

< k

�1

, we have U

+

x

(y

?

) = ��

0

at the point y

?

=

a + k

�1

arccos(�k�

0

), and the in�mum is reached,

J(y

?

) = kU

x

(x)k

2

0

=

b� a

2k

2

:

If ��

0

� k

�1

, the in�mum of J(y) is not reached, and it is equal to

J(a) =









1

k

cos k(x� a)�

1

k

� �

0









2

0

= (b� a)

 

1

2k

2

+

�

1

k

+ �

0

�

2

!

:

If �

0

� 0, then for any y

?

� (a+ b)=2, the in�mum of J(y) is

J(y

?

) =









1

k

cos k(x� a)� �

0









2

0

= (b� a)

�

1

2k

2

+ �

2

0

�

:



Chapter 3

Cracks in complicated

plates

3.1 Plate with a crack under the creep

condition

We consider a boundary value problem for equations describing an equi-

librium of a plate being under the creep law (1.31){(1.32). The plate is

assumed to have a vertical crack. As before, the main peculiarity of the

problem is determined by the presence of an inequality imposed on a solu-

tion which represents a mutual nonpenetration condition of the crack faces

[W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

;

where W = (w

1

; w

2

); w are horizontal and vertical displacements of mid-

surface points of the plate, � is the normal to the crack shape, and [ � ] is the

jump of a function at crack faces. The presence of a crack alone implies a

domain wherein the solution is determined to have a nonsmooth boundary,

and boundary conditions given at crack faces are of the inequality type.

An existence theorem to the equilibrium problem of the plate is proved.

A complete system of equations and inequalities ful�lled at the crack faces is

found. The solvability of the optimal control problem with a cost functional

characterizing an opening of the crack is established. The solution is shown

to belong to the space C

1

near crack points provided the crack opening

is equal to zero. The results of this section are published in (Khludnev,

1996c).
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3.1.1 Equilibrium problem

Let 
 � R

2

be a bounded domain with a smooth boundary �; and y =  (x)

describe a crack shape on the (x; y)-plane, x 2 [0; 1], (x; y) 2 
: By �

 

we

denote the graph of the function y =  (x),  2 H

3

0

(0; 1): A mid-surface of

the plate occupies the domain 


 

= 
 n �

 

: The crack shape as a surface

in R

3

can be presented in the form y =  (x), �h � z � h; where z is the

distance from the mid-surface, 2h is the plate thickness.

Denote by W = (w

1

; w

2

), w horizontal and vertical displacements of the

mid-surface points, respectively, and write down the formulae for strain and

integrated stress tensor components "

ij

(W ), �

ij

(W ):

"

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; x

1

= x; x

2

= y;

�

11

(W ) = "

11

(W ) + �"

22

(W ); �

22

(W ) = "

22

(W ) + �"

11

(W );

�

12

= (1� �)"

12

(W ); � = const ; 0 < � < 1=2:

Here and everywhere below i; j = 1; 2: Let � = (W;w) and

�

�

(t; x; y) = �(t; x; y) +

t

Z

0

�(�; x; y) d�; (3:1)

B(w; �w) =

Z




 

(w

xx

�w

xx

+ w

yy

�w

yy

+ �w

xx

�w

yy

+ �w

yy

�w

xx

+2(1 � �)w

xy

�w

xy

):

We shall consider an equilibrium problem with a constitutive law corre-

sponding to a creep, in particular, the strain and integrated stress ten-

sor components "

ij

(W

�

), �

ij

(W

�

) will depend on �

�

= (W

�

; w

�

); where

(W

�

; w

�

) are connected with (W;w) by (3.1). In this case, the equilibrium

equations will be nonlocal with respect to t:

At the external boundary the following boundary conditions are assumed

to be satis�ed:

w =

@w

@n

= W = 0 on �� (0; T ): (3:2)

These conditions correspond to the clamping of the plate at the boundary.

Let Sobolev space H

1;0

(


 

) consist of functions having the �rst gener-

alized derivatives square integrable in 


 

and which are equal to zero on �;

the space H

2;0

(


 

) is introduced analogously and consists of functions equal

to zero on � with the �rst derivatives, H(


 

) = H

1;0

(


 

) � H

1;0

(


 

) �

H

2;0

(


 

).
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In the domain Q

 

= 


 

� (0; T ) (see Fig.3.1) we want to �nd a function

(W;w) satisfying the equilibrium equations

�

@�

ij

(W

�

)

@x

j

= u

i

; (3:3)

�

2

w

�

= u

3

; (3:4)

and boundary condition (3.2).

Fig.3.1. Cylinder Q

 

At the boundary �

 

� (0; T ) a system of equations and inequalities is

satis�ed whose precise form is found in Section 3.1.3. The function u =

(u

1

; u

2

; u

3

) in (3.3), (3.4) is given. The nonpenetration condition of the

crack faces can be written as follows:

[W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

 

� (0; T ): (3:5)

The structure of the section is as follows. In Section 3.1.2 we prove

a solvability of the equilibrium problem. This problem is formulated as a

variational inequality holding in Q

 

: The equations (3.3), (3.4) are ful�lled

in the sense of distributions. On the other hand, if the solution is smooth

and satis�es (3.3), (3.4) and all the boundary conditions then the above

variational inequality holds.

In Section 3.1.3 a complete system of equations and inequalities holding

on �

 

� (0; T ) is found (i.e. boundary conditions on �

 

� (0; T ) are found).

Simultaneously, a relationship between two formulations of the problem

is established, that is an equivalence of the variational inequality and the

equations (3.3), (3.4) with appropriate boundary conditions is proved.

Further, in Section 3.1.4, an optimal control problem is analysed. The

external forces u serve as a control. The solution existence of the opti-

mal control problem with a cost functional describing the crack opening is

proved. Finally, in Section 3.1.5, we prove C

1

-regularity of the solution

near crack points having a zero opening.
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3.1.2 Existence of a solution

In this subsection we prove an existence theorem of the equilibrium problem

for the plate. The problem is formulated as a variational inequality which

together with (3.2), (3.5) contains full information about other boundary

conditions holding on �

 

�(0; T ): An exact form of these conditions is found

in the next subsection.

Let

K = f� = (W;w) 2 H(


 

) j [W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

a.e. on �

 

g:

Introduce the set of admissible displacements of the plate,

K = f� 2 L

2

(0; T ;H(


 

)) j �(t) 2 K a.e. on (0; T )g;

and assume that u = (u

1

; u

2

; u

3

) 2 H

1

(0; T ;L

2

(


 

)): Let the brackets h � ; � i

denote the scalar product in L

2

(


 

): The following statement provides the

solution existence of the equilibrium problem.

Theorem 3.1. There exists a unique function � satisfying the variational

inequality

� 2 K; �

t

2 L

2

(0; T ;H(


 

));

T

Z

0

B(w

�

; �w �w) dt+

T

Z

0

h�

ij

(W

�

); "

ij

(

�

W �W )i dt �

T

Z

0

hu; ��� �i dt; (3:6)

8 �� 2 K:

Proof. De�ne the linear and continuous operator

A : L

2

(0; T ;H(


 

))! L

2

(0; T ;H(


 

)

?

)

by the formula

A(�)(��) =

T

Z

0

(B(w

�

; �w) + h�

ij

(W

�

); "

ij

(

�

W )i) dt;

�� = (

�

W; �w) 2 L

2

(0; T ;H(


 

));

where (W

�

; w

�

) and (W;w) are connected by the formula (3.1), andH(


 

)

?

is the space dual of H(


 

):

Note that the following inequalities hold in 


 

:

h�

ij

(W ); "

ij

(W )i � ckWk

2

1

; 8W = (w

1

; w

2

) 2 H

1;0

(


 

); (3:7)

B(w;w) � ckwk

2

2

; 8w 2 H

2;0

(


 

); (3:8)
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with the constants c being uniform in W;w; respectively. Hence, owing to

the formula

A(�)(�) =

T

Z

0

fB(w;w) + h�

ij

(W ); "

ij

(W )ig dt

+

1

2

B

0

@

T

Z

0

wd�;

T

Z

0

wd�

1

A

+

1

2

h�

ij

0

@

T

Z

0

Wd�

1

A

; "

ij

0

@

T

Z

0

Wd�

1

A

i

we easily conclude that the operator A is coercive, i.e.

A(�)(�)

k�k

L

2

(0;T ;H(


 

))

!1; k�k

L

2

(0;T ;H(


 

))

!1:

Moreover, the operator A turns out to be monotone. This implies that the

problem

A(�)(��� �) �

T

Z

0

hu; ��� �i dt; 8 �� 2 K; � 2 K (3:9)

has a solution.

In what follows an additional smoothness of the solution � of (3.9) with

respect to t is proved. To this end the �nite di�erences are used. Let " > 0

be a parameter and

��

"

(�) =

�

�� ; � 2 (t� "; t+ "); " > 0;

�(�) ; otherwise

be a test function where �� 2 K is a �xed element. We substitute ��

"

in (3.9)

and divide by 2" the relation obtained. Passing to the limit as " ! 0 we

derive for almost all t 2 (0; T )

B(w

�

(t); �w �w(t)) + h�

ij

(W

�

(t)); "

ij

(

�

W �W (t))i (3:10)

� hu(t); ��� �(t)i; 8 �� = (

�

W; �w) 2 K:

As seen, the variable t plays the role of a parameter in (3.10). Let us take

�� = �(t + h) as a test function in (3.10). Then we consider (3.10) at the

point t + h and choose �� = �(t) as a test function. Summing the obtained

inequalities and dividing by h

2

we derive the following relation:

B(d

h

w(t)+ d

�

h

w(t); d

h

w(t)) + h�

ij

(d

h

W (t)+ d

�

h

W (t)); "

ij

(d

h

W (t))i (3:11)

� hd

h

u(t); d

h

�(t)i:
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Herein the following notation is used:

d

h

v(t) =

v(t + h)� v(t)

h

; d

�

h

v(t) =

1

h

t+h

Z

t

v(� )d�:

Let, for instance, h > 0: The case h < 0 can be considered similarly. In

view of (3.7){(3.8) we have

B(w;w) + h�

ij

(W ); "

ij

(W )i � ck�k

2

H(


 

)

; 8 � = (W;w) 2 H(


 

):

Together with (3.11) this entails for almost all t 2 (0; T � h)

kd

h

�(t)k

2

H(


 

)

� c

�

kd

h

u(t)k

2

0

+ kd

�

h

�(t)k

2

H(


 

)

�

(3:12)

with a constant c uniform in t; h:We next notice that for any smooth func-

tion v the following inequalities hold (see Lemma 3.1 below):

T�h

Z

0

kd

�

h

v(t)k

2

0

dt �

T�h

Z

0

d

h

0

@

t

Z

0

kv(� )k

2

0

d�

1

A

dt �

T

Z

0

kv(t)k

2

0

dt: (3:13)

Hence, the integration of (3.12) with respect to t from 0 to T � h gives the

inequality

T�h

Z

0

kd

h

�(t)k

2

H(


 

)

dt � c

0

@

T�h

Z

0

kd

h

u(t)k

2

0

dt+

T

Z

0

k�(t)k

2

H(


 

)

dt

1

A

: (3:14)

The constant c in (3.14) is uniform in h. Since u

t

2 L

2

(Q

 

) we obtain from

(3.14) as h! 0

k�

t

k

2

L

2

(0;T ;H(


 

))

� c

�

ku

t

k

2

L

2

(Q

 

)

+ k�k

2

L

2

(0;T ;H(


 

))

�

:

Consequently, the existence of the derivative of the solution to (3.9) with

respect to t is proved. Moreover, by taking �� = 0 in (3.9) we have

k�k

2

L

2

(0;T ;H(


 

))

� ckuk

2

L

2

(Q

 

)

:

So, the solution of (3.9) is, in fact, the solution of (3.6).

The uniqueness of the solution to (3.6) can be proved in a standard way.

As it follows from (3.6) the di�erence � = �

1

� �

2

of the solutions satis�es

the inequality A(�)(�) � 0: Hence � � 0. Theorem 3.1 is proved.

Notice that a substitution in (3.6) of the test functions of the form

�� = � + �

0

; �

0

2 C

1

0

(Q

 

); implies that the equations (3.3), (3.4) hold

in Q

 

in the sense of distributions. By virtue of the proved inclusion �

t

2

L

2

(0; T ;H(


 

)) the variational inequality (3.10) is ful�lled for all t 2 (0; T ):
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Now we have to establish the auxiliary statement used to prove Theorem

3.1.

Lemma 3.1. For any smooth function v the inequalities (3.13) hold.

Proof. To prove the left inequality of (3.13), we �rst obtain

kd

�

h

v(t)k

2

0

�

1

h

t+h

Z

t

kv(� )k

2

0

d�:

Consequently, we derive the desired inequality since

1

h

t+h

Z

t

kv(� )k

2

0

d� = d

h

t

Z

0

kv(� )k

2

0

d�:

To prove the right inequality of (3.13) it su�ces to establish the estimate

T�h

Z

0

d

h

0

@

t

Z

0

f(� ) d�

1

A

dt �

T

Z

0

f(t) dt

for any smooth nonnegative function f(t). We have

T�h

Z

0

d

h

0

@

t

Z

0

f(� ) d�

1

A

dt =

T�h

Z

0

1

h

0

@

t+h

Z

t

f(� ) d�

1

A

dt:

Changing the variables � + t = � in the interior integral implies

T�h

Z

0

1

h

0

@

h

Z

0

f(� + t) d�

1

A

dt =

h

Z

0

1

h

0

@

T�h

Z

0

f(� + t) dt

1

A

d�

�

1

h

max

�2(0;h)

T�h

Z

0

f(� + t) dt

h

Z

0

dt = max

�2(0;h)

�+T�h

Z

�

f(t) dt �

T

Z

0

f(t) dt;

which proves the right inequality of (3.13).

3.1.3 Boundary conditions

This subsection is concerned with searching for boundary conditions holding

on �

 

� (0; T ) for the solution of (3.10) or, equivalently, of (3.9). Our

arguments are formal in that the solution is assumed to be smooth enough.

Let D � R

2

be a bounded domain, and  be its smooth boundary

with the external normal n = (n

1

; n

2

): We introduce the operators on the

boundary ;

M (w) = ��w+ (1� �)

@

2

w

@n

2

;
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R(w) =

@

@n

�w + (1� �)

@

3

w

@n@s

2

; s = (�n

2

; n

1

):

For any smooth functions w; v;W; V = (v

1

; v

2

) the following Green for-

mulae hold:

B

D

(w; v) = hM (w);

@v

@n

i



� hR(w); vi



+ h�

2

w; vi

D

; (3:15)

h�

ij

(W ); "

ij

(V )i

D

= h�

ij

(W )n

j

; v

i

i



� h

@�

ij

(W )

@x

j

; v

i

i

D

: (3:16)

The subscripts D;  denote the integration over the domain D and the

boundary , respectively. Note that the boundary @


 

of 


 

is a combi-

nation of the sets �;�

+

 

;�

�

 

: The formulae (3.15), (3.16) hold true for the

domain 


 

despite the absence of regularity of @


 

. To verify this we can

extend the graph �

 

so that the domain is divided into two parts. For each

part the formulae (3.15), (3.16) are valid, hence the statement follows. We

should note at this point that the external normals on �

+

 

, �

�

 

have opposite

directions.

To simplify the formulae in this subsection we shall write w

�

, W

�

, w; :::

instead of w

�

(t), W

�

(t), w(t); :::. This means that we �x t and consider

the boundary conditions on �

 

for this �xed value t. The same value t is

assumed to be chosen in (3.10).

Introduce the notation U = (u

1

; u

2

) and take the test functions of the

form (

�

W;w) in (3.10). This implies the variational inequality

h�

ij

(W

�

); "

ij

(

�

W �W )i � hU;

�

W �W i (3:17)

holding for all functions

�

W such that

[

�

W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

on �

 

;

�

W 2 H

1;0

(


 

):

On the other hand, we can substitute the test functions of the form (W; �w)

in (3.10), which entails the variational inequality

B(w

�

; �w� w) � hu

3

; �w �wi: (3:18)

The inequality (3.18) holds for all functions �w satisfying the relation

[W ]� �

�

�

�

�

�

@ �w

@�

�
�

�

�

�

on �

 

; �w 2 H

2;0

(


 

):

At the boundary �

�

 

we can decompose the vector f�

ij

(W

�

)�

j

g into the

sum of the normal and tangential components,

f�

ij

(W

�

)�

j

g = �

�

(W

�

)� + �

s

(W

�

)s; s = (��

2

; �

1

): (3:19)
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A similar decomposition takes place on �

+

 

. Let us substitute in (3.17) the

test functions of the form W +

~

W; where smooth functions

~

W belong to

H

1;0

(


 

), [

~

W ]� � 0 on �

 

; and make use of (3.16). A simple reasoning

results in the relations

[�

�

(W

�

)] = 0; �

s

(W

�

) = 0 on �

 

: (3:20)

To proceed, we choose functions of the form w+ � as test ones in (3.18),

where � is a smooth function in 


 

having support in a neighbourhood of a

�xed point of �

 

and such that [@�=@�] = 0. Note that [�] 6= 0. By (3.15),

this leads to the relations

[M (w

�

)] = 0; R(w

�

) = 0 on �

 

: (3:21)

We next choose in (3.10) the test functions of the form (

�

W; �w) = (0; 0),

(

�

W; �w) = 2(W;w): Using (3.3), (3.4) and (3.15) one easily gets

hM (w

�

);

�

@w

@�

�

i

�

 

+ h�

�

(W

�

); [W ]�i

�

 

= 0: (3:22)

On the other hand, a substitution of the test function (

�

W; �w) = (W;w) +

(

~

W; ~w) in (3.10) provides the inequality

B(w

�

; ~w) + h�

ij

(W

�

); "

ij

(

~

W )i � hu; ~�i; (3:23)

where (

~

W; ~w) are smooth functions belonging to K. We can integrate here

by (3.3), (3.4), (3.15), which gives

hM (w

�

);

�

@ ~w

@�

�

i

�

 

+ h�

�

(W

�

); [

~

W ]�i

�

 

� 0: (3:24)

Let (

~

W; ~w) be smooth functions having supports in a neighbourhood of

a �xed point on �

 

and such that [@ ~w=@�] = [

~

W ]�: We substitute (

~

W; ~w)

in (3.24) and derive

M (w

�

) + �

�

(W

�

) � 0:

Analogously, by choosing [@ ~w=@�] = �[

~

W ]� one easily gets

�M (w

�

) + �

�

(W

�

) � 0:

Thus, in fact, we have the inequality

jM (w

�

)j � ��

�

(W

�

) on �

 

: (3:25)

By virtue of (3.5), (3.22), (3.25) we arrive at the conclusion that

M (w

�

)

�

@w

@�

�

+ �

�

(W

�

)[W ]� = 0 on �

 

: (3:26)
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Hence, the form of the boundary condition on �

 

� (0; T ) is completely

determined. Together with (3.5), for all t 2 (0; T ) the conditions (3.20){

(3.21), (3.25){(3.26) hold on �

 

:

Notice that the variational inequality (3.10) can be derived from (3.3),

(3.4) and the above boundary conditions. In fact, let us assume that the

solution (W;w) is smooth enough and satis�es (3.3), (3.4) and the boundary

conditions obtained. We choose a smooth function (

�

W; �w) 2 K and multiply

(3.3), (3.4) taken for a �xed t 2 (0; T ) by �w

i

�w

i

(t); �w�w(t), respectively.

We next integrate over 


 

taking into account (3.5), (3.20){(3.21), (3.25){

(3.26). For the value t 2 (0; T ) chosen above this implies

B(w

�

; �w� w) + h�

ij

(W

�

); "

ij

(

�

W �W )i � hu; ��� �i

+ hM (w

�

);

�

@ �w

@�

�

�

�

@w

@�

�

i

�

 

+ h�

�

(W

�

); [

�

W ]� � [W ]�i

�

 

= 0:

According to the boundary conditions the sum of integrals over �

 

is non-

positive here, whence (3.10) follows.

Thus, the boundary problem describing the equilibrium of the plate

having the crack can be formulated both in the form (3.10) (or (3.6)) and

in the form of equations (3.3), (3.4) with (3.5) and conditions (3.20){(3.21),

(3.25){(3.26) ful�lled for all t 2 (0; T ): In this case the latter formulation

of the problem is formal in the sense that an additional regularity of the

solution is assumed. The solution regularity which follows from (3.6), in

general, does not provide the momentsM (w

�

) and transverse forces R(w

�

)

to be clearly identi�ed at the boundary �

 

� (0; T ):

3.1.4 Optimal control problem

The goal of this subsection is to prove an existence theorem for the optimal

control problem.

Let W � H

1

(0; T ;L

2

(


 

)) be a convex, bounded and closed set. For

any �xed u 2 W we can �nd the unique solution � = �(u) of (3.6) and

de�ne the cost functional characterizing the opening of the crack,

J(u) =

T

Z

0

Z

�

 

j[�]jd�

 

dt:

Our aim is to minimize this functional:

inf

u2W

J(u): (3:27)

The result given below provides the solvability of the optimal control prob-

lem formulated.

Theorem 3.2. There exists a solution of the optimal control problem (3.27),

(3.6).
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Proof. Let a sequence u

n

2 W be a minimizing one. By its bounded-

ness in H

1

(0; T ;L

2

(


 

)), one can assume that as n!1

u

n

! u weakly in H

1

(0; T ;L

2

(


 

)); u 2 W: (3:28)

For every n there exists a unique solution of the variational inequality

A(�

n

)(��� �

n

) �

T

Z

0

hu

n

; ��� �

n

idt; 8 �� 2 K; �

n

2 K: (3:29)

As we are well aware, �

n

t

2 L

2

(0; T ;H(


 

)) and, moreover, it follows from

the proof of Theorem 3.1 that

k�

n

k

2

H

1

(0;T ;H(


 

))

� cku

n

k

2

H

1

(0;T ;L

2

(


 

))

with a constant c being uniform in n. Without any loss we assume that as

n!1

�

n

; �

n

t

;

t

Z

0

�

n

d� ! �; �

t

;

t

Z

0

�d� weakly in L

2

(0; T ;H(


 

));

�

n

! � strongly in L

2

(Q

 

);

[�

n

] ! [�] weakly in L

1

(0; T ;L

1

(�

 

)):

The last convergence is due to the imbedding continuity of L

2

(0; T ;H(


 

))

in L

2

(0; T ;L

2

(�

 

)). The above convergence and (3.28) allow us to pass to

the limit in (3.29) and to get �

t

2 L

2

(0; T ;H(


 

));

A(�)(�� � �) �

T

Z

0

hu; ��� �idt; 8 �� 2 K; � 2 K: (3:30)

The variational inequality (3.30) precisely means that � = �(u): On the

other hand

inf

�u2W

J(�u) = lim inf

n!1

J(u

n

) � J(u) � inf

�u2W

J(�u);

consequently, the constructed function u is a solution of the optimal control

problem (3.27), (3.6). This completes the proof.

3.1.5 Solution regularity near crack points

When J(u) = 0 the crack is said to have a zero opening. As it turns out

the solution is in�nitely di�erentiable provided that the crack has a zero

opening. This assertion, in particular, means that if we have a zero crack
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opening the presence of the crack has no inuence on the displacement �eld.

In this case the plate behaviour precisely coincides with that of the plate

without a crack. This property con�rms the removable singularity property.

We shall prove that C

1

-regularity is a local property. If the crack opening

is zero in the vicinity of some �xed point at �

 

for all t 2 (0; t

0

), then the

solution is in�nitely smooth near this point for all t 2 (0; t

0

). Of course,

the external force u is assumed to be in�nitely smooth in this case. Also

we should remark that the above regularity property holds provided a zero

opening takes place since t = 0: In general, if the crack opening is zero for

t 2 (t

1

; t

0

), t

1

> 0, t

0

> t

1

; the solution does not have C

1

-regularity.

The arguments given below are concerned with a justi�cation of C

1

-

regularity of the solution for the crack of zero opening. We shall prove

the solution regularity in the neighbourhood of the line x

0

� (0; t

0

); where

x

0

� (0; 0), t

0

> 0; i.e. in the vicinity of the crack tip. The solution

regularity near the line �x�(0; t

0

); where �x 2 �

 

n@�

 

; can be easily proved.

So, let O(x

0

) � R

2

be a neighbourhood of the point x

0

, and let O =

O(x

0

) � (0; t

0

): Extend the function  (x) beyond x = 0 assuming that

the extension is smooth enough. Denote by

~

�

 

the graph of the extended

function. Also, let O

+

(x

0

) = O(x

0

) \ fy >  (x)g, and O

�

(x

0

) be de�ned

analogously, O

�

= O

�

(x

0

) � (0; t

0

): As shown the equations (3.3), (3.4)

hold in O

�

in the sense of distributions.

By the regularity of (W;w) which follows from Theorem 3.1, we conclude

that for all t 2 (0; T ) in O

�

(x

0

) the following equations are ful�lled,

�

@�

ij

(W

�

(t))

@x

j

= u

i

(t); (3:31)

�

2

w

�

(t) = u

3

(t); (3:32)

in the sense of (two-dimensional) distributions. As in the above case, let

D � R

2

be a �xed bounded domain with smooth boundary : As we know

the values M (w) and R(w) can be correctly de�ned on ; namely,M (w) 2

H

�

1

2

(), R(w) 2 H

�

3

2

() provided that w 2 H

2

(D), �

2

w 2 L

2

(D) and,

moreover, the following formula holds:

B

D

(w; v) = hM (w);

@v

@n

i
1

2

;

� hR(w); vi
3

2

;

+ h�

2

w; vi

D

; (3:33)

8 v 2 H

2

(D):

Here h � ; � i

s;

stands for the duality pairing between H

�s

() and H

s

():

If �

ij

(W ) 2 L

2

(D), @�

ij

(W )=@x

j

2 L

2

(D); the values �

ij

(W )n

j

can be

correctly de�ned on  as elements of H

�

1

2

(),

h�

ij

(W ); "

ij

(V )i

D

= h�

ij

(W )n

j

; v

i

i
1

2

;

� h

@�

ij

(W )

@x

j

; v

i

i

D

; (3:34)

8V = (v

1

; v

2

) 2 H

1

(D):



Cracks in complicated plates 183

Henceforth the boundaries of O

�

(x

0

) are denoted by 

�

; respectively.

Let a function ' � ('

1

; '

2

) belong to the space C

1

0

(O(x

0

)) and be

equal to zero beyond O(x

0

). Then (W (t) + ';w(t)) 2 K: We substitute

(W (t) + ';w(t)) in (3.10) as a test function. This implies for all t 2 (0; T )

h�

ij

(W

�

); "

ij

(')i

+

+ h�

ij

(W

�

); "

ij

(')i

�

� hu

i

; '

i

i:

To simplify the formulae here and below we do not show the dependence

of the functions on t: Subscripts +;� denote the integration over O

�

(x

0

);

respectively. Owing to the formula (3.34) the last inequality gives, for all

t 2 (0; T ),

�h[�

ij

(W

�

)�

j

]; '

i

i
1

2

;

�

� h

@�

ij

(W

�

)

@x

j

; '

i

i

�

� hu

i

; '

i

i: (3:35)

The existence of two angular points on 

�

presents no problems since ' has

a compact support. Hence, the inequality (3.35) with the equations (3.31)

yield the identity

h[�

ij

(W

�

)�

j

]; '

i

i
1

2

;

�

= 0; 8' 2 C

1

0

(O(x

0

))

and consequently

[�

ij

(W

�

)�

j

] = 0 on

~

�

 

\O(x

0

): (3:36)

Let � 2 C

1

0

(O(x

0

)): Beyond O(x

0

) the function � is assumed to be equal

to zero. We substitute (W (t); � + w(t)) as a test function in (3.10). As a

result the following inequality being valid for all t 2 (0; T ) follows:

B

+

(w

�

; �) +B

�

(w

�

; �) � hu

3

; �i: (3:37)

Since equation (3.32) holds in O

�

(x

0

) we easily deduce from (3.37) for all

t 2 (0; T ) that

h[M (w

�

)];

@�

@n

i
1

2

;

= 0; h[R(w

�

)]; �i
3

2

;

= 0; 8 � 2 C

1

0

(O(x

0

)):

Here  can coincide with 

+

or 

�

: By the arbitrariness of �, the above

identities imply for all t 2 (0; T )

[M (w

�

)] = 0; [R(w

�

)] = 0 on

~

�

 

\O(x

0

): (3:38)

Now we are in a position to prove the result on a regularity of the solution

near crack faces.

Theorem 3.3. Let u 2 C

1

(O) and

t

0

Z

0

Z

�

 

\O(x

0

)

j[�]j d�

 

dt = 0:
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Then

� 2 C

1

(O): (3:39)

Proof. The hypotheses of the theorem provide the condition [�] = 0

on (

~

�

 

\O(x

0

)) � (0; t

0

); whence

[�

�

] = 0 on (

~

�

 

\O(x

0

))� (0; t

0

):

Moreover, using (3.5) we obtain

�

@w

�

@�

�

= 0 on (

~

�

 

\O(x

0

))� (0; t

0

):

Note that (W

�

; w

�

) 2 H

1

(0; t

0

;H

1

(O

�

(x

0

)) �H

2

(O

�

(x

0

)): The above

observations concerning the jumps [�

�

], [@w

�

=@�] imply (see Mikhailov,

1976)

(W

�

; w

�

) 2 H

1

(0; t

0

;H

1

(O(x

0

)) �H

2

(O(x

0

)):

Following this inclusion and the conditions (3.36), (3.38) we shall prove that

the equations (3.3), (3.4) hold in O in the sense of distributions.

Denote by ( � ; ') the value of a distribution at the point ': For any

' 2 C

1

0

(O) we have

�

�

@�

ij

(W

�

)

@x

j

+ u

i

; '

�

=

t

0

Z

0

h�

ij

(W

�

);

@'

@x

j

i

�

dt� (u

i

; ') (3:40)

= �

t

0

Z

0

h[�

ij

(W

�

)�

j

]; 'i
1

2

;

�

dt�

t

0

Z

0

�

@�

ij

(W

�

)

@x

j

+ u

i

; '

�

�

dt:

Owing to (3.36), (3.31) we readily conclude that the right-hand side of (3.40)

is equal to zero, which implies the equations

�

@�

ij

(W

�

)

@x

j

= u

i

in O (3:41)

holding in the sense of distributions.

Analogously, for any ' 2 C

1

0

(O) we derive

(�

2

w

�

� u

3

; ') =

t

0

Z

0

B(w

�

; ') dt� (u

3

; ')

=

t

0

Z

0

B

�

(w

�

; ') dt� (u

3

; ') = �

t

0

Z

0

h[M (w

�

)];

@'

@�

i
1

2

;

�

dt (3:42)
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+

t

0

Z

0

h[R(w

�

)]; 'i
3

2

;

�

dt+

t

0

Z

0

h�

2

w

�

� u

3

; 'i

�

dt:

It is evident from (3.32), (3.38) that the right-hand side of (3.42) is equal

to zero. Hence, the equation

�

2

w

�

= u

3

in O (3:43)

holds in the sense of distributions.

The statement (3.39) of the theorem clearly follows from (3.41), (3.43).

In fact, one can locally solve the elliptic equations (3.41), (3.43) for each

�xed t 2 (0; t

0

) and get the in�nite di�erentiability with respect to x; y of

the functions �

�

(t) = �(t)+

t

R

0

�(� ) d� in any �xed subdomain of O(x

0

) (see

Fichera, 1972, Lions, Magenes, 1968). The function �

�

(t) is in�nitely dif-

ferentiable with respect to t 2 (0; t

0

) and hence �

�

2 C

1

(O), � 2 C

1

(O).

The proof is complete.

3.2 Contact of two plates one of which has a

crack

A contact between two plates is considered provided that one of the plates

has a crack. In a stress free state both plates remain at a given distance from

each other. The plate displacements satisfy two restrictions of inequality

type. The �rst restriction describes the nonpenetration between the plates,

and it is considered in the exterior of the domain. The second one describes

the nonpenetration between crack faces.

We prove the existence of the solution and state additional qualitative

properties { in particular, a solution regularity near the crack faces and

near the external boundary. The results of this section are obtained in

(Khludnev, 1997c).

3.2.1 Existence of solutions

Let 
 � R

2

be a bounded domain with C

1

- smooth boundary �, and �

 

be a graph of the function y =  (x), x 2 [0; 1], (x; y) 2 
,  2 H

3

0

(0; 1) (see

Fig.3.2).



186 Analysis of cracks in solids

Fig.3.2. Mid-surface of the upper plate

Assume that �

 

and � have a joint point{ the origin (0; 0). The angle

between � and �

 

is assumed to be positive at the point (0; 0). The domain




 

� 
 n �

 

corresponds to the mid-surface of the �rst plate whose mid-

surface belongs to the plane z = 0; the axis z is orthogonal to the (x; y)-

plane.

The second plate (which has no cracks) can be in contact with the �rst

plate (which has the crack). We assume that the plates remain at a distance

� � 0 from each other in the stress free state, � = const (see Fig.3.3). They

may be in contact due to exterior forces. The mid-surface of the second plate

is precisely 
, which corresponds to the negative value of the coordinate z.

By that the �rst plate is called the upper plate and the second one the lower

plate.

Fig.3.3. Plates in a stress-free state

Denote by � = (W;w), � = (U; u) displacement vectors of mid-surfaces

of the upper and the lower plates, respectively, where W = (w

1

; w

2

), w are

horizontal and vertical displacements of the upper plate, and U = (u

1

; u

2

),

u are horizontal and vertical displacements of the lower plate. Let

"

ij

= "

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; i; j = 1; 2; (x

1

= x; x

2

= y)

and �

ij

= �

ij

(W ),

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1 � �)"

12

(3:44)

for � = const, 0 < � < 1=2.
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The energy functional of the upper plate has the form

�

f

(�) =

1

2

B

 

(w;w) +

1

2

h�

ij

(W ); "

ij

(W )i

 

� hf; �i

 

;

where h � ; � i

 

means the integration over 


 

, f = (f

1

; f

2

; f

3

) 2 L

2

(


 

) is

the vector of exterior forces and

B

 

(w; �w) =

Z




 

(w

xx

�w

xx

+w

yy

�w

yy

+ �w

xx

�w

yy

+ �w

yy

�w

xx

+2(1 � �)w

xy

�w

xy

) d


 

:

Similarly, for the lower plate the energy functional is as follows,

�

g

(�) =

1

2

B(u; u) +

1

2

h�

ij

(U ); "

ij

(U )i � hg; �i;

where g = (g

1

; g

2

; g

3

) 2 L

2

(
) and the brackets h � ; � i denote the integration

over 
,

B(u; �u) =

Z




�u��ud
:

The energy functional for a system consisting of the two plates can be

presented as �

f

(�) + �

g

(�).

The nonpenetration condition between the crack faces has the form

[W ]� � "

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

 

: (3:45)

Here � = (� 

x

; 1)=

p

1 +  

2

x

is a unit normal vector to the graph �

 

, � =

(�

1

; �

2

). The plates may be in contact such that there is no interpenetration.

The nonpenetration condition between the plates can be written as (see

Khludnev, Sokolowski, 1997)

w � u� � in 


 

: (3:46)

We assume that the physical parameters of the lower plate coincide with

those of the upper plate; in particular, the stress tensors and strain tensors

of the lower plate satisfy (3.44). The thickness of the lower plate is 2". The

following conditions are considered at the external boundary �:

w = @w=@n =W = 0; u = @u=@n = U = 0 on �: (3:47)

By n we denote the external normal vector to �.

Let us formulate the equilibrium problem of the two plates. We put

H(


 

) = H

1;0

(


 

)�H

1;0

(


 

)�H

2;0

(


 

);
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H

0

(
) = H

1

0

(
) �H

1

0

(
)�H

2

0

(
); H = H(


 

)�H

0

(
):

Introducing the admissible set of displacements,

K

"

= f(�; �) 2 H(


 

)�H

0

(
) j (�; �) satisfy (3:45); (3:46)g;

the equilibrium problem admits the variational form

inf

(�;�)2K

"

(�

f

(�) + �

g

(�)) :

By the convexity and di�erentiability of the functional �

f

(�) + �

g

(�) on

the space H, the minimization problem is equivalent to the variational in-

equality

�

0

f

(�)(��� �) + �

0

g

(�)(

�

� � �) � 0; (�; �) 2 K

"

; 8 (��;

�

�) 2 K

"

; (3:48)

where �

0

f

(�), �

0

g

(�) are derivatives of the functionals �

f

, �

g

respectively

at the points �, �. We shall use the inequalities

B

 

(w;w) � ckwk

2

2;


 

; B(u; u) � ckuk

2

2;


(3:49)

for all w 2 H

2;0

(


 

), u 2 H

2

0

(
),

h�

ij

(W ); "

ij

(W )i

 

� ckWk

2

1;


 

; 8W = (w

1

; w

2

) 2 H

1;0

(


 

); (3:50)

where k � k

s;


 

is the norm in H

s;0

(


 

), and the inequality

h�

ij

(U ); "

ij

(U )i � ckUk

2

1;


; 8U = (u

1

; u

2

) 2 H

1

0

(
): (3:51)

We introduce one more bilinear form,

a(�; ��) = B

 

(w; �w)+B(u; �u)+h�

ij

(W ); "

ij

(

�

W )i

 

+h�

ij

(U ); "

ij

(

�

U )i; (3:52)

where � = (�; �), � = (W;w), � = (U; u) and, respectively, for �� = (��;

�

�).

By (3.49){(3.51), the following estimate holds:

a(�; �) � ck�k

2

H

; 8 � 2 H: (3:53)

The inequality (3.48) can be rewritten as

a(�; �� � �) � hf; ��� �i

 

+ hg;

�

� � �i; 8 �� = (��;

�

�) 2 K

"

: (3:54)

In accordance with (3.53) the functional �

f

(�) + �

g

(�) is coercive and

weakly lower semicontinuous on the space H, consequently, the problem

(3.48) (or the problem (3.54)) has a solution. The solution is unique. Note

that the equilibrium equations

��

ij;j

(W ) = f

i

; ��

ij;j

(U ) = g

i

; i = 1; 2; (3:55)
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hold in 


 

and 
, respectively. To verify the �rst equations it su�ces to take

the test functions (��;

�

�) = (�+ ~�; �) in (3.48), ~� = (

~

W; 0),

~

W 2 (C

1

0

(


 

))

2

.

We next take the test functions (��;

�

�) = (�; �+

~

�) in (3.48), where

~

� = (

~

U; 0),

~

U 2 (C

1

0

(
))

2

, which imply the second equations in (3.55).

In Section 3.2.2 we establish an additional regularity of the solution up

to the crack faces. Roughly speaking, we raise the solution smoothness by

one as compared to the variational smoothness (i.e. as compared to the

inclusion (�; �) 2 K

"

). Section 3.2.3 is devoted to the optimal control prob-

lem with the cost functional characterizing the crack opening. In particular,

C

1

-regularity is proved provided that the crack opening is zero. The pas-

sage to the limit as "! 0 is analysed in Section 3.2.4, which corresponds to

the transition from the precise nonpenetration condition (3.45) to the ap-

proximate nonpenetration condition (when " = 0 in (3.45)). At this point

we have to note that, while passing to the limit, the thickness of the second

plate is of no importance.

3.2.2 Solution regularity

Let (�; �) be the solution of the problem (3.48). Additional regularity of the

solution in the vicinity of �

 

n @�

 

is proved provided that �

 

is a segment

of a straight line. The following statement holds.

Theorem 3.4. Let x

0

2 �

 

n@�

 

, and D(x

0

) be a neighbourhood of the point

x

0

such that �

 

\D(x

0

) is a segment of a straight line parallel to the axis

x. Then there exists � > 0 such that

W;w

x

2 H

2

(R

�

(x

0

) \ 


 

); U; u

x

2 H

2

(R

�

(x

0

)):

Proof. We choose a smooth function ' such that ' � 1 in R

�

(x

0

),

' � 0 outside R

3�=2

(x

0

), 0 � ' � 1 everywhere, @'=@y = 0 on �

 

. Assume

that R

2�

(x

0

) � D(x

0

).

Introduce the notation

d

��

p(�x) = �

�1

(p(�x � �e) � p(�x)); �

�

= �d

��

d

�

; 0 < j� j < �=2;

where e is a unit vector of the axis x. Consider the vector (�

�

; �

�

) with the

components

�

�

= �+

�

2

2

'

2

�

�

�; �

�

= � +

�

2

2

'

2

�

�

�:

We have (�

�

; �

�

) 2 K

"

. In fact, it su�ces to verify (3.45), (3.46). To this

end, denote w � u by v. Then v(�x) � �� for all �x 2 


 

. Hence for the

function v

�

= w

�

� u

�

, the following relation holds:

v

�

(�x) = (w

�

� u

�

)(�x) = v(�x) +

�

2

2

'

2

(�x)�

�

v(�x)
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= v(�x)(1 � '

2

(�x)) +

'

2

(�x)

2

[v(�x � �e) + v(�x + �e)] � ��:

This means that the inequality like (3.46) holds:

w

�

� u

�

� � in 


 

: (3:56)

Similar to Section 2.4, it can be shown that the function �

�

= (W

�

; w

�

)

satis�es the following inequality (for " = 1):

[W

�

]� � "

�

�

�

�

�

@w

�

@�

�

�

�

�

�

on �

 

\D(x

0

): (3:57)

Consequently, by the �niteness of the function ' we conclude that (3.57)

holds on �

 

. The inequalities (3.56), (3.57), therefore, show that (�

�

; �

�

) 2

K

"

. This allows us to substitute (�

�

; �

�

) in (3.54) as a test function which

implies the inequality

a(�; '

2

�

�

�) � hf; '

2

�

�

�i

 

+ hg; '

2

�

�

�i: (3:58)

One can verify that the di�erence between the terms a(�; '

2

�

�

�) and

�a(d

�

('�); d

�

('�)) can be estimated from above by the right-hand side

of the inequality (3.59) (see below), and hence it follows from (3.58) that

a(d

�

('�); d

�

('�)) � c

�

k�k

2

H

(3:59)

+ kd

�

('�)k

H

�

k�k

H

+ kfk

0;


 

+ kgk

0;


�

�

with the constant c independent of � . By (3.53), the inequality (3.59) implies

kd

�

('�)k

H(


 

)

+ kd

�

('�)k

H

0

(
)

� c; (3:60)

where the constant c does not depend on � . We obtain from (3.60) that

@

@x

('�) 2 H(


 

);

@

@x

('�) 2 H

0

(
)

and consequently

W

x

2 H

1

(R

�

(x

0

) \ 


 

); U

x

2 H

1

(R

�

(x

0

)); (3:61)

w

x

2 H

2

(R

�

(x

0

) \ 


 

); u

x

2 H

2

(R

�

(x

0

)):

In the domain 


 

the equation (3.55) for W can be written in the form

W

yy

= F:

By (3.61), the inclusion F 2 L

2

(R

�

(x

0

) \ 


 

) holds, and hence

W

yy

2 L

2

(R

�

(x

0

) \ 


 

):
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Besides, by the equation (3.55) for U , in a neighbourhood of the point x

0

the following equation holds

U

yy

= G;

and, by (3.61), G 2 L

2

(R

�

(x

0

)). Theorem 3.4 is proved.

The next theorem provides an additional smoothness of the solution as

compared to Theorem 3.4 provided that there is no a contact between two

plates in a neighbourhood of a �xed point of the crack.

Theorem 3.5. Let the conditions of Theorem 3.4 hold and

w

�

(x

0

) > u(x

0

)� �: (3:62)

Then

W 2 H

2

(R

�

(x

0

) \ 


 

); U 2 H

2

(R

�

(x

0

)); (3:63)

w 2 H

3

(R

�

(x

0

) \ 


 

); u 2 H

3

(R

�

(x

0

)):

Proof. It follows from (3.62), (3.48) that there exists a neighbourhood

D(x

0

) of the point x

0

such that the equation

�

2

w = f

3

(3:64)

holds in D(x

0

)\


 

in the sense of distributions. We shall use the following

statement (Duvaut, Lions, 1972). Let D � R

2

be a bounded domain with a

smooth boundary, and v be a distribution on D such that v;rv 2 H

�1

(D).

Then v 2 L

2

(D) and, moreover, there exists a constant c depending on D

such that

kvk

L

2

(D)

� c

�

kvk

H

�1

(D)

+ krvk

H

�1

(D)

�

:

It follows from (3.61) that @('w)=@x 2 H

2;0

(


 

). Hence, the derivatives

w

xxx

, w

yyx

, w

xxy

belong to L

2

in a neighbourhood of the point x

0

. Equation

(3.64) can be written in the form

w

yyyy

= h:

By the above arguments, the functions h, w

yyy

, w

yyyx

belong to H

�1

(


 

\

D), where D is a neighbourhood of x

0

. Consequently, the function w

yyy

belongs to L

2

(


 

\D

1

) and the following estimate holds:

kw

yyy

k

2

L

2

(


 

\D

1

)

� c

�

kw

yyy

k

2

H

�1

(


 

\D

1

)

+kw

yyyy

k

2

H

�1

(


 

\D

1

)

+ kw

yyyx

k

2

H

�1

(


 

\D

1

)

�

:

Here D

1

is a neighbourhood of x

0

,

�

D

1

� D. Thus we obtain (3.63) for the

function w. Furthermore, the equation

�

2

u = g

3

(3:65)

holds in D(x

0

) in the distribution sense, and by similar arguments the in-

clusion (3.63) follows for the function u. Theorem 3.5 is proved.
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3.2.3 Cracks of minimal opening

In this subsection we analyse an optimal control problem. The exterior

forces (f; g) are chosen to minimize the cost functional

J

"

(f; g) =

Z

�

 

j[�]j d�

 

:

This functional characterizes an opening of the crack. As before, (�; �) is

the solution of (3.48) corresponding to (f; g). At the �rst step we prove

the existence of the optimal control problem. The next step is to prove the

C

1

-regularity of the solution provided that the crack opening is zero. We

�xed the parameter " in this subsection; the passage to the limit, as "! 0,

is analysed in Section 3.2.4.

Let F � G � L

2

(


 

) � L

2

(
) be a convex closed bounded set, and

(f; g) 2 F � G. The following statement takes place.

Theorem 3.6. There exists a solution of the minimization problem

inf

F�G

J

"

(f; g): (3:66)

Proof. Let (f

n

; g

n

) 2 F � G be a minimizing sequence. For any n,

there exists a unique solution of the problem

�

0

f

n

(�

n

)(�� � �

n

) + �

0

g

n

(�

n

)(

�

� � �

n

) � 0; 8 (��;

�

�) 2 K

"

: (3:67)

By the boundedness of f

n

, g

n

in L

2

(
), it follows from (3.67) that

k�

n

k

H(


 

)

+ k�

n

k

H

0

(
)

� c (3:68)

uniformly in n. Choosing a subsequence, if necessary, we can assume that

as n!1

(�

n

; �

n

) ! (�; �) weakly in H; strongly in L

2

(
);

[�

n

] ! [�] strongly in L

1

(�

 

):

This convergence allows us to pass to the limit as n ! 1 in (3.67) which

implies

�

0

f

(�)(��� �) + �

0

g

(�)(

�

� � �) � 0; (�; �) 2 K

"

; 8 (��;

�

�) 2 K

"

:

This variational inequality provides the property � = �(f; g), � = �(f; g).

Consequently,

inf

F�G

J

"

(

�

f ; �g) = lim inf

n!1

J

"

(f

n

; g

n

) � J

"

(f; g) � inf

F�G

J

"

(

�

f ; �g)

which proves that the pair (f; g) solves the optimal control problem (3.66).

Theorem 3.6 is proved.
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As it turns out, the solution of (3.48) is in�nitely di�erentiable provided

that f; g 2 C

1

, the crack opening is equal to zero and a contact between

plates is absent in the vicinity of the considered point. We prove this asser-

tion in the neighbourhood of a point x

0

, x

0

2 �\�

 

. The case x

0

62 �\�

 

is simpler (see Remark after the proof of Theorem 3.7).

Note that the absence of a contact between the plates at the point �x 2

�

 

n @�

 

means w

�

(�x) > u(�x)� �. As we know, in this case the following

boundary conditions hold in a neighbourhood of the point �x:

[�

�

(W )] = 0; �

s

(W ) = 0; [m(w)] = 0; t(w) = 0 on �

 

; (3:69)

jm(w)j � ��

�

(W ); m(w)

�

@w

@�

�

+ �

�

(W )[W ]� = 0 on �

 

: (3:70)

Here m(w), t(w) are the bending moment and the transverse force,

m(w) = ��w+(1��)

@

2

w

@�

2

; t(w) =

@

@�

�w+(1��)

@

3

w

@�@s

2

; s = (��

2

; �

1

)

and �

�

(W ), �

s

(W ) are the normal and tangential surface forces at �

 

:

f�

ij

(W )�

j

g = �

�

(W )� + �

s

(W )s:

The above boundary conditions hold provided that the solution � = (�; �)

is su�ciently smooth. We shall use only a part of the conditions (3.69),

(3.70) to prove the solution regularity.

The main statement related to the cracks of zero opening, i.e. to the

cracks with the property [�] = 0, is as follows.

Theorem 3.7. Let � > 0, x

0

2 � \ �

 

. Assume that [�] = 0 at �

 

\D(x

0

)

and f; g 2 C

1

(D(x

0

) \

�


), where D(x

0

) is a neighbourhood of the point

x

0

. Then there exists a neighbourhood D

1

(x

0

) of the point x

0

such that the

solution of the problem (3.48) satis�es the inclusion

�; � 2 C

1

(D

1

(x

0

) \

�


):

Proof. The open set D(x

0

)\


 

can be represented as a union of two

domains D(x

0

) \ 


 

= D

+

[ D

�

, where D

�

correspond to the positive

and negative directions of the normal �, i.e. for �x 2 D

�

we have y >

 (x), y <  (x), respectively, �x = (x; y). Since the angle between � and

�

 

is positive at the point x

0

we can use the imbedding theorem which

provides the continuity of w; u in

�


 = 
 [ � and

�




 

= 


 

[ � [ �

�

 

,

respectively. Hence, the inequality � > 0 implies the relation w > u� � in

some neighbourhood D(x

0

) of the point x

0

. In particular, we have w

�

(�x) >

u(�x)��, �x 2 D(x

0

)\�

 

. Whence, one derives that inD

+

; D

�

the following

equation holds in the distribution sense,

�

2

w � f

3

= 0:
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Let us verify that this equation holds in D(x

0

) \ 
. Indeed, [�] = 0 on

�

 

\D(x

0

), and by (3.45) we have [@w=@�] = 0 on �

 

\D(x

0

). This yields

w 2 H

2

(D(x

0

) \ 
) (see Mikhailov, 1976). By the boundary conditions

t(w) = 0, [m(w)] = 0 ful�lled on �

 

\D(x

0

), we obtain (see Section 2.7)

that

(�

2

w � f

3

; ') = 0; 8' 2 C

1

0

(D(x

0

) \
) (3:71)

which provides the assertion. Here, ( � ; ') is a distribution action at the

element '. Analogously, the condition [�] = 0 on �

 

\ D(x

0

) provides

the inclusion W 2 H

1

(D(x

0

) \ 
). Hence, by the boundary conditions

[�

ij

�

j

] = 0 holding on �

 

\D(x

0

), i = 1; 2, as in Section 2.7, we have

�

�

ij;j

(W ) + f

i

; '

�

= 0; 8' 2 C

1

0

(D(x

0

) \ 
); i = 1; 2:

The inequality w

�

(�x) > u(�x)� �, �x 2 D(x

0

)\�

 

implies the ful�lment

of the equation (3.65) in D(x

0

) \ 
. All the above arguments show that in

D(x

0

) \ 
, the following equations hold:

�

2

w = f

3

; �

2

u = g

3

; ��

ij;j

(W ) = f

i

; ��

ij;j

(U ) = g

i

; i = 1; 2:

Since the right-hand sides f

i

; g

i

belong to C

1

in D(x

0

) \

�


 we obtain the

proof of Theorem 3.7.

Remark. If x

0

2 �

 

, x

0

62 � \ �

 

and w

�

(x

0

) > u(x

0

) � �, the

equality [�] = 0 on �

 

\D(x

0

) also provides C

1

-smoothness of �, � in a

neighbourhood D(x

0

) under the condition f; g 2 C

1

(D(x

0

)), i.e.

�; � 2 C

1

(D(x

0

)):

The proof of this assertion can be ful�lled like that in Theorem 3.7. It

su�ces to notice that the inequality w(�x) > u(�x) � � holds for all �x 2

D

1

(x

0

) \ 


 

, where D

1

(x

0

) is a neighbourhood of the point x

0

. Moreover,

w

�

(�x) > u(�x) � �, �x 2 D

1

(x

0

) \ �

 

.

3.2.4 The passage to the limit

Consider an approximate description of the nonpenetration condition be-

tween the crack faces which can be obtained by putting " = 0 in (3.45).

Similar to the case " > 0, we can analyse the equilibrium problem of the

plates and prove the solution existence of the optimal control problem of

the plates with the same cost functional. We aim at the convergence proof

of solutions of the optimal control problem as "! 0. In this subsection we

assume that �

 

is a segment of a straight line parallel to the axis x.

Consider the nonpenetration conditions obtained from (3.45), (3.46) by

choosing the parameter " = 0,

[W ]� � 0 on �

 

; w � u� � in 


 

: (3:72)
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Introduce the set of admissible displacements corresponding to the restric-

tion (3.72):

K

0

= f(�; �) 2 H(


 

) �H

0

(
) j (�; �) satisfy (3.72) g: (3:73)

Let the set F �G be chosen as before. For any �xed (f; g) 2 F �G we can

�nd a unique solution of the variational inequality

�

0

f

(�)(��� �) + �

0

g

(�)(

�

� � �) � 0; (�; �) 2 K

0

; 8 (��;

�

�) 2 K

0

: (3:74)

The cost functional describing the opening of the crack is as follows:

J

0

(f; g) =

Z

�

 

j[�]jd�

 

:

In this case the function � corresponds to (f; g); it is found from (3.74).

There exists a unique solution of the optimal control problem,

inf

F�G

J

0

(f; g): (3:75)

We omit a proof of this statement since it is simpler as compared to the

proof of Theorem 3.6.

Let (�

"

; �

"

; f

"

; g

"

) correspond to the solution of the optimal control prob-

lem (3.66) for �xed ", i.e. (f

"

; g

"

) is the solution of the problem, and (�

"

; �

"

)

is de�ned from (3.48) with (f; g) = (f

"

; g

"

). The following result takes place.

Theorem 3.8. From the sequence (�

"

; �

"

; f

"

; g

"

) one can choose a subse-

quence, with the same notation, such that as "! 0

(�

"

; �

"

)! (�; �) weakly in H(


 

)�H

0

(
);

f

"

; g

"

! f; g weakly in L

2

(
); m

"

! m

0

:

Here (�; �; f; g) corresponds to the solution of the control problem (3.75) and

m

"

= inf

F�G

J

"

(f; g); m

0

= inf

F�G

J

0

(f; g):

Proof. Let �

"

(f; g), �

"

(f; g) be the solutions of the inequality (3.48)

with the functions f; g. We take (��;

�

�) 2 K

"

0

. Then (��;

�

�) 2 K

"

for all

" � "

0

. Substitution of (��;

�

�) in (3.48) as a test function implies the estimate

k�

"

(f; g)k

H(


 

)

+ k�

"

(f; g)k

H

0

(
)

� c (3:76)

uniform in " � "

0

. Choosing a subsequence, if necessary, one can assume

that as "! 0

�

"

(f; g) ! ~� weakly in H(


 

); �

"

(f; g) !

~

� weakly in H

0

(
); (3:77)
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�

�

"

(f; g)! ~�

�

strongly in L

1

(�

 

); (3:78)

"

�

�

�

�

�

@w

"

(f; g)

@�

�

�

�

�

�

! 0 strongly in L

2

(�

 

): (3:79)

By Lemma3.2 below, we choose any �xed element (��;

�

�) 2 K

0

and construct

a sequence (��

"

;

�

�

"

) 2 K

"

strongly converging in H(


 

) � H

0

(
) to the

element (��;

�

�). We next substitute the elements of this sequence as test

functions in the inequality

�

0

f

(�

"

)(�� � �

"

) + �

0

g

(�

"

)(

�

� � �

"

) � 0; (�

"

; �

"

) 2 K

"

; 8 (��;

�

�) 2 K

"

:

By (3.77), it is possible to pass to the limit as " ! 0 in this inequality.

Condition (3.79) provides the inclusion (~�;

~

�) 2 K

0

. The limiting variational

inequality takes the form

�

0

f

(~�)(��� ~�) + �

0

g

(

~

�)(

�

� �

~

�) � 0; (~�;

~

�) 2 K

0

; 8 (��;

�

�) 2 K

0

which means ~� = �(f; g),

~

� = �(f; g). Consequently, by (3.78), we have

J

"

(f; g) ! J

0

(f; g); "! 0: (3:80)

Let (f; g) be the solution of the control problem (3.75), (3.74). By (3.80),

we obtain m

"

� J

"

(f; g)! J

0

(f; g) = m

0

, and hence

lim sup m

"

� m

0

: (3:81)

On the other hand, by the boundedness of the set F � G in the space

L

2

(


 

)� L

2

(
), the inequality

k(f

"

; g

"

)k

L

2

(
)

� c (3:82)

is ful�lled being uniform in ". Consequently, the variational inequalities

�

0

f

"

(�

"

)(�� � �

"

) + �

0

g

"

(�

"

)(

�

� � �

"

) � 0; (3:83)

(�

"

; �

"

) 2 K

"

; 8 (��;

�

�) 2 K

"

yield the uniform in " estimate

k�

"

k

H(


 

)

+ k�

"

k

H

0

(
)

� c: (3:84)

By (3.82), (3.84), we can assume that as "! 0

f

"

; g

"

! f; g weakly in L

2

(
); (3:85)

(�

"

; �

"

) ! (�

0

; �

0

) weakly in H; strongly in L

2

(
); (3:86)

"

�

�

�

�

�

@w

"

@�

�

�

�

�

�

! 0 strongly in L

2

(�

 

); (3:87)
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�

�

"

(f; g) ! ~�

�

0

strongly in L

1

(�

 

): (3:88)

Again, by Lemma 3.2, we pass to the limit in (3.83) as "! 0. As a result,

the following variational inequality is obtained,

�

0

f

0

(�

0

)(�� � �

0

) + �

0

g

0

(�

0

)(

�

� � �

0

) � 0; (�

0

; �

0

) 2 K

0

; 8 (��;

�

�) 2 K

0

;

which means �

0

= �(f

0

; g

0

), �

0

= �(f

0

; �

0

).

As before, we can show that J

"

(f

"

; g

"

) ! J

0

(f

0

; g

0

) as " ! 0, and

consequently

lim inf m

"

� J

0

(f

0

; g

0

): (3:89)

It follows from (3.81), (3.89) that (f

0

; g

0

) is a solution of the optimal control

problem (3.75), (3.74) andm

"

! m

0

. The proof of Theorem 3.8 is complete.

Now we have to justify an auxiliary statement which has been used in

the proof of Theorem 3.8. Let us recall that �

 

is a segment of the axis x.

Lemma 3.2. For any �xed element (��;

�

�) 2 K

0

there exists a sequence

(��

"

;

�

�

"

) 2 K

"

such that

(��

"

;

�

�

"

) ! (��;

�

�) strongly in H(


 

)�H

0

(
):

Proof. Consider a smooth extension of the graph �

 

beyond the point

x = 1. In so doing we assume that the angle between the boundary �

and the extended graph is positive. The domain 


 

is divided into two

subdomains 


1

, 


2

with Lipschitz boundaries @


1

, @


2

. Of course, in the

case under consideration the boundaries �

+

 

, �

�

 

are di�erent sets. The

inclusion (��;

�

�) 2 K

0

means that the following inequalities are holding true,

[

�

W ]� � 0 on �

 

; �w � �u� � in 


 

;

and the inclusion (��

"

;

�

�

"

) 2 K

"

means that

[

�

W

"

]� � "j[@ �w

"

=@�]j on �

 

; �w

"

� �u

"

� � in 


 

:

To complete the proof of the lemma it su�ces to construct a sequence

(��

"

;

�

�

"

) such that

�

�

"

=

�

� and (��

"

;

�

�) 2 K

"

,

��

"

! �� strongly in H(


 

): (3:90)

We have to note at this point that a sequence

�

�

"

; �� will be a necessary one

provided that we can construct a function

~

W 2 [H

1;0

(


 

)]

2

such that

[

~

W ]� = j[@ �w=@�]j on �

 

(3:91)

and the functions ��

"

= (

�

W

"

; �w

"

) are de�ned in 


 

by the formula

(

�

W

"

; �w

"

) = (

�

W + "

~

W; �w):
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Indeed, the convergence (3.90) is obvious and, besides,

[

�

W

"

]� � "j[@ �w

"

=@�]j on �

 

; �w

"

� �u� � in 


 

:

So, we have to construct a function

~

W with the above property (3.91).

Note that � = (0; 1) on �

 

. Since �w 2 H

2

(


 

), we have �w

y

�

�




i

2 H

1

(


i

)

(i = 1; 2), and consequently �w

y

�

�

@


i

2 H

1=2

(@


i

); i = 1; 2 (see Baiocchi,

Capelo, 1984). Consider the following function on the boundary @


1

,

h



(�x) =

�

minf�[ �w

y

(�x)]; [ �w

y

(�x)]g ; �x 2 �

 

;

0 ; �x 62 �

 

:

Then h



2 H

1=2

(@


1

). Let h 2 H

1

(


1

) be an extension of h



into the

domain 


1

. Note that zero extension of h into 


2

gives the function de�ned

in 


 

, which belongs to H

1

(


 

). This extension into 


 

is again denoted

by h. Now we are in a position to de�ne a vector-function

~

W by the formula

~

W = (0; h) in 


 

. In this case we notice that

[

~

W ]� = maxf�[ �w

y

]; [ �w

y

]g = j[ �w

y

]j on �

 

and j[ �w

y

]j = j[@ �w=@�]j on �

 

.

Consequently, we have built the function

~

W 2 [H

1;0

(


 

)]

2

with the

property (3.91), which completes the proof.

3.3 Thermoelastic plates with cracks

In this section we consider the boundary value problem for model equa-

tions of a thermoelastic plate with a vertical crack (see Khludnev, 1996d).

The unknown functions in the mathematical model under consideration are

such quantities as the temperature � and the horizontal and vertical dis-

placements W = (w

1

; w

2

), w of the mid-surface points of the plate. We use

the so-called coupled model of thermoelasticity, which implies in particu-

lar that we need to solve simultaneously the equations that describe heat

conduction and the deformation of the plate. The presence of the crack

leads to the fact that the domain of a solution has a nonsmooth boundary.

As before, the main feature of the problem as a whole is the existence of

a constraint in the form of an inequality imposed on the crack faces. This

constraint provides a mutual nonpenetration of the crack faces:

[W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

:

Here [ � ] is the jump of a function across the crack faces and � is the normal

to the surface describing the shape of the crack. Thus, we have to �nd a

solution to the model equations of a thermoelastic plate in a domain with

nonsmooth boundary and boundary conditions of the inequality type.
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We prove the solvability of the problem. We also �nd boundary condi-

tions holding on the crack faces and having the form of a system of equations

and inequalities and establish some enhanced regularity properties for the

solution near the points of the crack. Some other results on thermoelasic

problems can be found in (Gilbert et al., 1990; Zuazua, 1995).

3.3.1 Statement of the problem

Let 
 � R

2

be a bounded domain with smooth boundary �, 


 

= 
 n �

 

,

and �

 

be the graph of the function y =  (x), x 2 [0; 1], (x; y) 2 
. We

assume that the mid-surface of the plate coincides with 


 

and that the

function  describing the shape of the crack on the plane x, y is su�ciently

smooth. The crack is assumed vertical. This means that its surface can be

given as y =  (x), �h � z � h, where z is the distance to the mid-surface of

the plate and 2h is the thickness of the plate. We denote by W = (w

1

; w

2

),

w the horizontal and vertical displacements of the mid-surface points of

the plate, respectively, and by � the temperature in the plate. We put

� = (W;w), Q

 

= 


 

� (0; T ), T > 0.

In the domain Q

 

, we consider the following equations describing qua-

sistatic deformation of a plate:

@�

@t

��� + �

2

@

@t

(divW ��w) = f; (3:92)

��

ij;j

+ �

2

�

;i

= 0; i = 1; 2; (3:93)

�

2

w + �

2

�� = 0: (3:94)

Here � is a positive parameter, �

ij

= �

ij

(W ), i; j = 1; 2, and

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1� �)"

12

;

� = const ; 0 < � < 1=2:

The symbols "

ij

= "

ij

(W ) stand for the components of the strain tensor of

the mid-plane of the plate:

"

ij

(W ) =

1

2

�

@w

i

@x

j

+

@w

j

@x

i

�

; i; j = 1; 2; x

1

= x; x

2

= y:

The system of equations (3.92){(3.94) is a model one. More precise (and

more bulky) equations for a thermoelastic plate can be found, for instance,

in (Nowacki, 1962).

Henceforth we denote by � = (� 

x

; 1)=

p

1 +  

2

x

the normal to the graph

�

 

, � = (�

1

; �

2

) and �

T

 

= �

 

� (0; T ). Consequently, the nonpenetration

condition on the crack faces can be written as

[W ]� � h

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

T

 

: (3:95)
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For simplicity, we further assume h = 1. Let some initial temperature

distribution be given:

� = �

0

at t = 0: (3:96)

Assume that the temperature and the clamping condition are given on the

exterior boundary of the plate:

� = w =

@w

@n

= W = 0 on �� (0; T ): (3:97)

Let H

1;0

(


 

) stand for the subspace of the Sobolev space H

1

(


 

) which

comprises the functions vanishing on �; let H

2;0

(


 

) consist of the func-

tions vanishing on � together with their �rst-order derivatives, H

2;0

(


 

) �

H

2

(


 

); and let H(


 

) = H

1;0

(


 

) � H

1;0

(


 

) � H

2;0

(


 

). We denote

the norm in H

s;0

(


 

) by k � k

s

.

Introduce the sets

K = f� = (W;w) 2 H(


 

) j [W ]� � j[@w=@�]j a.e. on �

 

g ;

K = f� 2 L

2

(0; T ;H(


 

)) j �(t) 2 K a.e. on (0; T )g

of feasible displacements and introduce the bilinear forms

b(w; ew) =

Z




 

(w

xx

ew

xx

+ w

yy

ew

yy

+ �w

xx

ew

yy

+ �w

yy

ew

xx

+2(1 � �)w

xy

ew

xy

);

B(W;

f

W ) = h�

ij

(W ); "

ij

(

f

W )i;

where h � ; � i stands for integration over 


 

.

The equilibrium problem for a plate is formulated as some variational

inequality. In this case equations (3.92){(3.94) hold, generally speaking,

only in the distribution sense. Alongside (3.95), other boundary conditions

hold on the boundary �

T

 

; the form of these conditions is clari�ed in Section

3.3.3. To derive them, we require the existence of a smooth solution to the

variational inequality in question. On the other hand, if we assume that a

solution to (3.92){(3.94) is su�ciently smooth, then the variational inequal-

ity is a consequence of equations (3.92){(3.94) and the initial and boundary

conditions. All these questions are discussed in Section 3.3.3. In Section

3.3.2 we prove an existence theorem for a solution to the variational equa-

tion and in Section 3.3.4 we establish some enhanced regularity properties

for the solution near �

T

 

.

3.3.2 Existence of a solution

We introduce the space � = f� 2 L

2

(0; T ;H

1;0

(


 

)) j �

t

2 L

2

(Q

 

)g with

the norm

k�k

2

�

= k�k

2

L

2

(0;T ;H

1;0

(


 

))

+ k�

t

k

2

L

2

(Q

 

)

:
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Henceforth it is convenient to use the notations H = H

1

(0; T ;H(


 

)) and

U = ��H. We shall assume that �

0

2 H

1;0

(


 

). Observe that each element

� 2 � has a well-de�ned trace at t = 0; in particular, �(0) 2 L

2

(


 

). The

operation of taking a trace acts continuously from � into L

2

(


 

). Consider

the closed convex set

S = f(�; �) 2 U j �(0) = �

0

in 


 

; � 2 Kg

in U . Let U

?

denote the space dual of U . Consider the bounded linear

operator L : U ! U

?

acting by the formula

fL(�; �); (

�

�; ��)g =

Z

Q

 

�

�

t

+ �

2

@

@t

(divW ��w)

�

�

�

+

Z

Q

 

r�r

�

� +

T

Z

0

(B(W;

f

W ) + b(w; ew) + �

2

h�;� ewi � �

2

h�; div

f

W i):

The braces f � ; � g stand for the duality pairing between U and U

?

.

We can now give an exact statement of the equilibrium problem for a

plate. Suppose that f 2 L

2

(Q

 

). An element (�; �) 2 U is said to be a

solution to the equilibrium problem for a thermoelastic plate with a crack

if it satis�es the variational inequality

fL(�; �); (

�

�; ��)� (�; �)g �

Z

Q

 

f(

�

� � �); (�; �) 2 S 8 (

�

�; ��) 2 S: (3:98)

The rationale of this de�nition of a solution will become clear in the sequel.

Observe that the operator L is pseudomonotone (see a de�nition in Section

1.2) but is not coercive on U . Therefore, solvability of problem (3.98) does

not follow from known results.

Theorem 3.9. For � small enough, there is a solution to problem (3.98).

Proof. To prove the existence of a solution, we implement the idea

that was earlier used in a simpler case by (Shi, Shillor 1992). We introduce

two closed convex sets

S

1

= f� 2 � j �(0) = �

0

g; S

2

= f� 2 H j � 2 Kg

in the spaces � and H, respectively. Substituting for feasible functions in

(3.98) �rst (

�

�; �) and next (�; ��), we obtain two variational inequalities

Z

Q

 

�

@�

@t

+ �

2

@

@t

(divW ��w)� f

�

(

�

� � �) +

Z

Q

 

r�(r

�

� �r�) � 0; (3:99)

� 2 S

1

; 8

�

� 2 S

1

;
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T

Z

0

�

B(W;

f

W �W ) + b(w; ew� w) + �

2

h�;� ew ��wi (3:100)

��

2

h�; div

f

W � divW i

�

� 0; (W;w) 2 S

2

8 (

f

W; ew) 2 S

2

:

Summing (3.99) and (3.100), we clearly obtain exactly (3.98). Therefore,

to prove the solvability of variational inequality (3.98), it su�ces to estab-

lish solvability for the coupled system of variational inequalities (3.99) and

(3.100).

Let � 2 S

2

be an arbitrary �xed element. Using the Galerkin method

(see, for instance, Mikhailov, 1976), we can prove that there is a unique

function � 2 S

1

satisfying the identity

Z

Q

 

�

@�

@t

+ �

2

@

@t

(divW ��w)� f

�

�

� +

Z

Q

 

r�r

�

� = 0 (3:101)

8

�

� 2 L

2

(0; T ;H

1;0

(


 

)):

Moreover, the estimate

k�k

�

� c

1

�k�k

H

+ c

2

(3:102)

holds, with the constant c

2

depending on the norm of f in L

2

(Q

 

) and the

H

1

(


 

)-norm of �

0

, and c

1

, c

2

independent of �, � � �

0

. From (3.101)

we easily see that the function � satis�es equation (3.92) in Q

 

in the

distribution sense; in particular, �� 2 L

2

(Q

 

).

We can take a function of the form

�

� � � as

�

� in (3.101), where

�

� 2 S

1

.

This yields the unique solvability in � of variational inequality (3.99) for

every �xed � 2 S

2

. On the other hand, for every �xed � 2 S

1

the problem

of minimizing the functional

T

Z

0

�

B(W;W ) + b(w;w) + 2�

2

h�;�wi � 2�

2

h�; divW i

�

(3:103)

over the set K has a unique solution. To verify this, it su�ces to observe

that the inequalities

b(w;w) � ckwk

2

2

8w 2 H

2;0

(


 

); (3:104)

B(W;W ) � ckWk

2

1

8 W = (w

1

; w

2

) 2 H

1;0

(


 

) (3:105)

hold in 


 

with constants independent of the functions W and w, respec-

tively. In particular, for a �xed � 2 S

1

, functional (3.103) is coercive (and

weakly lower semicontinuous) on the space L

2

(0; T ;H(


 

)). The element
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� = (W;w) 2 K at which functional (3.103) attains a minimum satis�es the

variational inequality

T

Z

0

�

B(W;

f

W �W ) + b(w; ew� w) + �

2

h�;� ew ��wi (3:106)

��

2

h�; div

f

W � divW i

�

� 0 8 (

f

W; ew) 2 K:

Given � 2 S

1

, a solution � to problem (3.106) is unique. Choosing (

f

W; ew) =

0 in (3.106), we easily derive the estimate

k�k

2

L

2

(0;T ;H(


 

))

� c�

2

k�k

2

L

2

(Q

 

)

(3:107)

with some constant uniform in �, � � �

0

. From (3.106) we also conclude

that equations (3.93) and (3.94) hold in Q

 

in the distribution sense.

Involving di�erence relations, we can establish additional smoothness

in t for the solution � = (W;w) to problem (3.106). We introduce the

notations

�

t

= �(t); d

�

�

t

= �

t+�

� �

t

�:

It follows from (3.106) that the inequality

B(W

t

;

f

W �W

t

) + b(w

t

; ew �w

t

) + �

2

h�

t

;� ew ��w

t

i (3:108)

��

2

h�

t

; div

f

W � divW

t

i � 0; (W

t

; w

t

) 2 K; 8(

f

W; ew) 2 K

holds for almost every t 2 (0; T ). For de�niteness, assume that � > 0. In

inequality (3.108), take �� = �

t+�

, 0 < t < T �� ; then write down (3.108) at

the point t+� ; and next take the function �

t

as ��. Summing the so-obtained

relations and dividing the result by �

2

, we �nd

B(d

�

W

t

; d

�

W

t

) + b(d

�

w

t

; d

�

w

t

) (3:109)

� ��

2

hd

�

�

t

;�d

�

w

t

i + �

2

hd

�

�

t

; divd

�

W

t

i:

Integrate (3.109) with respect to t from 0 to T � � . Taking (3.104), (3.105)

into account, we can easily derive the inequality

T��

Z

0

kd

�

�

t

k

2

H(


 

)

� c�

2

T��

Z

0

kd

�

�

t

k

2

0

(3:110)

with some constant c independent of � and �, � � �

0

. Since �

t

2 L

2

(Q

 

),

on letting � ! 0, from (3.110) we infer that

k�

t

k

2

L

2

(0;T ;H(


 

))

� c�

2

k�

t

k

2

L

2

(Q

 

)

: (3:111)
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From (3.107), (3.111) we conclude that the estimate

k�k

H

� c

3

�k�k

�

(3:112)

holds with some constant c

3

independent of �, � � �

0

.

Observe that variational inequality (3.106) is valid for every function

�� 2 S

2

. It means that a solution � to problem (3.106) with � 2 S

1

coincides

with the unique solution to problem (3.100) with the same �; i.e. problems

(3.100) and (3.106) are equivalent. For small �, we write down an extra

variational inequality for which a solution exists, and demonstrate that the

solution coincides with the solution of variational inequality (3.98).

Let c

�

= maxfc

1

; c

2

; c

3

g, where c

i

are taken from (3.102) and (3.112).

Assume the parameter � to be so small that the quantities

m

1

=

c

�

1� (�c

�

)

2

; m

2

=

�c

2

�

1� (�c

�

)

2

satisfy the conditions

m

1

> 0; m

2

> 0: (3:113)

Obviously, for (3.113) to hold, it su�ces to choose � from the condition

� < c

�1

�

.

We de�ne the bounded closed convex set

S

0

= f(�; �) 2 S j k�k

�

� m

1

; k�k

H

� m

2

g

in the space U . Since S

0

is a bounded set and L is a pseudomonotone

operator, there is a solution to the problem due to Theorem 1.16:

fL(�; �); (

�

�; ��)�(�; �)g �

Z

Q

 

f(

�

���); (�; �) 2 S

0

; 8 (

�

�; ��) 2 S

0

: (3:114)

By analogy, we de�ne the sets

S

0

1

= f� 2 S

1

j k�k

�

� m

1

g; S

0

2

= f� 2 S

2

j k�k

H

� m

2

g: (3:115)

Then problem (3.114) can be written down in equivalent form by means of

the following two variational inequalities:

Z

Q

 

�

@�

@t

+ �

2

@

@t

(divW ��w)� f

�

(

�

���)+

Z

Q

 

r�(r

�

��r�) � 0; (3:116)

� 2 S

0

1

; 8

�

� 2 S

0

1

;

T

Z

0

�

B(W;

f

W �W ) + b(w; ew� w) + �

2

h�;� ew ��wi (3:117)
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��

2

h�; div

f

W � divW i

�

� 0; (W;w) 2 S

0

2

; 8 (

f

W; ew) 2 S

0

2

:

Now, we are ready to convince ourselves that the coupled system of vari-

ational inequalities (3.99) and (3.100) is solvable under condition (3.113).

As mentioned, (3.99) and (3.100) yield (3.98).

Indeed, let (�; �) be a solution to problem (3.114). Then � 2 S

0

2

. We

de�ne

~

� as a solution to (3.99) with the chosen �. In accordance with (3.113)

and estimate (3.102), we obtain

~

� 2 S

0

1

. By the uniqueness of a solution to

problem (3.116) given a �xed � 2 S

0

2

, we conclude that

~

� solves problem

(3.116); i.e.

~

� = �. At the same time, � 2 S

0

1

. Therefore, the function ~�

found from (3.100) at this � belongs to S

0

2

by virtue of (3.112) and (3.113);

i.e. it is a solution to problem (3.117). This means that ~� = �. It follows

that the solution (�; �) to problem (3.114) is a solution to problem (3.99),

(3.100) and hence is a solution to (3.98). Theorem 3.9 is completely proved.

Observe that, generally speaking, the smallness of � does not imply that

the solution (�; �) is small in the norm of the space U .

3.3.3 Boundary conditions at the crack faces

In this subsection we establish the exact form of boundary conditions hold-

ing on �

T

 

for the solution (�; �) to problem (3.98). The arguments are

formal in the sense that the solution is assumed su�ciently smooth. For

brevity, hereafter we denote the quantities W

t

, w

t

, and �

t

by W , w, and �,

indicating each time the value of the variable t at which the corresponding

relations hold. Moreover, we assume that � = 1.

Let the quantities M (w), R(w), �

�

(W ), and �

s

(W ) be de�ned in accor-

dance with formulas (3.123) and (3.127) (see below). Prove that, in addition

to (3.95){(3.97), the solution (�; �) of problem (3.98) satis�es the following

boundary conditions for t 2 (0; T ):

@�

@�

= 0 on �

 

; (3:118)

[�

�

(W ) � �] = 0; �

s

(W ) = 0 on �

 

; (3:119)

[M (w) + �] = 0; R(w) = 0 on �

 

; (3:120)

jM (w) + �j � �(�

�

(W )� �) on �

 

; (3:121)

(M (w) + �)

�

@w

@�

�

+ (�

�

(W )� �)[W ]� = 0 on �

 

: (3:122)

Equality (3.118) is straightforward from identity (3.101); it means that

@�

@�

= 0 on �

+

 

;

@�

@�

= 0 on �

�

 

:

The second equalities in (3.119) and (3.120) are understood likewise.
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We recall that equations (3.92){(3.94) are satis�ed only in the distri-

bution sense. However, in this subsection we suppose that the solution is

smooth enough, so that boundary conditions (3.118){(3.122) should be re-

garded as formal consequences of (3.98). By the way, we point out that the

results of the forthcoming subsection allow us to attach an exact meaning

to some of the relations (3.118){(3.122).

To test the validity of boundary conditions (3.119){(3.122), we need two

Green formulas. Let O � R

2

be a bounded domain with smooth boundary

 and the outward normal n = (n

1

; n

2

). Introduce the following operators

on :

M (u) = ��u+ (1� �)

@

2

u

@n

2

; R(u) =

@

@n

�u+ (1� �)

@

3

u

@n@s

2

; (3:123)

where s = (�n

2

; n

1

). We know that the formula

b

O

(u; v) =

�

M (u);

@v

@n

�



� hR(u); vi



+ h�

2

u; vi

O

(3:124)

is valid for su�ciently smooth functions u and v. The subscripts O and 

signify that the integration is taken over the domain O and the boundary

, respectively. Moreover, if ' = ('

1

; '

2

) then

h';rui

O

= h'n; ui



� hdiv'; ui

O

: (3:125)

The boundary @


 

of the domain 


 

can be represented as the union of

the components �, �

+

 

, and �

�

 

. In this connection, we note that formulas

like (3.124) and (3.125) are also valid for the domain 


 

. To check this, it

su�ces to extend the graph �

 

so that 


 

be divided into two parts. On

applying formulas (3.124) and (3.125) to both the parts, we can make sure

that the formulas are also valid for 


 

.

Fix an arbitrary value t 2 (0; T ) in (3.108) and choose test functions of

the form (

f

W;w). We come to the inequality

B(W;

f

W �W ) � h�; div (

f

W �W )i � 0 (3:126)

valid for all functions

f

W satisfying the condition

[

f

W ]� �

�

�

�

�

�

@w

@�

�

�

�

�

�

on �

 

;

f

W 2 H

1;0

(


 

):

Expand the vector f�

ij

(W )�

j

g, i = 1; 2, on the boundary �

�

 

in the sum

of the normal component �

�

(W ) and the tangent component �

s

(W ):

f�

ij

(W )�

j

g = �

�

(W )� + �

s

(W )s; s = (��

2

; �

1

): (3:127)

An analogous representation is also valid on �

+

 

. Insert test functions of the

formW+

f

W in (3.126), with

f

W 2 H

1;0

(


 

) and [

f

W ]� � 0 on �

 

, and make
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use of formulas like (3.124) and (3.125). Easy arguments lead to relations

(3.119).

We can insert test functions of the form (W; ew) in inequality (3.108) at

a given t 2 (0; T ). We arrive at the relation

b(w; ew�w) + h�;� ew ��wi � 0 (3:128)

valid for all functions ew satisfying the condition

[W ]� � j[@ ew=@�]j on �

 

; ew 2 H

2;0

(


 

):

In (3.128), choose test functions of the form w + ', where ' is a function

smooth in 


 

having support in a neighbourhood of some �xed point on �

 

,

and such that [@'=@�] = 0. Here ['] 6= 0 in general. By virtue of formulas

(3.124) and (3.125), we obtain (3.120).

Let (

f

W; ew) be smooth functions in the set K. Substituting test functions

of the form (W;w) + (

f

W; ew) in (3.108) yields the inequality

B(W;

f

W ) + b(w; ew) + h�;� ewi � h�; div

f

W i � 0:

Performing transformations by formulas like (3.124) and (3.125) and taking

(3.118){(3.120) into account, we come to

�

M (w) + �;

�

@ ew

@�

��

�

 

+ h�

�

(W ) � �; [

f

W ]�i

�

 

� 0: (3:129)

In (3.129), we take

f

W and ew as functions smooth in 


 

having support in

a neighbourhood of a �xed point on �

 

, and such that [@ ~w=@�] = [

f

W ]�.

Then in some neighbourhood of this point we shall have

M (w) + � + �

�

(W ) � � � 0: (3:130)

Analogously, choosing

f

W and ew so as to have [@ ~w=@�] = �[

f

W ]�, we obtain

�(M (w) + �) + �

�

(W )� � � 0: (3:131)

From (3.130) and (3.131) we infer exactly (3.121). From (3.121) we deduce

in particular that �

�

(W )� � � 0.

Next, substitutions of the form (

f

W; ew) = 0 and (

f

W; ew) = 2(W;w) into

inequality (3.108) lead to the equality

�

M (w) + �;

�

@w

@�

��

�

 

+ h�

�

(W ) � �; [W ]�i

�

 

= 0: (3:132)

Now, (3.122) ensues from (3.95), (3.121), and (3.132). Thus, the form of the

boundary conditions on �

T

 

is completely determined. Along with (3.95),

for all t 2 (0; T ) conditions (3.118){(3.122) hold on �

 

.
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It is noteworthy that the original equilibrium problem for a plate with

a crack can be stated twofold. On the one hand, it may be formulated as

variational inequality (3.98). In this case all the above-derived boundary

conditions are formal consequences of such a statement under the supposi-

tion of su�cient smoothness of a solution. On the other hand, the problem

may be formulated as equations (3.92){(3.94) given initial and boundary

conditions (3.95){(3.97) and (3.118){(3.122). Furthermore, if we assume

that a solution is su�ciently smooth then from (3.92){(3.97) and (3.118){

(3.122) we can derive variational inequality (3.98).

Prove the last assertion. Let (

f

W; ew) be a smooth function belonging to

the set K. Multiply equations (3.93) and (3.94), taken at a �xed t 2 (0; T ),

by ew

i

�w

i

(t) and ew�w(t), respectively. Afterwards, integrate over 


 

and

apply formulas (3.124) and (3.125) on taking boundary conditions (3.97)

and (3.118){(3.120) into account. At the �xed t, we obtain (recall that in

this subsection � = 1)

B(W;

f

W �W ) + b(w; ew �w) + h�;� ew ��wi � h�; div

f

W � divW i

+

�

M (w) + �;

�

@ ew

@�

�

�

�

@w

@�

��

�

 

+ h�

�

(W ) � �; [

f

W ]� � [W ]�i

�

 

= 0:

In accordance with boundary conditions (3.95), (3.121), and (3.122), the

sum of the boundary integrals here is nonpositive, whence (3.108) ensues.

From (3.108) we infer (3.100). Equation (3.92), together with initial and

boundary conditions (3.96){(3.97) and (3.118), leads to (3.99). As we noted

many times, (3.99) and (3.100) imply (3.98), which proves the assertion that

(3.92){(3.97) and (3.118){(3.122) yield (3.98).

3.3.4 Smoothness of a solution

In this subsection we demonstrate that smoothness of a solution to problem

(3.98) near �

T

 

is higher than that guaranteed by Theorem 3.9. As before,

we assume � = 1 for simplicity.

Suppose that, near some �xed point x

0

2 �

 

n @�

 

, the graph �

 

is a

straight line segment parallel to the x axis. Let t

0

2 (0; T ) be an arbitrary

�xed point and let R

"

� R

3

denote the ball of a su�ciently small radius

" with centre (x

0

; t

0

). First, we examine the smoothness of the function

� = (W;w). Let D stand for a �rst-order derivative and let ' denote an

arbitrary smooth function in R

2"

such that ' � 0 outside R

3"=2

, 0 � ' � 1,

and @'=@y = 0 on �

T

 

.

Theorem 3.10. The following inclusion holds:

D('�) 2 L

2

(0; T ;H(


 

)):

Proof. For D = @=@t, the claim of the theorem is already known.

Therefore, it su�ces to consider the cases D = @=@x and D = @=@y.
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Let e stand for the unit vector along the x axis and let 0 < jhj < "=2.

Introduce the notations d

�h

u(�x) = h

�1

(u(�x�he)�u(�x)) and �

h

= �d

�h

d

h

,

and de�ne the functions

w

i

h

= w

i

+

h

2

2

'

2

�

h

w

i

; i = 1; 2; w

h

= w +

h

2

2

'

2

�

h

w:

The normal � has coordinates (0; 1) near the point x

0

. Therefore, for "

small enough, the nonpenetration condition (3.95) on �

T

 

\ R

2"

takes the

form

[w

2

] �

�

�

�

�

�

@w

@y

�
�

�

�

�

: (3:133)

It is easy to verify that if a function umeets the inequality u � 0 on �

T

 

\R

2"

,

then u + (h

2

=2)'

2

�

h

u � 0 on �

T

 

\ R

2"

. Indeed, take (�x; t) 2 �

T

 

\ R

2"

.

Then

u(�x; t) +

h

2

2

'

2

(�x; t)�

h

u(�x; t) = (1 � '

2

(�x; t))u(�x; t)

+

'

2

(�x; t)

2

[u(�x� he; t) + u(�x+ he; t)] � 0:

With this available, it is easy to ascertain that the vector

�

w

1

h

; w

2

h

; w

h

�

obeys

constraint (3.133), i.e.

[w

2

h

] �

�

�

�

�

�

@w

h

@y

�
�

�

�

�

on �

T

 

\R

2"

:

Consequently, for W

h

=

�

w

1

h

; w

2

h

�

we have

[W

h

]� � j[@w

h

@y]j on �

T

 

;

i.e. (W

h

; w

h

) 2 K. Inserting (

f

W; ew) = (W

h

; w

h

) in (3.106), we obtain

T

Z

0

�

B(W;'

2

�

h

W ) + b(w;'

2

�

h

w) (3:134)

+ h�;�'

2

�

h

wi � h�; div'

2

�

h

W i

�

� 0:

At the same time, it is easy to verify that the di�erence between the integrals

T

Z

0

�

B(W;'

2

�

h

W ) + b(w;'

2

�

h

w)

�

and

�

T

Z

0

(B(d

h

('W ); d

h

('W )) + B(d

h

('w); d

h

('w)))
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can be estimated from the above by a summand on the right-hand side of

inequality (3.135) to be written down below. The two last summands in

(3.134) are minor in the sense that they admit an estimate from the above

by the right-hand side of (3.135). Thus, (3.134) implies

T

Z

0

(B(d

h

('W ); d

h

('W )) + B(d

h

('w); d

h

('w))) (3:135)

� c

T

Z

0

�

k�k

2

H(


 

)

+ k�k

2

1

+ kd

h

('�)k

H(


 

)

(k�k

H(


 

)

+ k�k

1

)

�

;

where the constant c depends on ' and the domain 


 

. Grounding on

inequalities (3.104) and (3.105), from (3.135) we deduce that

T

Z

0

kd

h

('�)k

2

H(


 

)

� c

uniformly in h. In consequence,

@

@x

('�) 2 L

2

(0; T ;H(


 

)): (3:136)

Observe that equation (3.93) can be rewritten as W

yy

= G, where G 2

L

2

(R

"

\Q

 

); thereby, diminishing " if necessary, we can assume that

@

@y

('W ) 2 L

2

(0; T ;H

1;0

(


 

)):

We thus prove for W that D('W ) 2 L

2

(0; T ;H

1;0

(


 

)).

To estimate the third-order derivatives of the function w with respect to

y, we make use of the following fact (see Duvaut, Lions, 1972). Let O � R

2

be a bounded domain with smooth boundary and let u be a distribution on

O such that u, Du 2 H

�1

(O). Then u 2 L

2

(O) and there is a constant c,

dependent on O, such that

kuk

L

2

(O)

� c

�

kuk

H

�1

(O)

+ kDuk

H

�1

(O)

�

:

It follows from (3.136) that @('w)=@x 2 L

2

(0; T ;H

2;0

(


 

)). Therefore,

near the point (x

0

; t

0

), the derivatives w

xxx

, w

yyx

, and w

xxy

belong to L

2

.

Write down equation (3.94) as

w

yyyy

= g:

By the above argument, for almost every t 2 (t

0

�"=2; t

0

+"=2) the functions

g(t), w

yyy

(t), and w

yyyx

(t) belong to H

�1

(


 

\O), where O is some neigh-

bourhood of the point x

0

. Therefore, for almost every t 2 (t

0

�"=4; t

0

+"=4)
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and some neighbourhood O

1

of the point x

0

,

e

O

1

� O, the functions w

yyy

(t)

belong to L

2

(


 

\O

1

) and the estimate

kw

yyy

(t)k

2

L

2

(


 

\O

1

)

� c

�

kw

yyy

(t)k

2

H

�1

(


 

\O

1

)

(3:137)

+kw

yyyy

(t)k

2

H

�1

(


 

\O

1

)

+ kw

yyyx

(t)k

2

H

�1

(


 

\O

1

)

�

holds with some constant independent of t. Integrating (3.137) with respect

to t from t

0

� "=4 to t

0

+ "=4, we reach the proof of the claim concerning

w

yyy

. Theorem 3.10 is completely proved.

To conclude the section, we also observe that, for the function ' above,

we have the containment

'� 2 L

2

(0; T ;H

2

(


 

)): (3:138)

Indeed, it follows from (3.101) that the identity

hr�(t);r

�

�i = hF (t);

�

�i 8

�

� 2 H

1;0

(


 

)

holds for almost every t 2 (0; T ), with F 2 L

2

(Q

 

). Therefore, for almost

every t 2 (0; T ), the following equation holds in 


 

in the sense of (two-

dimensional) distributions:

���(t) = F (t): (3:139)

Here t plays the role of a parameter. Thus, we can use the results on

smoothness up to the boundary for solutions to elliptic equations of the

form (3.139) (see Mikhailov, 1976). This yields (3.138).

3.4 Cracks of minimal opening in

thermoelastic plates

In this section cracks of minimal opening are considered for thermoelastic

plates. It is proved that the cracks of minimal opening provide an equilib-

rium state of the plate, which corresponds to the state without the crack.

This means that such cracks do not introduce any singularity for the solu-

tion, and actually we have to solve a boundary value problem without the

crack.

3.4.1 Problem formulation

Consider a bounded domain 
 � R

2

with a smooth boundary �, 


 

=


 n �

 

, �

 

is the graph of the function y =  (x), x 2 [0; 1], (x; y) 2 
,

x

1

= x, x

2

= y. We assume that the mid-surface of the plate coincides

with 


 

, and  is the smooth function. The plate is supposed to have a
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vertical crack. Its shape, as a surface in R

3

, is de�ned by the cylinder surface

y =  (x), �h � z � h. Herewith z is the distance from the mid-surface, 2h

is the thickness of the plate, and z = 0 corresponds to the mid-surface.

Denote next by � = (W;w) the displacement vector, Q

 

= 


 

� (0; T ),

T > 0. Consider the equilibrium equations

@�

@t

��� + �

2

@

@t

(divW ��w) = f; (3:140)

�

2

w + �

2

�� = 0; (3:141)

��

ij;j

+ �

2

�

;i

= 0; i = 1; 2; (3:142)

and the nonpenetration condition

[W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

(3:143)

between crack faces. We assume h = 1 for simplicity. Consider the initial

condition for the temperature

� = �

0

; at t = 0: (3:144)

At the external boundary the following conditions are assumed to be satis-

�ed:

� = w =

@w

@n

= W = 0 on �� (0; T ): (3:145)

As for the crack surface we suppose a continuity of the temperature

[�] = 0 on �

 

� (0; T ): (3:146)

A formulation of the problem to be analysed in this section is as follows.

In the domain Q

 

, we have to �nd a solution of (3.140){(3.142) satisfying

(3.144){(3.146) and the inequality (3.143) ful�lled on �

 

� (0; T ). In this

case the normal � to �

 

is de�ned as � = (� 

x

; 1)=

p

1 +  

2

x

, � = (�

1

; �

2

),

[U ] = U

+

�U

�

, and U

�

correspond to the positive and negative directions

of the normal �.

The considered problem is formulated as a variational inequality. In

general, the equations (3.140){(3.142) hold in the sense of distributions. In

addition to (3.143), complementary boundary conditions will be ful�lled

on �

 

� (0; T ). The exact form of these conditions is given at the end

of the section. The assumption as to su�cient solution regularity requires

the variational inequality to be a corollary of (3.140){(3.142), the initial

and all boundary conditions. The relationship between these two problem

formulations is discussed in Section 3.4.4. We prove an existence of the

solution in Section 3.4.2. In Section 3.4.3 the main result of the section

concerned with the cracks of minimal opening is established.
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3.4.2 Existence of solutions

Let the brackets h � ; � i denote the integration over 


 

. Introduce the two

bilinear forms used in previous sections,

b(w; �w) =

Z




 

(w

xx

�w

xx

+ w

yy

�w

yy

+ �w

xx

�w

yy

+ �w

yy

�w

xx

+2(1� �)w

xy

�w

xy

);

B(W;

�

W ) = h�

ij

(W ); "

ij

(

�

W )i;

and denote by H

1;0

(


 

) the subspace of H

1

(


 

) which consists of func-

tions equal to zero on �. Let the functions from H

2;0

(


 

) equal to zero

on � together with the �rst derivatives, H

2;0

(


 

) � H

2

(


 

), H(


 

) =

H

1;0

(


 

)�H

1;0

(


 

)�H

2;0

(


 

). The subspace H

1

0

(
) of the space H

1

(
)

consists of functions equal to zero on �.

Introduce next the sets of admissible displacements of the plate

K = f� = (W;w) 2 H(


 

) j [W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

a.e. on �

 

g;

K = f� 2 L

2

(0; T ;H(


 

)) j �(t) 2 K a.e. on (0; T )g:

Since we assume the continuity conditions (3.146) the equation (3.140)

can be considered in the domain Q = 
 � (0; T ). Indeed, if � 2 H

1;0

(


 

),

[�] = 0 on �

 

, then the function � belongs to the space H

1

0

(
). In this case

the term @(divW � �w)=@t will be de�ned in L

2

(Q

 

), and consequently,

it can be considered as the element of the space L

2

(Q). Of course, the

derivatives @(divW ��w)=@t are de�ned with respect to the domain Q

 

.

Let f 2 L

2

(Q), �

0

2 H

1

0

(
). Introduce the space of functions

� = f� 2 L

2

(0; T ;H

1

0

(
)) j �

t

2 L

2

(Q)g

equipped with the norm

k�k

2

�

= k�k

2

L

2

(0;T ;H

1

0

(
))

+ k�

t

k

2

L

2

(Q)

;

and denote H = H

1

(0; T ;H(


 

)), H = H \K. Consider that for any � 2 �

there exists a trace on the plane t = 0 and, in particular, �(0) 2 L

2

(
). The

exact formulation of the analysed problem consists in �nding the functions

� 2 �, � 2 H which satisfy the following identity,

Z

Q

 

�

@�

@t

+ �

2

@

@t

(divW ��w)� f

�

�

� +

Z

Q

 

r�r

�

� = 0; 8

�

� 2 �; (3:147)

the variational inequality

T

Z

0

�

B(W;

�

W �W ) + b(w; �w� w) + �

2

h�;��w ��wi (3:148)
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��

2

h�; div

�

W � divW i

�

� 0; 8 �� 2 K;

and the initial condition (3.144).

The boundary value problem (3.144), (3.147), (3.148) is analogous to

that considered in the previous section. The only di�erence between these

problems is that instead of (3.146), in the previous section the following

condition,

@�

@�

= 0 on �

 

� (0; T );

is considered.

Thus, the following result can be established.

Theorem 3.11. There exists a solution of the problem (3.144), (3.147),

(3.148) provided that � is small enough.

We omit the proof of the theorem since it is analogous to that of Section

3.3 and restrict ourselves to some remarks. When proving the existence

theorem the following estimates are obtained:

k�k

�

� c

1

�k�k

H

+ c

2

; k�k

H

� c

3

�k�k

�

; (3:149)

which are valid for all � � �

0

. The constant c

2

depends on the L

2

(Q)-norm

of f and the H

1

(
)-norm of �

0

; and the constants c

1

; c

3

are independent

of �. The estimates (3.149) hold true for the problem (3.144), (3.147),

(3.148). The su�cient condition providing the existence of the solution can

be written as � < c

�1

0

, where c

0

= maxfc

1

; c

2

; c

3

g:

The theorem of existence is proved by �nding a �xed point of the fol-

lowing operator (which is not compact, in general). Taking � = �

0

2 H

in (3.147), we can �nd � = �

0

as a solution of (3.147) satisfying the ini-

tial condition �

0

(0) = �

0

. The function �

0

is substituted in (3.148), which

provides the existence of � = �

1

= (W;w) for the given � = �

0

. It can be

demonstrated that there exists a �xed point of the operator �

0

! �

1

as

� < c

�1

0

.

We can derive from (3.148) that for all t 2 (0; T ) the following variational

inequality holds:

B(W (t);

�

W �W (t)) + b(w(t); �w �w(t)) + �

2

h�(t);��w ��w(t)i (3:150)

��

2

h�(t); div

�

W � divW (t)i � 0; (W (t); w(t)) 2 K; 8 (

�

W; �w) 2 K:

Also, the inclusion � 2 L

2

(0; T ;H

2

(
) \ H

1

0

(
)) follows from (3.147); in

particular,

�

@�

@�

�

= 0 on �

 

� (0; T ):
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3.4.3 Cracks of zero opening

Assume that the solution of the problem (3.144), (3.147), (3.148) has the

property

T

Z

0

Z

�

 

j[�]j d�

 

dt = 0:

The crack is said to have a zero opening in this case. As it turned out

there is no singularity of the solution provided the crack has a zero opening.

What this means is the solution of (3.144), (3.147), (3.148) coincides with

the solution of (3.140){(3.142) found in the domain Q with the initial and

boundary conditions (3.144), (3.145) (and without (3.143)). In the last

case the equations (3.141), (3.142) hold in Q. This removable singularity

property is of local character. Namely, if O(x

0

) is a neighbourhood of the

point x

0

2 �

 

and

b

Z

a

Z

�

 

\O(x

0

)

j[�]j d�

 

dt = 0

then the equations (3.141), (3.142) hold in O(x

0

) � (a; b). The object of

further reasoning is to prove the property mentioned. For simplicity let

� = 1.

First, we recall two Green formulae. Let D � R

2

be a bounded do-

main with a smooth boundary  having the external normal n = (n

1

; n

2

).

Consider the following two operators de�ned on :

M (w) = ��w + (1� �)

@

2

w

@n

2

; R(w) =

@

@n

�w + (1� �)

@

3

w

@n@s

2

;

s = (�n

2

; n

1

):

Let H

�s

() be the space dual of H

s

(). The duality pairing between

H

�s

() and H

s

() is denoted by h � ; � i

s;

. We know that for any function

w 2 H

2

(D), �

2

w 2 L

2

(D), the valuesM (w), R(w) can be correctly de�ned

on  and, moreover, the following Green formula holds for v 2 H

2

(D):

b

D

(w; v) = hM (w);

@v

@n

i
1

2

;

� hR(w); vi
3

2

;

+ h�

2

w; vi

D

: (3:151)

The subscript D means the integration over the domain D. Let W =

(w

1

; w

2

) 2 H

1

(D), �

ij;j

(W ) 2 L

2

(D), i = 1; 2; (in particular, �

ij

(W ) 2

L

2

(D)). In this case the values �

ij

(W )n

j

are clearly identi�ed on  in the

sense of H

�

1

2

(); and the Green formula is

h�

ij

(W ); "

ij

(V )i

D

= h�

ij

(W )n

j

; v

i

i
1

2

;

� h�

ij;j

(W ); v

i

i

D

; (3:152)

8V = (v

1

; v

2

) 2 H

1

(D):
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Let x

0

� (1; 0) be the tip of the crack. We shall state the removable

singularity property in a neighbourhood of the line x

0

�(a; b), (a; b) � (0; T ).

The corresponding result for a neighbourhood of the line �x � (a; b), where

�x 2 �

 

n @�

 

, can be more readily established.

At �rst we state the continuity ofM (w) and R(w) across the crack shape.

To this end, denote by O(x

0

) � R

2

a neighbourhood of x

0

; O = O(x

0

) �

(a; b). Extend the graph of the function y =  (x) beyond x = 1, denoting it

by

~

�

 

. We assume that

~

�

 

is smooth enough. Let O

+

(x

0

) = O(x

0

)\ fy >

 (x)g, and O

�

(x

0

) be de�ned analogously, O

�

= O

�

(x

0

) � (a; b): It is

evident that (3.141), (3.142) hold in O

�

in the sense of distributions. In

fact, one can choose smooth functions (�; ') having compact support in

O

�

and substitute (

�

W; �w) = (W;w) + (�; ') in (3.148) as test functions.

Moreover, the regularity of the solution (�; �) allows us to verify that for all

t 2 (0; T ) the equations

�

2

w(t) + ��(t) = 0; (3:153)

��

ij;j

(W (t)) + �

;i

(t) = 0; i = 1; 2; (3:154)

hold in O

�

(x

0

) in the sense of two-dimensional distributions. In this con-

text we should remember that � = 1 in this section. In what follows the

boundaries of O

�

(x

0

) are denoted by 

�

, respectively.

Let us take ' 2 C

1

0

(O(x

0

)) and assume that ' � 0 outside O(x

0

). We

can substitute (W (t); '+w(t)) in (3.150) as a test function. This gives the

inequality

b

+

(w(t); ') + b

�

(w(t); ') � �h��(t); 'i (3:155)

holding for all t 2 (0; T ). The signs +;� mean the integration over O

�

(x

0

),

respectively. Since the equation (3.153) holds in O

�

(x

0

), one can use the

Green formula (3.151) in order to transform b

�

(w(t); '). This leads to the

following relations:

h[M (w(t))];

@'

@n

i
1

2

;

= 0; h[R(w(t))]; 'i
3

2

;

= 0; 8' 2 C

1

0

(O(x

0

)): (3:156)

Here  can be equal to 

+

as well as to 

�

. We should remark at this

point that, in fact, the integration is ful�lled over O(x

0

) in the right-hand

side of (3.155). In other words, we integrate over 


 

and use the condition

[@�(t)=@�] = 0 on �

 

holding true due to the regularity of �. The existence

of two angular points on 

�

presents no problems since the function ' has

a compact support. It follows from (3.156) for almost all t 2 (0; T ) that

[M (w(t))] = 0; [R(w(t))] = 0 on

~

�

 

\O(x

0

): (3:157)

Similarly, let � � (�

1

;�

2

) 2 C

1

0

(O(x

0

)), � � 0 beyond O(x

0

). Then

we have (W (t)+�; w(t)) 2 K, and hence, a substitution of (W (t)+�; w(t))

in (3.150) as a test function results in the inequality

h�

ij

(W (t)); "

ij

(�)i

+

+ h�

ij

(W (t)); "

ij

(�)i

�

� h�(t); div�i:
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By virtue of (3.152) we easily derive

�h[�

ij

(W (t))�

j

];�

i

i
1

2

;

�

� h�

ij;j

(W (t));�

i

i

�

� �h�

;i

(t);�

i

i: (3:158)

Together with (3.154) we conclude that

h[�

ij

(W (t))�

j

];�

i

i
1

2

;

�

= 0; 8� 2 C

1

0

(O(x

0

));

and consequently

[�

ij

(W (t))�

j

] = 0 on

~

�

 

\O(x

0

); i = 1; 2: (3:159)

By taking into account (3.157), (3.159) we are in a position to prove the

result related to the cracks of minimal opening.

Theorem 3.12. Let (�; �) be the solution of (3.144), (3.147), (3.148) and

b

Z

a

Z

�

 

\O(x

0

)

j[�]jd�

 

dt = 0:

Then the equations

�

2

w +�� = 0; (3:160)

��

ij;j

(W ) + �

;i

= 0; i = 1; 2; (3:161)

hold in O.

Proof. It is evident that

W = (w

1

; w

2

) 2 H

1

(a; b;H

1

(O

�

(x

0

)); w 2 H

1

(a; b;H

2

(O

�

(x

0

)):

By (3.143) and the condition of the theorem, we deduce that

�

@w

@�

�

= 0 on (

~

�

 

\O(x

0

)) � (a; b)

and hence (see Mikhailov, 1976)

W = (w

1

; w

2

) 2 H

1

(a; b;H

1

(O(x

0

)); w 2 H

1

(a; b;H

2

(O(x

0

)): (3:162)

Starting from (3.157), (3.159), (3.162) we shall prove that the equations

(3.160), (3.161) hold in O in the sense of distributions. Let ( � ; ') denote the

value of a distribution at the point '. We choose any function ' 2 C

1

0

(O)

and verify that

(�

2

w +��; ') = 0: (3:163)

In fact,

(�

2

w +��; ') =

b

Z

a

b

�

(w(t); '(t)) +

b

Z

a

h��(t); '(t)i
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= �

b

Z

a

h[M (w(t))];

@'(t)

@�

i
1

2

;

�

+

b

Z

a

h[R(w(t))]; '(t)i
3

2

;

�

(3:164)

+

b

Z

a

h�

2

w(t) + ��(t); '(t)i

�

:

The right-hand side of (3.164) is equal to zero because of (3.153), (3.157),

which completes the proof of (3.163).

Analogously, let ' 2 C

1

0

(O). We have

�(�

ij;j

(W )� �

;i

; ') =

b

Z

a

h�

ij

(W (t)); '(t)

;i

i

�

+

b

Z

a

h�

;i

(t); '(t)i (3:165)

= �

b

Z

a

h[�

ij

(W (t))�

j

]; '(t)i
1

2

;

�

�

b

Z

a

h�

ij;j

(W (t)) � �

;i

(t); '(t)i

�

; i = 1; 2:

By (3.154), (3.159), the right-hand side of (3.165) is equal to zero. This

means that the equations (3.161) hold in O in the sense of distributions.

The theorem is proved.

Remark. The equations (3.160), (3.161) hold in Q provided the condi-

tion of the theorem takes place and (a; b) = (0; T ), �

 

� O(x

0

):

3.4.4 Boundary conditions at the crack faces

In conclusion we briey discuss the boundary conditions holding on �

 

�

(0; T ). To this end, consider the decomposition of the vector f�

ij

(W )�

j

g,

i = 1; 2; on the boundary �

�

 

� (0; T ):

f�

ij

(W )�

j

g = �

�

(W )� + �

s

(W )s; s = (��

2

; �

1

):

A similar formula applies to �

+

 

�(0; T ). Assume that the solution of (3.144),

(3.147), (3.148) is smooth enough. As in Section 3.3, it can be shown

that together with (3.143) the following equations and inequalities hold on

�

 

� (0; T ):

[�

�

�

(W )] = 0; �

s

(W ) = 0; (3:166)

[M

�

(w)] = 0; R

�

(w) = 0; (3:167)

jM

�

(w)j � ��

�

�

(W ); (3:168)

M

�

(w)

�

@w

@�

�

+ �

�

�

(W )[W ]� = 0: (3:169)

Here, R

�

(w) = R(w) + @�=@�, �

�

�

(W ) = �

�

(W ) � �; M

�

(w) = M (w) + �:

The second conditions of (3.166), (3.167) mean that �

s

(W ) = R

�

(w) = 0
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on �

�

 

� (0; T ). As stated above, we assume � = 1. It is signi�cant that

the equilibrium problem for the thermoelastic plate can be formulated in

two di�erent ways. On the one hand, it can be formulated in the form

(3.144), (3.147), (3.148). In this case all the written boundary conditions

(i.e. (3.166){(3.169)) are the corollary of this formulation. Of course, in

deriving (3.166){(3.169) we should assume an additional regularity of the

solution. On the other hand, the problem admits the formulation in the

form of equations (3.140){(3.142) with the initial and boundary conditions

(3.143){(3.145), (3.166){(3.169). If a solution of the last boundary problem

is smooth enough the formulation (3.144), (3.147), (3.148) follows from

(3.140){(3.145), (3.166){(3.169). In fact, let (

�

W; �w) be a smooth function

belonging to K. We multiply equations (3.141), (3.142) taken for a �xed

t 2 (0; T ) by �w � w(t); �w

i

� w

i

(t), respectively. We next integrate the

relations over 


 

. By using the Green formulae like (3.151), (3.152) and by

(3.145), (3.166){(3.167) it is easy to derive for the chosen t that

B(W (t);

�

W �W (t)) + b(w(t); �w� w(t))

+ h�(t);� �w ��w(t)i � h�(t); div

�

W � divW (t)i

+ hM

�

(w(t));

�

@ �w

@�

�

�

�

@w(t)

@�

�

i

�

 

+ h�

�

�

(W (t)); [

�

W ]� � [W (t)]�i

�

 

= 0:

According to (3.143), (3.168){(3.169) the sum of the boundary integrals is

nonpositive here, whence (3.150) follows. It is evident from (3.150) that we

obtain (3.148).

3.5 Inclined cracks in plates

In this section we derive a nonpenetration condition between crack faces

for inclined cracks in plates and discuss the equilibrium problem. As it

turns out, the nonpenetration condition for inclined cracks is of nonlocal

character. This means that by writing the condition at a �xed point we

have to take into account the displacement values both at the point and at

the other point chosen at the opposite crack face. As a corollary of this fact,

the equilibrium equations hold only in a domain located outside the crack

surface projection on the mid-surface of the plate. This section follows the

papers (Khludnev, 1997b; Kovtunenko et al., 1998).

3.5.1 Derivation of the nonpenetration condition

Let the mid-surface of the Kirchho�{Love plate occupy a domain 


c

=


 n �

c

, where 
 � R

2

is a bounded domain with the smooth boundary �,

and �

c

is the smooth curve without self-intersections recumbent in 
 (see

Fig.3.4). The mid-surface of the plate is in the plane z = 0. Coordinate

system (x

1

; x

2

; z) is assumed to be Descartes' and orthogonal, x = (x

1

; x

2

).
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Fig.3.4. Mid-surface of the plate

Let the crack surface 	 be described by the equation z = �(x), x 2 


	

(see Fig.3.5). Here, 


	

is the orthogonal projection of the crack surface

(i.e. of the graph z = �(x)) on the plane z = 0. The set 


	

is assumed to

be closed in R

2

. Denote by

n(x) = (�r�(x); 1)=

p

1 + jr�(x)j

2

the unit normal vector to the surface z = �(x), x 2 


	

. The chosen

direction of the normal n(x) de�nes both positive and negative crack faces

to be denoted by 	

�

. The curve �

 

is the intersection of the crack surface

	 with the plane z = 0. To simplify the arguments below, we assume

jr�(x)j 6= 0, x 2 


	

.

Fig.3.5. Vertical cross-section of the plate

Projection 


	

of the surface 	 can be represented as the union of two

sets in accordance with the direction of the axis z, namely, 


	

= 


+

	

[


�

	

.

We denote by 


+

	

the part of the projection of 	 provided that this part is

obtained by moving along the positive direction of the axis z. Respectively,

we �nd 


�

	

. In particular, the curve �

c

belongs both to 


+

	

and 


�

	

(see

Fig.3.6). We assume the direction of the normal � = (�

1

; �

2

) to the curve

�

c

in the x-plane is outside 


�

	

and inside 


+

	

. Let x 2 


	

. Denote by

y = Px the orthogonal projection of the point x on the curve �

c

. The sets




�

	

are assumed to be su�ciently small, which means that the value y = Px

is uniquely de�ned for each �xed x 2 


�

	

.
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Fig.3.6. Projection of the crack surface

We recall that in the Kirchho�{Love plate theory the horizontal dis-

placements depend linearly on the coordinate z, i.e.

W (z) = W � zrw; jzj � ";

where W = (w

1

; w

2

), w are horizontal and vertical displacements of the

mid-surface points, 2" is the plate thickness. By � = (W;w) we denote

the full displacement vector, � = �(x), x 2 


c

. Within the framework of

Kirchho�{Love's theory, we shall �nd the plate displacements at the crack

faces 	

�

and derive a mutual nonpenetration condition of the crack faces.

Let (x; z) 2 	

+

, x 2 


+

	

. Then the displacements vector at the point

(x; z) is of the form

�

+

(x; z) = (W

+

(x)� zrw

+

(x); w

+

(x)); x 2 


+

	

; z = �(x): (3:170)

Similarly, the displacement vector has the form

�

�

(x; z) =

�

W

�

(y) � zrw

�

(y); w

�

(y) + jx� yj

@w

�

(y)

@�

�

; (3:171)

y = Px

provided that (x; z) 2 	

�

, x 2 


+

	

. Formula (3.171) yields that the hori-

zontal displacements at the point (x; z) 2 	

�

, x 2 


+

	

, coincide with the

horizontal displacements at the point (y; z), y = Px. The vertical displace-

ments are di�erent, and the di�erence is equal to jx� yj @w

�

(y)=@�.

The nonpenetration condition of the crack faces at the point (x; z) 2 	,

x 2 


+

	

, has the following form:

(�

+

(x; z)� �

�

(x; z))n(x) � 0; x 2 


+

	

; z = �(x): (3:172)

We can substitute the vector �

�

(x; z) in (3.172) in accordance with (3.170),

(3.171). This implies

(�

+

(x)� �

�

(y))n(x) � (�

+

z

(x)� �

�

z

(y))n(x) � 0; (3:173)

x 2 


+

	

; z = �(x); y = Px;
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where

�

�

(s) = (W

�

(s); w

�

(s)); �

�

z

(s) =

�

zrw

�

(s); js� Psj

@w

�

(Ps)

@�

�

�

:

We have used the notations @=@�

+

� @=@�, @=@�

�

� �@=@�. It makes

sense to notice that y = Py for y 2 �

c

.

Analogously, we can derive a nonpenetration condition like (3.173) for

the points (x; z) 2 	

�

, x 2 


�

	

. Indeed, let (x; z) 2 	

+

, x 2 


�

	

. Then

�

+

(x; z) =

�

W

+

(y) � zrw

+

(y); w

+

(y) � jx� yj

@w

+

(y)

@�

�

; (3:174)

x 2 


�

	

; z = �(x); y = Px:

Consider a point (x; z) 2 	

�

, x 2 


�

	

. We have

�

�

(x; z) = (W

�

(x) � zrw

�

(x); w

�

(x)): (3:175)

By substituting (3.174), (3.175) in the nonpenetration inequality

(�

+

(x; z)� �

�

(x; z))n(x) � 0; x 2 


�

	

; z = �(x);

it is easy to derive

(�

+

(y) � �

�

(x))n(x)� (�

+

z

(y) � �

�

z

(x))n(x) � 0; (3:176)

x 2 


�

	

; z = �(x); y = Px:

Thus, the mutual nonpenetration condition between the crack faces is de-

scribed by the inequalities (3.173), (3.176). The inequalities have a nonlocal

character; in particular, they contain values of the functions both at the

point x and the point y = Px; moreover the last values (i.e. at the point

y = Px) are taken at the opposite crack faces.

It is of importance to note that if the surface z = �(x) transform into

the vertical crack corresponding to the cylinder x 2 �

c

, �" � z � ", then

the conditions (3.173), (3.176) transform into the inequality we have used

in the previous sections,

[W (x)]�(x) � "

�

�

�

�

�

@w(x)

@�

�

�

�

�

�

; x 2 �

c

: (3:177)

In fact, in this case the normal n(x) is transformed into the vector (�

1

; �

2

; 0),

and the conditions (3.173), (3.176) imply

[W (x)]�(x) � z[rw(x)]�(x); x 2 �

c

; �" � z � 0; (3:178)

[W (x)]�(x) � z[rw(x)]�(x); x 2 �

c

; 0 � z � ": (3:179)

It is clear that (3.177) is equivalent to (3.178), (3.179). If a crack has both

inclined and vertical parts, the nonpenetration condition of the crack faces

has the form (3.173), (3.179) or (3.176), (3.178). In a similar way, we can

analyse di�erent inclined cracks and derive the formulae as before.
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3.5.2 Formulation of the boundary problem

Consider an inclined crack with the nonpenetration condition of the form

(3.173), (3.176). Let � = (W;w) be the displacement vector of the mid-

surface points. Introduce the strain and stress tensor components "

ij

=

"

ij

(W ), �

ij

= �

ij

(W ),

"

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; i; j = 1; 2;

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1� �)"

12

;

� = const; 0 < � < 1=2:

The energy functional of the plate has the form

�(�) =

1

2

B(W;W ) +

1

2

b(w;w)� hf; �i;

where

B(W;

�

W ) = h�

ij

(W ); "

ij

(

�

W )i;

b(w; �w) =

Z




c

(w

;11

�w

;11

+w

;22

�w

;22

+�w

;11

�w

;22

+�w

;22

�w

;11

+2(1��)w

;12

�w

;12

)

and the brackets h � ; � i denote integration over 


c

.

Assume that f = (f

1

; f

2

; f

3

) 2 L

2

(


c

). Let H(


c

) = H

1;0

(


c

) �

H

1;0

(


c

)�H

2;0

(


c

). The spaces H

1;0

(


c

), H

2;0

(


c

) are introduced analo-

gously to the spaces H

1;0

(


 

), H

2;0

(


 

) used in previous sections. Denote

by K the set of all functions in H(


c

) satisfying the inequalities (3.173),

(3.176). The set is convex and closed in H(


c

). The equilibrium problem

for the plate has a variational form

inf

�2K

�(�): (3:180)

The functional � is convex and di�erentiable on the space H(


c

), and hence

the problem (3.180) is equivalent to the variational inequality

� 2 K : �

0

(�)(�� � �) � 0 8�� 2 K; (3:181)

where �

0

(�) is the derivative of � at the point �. By the inequalities

b(w;w) � ckwk

2

2;


c

8w 2 H

2;0

(


c

);

B(W;W ) � ckWk

2

1;


c

8W = (w

1

; w

2

) 2 H

1;0

(


c

)

the functional � is coercive on the space H(


c

), i.e.

�(�)!1; as k�k

H(


c

)

!1:
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In view of the weak lower semicontinuity of �, we conclude that the problem

(3.180) (or the problem (3.181)) has a solution. This solution is unique.

It is seen that in the domain 


c

n


	

the following equations,

�

2

w = f

3

; ��

ij;j

(W ) = f

i

; i = 1; 2; (3:182)

hold in the distribution sense. To verify this statement we can substitute

�+ ~� in (3.181) as a test function, where ~� = (

~

W; ~w) 2 C

1

0

(


c

n


	

), and

� is the solution of (3.181). This implies the identity

�

0

(�)(~�) = 0 8 ~� = (

~

W; ~w) 2 C

1

0

(


c

n


	

);

which means that (3.182) hold in the distribution sense.

Let a point x be interior with respect to 


+

	

, i.e. there exists a neigh-

bourhood U of the point x such that U � 


+

	

. We choose a smooth function

~� = (

~

W; ~w) in the domain 


c

such that a support of ~� belongs to U and

(

~

W

+

(x)� zr ~w

+

(x); ~w

+

(x))n(x) � 0; z = �(x); x 2 U:

In this case �+ ~� 2 K, where � is the solution of (3.181). Substitute �+ ~�

in (3.181) as a test function. This provides the inequality

�

0

(�)(~�) � 0;

which means that the equilibrium equations (3.182) do not hold in 


 

, in

general.

3.5.3 Simpli�ed nonpenetration condition

As before, let the smooth curve �

c

lie in the plate mid-surface z = 0, and

�

c

be intersection of the plane z = 0 and the crack surface 	 described by

the equation z = �(x), x 2 


	

. The unit normal vector to 	 at a point x is

n(x) = (n

1

(x); n

2

(x); n

3

(x)). Let y be the projection Px of a point x 2 


	

onto �

c

. The unit normal vector to �

c

at a point y in the plane z = 0 is

denoted by � = (�

1

; �

2

).

Consider a vertical plane �

y

passed over a �xed point y 2 �

c

in the

direction n(y) (i.e. n(y) lies in �

y

). We assume that the intersection C

y

=

�

y

\ 	 is a straight line for every y 2 �

c

, and denote by �(y) the angle

between C

y

and z = 0. The normal to 	 in �

y

will not depend on z because

of

n(x) = n(y) =

�

�(y) cos�(y); sin�(y)

�

: (3:183)

Next, supposing � to be small enough (leading to small 


	

), we assume

that the displacements in 


	

do not vary along the normal �(y), namely,

�(x; z) = �(y; z); x 2 


+

	

; �" � z � 0; y = Px;
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�(x; z) = �(y; z); x 2 


�

	

; 0 � z � "; y = Px:

This assumption combined with Kirchho�{Love's formula

�(y; z) =

�

W (y) � zrw(y); w(y)

�

; jzj � ";

provides the following value of the displacements jump at 	,

[�(x; z)] = [�(y; z)] =

�

[W (y) � zrw(y)]; [w(y)]

�

; (3:184)

z = �(x); y = Px; 8x 2 


	

:

Substituting (3.183), (3.184) into the nonpenetration condition (3.172), we

have

0 �

�

[W (y)]� z[rw(y)]; [w(y)]

�

�

�

�(y) cos�(y); sin�(y)

�

= [W (y)]�(y) cos�(y) + [w(y)] sin�(y) � z[rw(y)]�(y) cos�(y); jzj � ":

The linearity of this inequality in z means

[W (y)]�(y) cos�(y) + [w(y)] sin�(y) � "

�

�

�

�

�

@w(y)

@�

�

�

�

�

�

cos�(y):

Dividing this inequality by cos�(y), we �nally deduce the required relation

[W (y)]�(y) + [w(y)] tan�(y) � "

�

�

�

�

�

@w(y)

@�

�

�

�

�

�

; y 2 �

c

: (3:185)

The obtained nonpenetration condition (3.185) is local as compared to

(3.173), (3.176) since this condition is considered only at the curve �

c

. Let

us recall that we have assumed that the angle between the crack surface 	

and the axis z is small. By this assumption, the small deection jx� Pxj

has been neglected in (3.173), (3.176). It is of importance to deduce (3.177)

from (3.185). Indeed, if 	 is transformed into a vertical crack, then C

y

is

a straight line, �(y) � 0, and from (3.185) we obtain the nonpenetration

condition

[W (y)]�(y) � "

�

�

�

�

�

@w(y)

@�

�
�

�

�

�

; y 2 �

c

;

used in the previous sections.

3.5.4 Boundary conditions at the crack faces

Let us now de�ne the admissible displacements set

K = f� = (W;w) 2 H(


c

) j � satis�es (3:185)g
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which is convex and closed. Consider the equilibrium problem for the plate

with the inclined crack in a variational form

inf

�2K

�(�); (3:186)

which is equivalent to the variational inequality

� 2 K; �

0

(�)(��� �) � 0 8 �� 2 K: (3:187)

By arguments of the Section 3.5.2, there exists a unique solution � 2 K to

the problem (3.186). Substituting �� = �� ~�, where ~� 2 C

1

0

(


c

), as a test

function in (3.187), we verify that the equilibrium equations

�

2

w = f

3

; ��

ij;j

(W ) = f

i

; i = 1; 2; (3:188)

hold in 


c

in the distribution sense.

Let us now obtain a complete system of boundary conditions ful�lled at

�

c

provided that the simpli�ed nonpenetration condition (3.185) holds. We

assume the solution � 2 K is smooth enough and use Green's formulas for

smooth functions (see Section 1.4),

B(W;

�

W ) = �

Z




c

�

ij;j

(W )�u

i

d


c

�

Z

�

c

�

�

�

(W )

�

W� + �

�

(W )

�

W�

�

d�

c

;

b(w; �w) =

Z




c

�

2

w �w d


c

+

Z

�

c

�

t(w) �w �m(w)

@ �w

@�

�

d�

c

;

t(w) =

@

@�

�

�w + (1 � �)

@

2

w

@�

2

�

; m(w) = ��w + (1� �)

@

2

w

@�

2

:

Take �� = �� ~�, ~� 2 H

1

0

(
)�H

1

0

(
)�H

2

0

(
), as a test function, in (3.187),

and use (3.188) and the Green formulas. By the independence between

~

W ,

~w, @ ~w=@� at the boundary, the usual considerations imply the conditions

[�

�

(W )] = [�

�

(W )] = [t(w)] = [m(w)] = 0 (3:189)

holding on �

c

, and

Z

�

c

 

��

�

(W )[

�

W �W ]� � �

�

(W )[

�

W �W ]� + t(w)[ �w �w] (3:190)

�m(w)

�

@ �w

@�

�

@w

@�

��

d�

c

� 0 8 �� = (

�

W; �w) 2 K:

Note that K is a convex cone in H(


c

), i.e. if � 2 K then �� 2 K, � � 0

is a constant. Therefore, one can substitute �� = �� in (3.190) and deduce

Z

�

c

 

��

�

(W )[W ]���

�

(W )[W ]�+t(w)[w]�m(w)

�

@w

@�

��

d�

c

= 0; (3:191)
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Z

�

c

 

��

�

(W )[

�

W ]���

�

(W )[

�

W ]� + t(w)[ �w]�m(w)

�

@ �w

@�

��

d�

c

� 0 (3:192)

for all �� 2 K. Let us denote

� = [

�

W ]; � = [ �w]; � =

�

@ �w

@�

�

on �

c

: (3:193)

By the trace theorems of Section 1.4, smooth enough � = (�

1

; �

2

; �

3

), �, �

with compact supports in �

c

n@�

c

de�ne a function �� = (

�

W; �w) fromH(


c

)

such that equalities (3.193) take place at the boundary �

c

. Thus, (3.192)

implies

Z

�

c

�

��

�

(W )�� � �

�

(W )�� + t(w)� �m(w)�

�

d�

c

� 0 (3:194)

8 � = (�

1

; �

2

; �

3

); �; �; �� + � tan� � "j�j:

When �� = � = � = 0, for an arbitrary value of �� , from (3.194) we have

�

�

(W ) = 0: (3:195)

Consider next the representation

��

�

(W )�� + t(w)� �m(w)� =

1

2

�

��

�

(W ) �

1

"

m(w)

�

(�� + � tan�+ "�)

+

1

2

�

��

�

(W ) +

1

"

m(w)

�

(�� + � tan�� "�) +

�

�

�

(W ) tan�+ t(w)

�

�:

Then for arbitrary �, � = 0, � such that �� = �� tan�, we have ��+� tan��

"� = 0, and from (3.194), (3.195) the following inequality is derived,

�

�

(W ) tan�+ t(w) = 0: (3:196)

After the utilization of (3.195), (3.196), the remaining part of (3.194) pro-

vides the inequality

1

2

Z

�

c

 

�

��

�

(W ) �

1

"

m(w)

��

�� + � tan�+ "�

�

+

�

��

�

(W ) +

1

"

m(w)

��

�� + � tan�� "�

�

!

d�

c

� 0

8 �; �; �; �� + � tan�+ "� � 0; �� + � tan�� "� � 0:

This means

��

�

(W ) �

1

"

m(w) � 0; ��

�

(W ) +

1

"

m(w) � 0;
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i.e.

��

�

(W ) �

1

"

jm(w)j: (3:197)

We can see that (3.191), by (3.195), (3.196), can be represented in the same

way,

Z

�

c

 

�

��

�

(W )�

1

"

m(w)

��

[W ]� + [w] tan�+ "

�

@w

@�

��

+

�

��

�

(W ) +

1

"

m(w)

��

[W ]� + [w] tan�� "

�

@w

@�

��

!

d�

c

= 0:

Therefore, by (3.185), (3.197), we conclude that

Z

�

c

�

��

�

(W )�

1

"

m(w)

��

[W ]� + [w] tan�+ "

�

@w

@�

��

d�

c

= 0;

Z

�

c

�

��

�

(W ) +

1

"

m(w)

��

[W ]� + [w] tan�� "

�

@w

@�

��

d�

c

= 0:

Thus, we have proved the following assertion.

Theorem 3.13. For a smooth solution � = (W;w) 2 K of the problem

(3.187), the following boundary conditions hold at �

c

,

[�

�

(W )] = [�

�

(W )] = [t(w)] = [m(w)] = 0; �

�

(W ) tan�+ t(w) = 0;

�

�

(W ) = 0; [W ]� + [w] tan� � "

�

�

�

�

�

@w

@�

�
�

�

�

�

; ��

�

(W ) �

1

"

jm(w)j;

�

��

�

(W )�

1

"

m(w)

��

[W ]� + [w] tan�+ "

�

@w

@�

��

= 0;

�

��

�

(W ) +

1

"

m(w)

��

[W ]� + [w] tan�� "

�

@w

@�

��

= 0:

Let us note that, by (3.185), (3.196), the last two equations here are

equivalent to the relation

�

�

(W )

�

[W ]� + [w] tan�

�

+m(w)

�

@w

@�

�

= 0;

which for � = 0 has the same form as for the nonpenetration condition

considered in the previous sections.
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3.5.5 Inclined cut in a beam

Let us consider a thin homogeneous isotropic beam of thickness 2". We

assume that the beam mid-line coincides with the segment (0; 1) of the

axis x. At the point y = 1=2, the beam has an inclined cut as a segment

having the angle � with the vertical line, 0 � tan� < (2")

�1

. We look

for the function � = (W;w) of horizontal displacements W (x) and vertical

displacements w(x) provided that the external forces g(x); f(x) are given.

The condition of clamped edges

W = w = w

x

= 0 at x = 0; 1

is assumed to be ful�lled. The nonpenetration condition (3.185) at the cut

faces is transformed into

[W ] + [w] tan� � "

�

�

�

�

[w

x

]

�

�

�

�

; (3:198)

where [s] denotes a function s jump at the point y, i.e. [s] = s(y+0)�s(y�0).

In the one-dimensional case we have the strain "(W ) = W

x

, the stress

�(W ) = GW

x

and the potential energy functional

�(�) =

1

Z

0

�

G

2

W

2

x

+

D

2

w

2

xx

� gW � fw

�

dx;

G =

E"

1� �

2

; D =

E"

3

3(1� �

2

)

:

Denote 


y

= (0; y) [ (y; 1). Introduce the Hilbert space

H(


y

) =

�

W 2 H

1

(


y

); w 2 H

2

(


y

) j W = w = w

x

= 0 at x = 0; 1

�

and the convex closed set of admissible displacements

K = f� = (W;w) 2 H(


y

) j � satis�es (3:198)g :

Let f; g 2 L

2

(


y

). The equilibrium problem for the beam with the inclined

cut is formulated as the following variational inequality:

Z




y

�

GW

x

(

�

W

x

�W

x

) +Dw

xx

( �w

xx

� w

xx

) (3:199)

� g(

�

W �W )� f( �w � w)

�

dx � 0 8�� = (

�

W; �w) 2 K:

There exists a unique solution � 2 K of (3.199). At the cut edges we have

�

�

(W ) = GW

x

(y); m(w) = Dw

xx

(y); t(w) = Dw

xxx

(y):
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Therefore, by Theorem 3.13, the problem (3.199) is equivalent to the fol-

lowing boundary value problem:

�GW

xx

= g; Dw

xxxx

= f in 


y

;

[W

x

] = [w

xx

] = [w

xxx

] = 0; W

x

(y) tan�+

"

2

3

w

xxx

(y) = 0;

[W ] + [w] tan� � "j[w

x

]j; �W

x

(y) �

"

3

jw

xx

(y)j ; (3:200)

�

W

x

(y) +

"

3

w

xx

(y)

�

�

[W ] + [w] tan�+ "[w

x

]

�

= 0;

�

W

x

(y) �

"

3

w

xx

(y)

�

�

[W ] + [w] tan�� "[w

x

]

�

= 0;

W (0) = w(0) = w

x

(0) =W (1) = w(1) = w

x

(1) = 0:

3.5.6 Construction of analytical solutions

If we construct a solution of the problem (3.200), then it is a solution of

(3.199). By the arguments of Section 1.3.5, we seek the solution of (3.200)

as a sum � = �

0

+ �

1

, where �

0

= (W

0

; w

0

) is a solution of the boundary

value problem

�GW

0

xx

= g; Dw

0

xxxx

= f in 


y

; (3:201)

[W

0

x

] = [w

0

xx

] = [w

0

xxx

] = 0; W

0

x

(y) = w

0

xx

(y) = w

0

xxx

(y) = 0:

Obviously, there exists a solution �

0

= (W

0

; w

0

) from the space (H

2

(


y

)�

H

4

(


y

)) \H(


y

) to (3.201) since it is decomposed into two independent

problems in (0; y) and (y; 1) as follows:

�GW

0

xx

= g; Dw

0

xxxx

= f in (0; y); �GW

0

xx

= g; Dw

0

xxxx

= f in (y; 1);

W

0

(0) = w

0

(0) = w

0

x

(0) = 0; W

0

(1) = w

0

(1) = w

0

x

(1) = 0;

W

0

x

(y) = w

0

xx

(y) = w

0

xxx

(y) = 0; W

0

x

(y) = w

0

xx

(y) = w

0

xxx

(y) = 0:

Note that �

0

is the solution of the equilibrium problem for the beam as its

cut edges are free of the stresses.

For convenience, we introduce the following constant values:

� = 12"

2

; � = 4"

2

+ tan

2

�:

Having found the solution of (3.201), one can de�ne the values

�

+

= [W

0

] + [w

0

] tan�+ "[w

0

x

]; �

�

= [W

0

] + [w

0

] tan�� "[w

0

x

];

 

+

= [W

0

] + [w

0

] tan�+

"�

�

[w

0

x

];  

�

= [W

0

] + [w

0

] tan��

"�

�

[w

0

x

]:
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Besides, we consider the functions

�(x) =

�

x

2

; x 2 (0; y);

(x� 1)

2

; x 2 (y; 1);

�

x

(x) =

�

2x ; x 2 (0; y);

2(x� 1) ; x 2 (y; 1);

�(x) =

�

2x

3

� 3x

2

; x 2 (0; y);

2x

3

� 3x

2

+ 1 ; x 2 (y; 1):

Then the pairs (�

x

; �), (�

x

; �) belong to the space (C

1

(


y

))

2

\H(


y

), and

the following identities hold:

�

xx

(x) � 2; �

xxx

(x) � 0; [�] = 0; [�

x

] = �2;

�

x

(x) = 6(x

2

� x); �

xx

(x) = 6(2x� 1); �

xxx

(x) � 12;

�

xxxx

(x) � 0; [�] = 1; �

xx

(y) = 0; [�

x

] = 0:

Let us recall that we take y = 1=2 in the above formulae.

Theorem 3.14. The functions

W (x) = W

0

(x) + 2"

2

A�

x

(x); (3:202)

w(x) = w

0

(x) + 6"B�(x) �A�(x) tan�

are solutions of the variational inequality (3.199), where �

0

= (W

0

; w

0

) is

the solution of (3.201) and

(A;B) =

8

>

>

<

>

>

:

(0; 0) ; if �

+

� 0; �

�

� 0;

(� + �)

�1

(�

+

; �

+

) ; if �

+

< 0;  

�

� 0;

(� + �)

�1

(�

�

;��

�

) ; if �

�

< 0;  

+

� 0;

�

(2�)

�1

(�

+

+ �

�

); (2�)

�1

(�

+

� �

�

)

�

; if  

+

< 0;  

�

< 0:

Proof. To prove the theorem, it su�ces to verify conditions (3.200).

Indeed, by the properties of the functions �, � and �

0

, we obtain

�GW

xx

= �GW

0

xx

�G2"

2

A�

xxx

= g in 


y

;

Dw

xxxx

= Dw

0

xxxx

+D6"B�

xxxx

�DA�

xxxx

tan� = f in 


y

;

[W

x

] = [W

0

x

]+2"

2

A[�

xx

] = 0; [w

xx

] = [w

0

xx

]+6"B[�

xx

]�A[�

xx

] tan� = 0;

[w

xxx

] = [w

0

xxx

] + 6"B[�

xxx

]�A[�

xxx

] tan� = 0:

Now let us calculate the values

W

x

(y) = W

0

x

(y) + 2"

2

A�

xx

(y) = 4"

2

A;

w

xx

(y) = w

0

xx

(y) + 6"B�

xx

(y) � A�

xx

(y) tan� = 12"B;

w

xxx

(y) = w

0

xxx

(y) + 6"B�

xxx

(y) �A�

xxx

(y) tan� = �12A tan�:
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Then

W

x

(y) �

"

3

w

xx

(y) = 4"

2

(A� B); W

x

(y) tan�+

"

2

3

w

xxx

(y) = 0:

Since [W ] = [W

0

]�4"

2

A, [w] = [w

0

]�A tan�, [w

x

] = [w

0

x

]�12"B, we have

[W ] + [w] tan�� "[w

x

] = �

�

� �A � �B:

At last, we verify that

(A+ B)(�

+

� �A � �B) = 0; (A� B)(�

�

� �A + �B) = 0;

�

+

� �A + �B; �

�

� �A � �B; �A � jBj:

Consideration of the following four admissible cases,

A+ B = 0; A�B = 0; �

+

� �A � �B � 0; �

�

� �A+ �B � 0;

A+ B < 0; A�B = 0; �

+

� �A � �B = 0; �

�

� �A+ �B � 0;

A+ B = 0; A�B < 0; �

+

� �A � �B � 0; �

�

� �A+ �B = 0;

A+ B < 0; A�B < 0; �

+

� �A � �B = 0; �

�

� �A+ �B = 0;

gives the values of A;B as in Theorem 3.14. The proof is completed.

By the smoothness of �

0

; �; �, the solution � 2

�

H

2

(


y

) �H

4

(


y

)

�

\

H(


y

). The constructed functions �, � give the correction for the solution

�

0

provided the nonpenetration condition holds and � = �

0

(i.e. A = B =

0) only when �

+

� 0, �

�

� 0. The presentation (3.202) of � allows one to

�nd the functions

�(x) = GW

x

(x) = G(W

0

x

(x) + 4"

2

A);

m(x) = Dw

xx

(x) = D(w

0

xx

(x) + 12"B � 6A(2x� 1) tan�);

t(x) = Dw

xxx

(x) = D(w

0

xxx

(x)� 12A tan�);

which are continuous in (0; 1).

Let us derive corollaries of Theorem 3.14. First, we assume the cut is

vertical, i.e. � = 0. Then the nonpenetration condition (3.198) is written

as

[W ] � " j[w

x

]j ;

and the boundary problem (3.200) for the variational inequality (3.199)

takes the form

�GW

xx

= g; Dw

xxxx

= f in 


y

;

[W

x

] = [w

xx

] = [w

xxx

] = 0; w

xxx

(y) = 0;

[W ] � "j[w

x

]j; �W

x

(y) �

"

3

jw

xx

(y)j ; (3:203)
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�

W

x

(y) +

"

3

w

xx

(y)

�

�

[W ] + "[w

x

]

�

= 0;

�

W

x

(y) �

"

3

w

xx

(y)

�

�

[W ]� "[w

x

]

�

= 0:

For de�ned values �

�

= [W

0

]� "[w

0

x

], �

�

= [W

0

] � "=3[w

0

x

], from (3.202)

we deduce the following statement.

Corollary 3.1. The functions

W (x) = W

0

(x) +

A

2

�

x

(x); w(x) = w

0

(x) +

3B

2"

�(x)

are solutions to the problem (3.203), where �

0

= (W

0

; w

0

) is the solution of

(3.201) and

(A;B) =

8

>

>

<

>

>

:

(0; 0) ; if �

+

� 0; �

�

� 0;

1

4

(�

+

; �

+

) ; if �

+

< 0;  

�

� 0;

1

4

(�

�

;��

�

) ; if �

�

< 0;  

+

� 0;

�

1

2

(�

+

+ �

�

);

1

6

(�

+

� �

�

)

�

; if  

+

< 0;  

�

< 0:

Now let the vertical force be zero, i.e. f(x) � 0. Then w

0

(x) � 0 and,

therefore, �

+

= �

�

=  

+

=  

�

= [W

0

], B = 0. In what follows, we denote

s = s

+

� s

�

, s

+

; s

�

� 0, s

+

s

�

= 0.

Corollary 3.2. Let f = 0. Then the functions

W (x) = W

0

(x)�

2"

2

�

[W

0

]

�

�

x

(x); w(x) =

tan�

�

[W

0

]

�

�(x)

are solutions to the problem (3.199).

As we see, the presence of the inclined cut can lead to an appearance of

vertical displacements notwithstanding the vertical force is zero. If � = 0,

then f = 0 leads to w = 0.

Consider an example. Let f(x) � 0, and

g(x) =

�

c ; x 2 (0; 1=2);

�c ; x 2 (1=2; 1):

The case c � 0 corresponds to a compression. One can easily �nd

W

0

(x) =

1� �

2

2E"

x(1� x)g(x):

Its jump [W

0

] = �c(1��

2

)=(4E") � 0, therefore [W

0

]

�

= c(1��

2

)=(4E").

By Corollary 3.2, the solution � of (3.199) is as follows,

W (x) =

c(1� �

2

)

2E"

8

<

:

�x

2

+

�

1�

�

6�

�

x ; x 2 (0; 1=2);

x

2

�

�

1 +

�

6�

�

x+

�

6�

; x 2 (1=2; 1);
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w(x) =

c(1� �

2

) tan�

4E"�

�

2x

3

� 3x

2

; x 2 (0; 1=2);

2x

3

� 3x

2

+ 1 ; x 2 (1=2; 1);

and [w] = c(1 � �

2

) tan�

.

(4E"�)

�1

. As for the extension, the case c < 0

gives [W

0

] > 0, therefore [W

0

]

�

= 0 and W (x) = W

0

(x), w(x) � 0.

3.6 Friction problem for plates with cracks

We consider the model of a plate with a crack describing the plate vertical

displacements with a given friction between the crack surfaces. The results

of this section are published in (Kovtunenko, 1998).

3.6.1 Problem formulation

Let 
 � R

2

be a bounded domain with the smooth boundary �, which has

an inside smooth curve �

c

without self-intersections. We denote 


c

= 
n�

c

.

Let n = (n

1

; n

2

) be a unit normal vector at �, and � = (�

1

; �

2

) be a unit

normal vector at �

c

, which de�nes a positive and a negative surface of the

crack. We assume that there exists a closed continuation � of �

c

dividing 


into two domains: the domain 


�

with the outside normal � at �, and the

domain 


+

with the outside normal �� at � (see Section 1.4). By doing

so, for a smooth function w in 


c

, we de�ne the traces of w at boundaries

@


�

and, in particular, the traces w

�

and the jump [w] = w

+

�w

�

at �

c

.

Let us consider the bilinear form

b(w; �w) = D

Z




c

�

w

xx

�w

xx

+w

yy

�w

yy

+ �(w

xx

�w

yy

+ w

yy

�w

xx

)

+ 2(1� �)w

xy

�w

xy

�

;

where D = Eh

3

=(3(1 � �

2

)); 2h is the plate thickness; 0 < � < 1=2. The

form b(w; �w) de�nes a scalar product, and b(w;w) is a square norm kwk

2

in

the Hilbert space

H(


c

) = fw 2 H

2

(


c

) j w = @w=@n = 0 on �g:

Let f 2 L

2

(


c

) correspond to external forces in 


c

, and g 2 L

2

(�

c

), g � 0

a.e. on �

c

, be a known friction force at �

c

. We introduce the potential

energy functional

�(w) =

1

2

b(w;w) +

Z

�

c

g

�

�

�

[w]

�

�

�

�

Z




c

fw;
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which is not di�erentiable. We seek the function w(x) of the plate vertical

displacements. The corresponding equilibrium problem implies the mini-

mization of the energy functional

�(w) = inf

�w2H(


c

)

�( �w); (3:204)

or the equivalent variational inequality

b(w; �w �w) +

Z

�

c

g

�
�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

�

Z




c

f( �w �w) 8 �w 2 H(


c

): (3:205)

Because g is nonnegative, one can see that � is a coercive, strongly con-

vex and lower semicontinuous functional. Therefore, there exists a unique

solution w 2 H(


c

) of the problem (3.204) or (3.205) (see Section 1.2).

Now we are in a position to give a formulation of the boundary value

problem. We recall formulae for the transverse force and the bending mo-

ment at �

c

,

t(w) = D

@

@�

�

�w + (1� �)

@

2

w

@�

2

�

; m(w) = D

�

��w + (1� �)

@

2

w

@�

2

�

;

with the tangent vector � = (��

2

; �

1

) at �

c

. Let us take �w = w � �, � 2

C

1

0

(


c

), as a test function in (3.205) and deduce the equilibrium equation

ful�lled in 


c

in the distribution sense,

D�

2

w = f: (3:206)

By f 2 L

2

(


c

) and (3.206), we obtain for the solution of (3.205) that

�

2

w 2 L

2

(


c

). Thus, in 


+

and 


�

, we have w 2 H

2

(


�

), �

2

w 2 L

2

(


�

)

and, therefore, t

�

(w) 2 H

�3=2

(�), m

�

(w) 2 H

�1=2

(�) are de�ned, and

Green's formula arises:

b(w; �w) = D

Z




c

�w�

2

w + ht

+

(w); �w

+

i

�

� ht

�

(w); �w

�

i

�

�hm

+

(w); @ �w

+

=@�i

�

+ hm

�

(w); @ �w

�

=@�i

�

8 �w 2 H(


c

):

Here h � ; � i

�

denotes the duality pairing between H

k+1=2

(�) and its dual

space H

�k�1=2

(�) for both k = 0; 1. Substituting (3.206) in (3.205), by the

Green formula, one derives

ht

+

(w); �w

+

�w

+

i

�

� ht

�

(w); �w

�

� w

�

i

�

+

Z

�

c

g

�
�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

(3:207)

�

�

m

+

(w);

@( �w

+

� w

+

)

@�

�

�

+

�

m

�

(w);

@( �w

�

�w

�

)

@�

�

�

� 0:
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Taking here �w = w � �, � 2 H

2

0

(
), we have [�] = [@�=@�] = 0 and, hence

ht

+

(w)� t

�

(w); �i

�

� hm

+

(w)�m

�

(w); @�=@�i

�

= 0: (3:208)

By the arbitrariness of � and @�=@� at �, the last equality implies

t

+

(w) = t

�

(w); m

+

(w) = m

�

(w);

and we denote t

�

(w);m

�

(w) by t(w);m(w), respectively, t(w) 2 H

�3=2

(�),

m(w) 2 H

�1=2

(�). Thus, (3.207) takes the form

ht(w); [ �w�w]i

�

�

�

m(w);

�

@( �w �w)

@�

��

�

+

Z

�

c

g

�
�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

� 0:

By �w�w 2 H(


c

), the jumps of �w�w and @( �w�w)=@� are zeros at �n�

c

.

Consequently, the functionals t(w) and m(w) are de�ned at �

c

(see Section

1.4). Hence, the previous inequality can be written in the form

ht(w); [ �w �w]i

�

c

�

�

m(w);

�

@( �w � w)

@�

��

�

c

(3:209)

+

Z

�

c

g

�

�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

� 0:

Any given smooth functions  

�

; �

�

with compact supports in �

c

n @�

c

de�ne � 2 H(


c

) such that �

�

=  

�

, @�

�

=@� = �

�

at �

c

. Choosing

 

+

=  

�

and substituting �w = w � � in (3.209), we conclude that

hm(w); [�]i

�

c

= 0 (3:210)

with an arbitrary function [�] having compact support in �

c

n @�

c

. This

implies m(w) = 0 at �

c

and, hence, (3.209) gives

ht(w); [ �w� w]i

�

c

+

Z

�

c

g

�

�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

� 0:

We replace here �w by �� �w with the constant � � 0; then

�

�

�ht(w); [ �w]i

�

c

+

Z

�

c

g

�

�

�

[ �w]

�

�

�

�

�

�

ht(w); [w]i

�

c

+

Z

�

c

g

�

�

�

[w]

�

�

�

�

� 0

for all �w 2 H(


c

), � � 0. From this relation one can deduce that

ht(w); [w]i

�

c

+

Z

�

c

g

�

�

�

[w]

�

�

�

= 0; (3:211)
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�ht(w); [ �w]i

�

c

+

Z

�

c

g

�

�

�

[ �w]

�

�

�

� 0 8 �w 2 H(


c

):

By the above arguments, the last inequality means

jht(w);  i

�

c

j �

Z

�

c

gj j (3:212)

for all smooth functions  having compact supports in �

c

n @�

c

.

Thus, we obtain the equivalent formulation of (3.205) in the form

D�

2

w = f in 


c

;

m(w) = 0; [t(w)] = 0; jt(w)j � g; (3:213)

t(w) [w] + g

�

�

�

[w]

�

�

�

= 0 on �

c

;

which is ful�lled in the sense (3.208), (3.210){(3.212). The last two relations

correspond to the friction condition

8

<

:

jt(w)j < g =) [w] = 0;

t(w) = g =) [w] � 0;

t(w) = �g =) [w] � 0:

If g � 0 at �

c

, then (3.213) reduces to m(w) = t(w) = 0.

3.6.2 Associated penalty problem

We introduce the function B 2 H

2

(R) by the formula

B(t) =

8

<

:

t ; as t > 1;

�t ; as t < �1;

(1 + t

2

)=2 ; as jtj � 1:

Its derivative B

0

2 H

1

(R) can be found by the formula

B

0

(t) =

8

<

:

1 ; as t > 1;

�1 ; as t < �1;

t ; as jtj � 1:

The functions B;B

0

are Lipschitz continuous due to

jB(t) �B(s)j � jt� sj; jB

0

(t) �B

0

(s)j � jt� sj 8 t; s 2 R:

Therefore, for any � 2 H

1

(�

c

n @�

c

), we have B(�), B

0

(�) 2 H

1

(�

c

n @�

c

)

(Kinderlehrer, Stampacchia, 1980).
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Let us de�ne the penalty functional

�

"

(w) =

1

2

kwk

2

H(


c

)

+ "

Z

�

c

gB

�

[w]

"

�

�

Z




c

fw; w 2 H(


c

)

depending on a small parameter " > 0. Because of [w] 2 H

1

(�

c

n @�

c

) for

w 2 H(


c

), we have B([w]=") 2 H

1

(�

c

n @�

c

), and the boundary integral

in the formula for �

"

is well de�ned. The functional �

"

is coercive due to

g � 0, B � 0, strictly convex and lower semicontinuous. Hence, there exists

a unique solution w

"

2 H(


c

) of the minimization problem

�

"

(w

"

) = inf

�w2H(


c

)

�

"

( �w); (3:214)

which is equivalent to the variational inequality

b(w

"

; �w� w

"

) + "

Z

�

c

g

�

B

�

[ �w]

"

�

� B

�

[w

"

]

"

��

�

Z




c

f( �w � w

"

) (3:215)

8 �w 2 H(


c

):

Theorem 3.15. The strong convergence w

"

! w in H(


c

) as " ! 0 of the

solutions w

"

for (3.215) yields that w is a solution of (3.205), and

kw

"

� wk

H(


c

)

� C

p

"; C

2

=

1

2

kgk

L

1

(�

c

)

:

Proof. We have the estimate 0 � "B(t=") � jtj � "=2, t 2 R, which

holds also for any continuous function �:

0 � "B(�(x)=") � j�(x)j � "=2 8x: (3:216)

Taking �w = w

"

in (3.205) and �w = w in (3.215), we obtain

b(w

"

�w;w

"

�w) �

Z

�

c

g

��

"B

�

[w]

"

�

�

�

�

�

[w]

�

�

�

�

�

�

"B

�

[w

"

]

"

�

�

�

�

�

[w

"

]

�

�

�

��

:

The imbedding theorems ([w]; [w

"

] 2 C(�

c

)) and the estimate (3.216) give

kw

"

�wk

2

H(


c

)

�

Z

�

c

g

�

"

2

� 0

�

�

"

2

kgk

L

1

(�

c

)

:

The theorem is proved.

Now we note that �

"

is di�erentiable. Indeed,

lim

�!0

�

�1

�

B(�(x) + �h(x)) �B(�(x))

�

= B

0

(�(x))h(x)
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for any �; h 2 C(�

c

), and, therefore,

b(w

"

; �w) +

Z

�

c

gB

0

�

[w

"

]

"

�

[ �w] =

Z




c

f �w 8 �w 2 H(


c

): (3:217)

By the above Green formula,

b(w

"

; �w) = D

Z




c

�

2

w

"

�w+ht(w

"

); [ �w]i

�

c

�hm(w

"

); [@ �w=@�]i

�

c

; �w 2 H(


c

);

we conclude that the problem (3.217) is equivalent to the following boundary

value problem,

D�

2

w

"

= f in 


c

; (3:218)

m(w

"

) = 0; [t(w

"

)] = 0; t(w

"

) + gB

0

([w

"

]=") = 0 on �

c

;

in the same sense as before.

3.6.3 Iteration penalty method

Let us �x " and construct the linear iterations for an arbitrary u

0

"

2 H(


c

),

n � 0, as follows:

b(w

n+1

"

; �w) +

Z

�

c

g

�

[w

n+1

"

� w

n

"

]

"

�

[ �w] (3:219)

=

Z




c

f �w �

Z

�

c

gB

0

�

[w

n

"

]

"

�

[ �w] 8 �w 2 H(


c

):

There obviously exists a unique solution w

n+1

"

2 H(


c

) for every n. It

satis�es the boundary value problem

D�

2

w

n+1

"

= f in 


c

;

m(w

n+1

"

) = 0; [t(w

n+1

"

)] = 0 on �

c

;

t(w

n+1

"

) +

1

"

g[w

n+1

"

] = g

�

1

"

[w

n

"

]�B

0

�

[w

n

"

]

"

��

on �

c

:

Theorem 3.16. The strong convergence w

n+1

"

! w

"

in H(


c

) takes place as

n!1.

Proof. Subtracting (3.217) from (3.219) and taking w = w

n+1

"

� w

"

,

we have

kw

n+1

"

� w

"

k

2

+

Z

�

c

g[w

n+1

"

� w

"

]

2

"
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=

Z

�

c

g

�

1

"

[w

n

"

]�

1

"

[w

"

]�B

0

�

[w

n

"

]

"

�

+ B

0

�

[w

"

]

"

��

[w

n+1

"

�w

"

]:

One can verify that jt � s � B

0

(t) + B

0

(s)j � jt� sj, t; s 2 R. Then, using

the Holder inequality, from the previous equality we deduce that

2kw

n+1

"

�w

"

k

2

+

1

"

Z

�

c

g[w

n+1

"

� w

"

]

2

�

1

"

Z

�

c

g[w

n

"

� w

"

]

2

: (3:220)

By the continuity of the trace operators and the positiveness of g, the esti-

mate

c

Z

�

c

g[w]

2

� kwk

2

; w 2 H(


c

);

follows. Therefore, (3.220) implies

Z

�

c

g[w

n+1

"

�w

"

]

2

�

1

1 + 2c"

Z

�

c

g[w

n

"

�w

"

]

2

�

1

(1 + 2c")

n+1

Z

�

c

g[w

0

"

�w

"

]

2

:

By (1 + 2c")

�1

< 1, the right-hand side of this inequality converges to zero

as n!1. Consequently,

Z

�

c

g[w

n+1

"

� w

"

]

2

! 0 as n!1

and kw

n+1

"

�w

"

k

2

! 0 as n!1 in view of (3.220). The theorem is proved.

Let us note that for "! 0 the estimate (3.220) vanishes.

3.6.4 Saddle-point of the problem

By the construction of B, we have the estimate jB

0

([w

"

(x)]=")j � 1 for all

x 2 �

c

being uniform in ". Then the sequence fB

0

([w

"

]=")g is bounded in

L

2

(�

c

) and there exists a subsequence such that

B

0

([w

"

]=") ! p weakly in L

2

(�

c

) as "! 0; (3:221)

p 2 L

2

(�

c

) and jpj � 1 almost everywhere in �

c

. Let us pass to the limit

in (3.217) using Theorem 3.15 and (3.221). In doing so we obtain that the

solution w of the problem (3.205) satis�es the following identity:

b(w; �w) +

Z

�

c

gp[ �w] =

Z




c

f �w 8 �w 2 H(


c

): (3:222)

If we take here �w = w, the following equality is obtained:

b(w;w) +

Z

�

c

gp[w] =

Z




c

fw:
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On the other hand, the inequality (3.205) with the test functions �w = 0 and

�w = 2w gives

b(w;w) +

Z

�

c

gj[w]j=

Z




c

fw:

A comparison of the last two equalities provides

Z

�

c

g

�

�

�

�

[w]

�

�

�

� p[w]

�

= 0: (3:223)

In view of jp(x)j � 1 at almost all x 2 �

c

, we have

p(x)[w(x)] �

�

�

�

p(x)[w(x)]

�

�

�

� jp(x)j

�

�

�

[w(x)]

�

�

�

�

�

�

�

[w(x)]

�

�

�

;

i.e. j[w]j � p[w] � 0 at �

c

. Consequently, (3.223) yields

�

�

�

[w]

�

�

�

� p[w] = 0 at �

c

:

So we have obtained p 2 L

2

(�

c

) such that jpj � 1, p[w] = j[w]j for the

solution w of the problem (3.205). Besides, w is a solution to the problem

(3.222), i.e.

D�

2

w = f in 


c

; m(w) = 0; [t(w)] = 0; t(w) + gp[w] = 0 on �

c

:

Let us de�ne the convex closed set K = fq 2 L

2

(�

c

) j jqj � 1 a.e. �

c

g

and the Lagrange function

L( �w; q) =

1

2

k �wk

2

+

Z

�

c

gq[ �w]�

Z




c

f �w; �w 2 H(


c

); q 2 K:

Theorem 3.17. The constructed pair (w; p) is a unique saddle-point of

L( � ; � ) on the set H(


c

) � K, where w is a solution of (3.205) and p is

de�ned by (3.221).

Proof. In view of p[w] = j[w]j, we have L(w; p) = �(w). Equation

(3.222) coincides with the Euler equation L

0

w

( �w; p) = 0 8 �w 2 H(


c

) for the

problem L( �w; p)

�w

! extr. Since sup

�w2H(


c

)

L( �w; p) =1, then

L(w; p) = inf

�w2H(


c

)

L( �w; p):

On the other hand, for an arbitrary q 2 K, we have jq(x)j � 1 for almost

all x 2 �

c

, and sup

q2K

(q(x)[w(x)]) = j[w(x)]j = p(x)[w(x)], x 2 �

c

. By the

positiveness of g, this means

L(w; p) = sup

q2K

L(w; q):
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Consequently, we have obtained

L(w; q) � L(w; p) = �(w) � L( �w; p) 8 �w 2 H(


c

); q 2 K;

which proves that (w; p) is the saddle-point of L. The uniqueness of w was

discussed before. Let us verify the uniqueness of p. We assume that there

exist p

1

; p

2

2 K such that p

1

[w] = j[w]j = p

2

[w] at �

c

. Then (3.222) for

each p

i

gives

b(w; �w) +

Z

�

c

gp

i

[ �w] =

Z




c

f �w 8 �w 2 H(


c

); i = 1; 2:

Subtracting these equations as i = 1; 2, we obtain

Z

�

c

g(p

1

� p

2

)[ �w] = 0 8 �w 2 H(


c

);

which implies p

1

� p

2

= 0 a.e. at �

c

. The theorem is proved.

Let us note that B

0

(�) is the projector of L

2

(�

c

) onto the set K:

k�� B

0

(�)k

L

2

(�

c

)

� k��  k

L

2

(�

c

)

8 2 K:

3.6.5 The friction problem for a bar with a cut

We consider the one-dimensional problem corresponding to 
 = (0; 1); �

c

is the �xed point y, 0 < y < 1 and 


c

= (0; y) [ (y; 1). The bilinear form b

takes the form

b(w; �w) = D

Z




c

w

xx

�w

xx

dx; w; �w 2 H(


c

);

where

H(


c

) = fw 2 H

2

(


c

) j w = w

x

= 0 at x = 0; 1g:

Let f 2 L

2

(


c

), and the friction coe�cient g � 0 be given. The equilibrium

problem for the clamped bar having a vertical cut with the friction between

the cut edges is described by the following variational inequality:

D

Z




c

w

xx

( �w

xx

� w

xx

) dx+ g

�

�

�

�

[ �w]

�

�

�

�

�

�

�

[w]

�

�

�

�

�

Z




c

f( �w �w) dx (3:224)

8 �w 2 H(


c

):

Here [ �w] = �w(y + 0) � �w(y � 0). Taking �w = w � �, � 2 C

1

0

(


c

), and

substituting �w into (3.224), we have the equilibrium equation ful�lled in




c

:

Dw

xxxx

= f: (3:225)
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By (3.225) and f 2 L

2

(


c

), it follows that the problem (3.224) has a solution

w 2 H(


c

) belonging to the space H

4

(


c

) � C

3

(


c

), 


c

= [0; y� 0][ [y +

0; 1]. Therefore, the values of t

�

(w) = Dw

xxx

(y�0), m

�

(w) = Dw

xx

(y�0)

are de�ned. Similarly to Section 3.6.1, we can obtain [t(w)] = [m(w)] = 0

and

t(w) = Dw

xxx

(y); m(w) = Dw

xx

(y):

By the solution smoothness, the Green formula can be used,

Z




c

w

xx

�w

xx

dx =

Z




c

w

xxxx

�w dx� w

xx

(y)[ �w

x

] + w

xxx

(y)[ �w] 8 �w 2 H(


c

):

So, one can obtain the following formulation of the problem considered,

Dw

xxxx

= f in 


c

;

w

xx

(y) = 0; Djw

xxx

(y)j � g; Dw

xxx

(y)[w] + g

�

�

�

[w]

�

�

�

= 0:

To construct the solution of the problem (3.224), we shall apply the

arguments of the previous subsection. Let us de�ne the Lagrange function

L( �w; q) =

D

2

Z




c

�w

2

xx

dx+ gq[ �w]�

Z




c

f �w dx

on the set of functions �w 2 H(


c

), q 2 K = ft 2 R j jtj � 1g. By Theorem

3.17, the solving of (3.224) is equivalent to the �nding of the saddle-point

(w; p) 2 H(


c

) �K such that

L(w; p) = inf

�w2H(


c

)

sup

q2K

L( �w; q) = sup

q2K

inf

�w2H(


c

)

L( �w; q): (3:226)

Besides, the property p[w] = j[w]j has already been proved. Let us consider

the second (dual) problem in (3.226). We assume that q 2 K is a parameter

and seek the solution w

q

2 H(


c

) of the following problem,

L(w

q

; q) = inf

�w2H(


c

)

L( �w; q);

which implies

D

Z




c

w

q

xx

�w

xx

dx+ gq[ �w] =

Z




c

f �w dx 8 �w 2 H(


c

): (3:227)

We consider the presentation w

q

= w

0

+w

0;q

such that

D

Z




c

w

0

xx

�w

xx

dx =

Z




c

f �w dx 8 �w 2 H(


c

); (3:228)
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D

Z




c

w

0;q

xx

�w

xx

dx+ gq[ �w] = 0 8 �w 2 H(


c

): (3:229)

By Green's formula, (3.228) gives the boundary value problem

Dw

0

xxxx

= f in 


c

; w

0

xx

(y) = w

0

xxx

(y) = 0:

There exists a unique solution w

0

2 H(


c

) \H

4

(


c

) to this problem since

it reduces to the following independent problems:

Dw

0

xxxx

= f in (0; y); Dw

0

xxxx

= f in (y; 1);

w

0

xx

(y) = w

0

xxx

(y) = 0; w

0

xx

(y) = w

0

xxx

(y) = 0;

w

0

(0) = w

0

x

(0) = 0; w

0

(1) = w

0

x

(1) = 0:

Now let us consider (3.229), which is equivalent to the following bound-

ary value problem:

w

0;q

xxxx

= 0 in 


c

; w

0;q

xx

(y) = 0; Dw

0;q

xxx

(y) + gq = 0:

We can construct its solution w

0;q

2 H(


c

)\H

4

(


c

) by supposing w

0;q

(x) =

�gqD

�1

�(x), where � 2 H(


c

) must satisfy the relations

�

xxxx

= 0 in 


c

;

�

xx

(y) = 0; �

xxx

(y) = 1; �(0) = �

x

(0) = �(1) = �

x

(1) = 0:

It is easy to �nd this function

�(x) =

1

6

�

x

3

� 3yx

2

; x 2 (0; y);

(x� 1)

3

� 3(y � 1)(x� 1)

2

; x 2 (y; 1)

(3:230)

belonging to the space H(


c

)\C

1

(


c

). Note that [�] = (3y

2

�3y+1)=3 >

0. Thus, we obtain that the function w

q

(x) = w

0

(x) � gqD

�1

�(x) is a

unique solution of (3.227).

To �nd the solutionw = w

p

of the problem (3.226) (which coincides with

the solutionw to the problem (3.224)), one needs to �nd the parameter q = p

in (3.227) satisfying

p[w

p

] =

�

�

�

[w

p

]

�

�

�

; jpj � 1: (3:231)

Substituting here the presentation of w

p

, we have

p

�

[w

0

]� gpD

�1

[�]

�

=

�

�

[w

0

]� gpD

�1

[�]

�

�

; jpj � 1:

These conditions imply that

p =

8

<

:

1 ; if D[w

0

](g[�])

�1

> 1;

�1 ; if D[w

0

](g[�])

�1

< �1;

D[w

0

](g[�])

�1

; if

�

�

D[w

0

](g[�])

�1

�

�

� 1:
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Remembering the function B

0

of Section 3.6.2, one can see that

p = B

0

�

D[w

0

]

g[�]

�

:

Thus, we have proved the following statement.

Theorem 3.18. The solution w 2 H(


c

) \H

4

(


c

) of the problem (3.224) is

given by

w(x) = w

0

(x)�

g

D

B

0

�

3D[w

0

]

g(3y

2

� 3y + 1)

�

�(x);

where w

0

is a solution of the linear equation (3.228) and � is a function

given by (3.230).

By the smoothness of � and w

0

, we can conclude: if f 2 H

m

(


c

) then

w 2 H

m+4

(


c

). We notice that the solution w is continuous in (0; 1),

namely, w 2 H

4

(0; 1), provided that

�

�

�

[w

0

]

�

�

�

�

g(3y

2

� 3y + 1)

3D

; [w

0

x

] +

3(1� 2y)

2(3y

2

� 3y + 1)

[w

0

] = 0:

Indeed, one can calculate

[w] =

8

<

:

�g[�]=D + [w

0

] ; [w

0

] > g[�]=D;

g[�]=D + [w

0

] ; [w

0

] < �g[�]=D;

0 ; j[w

0

]j � g[�]=D;

[w

x

] = [w

0

x

] +

8

<

:

�g[�

x

]=D ; [w

0

] > g[�]=D;

g[�

x

]=D ; [w

0

] < �g[�]=D;

�[w

0

][�

x

]=[�] ; j[w

0

]j � g[�]=D;

and [w

xx

] = [w

xxx

] = 0.

Example. Let f(x) � kD, and k be a constant. The solution of (3.228)

is

w

0

(x) =

k

24

8

<

:

x

4

� 4yx

3

+ 6y

2

x

2

; x 2 (0; y);

(x� 1)

4

� 4(y � 1)(x� 1)

3

+6(y � 1)

2

(x� 1)

2

; x 2 (y; 1);

with [w

0

] = k((y � 1)

4

� y

4

)=8. By �nding the value of

A �

g

D

B

0

�

D[w

0

]

g[�]

�

=

g

D

B

0

�

3kD((y � 1)

4

� y

4

)

8g(3y

2

� 3y + 1)

�

;

we �nd the solution of the problem (3.224) in the form

w(x) =

1

24

8

<

:

kx

4

� 4(ky + A)x

3

+ 6(ky + 2A)yx

2

; x 2 (0; y);

k(x� 1)

4

� 4 (k(y � 1) + A) (x� 1)

3

+6 (k(y � 1) + 2A) (y � 1)(x� 1)

2

; x 2 (y; 1):
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Chapter 4

Variation of cracks in

solids

In this chapter we analyse some problems related to the variations of cracks

in solids. The main focus is on the dependence of solutions on the crack

length and crack shape. In particular, we �nd the derivative of the energy

functional with respect to the crack length and establish the Gri�th formu-

lae widely used in fracture mechanics. The novelty of this result consists in

deriving the Gri�th formulae subject to nonpenetration conditions holding

at the crack faces. We prove convergence of solutions in cases where the

crack moves to the boundary or the crack length tends to zero.

4.1 Variation of a crack length

4.1.1 Two-dimensional case

Let 
 � R

2

be a bounded domain with a smooth boundary �, and the set

�

�

= f(x

1

; x

2

) j 0 < x

1

< �; x

2

= 0g belongs to 
 (see Fig.4.1).

Fig.4.1. Crack length tending to zero
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Denote 


�

= 
n�

�

. The problem we analyse in this section is as follows.

Let W = (w

1

; w

2

),

"

ij

(W ) =

1

2

(w

i

;j

+w

j

;i

); i; j = 1; 2; �

�

(W ) =

1

2

Z




�

�

ij

(W )"

ij

(W )�

Z




�

fW;

where f = (f

1

; f

2

) 2 L

2

(
) is a given function,

�

ij

(W ) = a

ijkl

"

kl

(W ); i; j = 1; 2; a

ijkl

= a

klij

= a

jikl

; (4:1)

a

ijkl

�

kl

�

ij

� cj�j

2

; c > 0;

and a

ijkl

2 L

1

(
), i; j; k; l = 1; 2. Introduce the set of admissible displace-

ments

K

�

= fW = (w

1

; w

2

) 2 H

1;0

(


�

) j [W ]� � 0 on �

�

g:

Here H

1;0

(


�

) is the Sobolev space of functions having square integrable

�rst derivatives in 


�

and equal to zero on �, � = (0; 1) is the normal vector

to �

�

, and [W ] = W

+

� W

�

, where W

�

correspond to the positive and

negative directions of �.

Let B

�

(W;U ) =

R




�

�

ij

(W )"

ij

(U ):We consider the minimization problem

min

W2K

�

�

�

(W ):

Its solution W

�

2 K

�

satis�es the variational inequality

B

�

(W

�

; V �W

�

) � hf; V �W

�

i

�

8V 2 K

�

: (4:2)

Here the brackets h � ; � i

�

denote the integration over 


�

, in particular,

h � ; � i

0

is the integration over 
. We aim at studying the behaviour of

the solution W

�

as � ! 0. We �rst extend �

�

beyond the point (�; 0),

so that the extension �

?

crosses the external boundary � at the point x

0

.

In the sequel � tends to zero, but we do not assume, in general, that the

extension �

?

is a straight line. We suppose that the angle between the ex-

tension �

?

and � at the point x

0

is not equal to zero. Denote by H

1

0

(
) the

completion of C

1

0

(
) in the norm of H

1

(
).

Now we are in a position to prove the following statement.

Theorem 4.1. From the sequence W

�

one can choose a subsequence, still

denoted by W

�

, such that as � ! 0

W

�

! W weakly in H

1;0

(
n�

?

)

and, moreover, W 2 H

1

0

(
),

B

0

(W;V ) = hf; V i

0

8V 2 H

1

0

(
): (4:3)
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Proof. It is clear that for all � > 0, W

�

2 H

1;0

(
n�

?

) and the jump

[W

�

] is equal to zero at �

?

n�

�

. We take V � 0 in (4.2) as a test function

which implies

B

�

(W

�

;W

�

) � hf;W

�

i

�

� 0: (4:4)

Note that there exists a constant c > 0 such that

Z


n�

?

�

ij

(W )"

ij

(W ) � cjjW jj

2

H

1;0

(
n�

?

)

8W 2 H

1;0

(
n�

?

): (4:5)

From (4.4) it follows that

Z


n�

?

�

ij

(W

�

)"

ij

(W

�

) �

Z


n�

?

fW

�

which, by (4.5), provides the uniform in � estimate

jjW

�

jj

H

1;0

(
n�

?

)

� c: (4:6)

We can choose a subsequence, still denoted by W

�

, such that as � ! 0

W

�

! W weakly in H

1;0

(
n�

?

): (4:7)

From (4.2) we obtain the inequality

Z


n�

?

�

ij

(W

�

)"

ij

(V �W

�

) �

Z


n�

?

f(V �W

�

) (4:8)

holding for all V 2 K

�

. Let us take V 2 H

1

0

(
). Then V 2 K

�

for all �. By

(4.7), it is possible to pass the limit in (4.8) as � ! 0, and we arrive at the

relation

Z


n�

?

�

ij

(W )"

ij

(V �W ) �

Z


n�

?

f(V �W ) 8V 2 H

1

0

(
): (4:9)

Since [W ] = 0 on �

?

, the inclusion W 2 H

1

0

(
) follows. This means that

we can integrate over 
 in (4.9), which implies

Z




�

ij

(W )"

ij

(V �W ) �

Z




f(V �W ) 8V 2 H

1

0

(
):

Consequently, the identity (4.3) is obtained. Theorem 4.1 is proved.

4.2 A plate with a crack

We analyse the behaviour of solutions for a plate having a crack provided

that the crack length tends to zero. The nonpenetration conditions are

assumed to hold at the crack faces.
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4.2.1 Convergence of solutions

Let 
 � R

2

be a bounded domain with a smooth boundary �, and the

set �

�

= f(x

1

; x

2

) j 0 < x

1

< �; x

2

= 0g belongs to 
. The domain




�

= 
n�

�

corresponds to the mid-surface of the plate. Consider the space

H(


�

) = H

1;0

(


�

)�H

1;0

(


�

)�H

2;0

(


�

), where H

s;0

(


�

) is the completion

in the H

s

(


�

)-norm of smooth functions equal to zero near �.

Let � = (W;w) be a displacement vector of the mid-surface points of

the plate, W = (w

1

; w

2

). The set of admissible displacements of the plate

is as follows

K

�

= f(W;w) 2 H(


�

) j [W ]� �

�

�

�

�

�

@w

@�

�
�

�

�

�

a.e. on �

�

g:

Here � = (0; 1) is the normal vector to �

�

, [U ] = U

+

� U

�

is the jump of

U across �

�

, U

�

�t to the positive and negative directions of �. Introduce

the strain "

ij

= "

ij

(W ) and the stress �

ij

= �

ij

(W ) tensors,

"

ij

(W ) =

1

2

(w

i

;j

+w

j

;i

); i; j = 1; 2;

�

11

= "

11

+ �"

22

; �

22

= "

22

+ �"

11

; �

12

= (1� �)"

12

;

� = const, 0 < � < 1=2, and the bilinear forms

B

�

(W;

�

W ) = h�

ij

(W ); "

ij

(

�

W )i

�

;

b

�

(w; �w) =

Z




�

(w

xx

�w

xx

+ w

yy

�w

yy

+ �w

xx

�w

yy

+ �w

yy

�w

xx

+2(1 � �)w

xy

�w

xy

):

Here the bracket h � ; � i

�

denotes integration over 


�

. In the sequel we shall

use the notations B




( � ; � ), b




( � ; � ), h � ; � i




, which mean integration over


.

Introduce the energy functional of the plate

�

�

(�) =

1

2

B

�

(W;W ) +

1

2

b

�

(w;w)� hf; �i

�

;

where f = (f

1

; f

2

; f

3

) 2 L

2

(
) is a given exterior force, and consider the

minimization problem

min

�2K

�

�

�

(�): (4:10)

There exists a unique solution �

�

= (W

�

; w

�

) 2 K

�

of the problem (4.10)

which satis�es the following variational inequality

B

�

(W

�

;

�

W �W

�

) + b

�

(w

�

; �w �w

�

) � hf; ��� �

�

i

�

(4:11)

8�� = (

�

W; �w) 2 K

�

:
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We extend �

�

beyond the point (�; 0) so that the extension �

?

crosses the

external boundary � at some point x

0

. The angle between �

?

and � at the

point x

0

is assumed to be nonzero. Let H

0

(
) = H

1

0

(
)�H

1

0

(
)�H

2

0

(
):

The following assertion holds.

Theorem 4.2. From the sequence �

�

one can choose a subsequence, still

denoted by �

�

, such that as � ! 0

�

�

! � weakly in H(
n�

?

)

and, besides, � 2 H

0

(
),

B




(W;

�

W ) + b




(w; �w) = hf; ��i




8�� = (

�

W; �w) 2 H

0

(
): (4:12)

Proof. The restriction of �

�

to 
n�

?

, still denoted by �

�

, satis�es the

inclusion �

�

= (W

�

; w

�

) 2 H(
n�

?

); and we have

[W

�

] = 0; [w

�

] = 0;

�

@w

�

@�

�

= 0 on �n�

�

: (4:13)

Substitution of �� � 0 in (4.11) as a test function implies the inequality

B

�

(W

�

;W

�

) + b

�

(w

�

; w

�

) � hf; �

�

i

�

: (4:14)

We know that the following inequalities hold,

B


n�

?

(W;W ) � ckWk

2

H

1;0

(
n�

?

)

8W 2 H

1;0

(
n�

?

);

b


n�

?

(w;w) � ckwk

2

H

2;0

(
n�

?

)

8w 2 H

2;0

(
n�

?

);

with the constants independent of W;w. Consequently, by (4.14),

kW

�

k

H

1;0

(
n�

?

)

+ kw

�

k

H

2;0

(
n�

?

)

� c (4:15)

uniformly in �. In view of (4.15), one can choose a subsequence (W

�

; w

�

)

such that as � ! 0

W

�

! W weakly in H

1;0

(
n�

?

); (4:16)

w

�

! w weakly in H

2;0

(
n�

?

): (4:17)

We can choose �� 2 H

0

(
) as a test function in (4.11) and integrate over


n�

?

. This provides

B


n�

?

(W

�

;

�

W �W

�

) + b


n�

?

(w

�

; �w� w

�

) � hf; �w � w

�

i


n�

?

: (4:18)

The convergence (4.16), (4.17) allows us to pass to the limit in (4.18) as

� ! 0, which yields

B


n�

?

(W;

�

W �W ) + b


n�

?

(w; �w� w) � hf; �w � wi


n�

?

(4:19)



252 Analysis of cracks in solids

8�� = (

�

W; �w) 2 H

0

(
):

By (4.13), we have

[W ] = 0; [w] = 0;

�

@w

@�

�

= 0 on �

?

;

consequently, W = (w

1

; w

2

) 2 H

1

0

(
), w 2 H

2

0

(
); i.e. � = (W;w) 2

H

0

(
): In this case the inequality (4.19) implies

B




(W;

�

W �W ) + b




(w; �w� w) � hf; �w � wi




8�� 2 H

0

(
);

and hence, the identity (4.12) follows. Theorem 4.2 is proved.

4.3 A crack moving to the external boundary

In this section we consider the two-dimensional elastic linear body having

a crack which moves to the external boundary. The problem is to analyse

the behaviour of the solution { in particular, to prove its convergence.

4.3.1 Equality type boundary conditions

Let 
 � R

2

be a bounded domain with a smooth boundary �, and x

0

2 �,

x

1

2 �, x

0

6= x

1

(see Fig.4.2). We consider the smooth curve �

0

� 
 such

that its ends are the points x

1

; x

0

. Let x

�

2 �

0

, and the length of the curve

with the ends x

�

; x

0

be equal to � > 0. The curve having the ends x

1

; x

�

is denoted by �

�

. In our considerations, the ends x

1

; x

0

and x

1

; x

�

do not

belong to the curves �

0

, �

�

, respectively.

Fig.4.2. Crack moving to the external boundary

We assume that �

0

divides the domain 
 into two subdomains 


1

, 


2

with the Lipschitz boundaries @


1

, @


2

. Let �

i

= � \ @


i

, i = 1; 2, and

H

1;�

i

(


i

) = fw 2 H

1

(


i

) j w = 0 on �

i

g; i = 1; 2:

We consider two boundary value problems

W

i

= (w

1

i

; w

2

i

) 2 H

1;�

i

(


i

); (4:20)
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B




i

(W

i

;

�

W ) = hf;

�

W i




i

8

�

W = ( �w

1

; �w

2

) 2 H

1;�

i

(


i

); i = 1; 2: (4:21)

Here B




i

(W;U ) = h�

pq

(W ); "

pq

(U )i




i

, i = 1; 2, and �

pq

(W ), "

pq

(W ) satisfy

the Hooke law (4.1) of Section 4.1, the brackets h � ; � i




i

mean the integration

over 


i

, and f = (f

1

; f

2

) 2 L

2

(
):

For each �xed � > 0 we consider the boundary value problem in the

domain 


�

= 
n�

�

. Namely, let

H

1;�

(


�

) = fw 2 H

1

(


�

) j w = 0 on �g:

We want to �nd a function W

�

= (w

1�

; w

2�

) 2 H

1;�

(


�

) such that

B

�

(W

�

;

�

W ) = hf;

�

W i

�

8

�

W = ( �w

1

; �w

2

) 2 H

1;�

(


�

): (4:22)

Here

B

�

(U; V ) =

Z




�

�

ij

(U )"

ij

(V ); hf;

�

W i

�

=

Z




�

f

�

W:

It is clear that the problem (4.20), (4.21) and the problem (4.22) admit the

variational formulation. Denote by � = (�

1

; �

2

) the unit normal vector to

�

0

. In this case, it follows from (4.20), (4.21) that

�

ij

(W

k

)�

j

= 0; i; k = 1; 2; on �

0

: (4:23)

Also, it follows from (4.22) that

�

ij

(W

�

)�

j

= 0; i = 1; 2; on �

�

: (4:24)

Note that conditions (4.23), (4.24) hold in the weak sense. We see that

boundary conditions considered at the crack faces have the equality type in

this section.

In what follows we prove that the restrictions of W

�

to 


i

, i = 1; 2,

denoted by W

�

j




i

, converge to W

1

;W

2

, respectively, in a proper sense. The

following statement holds.

Theorem 4.3. From the sequence W

�

one can choose a subsequence, still

denoted by W

�

, such that as � ! 0

W

�

j




i

! W

i

weakly in H

1;�

i

(


i

); i = 1; 2; (4:25)

and W

i

satisfy (4.20), (4.21).

Proof. Substitution of

�

W =W

�

in (4.22) as a test function implies

B

�

(W

�

;W

�

) = hf;W

�

i

�

:

We can integrate here over 


1

[


2

. In this case this relation can be rewritten

in the form

B




1

(W

�

;W

�

) + B




2

(W

�

;W

�

) = hf;W

�

i




1

+ hf;W

�

i




2

: (4:26)
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Since

B




i

(W;W ) � ckWk

2

H

1;�

i

(


i

)

; 8W 2 H

1;�

i

(


i

);

from (4.26) we have the estimate

kW

�

k

H

1;�

1

(


1

)

+ kW

�

k

H

1;�

2

(


2

)

� c (4:27)

being uniform in �. The notation W

�

is used in (4.27) instead of W

�

j




i

to

simplify the formula.

Take

�

W 2 H

1;�

0

(


�

0

) in (4.22) as a test function with a �xed �

0

> 0.

Then

�

W 2 H

1;�

(


�

) for all � < �

0

. In this case, (4.22) implies

B




1

(W

�

;

�

W ) + B




2

(W

�

;

�

W ) = hf;

�

W i




1

+ hf;

�

W i




2

: (4:28)

On the other hand, by (4.27), one can choose a subsequence W

�

such that

as � ! 0

W

�

j




1

! W

1

weakly in H

1;�

1

(


1

); (4:29)

W

�

j




2

! W

2

weakly in H

1;�

2

(


2

): (4:30)

Convergences (4.29), (4.30) allow us to pass to the limit in (4.28) as � ! 0.

As a result, the following identity is obtained

B




1

(W

1

;

�

W ) + B




2

(W

2

;

�

W ) = hf;

�

W i




1

+ hf;

�

W i




2

(4:31)

as holding for all

�

W 2 H

1;�

(


�

).

By Lemma 4.1 below, for any

�

W

i

2 H

1;�

i

(


i

), i = 1; 2, we choose a

sequence

�

W

�

2 H

1;�

(


�

) such that as � ! 0

�

W

�

j




i

!

�

W

i

weakly in H

1;�

i

(


i

); i = 1; 2;

and substitute

�

W =

�

W

�

in (4.31). Next we can pass to the limit in (4.31)

as � ! 0. This provides

W

1

2 H

1;�

1

(


1

) : B




1

(W

1

;

�

W

1

) = hf;

�

W

1

i




1

8

�

W

1

2 H

1;�

1

(


1

);

W

2

2 H

1;�

2

(


2

) : B




2

(W

2

;

�

W

2

) = hf;

�

W

2

i




2

8

�

W

2

2 H

1;�

2

(


2

);

i.e. we obtain (4.20), (4.21) which proves the theorem.

Now we have to verify the auxiliary statement used to prove Theorem

4.3.

Lemma 4.1. For any �xed

�

W

i

= ( �w

1

i

; �w

2

i

) 2 H

1;�

i

(


i

), i = 1; 2, there exists

a subsequence

�

W

�

2 H

1;�

(


�

) such that as � ! 0

�

W

�

j




i

!

�

W

i

strongly in H

1;�

i

(


i

); i = 1; 2: (4:32)

Proof. The condition

�

W

1

2 H

1;�

1

(


1

) means that there exists a se-

quence of smooth functions

~

W

�

1

= ( ~w

1�

1

; ~w

2�

1

) strongly converging to

�

W

1

in
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H

1;�

1

(


1

), and each function

~

W

�

1

is equal to zero in a neighbourhood of �

1

.

A similar statement holds for

�

W

2

2 H

1;�

2

(


2

): there exists a sequence

~

W

�

2

strongly converging in H

1;�

2

(


2

) to

�

W

2

, and the functions

~

W

�

2

are equal to

zero in a neighbourhood of �

2

. De�ne the function

�

W

�

(x) =

�

~

W

�

1

(x) ; x 2 


1

;

~

W

�

2

(x) ; x 2 


2

:

Since

~

W

�

i

, i = 1; 2; are equal to zero on �

0

n�

�

, we put

�

W

�

(x) = 0 on

�

0

n �

�

and this new function, still denoted by

�

W

�

, satis�es the condition

�

W

�

2 H

1;�

(


�

) which proves the lemma.

4.4 A case of a shallow shell

The problem similar to that considered in the preceding section is analysed

here for the linear shallow shell model.

4.4.1 Equality type boundary conditions

Let 
, 


�

, �

0

, �

�

, �

i

, 


i

, i = 1; 2, correspond to those of Section 4.3. We

put H(


�

) = H

1;�

(


�

)�H

1;�

(


�

)�H

2;�

(


�

), where the space H

1;�

(


�

) was

de�ned in the previous section, and H

2;�

(


�

) is the space of functions from

H

2

(


�

) equal to zero on � with the �rst derivatives. Let �

�

= (W

�

; w

�

)

be the displacement vector of the mid-surface points of the shell, W

�

=

(w

1�

; w

2�

),

"

ij

(W ) =

1

2

(w

i

;j

+ w

j

;i

); e

ij

= "

ij

+ k

ij

w; i; j = 1; 2; W = (w

1

; w

2

);

�

11

= e

11

+ �e

22

; �

22

= e

22

+ �e

11

; �

12

= (1� �)e

12

;

� = const, 0 < � < 1=2. The functions e

ij

= e

ij

(�

�

), �

ij

= �

ij

(�

�

) �t to

strain and stress components of the shell, k

ij

2 C

1

(

�


) are the curvatures of

the shell, f = (f

1

; f

2

; f

3

) 2 L

2

(
) is a given vector of exterior forces.

In the domain 


�

, we want to �nd a solution of the following boundary

value problem:

�

�

= (W

�

; w

�

) 2 H(


�

); (4:33)

b

�

(w

�

; �w) + hk

ij

�

ij

(�

�

); �wi

�

= hf

3

; �wi

�

8 �w 2 H

2;�

(


�

); (4:34)

h�

ij

(�

�

); "

ij

(

�

W )i

�

= hf

i

; �w

i

i

�

8

�

W = ( �w

1

; �w

2

) 2 H

1;�

(


�

): (4:35)

The bilinear form b

�

(w; �w) was de�ned in Section 4.2, and the integration

in (4.34), (4.35) is carried out over 


�

. Consider the energy functional of

the shell

�

�

(�) =

1

2

b

�

(w;w) +

1

2

h�

ij

; e

ij

i

�

� hf; �i

�

:
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In this case the problem (4.33){(4.35) �ts the variational formulation

min

�2H(


�

)

�

�

(�): (4:36)

Problem (4.36) (or the problem (4.33){(4.35)) has a unique solution � = �

�

.

We aim at studying the behaviour of the solution �

�

as � ! 0. The

limiting case � = 0 corresponds to the cut �

0

which divides 
 into two

subdomains 


1

, 


2

. In domain 


1

we can solve the problem

�

1

= (W

1

; w

1

) 2 H(


1

); (4:37)

b




1

(w

1

; �w) + hk

ij

�

ij

(�

1

); �wi




1

= hf

3

; �wi




1

8 �w 2 H

2;�

1

(


1

); (4:38)

h�

ij

(�

1

); "

ij

(

�

W )i




1

= hf

i

; �w

i

i




1

8

�

W = ( �w

1

; �w

2

) 2 H

1;�

1

(


1

): (4:39)

Here H(


i

) = H

1;�

i

(


i

)�H

1;�

i

(


i

)�H

2;�

i

(


i

), H

2;�

i

(


i

) is the comple-

tion in the norm of H

2

(


i

) of smooth functions equal to zero near �

i

. The

spaces H

1;�

i

(


i

) were de�ned in Section 4.3. Similarly, in the domain 


2

the following problem can be solved:

�

2

= (W

2

; w

2

) 2 H(


2

); (4:40)
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(�
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= hf

3

; �wi
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8 �w 2 H

2;�

2

(


2

); (4:41)
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i
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2

8

�

W = ( �w

1

; �w

2

) 2 H

1;�

2

(


2

): (4:42)

The following statement holds.

Theorem 4.4. From the sequence �

�

one can choose a subsequence, still

denoted by �

�

, such that as � ! 0

�

�

j




i

! �

i

weakly in H(


i

); i = 1; 2; (4:43)

and �

i

, i = 1; 2, satisfy (4.37){(4.39) and (4.40){(4.42), respectively.

Proof. Substitute �

�

= (W

�

; w

�

) as a test function in (4.34), (4.35).

This implies

b

�

(w
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; w
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) + h�

ij

(�

�

); �"

ij

(�

�

)i

�

= hf; �

�

i

�

: (4:44)

We can integrate over 


1

[ 


2

in (4.44), which provides

b
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= hf; �

�

i




1

+ hf; �

�

i




2

:

It is well known (see Khludnev, Sokolowski, 1997) that as k�k

H(


p

)

! +1,

� = (W;w),

b




p

(w;w) + h�

ij

(�); e

ij

(�)i




p

� hf; �i




p

! +1; p = 1; 2: (4:46)



Variation of cracks in solids 257

In this case the relation (4.45) results in the inequality

k�

�

k

H(


1

)

+ k�

�

k

H(


2

)

� c (4:47)

being uniform in �. The notation �

�

is used here instead of �

�

j




i

, i = 1; 2.

Choosing a subsequence, still denoted by �

�

, we assume that as � ! 0

�

�

! �

1

weakly in H(


1

); (4:48)

�

�

! �

2

weakly in H(


2

): (4:49)

We take �� 2 H(


�

0

) as a test function in (4.33){(4.35) and integrate over




1

[ 


2

. In this case �� 2 H(


�

) for all � � �

0

. By (4.48), (4.49), the

passage to the limit can be ful�lled in (4.33){(4.35) as � ! 0, which implies

b
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); "(

�
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2
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1

+ hf; ��i




2

:

This identity holds for all �� 2 H(


�

0

), and, hence, it holds for all �� 2 H(


�

),

since �

0

is arbitrary. By the de�nition of the space H(


i

), for any �xed

�� 2 H(


i

), there exists a sequence ~�

�

i

2 H(


i

) such that as � ! 0

~�

�

i

! �� strongly in H(


i

); i = 1; 2;

and ~�

�

i

are equal to zero in a neighbourhood of �

i

.

De�ne the function in 


1

and 


2

��

�

(x) =

�

~�

�

1

(x) ; x 2 


1

;

~�

�

2

(x) ; x 2 


2

:

Since ~�

�

i

, i = 1; 2, are equal to zero in a neighbourhood of �

0

n�

�

, we put

��

�

= 0 on �

0

n�

�

and obtain ��

�

2 H(


�

). Hence, for any �xed ��

1

2 H(


1

),

��

2

2 H(


2

) there exists a sequence ��

�

2 H(


�

) such that as � ! 0

��

�
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i

! ��

i

strongly in H(


i

); i = 1; 2: (4:51)

By (4.51), we can substitute the elements ��

�

as the test functions �� in (4.50)

and pass to the limit as � ! 0. In consequence, the relations (4.37){(4.42)

are obtained, which proves the theorem.

4.5 A crack near the boundary

4.5.1 Case of a shell

In this section we consider the model of a shallow shell analysed in the

previous section and prove the convergence of solutions provided that the

length of the boundary crack tends to zero.
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Let 
 � R

2

be a bounded domain with a smooth boundary �, and

x

0

2 �, x

1

2 �, x

0

6= x

1

(see Fig.4.3). Consider the smooth curve �

?

with the ends x

0

, x

1

by assuming �

?

� 
. Let x

�

2 �

?

, and the length

of the curve �

�

with the ends x

0

, x

�

be equal to � > 0. The points x

0

; x

1

and x

0

; x

�

are assumed not to belong to �

?

;�

�

, respectively. The curve

�

?

divides 
 into two subdomain 


1

, 


2

. In the domain 


�

= 
n�

�

we

consider the equilibrium problem for the shallow shell. Our aim is to prove

that the solutions of this problem converge to the solution of the equilibrium

problem found in the smooth domain 
 as � ! 0.

Fig.4.3. Crack near the boundary

Let � = (W;w) be the displacement vector of the mid-surface points, and

e

ij

= e

ij

(�), �

ij

= �

ij

(�) be de�ned as in the previous section, H(


�

) =

H

1;�

(


�

) �H

1;�

(


�

)�H

2;�

(


�
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H
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(
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) = fu 2 H
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(
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) j u = 0 on �g;

H

2;�

(


�

) = fu 2 H

2

(


�

) j u =

@u

@n

= 0 on �g:

Here n is a unit exterior vector to �. As it was indicated in the previous

section, in the domain 


�

the following problem can be solved,

�

�

= (W

�

; w

�

) 2 H(


�

); (4:52)
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8�� 2 H(
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where b

�

( � ; � ) is the bilinear form used in the previous section with the

integration over 


�

, f = (f
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; f
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; f

3

) 2 L

2

(
).

Integrating over 


1

and 
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in (4.53) we derive
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:

Substitution �� = �

�

in (4.54) as a test function implies the equality

b




1

(w

�

; w

�

) + b




2

(w

�

; w

�

) + h�

ij

(�

�

); "

ij

(W

�

)i




1



Variation of cracks in solids 259
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:

By the relations (4.46) of the preceding section, from (4.55) it follows that
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�

k
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)

+ k�
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k
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)

� c (4:56)

with the constant c uniform in �. Here H(
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) = H

1;�

i
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(
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) is the completion in H

s
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) of smooth func-

tions equal to zero near �
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, �
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= � \ @


i

, i = 1; 2.

Choosing a subsequence still denoted by �

�

we assume that as � ! 0
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): (4:58)

By our notation, 


0

= 
. We can take �� 2 H(
) as a test function in

(4.54). In this case �� 2 H(


�

) for all � > 0 (actually, we should consider

the restriction of �� to 


�

, but the notation for the functions is not changed).

By (4.57), (4.58), the passage to the limit as � ! 0 in (4.54) implies
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Here �

i

= (W

i

; w

i

), i = 1; 2. Denote by � the unit normal vector to �

?

.

Since
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] =

�

@w

�
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�

= [W

�

] = 0 on �n�
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we obtain that the limiting functions �

1

, �
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in (4.57), (4.58) satisfy the
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This allows us to de�ne the function � = (W;w), such that

� 2 H(
); �(x) =
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(4:60)

In this case, from (4.59) it follows that
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Hence, the following statement has been proved.

Theorem 4.5. From the solutions �

�

of the problem (4.52), (4.53) one can

choose a subsequence still denoted by �

�

such that as � ! 0

�

�

j




i

! �

i

weakly in H(


i

); i = 1; 2;

and the limiting function � satisfying (4.60) is the solution of (4.61).
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4.6 Asymptotics of the energy functional for

the Poisson equation

It is well known that the derivative of the energy functional is often used

to formulate the fracture criterions (see Cherepanov, 1979). As a paradigm

for noninterpenetrating crack models, the Poisson equation in a nonsmooth

domain in R

2

is considered. The geometrical domain has a cut (a crack) of

variable length. At the crack faces, inequality type boundary conditions are

prescribed. The behaviour of the energy functional is analysed with respect

to the crack length changes. In particular, the derivative of the energy

functional with respect to the crack length is obtained. The associated

Gri�th formula is derived and properties of the solution are investigated.

It is shown that the Rice{Cherepanov integral de�ned for the solutions of the

unilateral problem de�ned in the nonsmooth domain is path-independent.

The results of this section can be found in (Khludnev, Sokolowski, 1998b).

4.6.1 Problem formulation

In the present section the di�erentiability of the energy functional for an

elliptic equation with respect to the crack length is shown. The method

of proof is di�erent from the proof in the linear case (Destuynder, Jaoua,

1981) since we cannot expect in general that the solution to the variational

inequality for the displacement of an elastic membrane with unilateral con-

ditions prescribed on the crack faces is di�erentiable with respect to the

crack length. The method of the proof presented in this section is general

and can be applied as well to the energy functionals of the linear elasticity

system with the nonpenetration conditions prescribed on the crack faces.

In the linear case, i.e. for the homogeneous Neumann boundary conditions

prescribed on the crack faces in the scalar case, or for the traction free crack

faces in elasticity, the results are known; we refer the reader to (Cherepanov,

1979; Maz'ya and Nazarov, 1987) for the models currently used in the frac-

ture mechanic, and to the paper (Bui, Ehrlacher, 1997) for a review of recent

results on the applications to crack propagation. In the linear case, both

the �rst and the second order derivatives of the energy functionals with re-

spect to the crack length are evaluated and used for numerical methods of

analysis of crack propagation in solids. However, it seems that we cannot

expect in general the second order di�erentiability of the energy functional

with respect to the crack length in the case of the nonlinear problem in

which unilateral conditions are prescribed on the crack faces, i.e. only the

second order directional di�erentiability can be obtained. Indeed, from the

local point of view, we expect the gradient of the solution to have an inverse

square root singularity at the prescribed tips but to be bounded at the edges

of the contact set. We refer the reader to (Sokolowski, Zolesio, 1992) for

the shape di�erentiability properties of solutions to variational inequalities

in smooth domains. Note that the dependence of the energy functional on
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the crack length is important in fracture mechanics. The derivative of the

functional is often used to formulate fracture criteria.

Fig.4.4. Domain with the crack

Let D � R

2

be a bounded domain with smooth boundary �; and �

l+�

be the set f(x

1

; x

2

) j 0 < x

1

< l + �; x

2

= 0g. We assume that this set

belongs to the domain D for all su�ciently small �, and l > 0. Denote




�

= D n �

l+�

, 
 = D n �

l

(see Fig.4.4).

In the domain 
 we consider the problem of �nding a function u such

that

��u = f; (4:62)

u = 0 on �; [u] � 0 on �

l

: (4:63)

Here f 2 C

1

(

�

D) is the given function, and [u] = u

+

� u

�

is the jump of

the function u across �

l

. The vector n = (0; 1) is orthogonal to �

l

, and

u

�

correspond to the positive and negative directions of n. The problem

formulation (4.62), (4.63) is not complete to ensure the uniqueness of the

solution. In fact, we consider the minimization of the functional

1

2
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�

Z




f�

over the set of all functions from H

1

(
) satisfying the conditions u = 0

on �, [u] � 0 on �

l

: The solution of the minimization problem satis�es

the variational inequality (4.81) (see below), and, in particular, it satis�es

(4.62), (4.63). There are additional relations holding on �

l

, and we shall

discuss them in the sequel. The energy functional for the problem (4.62){

(4.63) is de�ned by the formula

J(
) =

1

2

Z




jruj

2

�

Z




fu; (4:64)

where u is the solution of (4.62){(4.63).
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For a small parameter �, the family of problems de�ned in the domain




�

is considered. We want to �nd a function u

�

such that

��u

�

= f in 


�

; (4:65)

u

�

= 0 on �; [u

�

] � 0 on �

l+�

: (4:66)

Similar to (4.62), (4.63) the problem formulation (4.65), (4.66) is not com-

plete. Actually, the function u

�

is the solution of variational inequality

(4.78) below. The energy functional for the problem (4.65){(4.66) is equal

to
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) =
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2
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: (4:67)

Our aim is to �nd the derivative

dJ(
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)

d�

�

�

�

�

�=0

= lim

�!0

J(


�

)� J(
)

�

(4:68)

which describes the behaviour of the energy functional with respect to vari-

ation of the crack length.

4.6.2 Preliminary statement and formulae

In order to �nd the derivative (4.68) we ful�l a transformation of the domain




�

, so that the domain is mapped onto 
. Let � 2 C

1

0

(D) be any function

such that � = 1 in a neighbourhood of the point x

l

= (l; 0). To simplify the

arguments the function � is assumed to be equal to zero in a neighbourhood

of the point (0; 0). Consider the transformation of the independent variables

y
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1
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1

; x
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); y

2

= x
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; (4:69)
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) 2 
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) 2 
. The Jacobian q
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of this transformation is

equal to
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:

For small �, the Jacobian q

�

is positive, and hence the transformation (4.69)

is one-to-one. Therefore, in view of (4.69) we have y = y(x; �), x = x(y; �):

Let u

�

(x) be the solution of (4.65), (4.66), and u
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(x) = u
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(y), x =

x(y; �). We have the following formulae:
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Consequently
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where A

�

= A

�

(y) is the matrix such that
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Note that A

0

(y) = E is the unit matrix.

It is easy to �nd the derivative of A
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(y) with respect to �, namely,
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Consider next the transformation
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and �nd the derivative
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:

Assuming that y; � are independent variables in (4.69) we have x = x(y; �).

Di�erentiation of (4.69) with respect to � yields
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Consequently, by (4.72),

@f(x(y; �))

@�

�

�

�

�

�=0

= f

x

1

dx

1

d�

�

�

�

�

�=0

+ f

x

2

dx

2

d�

�

�

�

�

�=0

= f

y

1

�: (4:73)

Now we are in a position to �nd the derivative f

0

(y). Indeed, by (4.73)
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i.e.

f

0

(y) = (�f)

y

1

(y): (4:74)

Since f 2 C

1

(
) we can see that as � ! 0

f
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0

(y)

�

! f

0

(y) in L

1

(
): (4:75)

Also, notice that, in addition to (4.71), as � ! 0

A

�

(y) �A

0

(y)

�

! A

0

(y) in L

1

(
): (4:76)

Introduce next the sets of admissible displacements in the problems (4.65){

(4.66), (4.62){(4.63),

K

�

= fw 2 H

1

(


�

) j [w] � 0 on �

l+�

g;

K

0

= fw 2 H

1

(
) j [w] � 0 on �

l

g:

In accordance with (4.69), let x = x(y; �). Then w

�

(x) = w

�

(y). The

inclusion w

�

2 K

�

implies w

�

2 K

0

; and, conversely, w

�

2 K

0

implies

w

�

2 K

�

. This means that the transformation (4.69) maps K

�

onto K

0

,

and it is one-to-one. Now we shall prove an auxiliary statement which is

used in the sequel.

Lemma 4.2. Let u

�

be the solution of (4.65), (4.66), u

�

(x) = u

�

(y); and u

be the solution of (4.62), (4.63). Then

ku

�

� uk

H

1

(
)

! 0; � ! 0: (4:77)

Proof. The function u

�

2 K

�

is the solution of the variational inequal-

ity

Z




�

hru

�

;rv �ru

�

i �

Z




�

f(v � u

�

) 8v 2 K

�

: (4:78)

We change the variables in (4.78) in accordance with (4.69). To this end we

write (4.70) as

r

x

u

�

= r

y

u

�

� �gD

1

u

�

;

where D

1

u

�

= u

�y

1

; g = r

x

�; which transforms (4.78) into the inequality

Z




hru

�

;r~v �ru

�

i

1

q

�

�

Z




hh

�

;r~v �ru

�

i +

Z




f

�

(~v � u

�

) (4:79)

+ �

Z




hru

�

; gD

1

~v� gD

1

u

�

i

1

q

�

+ �

2

Z




hgD

1

u

�

; gD

1

~v � gD

1

u

�

i

1

q

�

8 ~v 2 K

0

:
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Here

h

�

=

�gD

1

u

�

q

�

! 0 in [L

2

(
)]

2

as � ! 0: It is of importance that the inequality (4.79) holds for all ~v 2 K

0

.

From (4.78) it follows that

ku

�

k

H

1

(


�

)

� c

uniformly in �, consequently,

ku

�

k

H

1

(
)

� c (4:80)

uniformly in �. The solution of the problem (4.62), (4.63) is the solution of

the variational inequality

u 2 K

0

:

Z




hru;rv�rui �

Z




f(v � u) 8v 2 K

0

: (4:81)

We can substitute ~v = u, v = u

�

in (4.79), (4.81), respectively, and sum the

relations. This implies

Z




hru�ru

�

;ru�

ru

�

q

�

i �

Z




(f

�

� f)(u

�

� u) (4:82)

+

Z




hh

�

;ru

�

�rui+ P (�; u; u

�

; g):

By (4.79), (4.80), we have P (�; u; u

�

; g)! 0 as � ! 0. The inequality (4.82)

can be written as

kru�ru

�

k

2

0

+

Z




hru�ru

�

;ru

�

�

ru

�

q

�

i �

Z




hh

�

;ru

�

�rui

+

Z




(f

�

� f)(u

�

� u) + P (�; u; u

�

; g);

where k � k

0

is the norm in L

2

(
). Hence,

1

2

kru�ru

�

k

2

0

� kru

�

�

ru

�

q

�

k

2

0

+ kh

�

k

0

kru

�

�ruk

0

(4:83)

+ kf

�

� fk

0

ku

�

� uk

0

+ P (�; u; u

�

; g):

It is easy to see that









ru

�

�

ru

�

q

�









0

� �

max




j�

x

j

min




jq

�

j

kru

�

k

0

! 0; � ! 0:
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In this case the inequality (4.83) implies as � ! 0

kru

�

�ruk

0

! 0

which completes the proof of Lemma 4.2.

Remark. Since f

�

is the smooth function, we have

kf

�

� fk

0

� c�

with a constant c being uniform with respect to �. Taking into account

the formulae for h

�

; P (�; u; u

�

; g); it follows from (4.83) that the result of

Lemma 4.2 can be improved, namely, there exists a constant c > 0 such

that

ku

�

� uk

H

1

(
)

� c�:

4.6.3 Gri�th formula and Rice{Cherepanov integral

To underline the dependence of the domain 
 on the crack length l we shall

write 


l

instead of 
 in some places of this subsection.

Let J(


l

) be de�ned by the formula (4.64), and the function � be chosen

as that at the beginning of Section 4.6.2. Our purpose is to prove the

following Gri�th formula.

Theorem 4.6. The derivative of J(


l

) with respect to l is given by the

formula

dJ(


l

)

dl

= �

1

2

Z




�

�

y

1

(u

2

y

1

� u

2

y

2

) + 2�

y

2

u

y

1

u

y

2

�

�

Z




(�f)

y

1

u: (4:84)

Proof. Introduce the notations

�(
;') =

1

2

Z




jr'j

2

�

Z




f'; �

�

(
;') =

1

2

Z




hA

�

r';r'i �

Z




f

�

';

�(


�

;') =

1

2

Z




�

jr'j

2

�

Z




�

f':

The solution u of the problem (4.62){(4.63) satis�es the relation

�(
;u) = min

'2K

0

�(
;');

and the solution u

�

of the problem (4.65){(4.66) satis�es

�(


�

;u

�

) = min

'2K

�

�(


�

;'):
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We have noted that the transformation (4.69) establishes a one-to-one

mapping between K

�

and K

0

, hence

min

'2K

0

�

�

(
;') = min

'2K

�

�(


�

;'): (4:85)

According to our notation,

J(
) = �(
;u); J(


�

) = �(


�

;u

�

);

where u and u

�

are the solutions of (4.62){(4.63) and (4.65){(4.66), respec-

tively. Now we can �nd the limit (4.68). Indeed, by (4.85),

J(


�

) � J(
)

�

=

�(


�

;u

�

)��(
;u)

�

=

�

�

(
;u

�

) ��(
;u)

�

�

�

�

(
;u)� �(
;u)

�

and consequently,

lim sup

�!0

J(


�

) � J(
)

�

� lim sup

�!0

�

�

(
;u)� �(
;u)

�

(4:86)

=

1

2

Z




hA

0

ru;rui �

Z




f

0

u:

On the other hand, by Lemma 4.2 and (4.76), as � ! 0

�

�

(
;u

�

)� �(
;u

�

)

�

=

1

2

Z




h

A

�

�A

0

�

ru

�

;ru

�

i �

1

2

Z




hA

0

ru

�

;ru

�

i

�

1

�

Z




(f

�

� f)u

�

=

1

2

Z




h(

A

�

� A

0

�

�A

0

)ru

�

;ru

�

i (4:87)

+

1

2

Z




hA

0

ru

�

;ru

�

i �

1

�

Z




(f

�

� f)u

�

!

1

2

Z




hA

0

ru;rui �

Z




f

0

u;

whence

lim inf

�!0

J(


�

)� J(
)

�

� lim inf

�!0

�

�

(
;u

�

) ��(
;u

�

)

�

(4:88)

=

1

2

Z




hA

0

ru;rui �

Z




f

0

u:

Comparing (4.86) and (4.88) we �nd

lim

�!0

J(


�

) � J(
)

�

=

1

2

Z




hA

0

ru;rui�

Z




f

0

u;
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i.e.

dJ(


l

)

dl

=

1

2

Z




hA

0

ru;rui �

Z




f

0

u: (4:89)

By (4.71), (4.74), a substitution of A

0

and f

0

in (4.89) implies (4.84).

The proof of Theorem 4.6 is complete.

We �rst have to prove that the right-hand side of (4.84) does not depend

on �. As we know (see Yakunina, 1981) the solution of the problem (4.62){

(4.63) has an additional regularity up to the crack faces. For any x 2 �

l

there exists a neighbourhood V of the point x such that

u 2 H

2

(V n �

l

): (4:90)

Moreover, the solution u satis�es the following boundary conditions:

[u] � 0; [u

y

2

] = 0; u

y

2

� 0; u

y

2

[u] = 0 on �

l

: (4:91)

To prove that the right-hand side of (4.84) is independent of �, we con-

sider two functions �

1

; �

2

with the required properties. The di�erence be-

tween right-hand sides of (4.84) corresponding to �

1

; �

2

is denoted by �,

� = �

1

2

Z




�

�

y

1

(u

2

y

1

� u

2

y

2

) + 2�

y

2

u

y

1

u

y

2

�

�

Z




(�f)

y

1

u; (4:92)

where � = �

1

= �

2

. Since �

1

; �

2

are equal to 1 in some neighbourhoods of

the point x

l

, in (4.92) we have to integrate outside a ball B

x

l

centred at x

l

.

Integrating by parts in (4.92) we �nd

� =

Z


nB

x

l

�u

y

1

(�u+ f) +

Z

�

l

nB

x

l

�[u

y

2

u

y

1

];

and by (4.62), (4.91),

� =

Z

�

l

nB

x

l

�[u

y

2

u

y

1

]:

To prove � = 0 it su�ces to establish that

u

y

2

[u

y

1

] = 0 a.e. on �

l

\ fsupp �g: (4:93)

Here, by fsupp �g we denote the support of �. Introduce the set

M = fx 2 �

l

\ fsupp �g j [u(x)] > 0g:

The set M is open, and by (4.90), u is continuous up to �

l

. By (4.91), we

have

u

y

2

= 0 a.e. on M: (4:94)
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The complement of M is characterized by the condition

[u] = 0 on (�

l

\ fsupp �g) nM:

Hence (see Kinderlehrer, Stampacchia, Chapter 2, Theorem A.1, 1980)

[u

y

1

] = 0 a.e. on (�

l

\ fsupp �g) nM: (4:95)

Consequently, by (4.94), (4.95), we arrive at (4.93), which proves the inde-

pendence of the right-hand side of (4.84) on �.

Note that the independence of the right-hand side of (4.84) on � can be

proved more simply. Indeed, since

lim inf

�!0

J(


�

)� J(
)

�

= lim sup

�!0

J(


�

)� J(
)

�

and both sides are independent of � we conclude that

dJ(


�

)

d�

�

�

�

�=0

exists and

does not depend on �.

The proved assertion means that the right-hand side of (4.84) is, actually,

a function of the point x

l

and the right-hand side f of (4.62). This allows

us to write (4.84) as the Gri�th formula

dJ(


l

)

dl

= k(x

l

; f); (4:96)

where 


l

= D n �

l

, k is a functional depending on x

l

; f . In particular, we

have

J(


l+�

) = J(


l

) + k(x

l

; f)� + �(�)�;

where 


l+�

= D n �

l+�

and �(�)! 0 as � ! 0.

Note that k(x

l

; f) = 0 provided that the solution u is su�ciently smooth,

i.e.

dJ(


l

)

dl

= 0: (4:97)

In particular, the equality (4.97) holds provided that u 2 H

2

(
). Indeed,

in this case we can extend �

l

beyond the points (0; 0), (l; 0) so that the

extension crosses the boundary �. As a result, the domain 
 is divided into

two subdomains 


1

;


2

. By (4.62), (4.93), (4.84), we have

dJ(


l

)

dl

=

2

X

i=1

0

@

�

1

2

Z




i

�

�

y

1

(u

2

y

1

� u

2

y

2

) + 2�

y

2

u

y

1

u

y

2

�

�

Z




i

(�f)

y

1

u

1

A

(4:98)

=

2

X

i=1

Z




i

�u

y

1

(�u+ f) +

Z

�

�

�u

y

2

[u

y

1

] = 0;
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where �

�

is the extension of �

l

. In fact, to prove (4.98) we need a local

regularity of the solution near the point x

l

. The inclusion u 2 H

2

(
)

provides su�cient regularity to integrate in (4.98).

An additional regularity of the solution near the point x

l

takes place in

some particular cases. For example, assume that the solution u satis�es the

condition [u] = 0 on B

x

l

\�

l

; where B

x

l

is a ball centered at x

l

. Using the

technique of Section 2.5, we can prove that the equation ��u = f holds in

B

x

l

, and consequently, u 2 H

3

loc

(B

x

l

). In this case all the integrals in (4.98)

make sense. Consequently, by (4.62), (4.93), the equality (4.97) follows.

We can write (4.84) in the form which does not contain �. To this end,

consider a ball B

x

l

(r) of radius r with a boundary �(r) such that � = 1 on

B

x

l

(r).

Integration by parts in (4.84) implies

dJ(


l

)

dl

=

Z


nB

x

l

(r)

�u

y

1

(�u+ f) +

Z

�

l

nB

x

l

(r)

�u

y

2

[u

y

1

]

+

Z

B

x

l

(r)n�

l

�fu

y

1

+

1

2

Z

�(r)

�

�

�

1

(u

2

y

1

� u

2

y

2

) + 2�

2

u

y

1

u

y

2

�

;

where (�

1

; �

2

) is the unit external normal vector to �(r). Hence, by (4.62),

(4.93),

dJ(


l

)

dl

=

Z

B

x

l

(r)n�

l

fu

y

1

+

1

2

Z

�(r)

�

�

1

(u

2

y

1

� u

2

y

2

) + 2�

2

u

y

1

u

y

2

�

: (4:99)

Now assume that f = 0 in some neighbourhood V of the point x

l

. For

small r, we have B

x

l

(r) � V , and the formula (4.99) implies

dJ(


l

)

dl

=

1

2

Z

�(r)

�

�

1

(u

2

y

1

� u

2

y

2

) + 2�

2

u

y

1

u

y

2

�

:

The right-hand side of this equality does not depend on r, and consequently,

we arrive at the following conclusion. Let u be the solution of the problem

(4.62), (4.63), and f be equal to zero in some neighbourhood of the point

x

l

. Then the integral

I =

Z

�(r)

�

�

1

(u

2

y

1

� u

2

y

2

) + 2�

2

u

y

1

u

y

2

�

is independent of r for all su�ciently small r. Moreover, the above argu-

ments show that the integral

I =

Z

C

�

�

1

(u

2

y

1

� u

2

y

2

) + 2�

2

u

y

1

u

y

2

�

(4:100)
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does not depend on C for any closed curve C surrounding the point x

l

(see

Fig.4.5). In this case � = (�

1

; �

2

) is the normal unit vector to the curve C.

Fig.4.5. Curve C

A part of this curve may belong to �

l

: In this last case we can integrate

over �

+

or �

�

in (4.100), since, in view of (4.91), (4.93), the jump [u

y

1

u

y

2

]

is equal to zero on �

l

. Here �

�

= �

�

l

\ C:

Of course, the above independence takes place provided that f = 0 in the

domain with the boundary C: The integral of the form (4.100) is called the

Rice{Cherepanov integral. We have to note that the statement obtained is

proved for nonlinear boundary conditions (4.91). This statement is similar

to the well-known result in the linear elasticity theory with linear boundary

conditions prescribed on �

l

(see Bui, Ehrlacher, 1997; Rice, 1968; Rice,

Drucker, 1967; Parton, Morozov, 1985; Destynder, Jaoua, 1981).

4.7 Asymptotics of the energy

functional for the Lam�e equations

This section is concerned with the two-dimensional elasticity equations. Our

aim is to �nd the derivative of the energy functional with respect to the crack

length. The nonpenetration condition is assumed to hold at the crack faces.

We derive the Gri�th formula and prove the path independence of the

Rice{Cherepanov integral. This section follows the publication (Khludnev,

Sokolowski, 1998c).

4.7.1 Setting the problem

Let D � R

2

be a bounded domain with a smooth boundary �, and �

l+�

be the set f(x

1

; x

2

) j 0 < x

1

< l + �; x

2

= 0g. We assume that this set

belongs to the domain D for all su�ciently small �, and l > 0. Introduce

the notation 


�

= Dn�

l+�

, 
 = Dn�

l

. The problem, which we analyse, can

be formulated as follows. We want to �nd a function W = (u; v) such that

��

ij;j

= f

i

; i = 1; 2; in 
; (4:101)
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W = 0 on �; (4:102)

[W ]n � 0 on �

l

: (4:103)

Here �

ij

= �

ij

(W ) are the stress tensor components, n = (0; 1) is a normal

vector to �

l

, and the Hooke law is assumed to be ful�lled,

�

ij

= 2�"

ij

+ � divW�

i

j

; i; j = 1; 2: (4:104)

By �, � we denote the Lam�e parameters, "

ij

= "

ij

(W ), �

i

j

is the Kronecker

symbol,

"

11

= u

x

1

; "

22

= v

x

2

; "

12

= 1=2 (u

x

2

+ v

x

1

): (4:105)

We assume that f = (f

1

; f

2

; f

3

) 2 C

1

(D).

The formulation of the problem (4.101){(4.103) is not complete. Actu-

ally, we have to consider the minimization of the functional

I(
;U ) =

1

2

Z




�

ij

(U )"

ij

(U ) �

Z




fU; U = (u; v); (4:106)

over the set

K

0

= f(u; v) 2 H

1

(
) j u = v = 0 on �; [v] � 0 on �

l

g: (4:107)

In this case the solution W of the minimization problem satis�es (4.101){

(4.103) and some additional boundary conditions holding on �

l

. These

conditions are analysed below (see (4.128)).

The perturbed problem corresponding to (4.101){(4.103) is as follows.

In the domain 


�

, we want to �nd a function W

�

= (u

�

; v

�

) such that

��

ij;j

= f

i

; i = 1; 2; (4:108)

W

�

= 0 on �; (4:109)

[W

�

]n � 0 on �

l+�

: (4:110)

Here �

ij

= �

ij

(W

�

), "

ij

= "

ij

(W

�

), and �

ij

; "

ij

satisfy the Hooke law

(4.104).

Similar to (4.101){(4.103), the complete formulation of the problem

(4.108){(4.110) is variational. We minimize the functional

I(


�

;U ) =

1

2

Z




�

�

ij

(U )"

ij

(U ) �

Z




�

fU; U = (u; v); (4:111)

over the set

K

�

= f(u; v) 2 H

1

(


�

) j u = v = 0 on �; (4:112)

[v] � 0 on �

l+�

g:
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The inequality (4.110) is, in fact, a part of the complete system of boundary

conditions holding at �

l+�

.

We aim at �nding the derivative of the energy functional

lim

�!0

I(


�

;W

�

) � I(
;W )

�

; (4:113)

where W

�

;W are the solutions of (4.108){(4.110) and (4.101){(4.103), re-

spectively. In this case the limit (4.113) is equal to the derivative

dJ(


�

)

d�

�

�

�

�

�=0

: (4:114)

4.7.2 Auxiliary formulae

Similar to the preceding section we choose a function � 2 C

1

0

(D) such

that � = 1 in a neighbourhood of the point x

l

= (l; 0). Consider the

transformation of independent variables

y

1

= x

1

� ��(x

1

; x

2

); y

2

= x

2

: (4:115)

Here (y

1

; y

2

) 2 
, (x

1

; x

2

) 2 


�

. To simplify the arguments the function �

is assumed to be equal to zero in a neighbourhood of the point (0; 0). The

transformation (4.115) maps 


�

to 
, and it is one-to-one. The Jacobian

q

�

of the transformation is positive for small �,

q

�

=

�

�

�

�

@(y

1

; y

2

)

@(x

1

; x

2

)

�

�

�

�

= 1� ��

x

1

:

Let x = x(y; �) correspond to the transformation (4.115), and W

�

(x) be the

solution of (4.108){(4.110). Then W

�

(x) = W

�

(y), y 2 
. Also, let W be

the solution of (4.101){(4.103). The following statement holds.

Lemma 4.3. We have, as � ! 0,

kW

�

�Wk

H

1

(
)

! 0:

The proof of this lemma is omitted since it follows the lines of Lemma

4.2. We just indicate that W

�

and W are the solutions of the following

variational inequalities,

W

�

2 K

�

:

Z


�

�

ij

(W

�

)("

ij

(V ) � "

ij

(W

�

)) (4:116)

�

Z




�

f(V �W

�

) 8V 2 K

�

;
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W 2 K

0

:

Z




�

ij

(W )("

ij

(V )� "

ij

(W )) �

Z




f(V �W ) 8V 2 K

0

; (4:117)

and we can apply the arguments of Lemma 4.2.

Using the transformation (4.115), for w

�

(x) = w

�

(y), we obtain

Z




�

f

i

w

�

dx =

Z




f

�

i

w

�

dy; f

�

i

(y) =

f

i

(x(y; �))

1� ��

x

1

; i = 1; 2: (4:118)

Similar to Section 4.6, it is possible to �nd the derivatives

f

0

i

(y) = lim

�!0

f

�

i

(y) � f

0

�

(y)

�

=

df

�

i

d�

�

�

�

�=0

; i = 1; 2: (4:119)

We have (see (4.74))

f

0

i

(y) = (�f

i

)

y

1

(y); i = 1; 2: (4:120)

The formulae (4.120) will be used in getting the derivative of the energy

functional.

4.7.3 The Gri�th formula

Let W

�

= (u

�

; v

�

) be the solution of the problem (4.108){(4.110). Denote

u

�

(x) = ~u(y), v

�

(x) = ~v(y), x 2 


�

, y 2 
, x = x(y; �). Here, we use the

tilde and omit � for convenience.

By (4.115), the following formulae arise:

�

u

�

x

1

= ~u

y

1

(1� ��

x

1

)

u

�

x

2

= ~u

y

1

(���

x

2

) + ~u

y

2

;

�

v

�

x

1

= ~v

y

1

(1� ��

x

1

)

v

�

x

2

= ~v

y

1

(���

x

2

) + ~v

y

2

:

(4:121)

Since

Z




�

�

ij

(W

�

)"

ij

(W

�

) =

Z




�

�

(2�+ �)f"

2

11

(W

�

)

+ "

2

22

(W

�

)g + 2�"

11

(W

�

)"

22

(W

�

) + 4�"

2

12

(W

�

)

�

;

in view of (4.121), we can change the domain of integration 


�

by 
. This

provides

1

2

Z




�

�

ij

(W

�

)"

ij

(W

�

)dx�

Z




�

fW

�

dx

=

1

2

Z




1

q

�

�

~u

2

y

1

f(2�+ �)(1 � ��

x

1

)

2

� ��

2

�

2

x

2

g+ �~u

2

y

2

+ ~v

2

y

1

f(2�+ �)�

2

�

2

x

2

+ �(1 � ��

x

1

)

2

g+ (2�+ �)~v

2

y

2

(4:122)
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+2�~u

y

1

~u

y

2

(���

x

2

) + 2(� + �)~u

y

1

~v

y

1

(���

x

2

)(1� ��

x

1

)

+ 2�~u

y

1

~v

y

2

(1� ��

x

1

) + 2�~u

y

2

~v

y

1

(1� ��

x

1

)

+ 2(2�+ �)~v

y

1

~v

y

2

(���

x

2

)

�

dy �

Z




f

�

~

W dy:

Denote by I

�

(
;

~

W ) the right-hand side of (4.122). In this case, formula

(4.122) provides the transformation of the energy functional

I(


�

;W

�

) = I

�

(
;W

�

); (4:123)

where W

�

=

~

W . Again, let W

�

(x) = W

�

(y), x = x(y; �). Then W

�

2

K provided that W

�

2 K

�

and conversely. Thus we obtain a one-to-one

mapping between K

�

and K

0

. In particular, this implies

min

U2K

�

I(


�

;U ) = min

U2K

0

I

�

(
;U ): (4:124)

By (4.123), (4.124), we have

J(


�

)� J(
)

�

=

I(


�

;W

�

)� I(
;W )

�

=

I

�

(
;W

�

)� I(
;W )

�

�

I

�

(
;W )� I(
;W )

�

;

whence

lim sup

�!0

J(


�

) � J(
)

�

� lim sup

�!0

I

�

(
;W )� I(
;W )

�

: (4:125)

On the other hand

lim inf

�!0

J(


�

)� J(
)

�

� lim inf

�!0

I

�

(
;W

�

) � I(
;W

�

)

�

: (4:126)

Taking into account (4.122) (or (4.123)) and Lemma 4.3, we can show that

the right-hand sides of (4.125) and (4.126) coincide.

Consequently, there exists

lim

�!0

J(


�

) � J(
)

�

:

We can calculate the right-hand sides of (4.125), (4.126), which give

dJ(


�

)

d�

�

�

�

�

�=0

=

1

2

Z




�

(2�+ �)u

2

y

1

(��

y

1

) + �u

2

y

2

�

y

1

+ 2�u

y

1

u

y

2

(��

y

2

)

+�v

2

y

1

(��

y

1

) + (2�+ �)v

2

y

2

�

y

1

+ 2(� + �)u

y

1

v

y

1

(��

y

2

) (4:127)

+ 2(2�+ �)v

y

1

v

y

2

(��

y

2

)

�

�

Z




(�f

1

)

y

1

u�

Z




(�f

2

)

y

1

v:

As a result, we have derived the Gri�th formula (4.127).
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4.7.4 Properties of the derivative of the energy

functional

We �rst analyse boundary conditions holding at �

l

in the problem (4.101){

(4.103). According to (Khludnev, Sokolowski, 1997), the following condi-

tions hold at �

l

:

[v] � 0; �

22

� 0; [�

22

] = 0; �

12

= 0; [v]�

22

= 0: (4:128)

By (Yakunina, 1981), the solution of the problem (4.101){(4.103) (i.e. the

problem (4.117)) has additional regularity properties up to the crack faces.

Namely, for any x 2 �

l

there exists a neighbourhood W of the point x such

that W 2 H

2

(Wn�

l

): Consequently, the solutionW is continuous up to the

crack faces, and the conditions (4.128) hold almost everywhere at �

l

. Note

that

�

22

= (2�+ �)v

y

2

+ �u

y

1

; �

12

= �(u

y

2

+ v

y

1

): (4:129)

In addition to (4.128) we prove that

�

22

[v

y

1

] = 0 a.e. at �

l

: (4:130)

Indeed, since v is continuous the set

M = fy 2 �

l

j [v(y)] > 0g

is open. At any point y 2 M we have [v(y)] > 0, i.e. by (4.128), �

22

= 0,

and consequently �

22

[v

y

1

] = 0 a.e. onM . At the set �

l

nM we have [v] = 0,

whence [v

y

1

] = 0 (see Kinderlehrer, Stampacchia, Chapter 2, Theorem A.1,

1980) which implies �

22

[v

y

1

] = 0. The equality (4.130) is proved.

Now we prove that the right-hand side of (4.127) is independent of �.

Consider two right-hand sides corresponding to any two functions �

1

, �

2

with the prescribed properties. The di�erence between them is denoted by

�,

� =

1

2

Z




�

(2�+ �)u

2

y

1

(��

y

1

) + �u

2

y

2

�

y

1

+ 2�u

y

1

u

y

2

(��

y

2

)

+�v

2

y

1

(��

y

1

) + (2�+ �)v

2

y

2

�

y

1

+ 2(� + �)u

y

1

v

y

1

(��

y

2

) (4:131)

+ 2(2�+ �)v

y

1

v

y

2

(��

y

2

)

�

�

Z




(�f

1

)

y

1

u�

Z




(�f

2

)

y

1

)v;

where � = �

1

� �

2

. The functions �

1

, �

2

are equal 1 in neighbourhoods

of the point x

l

, consequently, the integration in (4.131) is actually ful�lled

over 
nB

x

l

. By B

x

l

we have denoted a ball centered at x

l

.

Integrating by parts in (4.131) we derive

� =

Z


nB

x

l

�

�

(2�+ �)u

y

1

u

y

1

y

1

+ �u

y

1

u

y

2

y

2

+ �v

y

1

v

y

1

y

1

+ (� + �)v

y

1

u

y

1

y

2

+
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+(� + �)u

y

1

v

y

1

y

2

+ (2�+ �)v

y

1

v

y

2

y

2

+ f

1

u

y

1

+ f

2

v

y

1

�

+ (4:132)

+

Z

�

l

� (�[u

y

1

u

y

2

] + (�+ �)[u

y

1

v

y

1

] + (2�+ �)[v

y

1

v

y

2

]) :

Note that the equilibrium equations (4.101) can be written as

(2� + �)u

y

1

y

1

+ �u

y

2

y

2

+ (�+ �)v

y

1

y

2

= �f

1

; (4:133)

(2�+ �)v

y

2

y

2

+ (� + �)u

y

1

y

2

+ �v

y

1

y

1

= �f

2

:

By (4.128){(4.130), (4.133), the right-hand side of (4.132) is equal to zero,

which proves the independence of the right-hand side of (4.127) on �.

As in the preceding section, the independence follows from simpler ar-

guments. In fact, we have

lim inf

�!0

J(


�

)� J(
)

�

= lim sup

�!0

J(


�

)� J(
)

�

(4:134)

which proves the existence dJ(


�

)=d�

�

�

�=0

. Both sides of (4.134) do not

depend on �, hence lim

�!0

(J(


�

) � J(
))�

�1

is independent of �.

Assume that the solution W of the problem (4.101){(4.103) has the

property

[W ] = 0 on B

x

l

\ �

l

;

where B

x

l

is any ball. Then the arguments of Section 2.5 used to prove

C

1

-regularity of the solution allow us to state that the equations

��

ij;j

(W ) = f

i

; i = 1; 2;

hold in B

x

l

in the distribution sense. Consequently, W 2 H

3

loc

(B

x

l

): In

addition to this, by the inclusion f 2 H

1

(D), we have W 2 H

3

loc

(
). In this

case

dJ(


�

)

d�

�

�

�

�

�=0

= 0: (4:135)

In fact, we can integrate by parts on the right-hand side of (4.127), which

gives

dJ(


�

)

d�

�

�

�

�

�=0

=

Z




�

�

(�

11;1

+ �

12;2

)u

y

1

+ (�

21;1

+ �

22;2

)v

y

1

(4:136)

+ f

1

u

y

1

+ f

2

v

y

1

�

+

Z

�

l

� (�

22

[v

y

1

] + [�

12

u

y

1

]) :

By (4.101), (4.128), (4.130), the right-hand side of (4.136) is equal to zero,

which proves (4.135). To justify (4.135), it su�ces, in fact, to have the
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regularityW 2 H

2

(B

x

l

n�

l

): In this case we can repeat the above arguments

and obtain that the right-hand side of (4.136) is equal to zero.

The formula (4.127) can be written in the form which does not contain

the function �. To show this we choose a ball B

x

l

(r) of radius r with the

boundary �(r) such that � = 1 on B

x

l

(r). In this case the integration by

parts in (4.127) yields

dJ(


�

)

d�

�

�

�

�

�=0

=

Z

B

x

l

(r)n�

l

(f

1

u

y

1

+ f

2
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y

1

)

+

1

2

Z
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�
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(4:137)

+

1

2

Z

�(r)

�

2

�

2(2�+ �)v

y

1

v

y

2

+ 2(� + �)u

y

1

v

y

1

+ 2�u

y

1

u

y

2

�

;

where (�

1

; �

2

) is the unit normal exterior vector to �(r).

Now assume that f = 0 in some neighbourhood V of the point x

l

. For

su�ciently small r, 0 < r < r

0

, we have B

x

l

(r) � V , and the formula

(4.137) implies

dJ(


�

)

d�

�

�

�

�

�=0

=

1

2

Z

�(r)

�

1

�
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y

2
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(4:138)

+

Z
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�
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�
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y
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y

2

+ (� + �)u

y

1

v

y

1

+ �u

y

1

u

y

2

�

:

The right-hand side of (4.138) does not depend on r, and consequently, we

have the following property. Let W be the solution of the problem (4.101){

(4.103), and f be equal to zero in some neighbourhood of the point x

l

. Then

the Rice{Cherepanov integral

I =

1

2

Z

�(r)

�

1

�

(2�+ �)(u

2

y

1
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2

y

2

) + �(v
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y
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y

2
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�

+
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�
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�
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2

+ (�+ �)u

y

1
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+ �u

y

1

u

y

2

�

is independent of r > 0 for all su�ciently small r. Moreover, the above

arguments show that the integral

I =

1

2

Z

C

�

1

�

(2�+ �)(u

2

y

1

� v
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y

2
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(4:139)
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+

Z

C

�

2

�

(2�+ �)v

y

1

v

y

2

+ (� + �)u

y

1

v

y

1

+ �u

y

1

u

y

2

�

is path independent for any closed curve C surrounding the point x

l

: In this

case � = (�

1

; �

2

) is the normal unit vector to the curve C. Some part of

this curve denoted by � = �

l

\C may belong to �

l

: In this case, taking into

account (4.130), (4.128), we can integrate over �

+

or �

�

in (4.139) and the

same value of the integral is obtained. Observe that the above independence

takes place provided that f = 0 in a domain with the boundary C.

We have to note that the result is obtained for nonlinear boundary con-

ditions (4.128). The well-known path independence of the Rice{Cherepanov

integral was previously proved in elasticity theory for linear boundary con-

ditions �

22

= 0; �

12

= 0 holding on �

�

l

(see Parton, Morozov, 1985).

4.8 Three-dimensional case

In this section we �nd the derivative of the energy functional in the three-

dimensional linear elasticity model. The derivative characterizes the be-

haviour of the energy functional provided that the crack length is changed.

The crack is modelled by a part of the two-dimensional plane removed from

a three-dimensional domain. In particular, we derive the Gri�th formula.

4.8.1 Formulation of the problem

Let D � R

3

be a bounded domain with a smooth boundary � (see Fig.4.6).

The crack is de�ned in the form of a two-dimensional surface,

�

l+�

= f(x

1

; x

2

; x

3

) j x

3

= 0; �h < x

2

< h; 0 < x

1

< l + �g:

Here, h > 0, l > 0, � is a small parameter to be tended to zero. Assume

that �

l+�

� D and denote 


�

= Dn�

l+�

, 
 = Dn�

l

.

Fig.4.6. Domain 
 and crack �

l

in R

3

The equilibrium problem for an elastic body occupying the domain 


�

can be formulated as follows. We want to �nd a function W = (u; v; w)
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such that

��

ij;j

= f

i

; i = 1; 2; 3; in 
; (4:140)

W = 0 on �; (4:141)

[W ]n � 0 on �

l

: (4:142)

Here �

ij

= �

ij

(W ) are stress tensor components, and n = (0; 0; 1) is a

normal vector to the surface �

l+�

. We assume that the Hooke law is ful�lled,

�

ij

= 2�"

ij

+ � divW �

i

j

; i; j = 1; 2; 3; (4:143)

"

ij

(W ) =

1

2

(w

i

;j

+ w

j

;i

); (w

1

; w

2

; w

3

) � (u; v; w);

where �, � are the Lam�e parameters, and �

i

j

is the Kronecker symbol.

Actually, by considering the problem (4.140){(4.142) we have in mind

the minimization of the functional

I(
;U ) =

1

2

Z




�

ij

(U )"

ij

(U )�

Z




fU; U = (u; v; w); (4:144)

over the set

K

0

= f(u; v; w) 2 H

1

(
) j u = v = w = 0 on �; [w] � 0 on �

l

g; (4:145)

where f = (f

1

; f

2

; f

3

) 2 C

1

(D).

In this case the conditions (4.140){(4.142) hold. Moreover, a system of

equations and inequalities holds on �

l

, and (4.142) is a part of this system

(see (4.161) below).

The perturbed problem corresponding to (4.140){(4.142) is as follows.

We want to �nd a function W

�

= (n

�

; v

�

; w

�

) such that

��

ij;j

= f

i

; i = 1; 2; 3; in 


�

; (4:146)

W

�

= 0 on �; (4:147)

[W

�

]n � 0 on �

l+�

: (4:148)

Here �

ij

= �

ij

(W

�

), and �

ij

(W

�

), "

ij

(W

�

) satisfy the Hooke law (4.143).

Analogously, by considering the problem (4.146){(4.148) we, in fact, analyse

the minimization of the functional

I(


�

;U ) =

1

2

Z




�

�

ij

(U )"

ij

(U )�

Z




�

fU; U = (u; v; w); (4:149)

over the set

K

�

= f(u; v; w) 2 H

1

(


�

) j u = v = w = 0 on �; (4:150)
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[w] � 0 on �

l+�

g:

Denote J(


�

) = I(


�

;W

�

), J(
) = I(
;W ), where W

�

, W are the solu-

tions of (4.140){(4.142) and (4.146){(4.148), respectively. In this section,

we aim at �nding the derivative

lim

�!0

J(


�

) � J(
)

�

: (4:151)

4.8.2 The derivative of the energy functional

Consider a function � 2 C

1

0

(D), � = 1 in a neighbourhood of the set

L = f(x

1

; x

2

; x

3

) j x

1

= l; �h < x

2

< h; x

3

= 0g. The transformation of

the variables

y

1

= x

1

� ��(x

1

; x

2

; x

3

); y

2

= x

2

; y

3

= x

3

(4:152)

maps 


�

on 
. The Jacobian q

�

is positive for all su�ciently small �,

q

�

=

�

�

�

�

@(y

1

; y

2

; y

3

)

@(x

1

; x

2

; x

3

)

�

�

�

�

= 1� ��

x

1

; (4:153)

hence the transformation is one-to-one. For simplicity, the function � is

assumed to be equal to zero in a neighbourhood of the set f(x

1

; x

2

; x

3

) j x

1

=

0; �h < x

2

< h; x

3

= 0g. Let (u

�

; v

�

; w

�

) be the solution of the problem

(4.146){(4.148), (u

�

(x); v

�

(x); w

�

(x)) = (~u(y); ~v(y); ~w(y)), and x = x(y; �)

be the transformation which is inverse to (4.152). We use the tilde instead

of � to simplify the formulae below. By (4.152), the following relations hold:

u

�

x

1

= ~u

y

1

(1� ��

x

1

); u

�

x

2

= ~u

y

1

(���

x

2

) + ~u

y

2

; (4:154)

u

�

x

3

= ~u

y

1

(���

x

3

) + ~u

y

3

:

Similar formulae are valid for the functions v

�

(x), w

�

(x).

Let �

ij

= �

ij

(W

�

), "

ij

= "

ij

(W

�

). In this case, by (4.143),

�

ij

"

ij

= (2�+ �)("

2

11

+ "

2

22

+ "

2

33

) + 4�("

2

12

+ "

2

13

+ "

2

23

)

+ 2�("

11

"

22

+ "

22

"

33

+ "

11

"

33

):

This allows us to �nd the transformation of the energy functional,

1

2

Z




�

�

ij

"

ij

�

Z




�

fW

�

=

1

2

Z




1

q

�

�

(2�+ �)f(1� ��

x

1

)

2

~u

2

y

1

+(~v

y

1

(���

x

2

) + ~v

y

2

)

2

+ ( ~w

y

1

(���

x

3

) + ~w

y

3

)

2

g

+�f(~u

y

1

(���

x

2

) + ~u

y

2

+ ~v

y

1

(1� ��

x

1

))

2

+ (~u

y

1

(���

x

3

) + ~u

y

3

+ ~w

y

1

(1� ��

x

1

))

2

+ (~v

y

1

(���

x

3

) + ~v

y

3

+ ~w

y

1

(���

x

2

) + ~w

y

2

)

2

g (4:155)
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+2�f~u

y

1

(1� ��

x

1

)(~v

y

1

(���

x

2

) + ~v

y

2

) + (~v

y

1

(���

x

2

)

+ ~v

y

2

)( ~w

y

1

(���

x

3

) + ~w

y

3

) + ~u

y

1

(1 � ��

x

1

)( ~w

y

1

(���

x

3

) + ~w

y

3

)g

�

�

Z




f

�

~

W;

where

f

�

(y) =

f(x(y; �))

1� ��

x

1

;

~

W = (~u; ~v; ~w) = W

�

:

Consequently, we have obtained the formula

I(


�

;W

�

) = I

�

(
;W

�

): (4:156)

Now we can proceed as in the previous section, which gives

lim sup

�!0

J(


�

) � J(
)

�

� lim sup

�!0

I

�

(
;W )� I(
;W )

�

; (4:157)

lim inf

�!0

J(


�

)� J(
)

�

� lim inf

�!0

I

�

(
;W

�

) � I(
;W

�

)

�

: (4:158)

Since the right-hand sides of (4.157), (4.158) coincide, we obtain the exis-

tence of limit (4.151), and �nd this limit,

dJ(


�

)

d�

�

�

�

�=0

=

1

2

Z




�

(2� + �)fu

2

y

1

(��

y

1

) + v

2

y

2

�

y

1

+ w

2

y

3

�

y

1

+2v

y

1

v

y

2

(��

y

2

) + 2w

y

1

w

y

3

(��

y

3

)g+ �fu

2

y

2

�

y

1

+ v

2

y

1

(��

y

1

) + u

2

y

3

�

y

1

+w

2

y

1

(��

y

1

) + v

2

y

3

�

y

1

+w

2

y

2

�

y

1

+ 2u

y

1

u

y

3

(��

y

3

) + 2u

y

1

w

y

1

(��

y

3

) (4:159)

+ 2v

y

1

v

y

3

(��

y

3

) + 2v

y

1

w

y

2

(��

y

3

) + 2v

y

3

w

y

1

(��

y

2

) + 2w

y

1

w

y

2

(��

y

2

)

+ 2u

y

1

u

y

2

(��

y

2

) + 2v

y

1

u

y

1

(��

y

2

) + 2v

y

3

w

y

2

�

y

1

g+ 2�fv

y

2

w

y

3

�

y

1

+u

y

1

w

y

1

(��

y

3

) + v

y

2

w

y

1

(��

y

3

) + v

y

1

w

y

3

(��

y

2

) + u

y

1

v

y

1

(��

y

2

)g

�

�

Z




(�f

1

)

y

1

u�

Z




(�f

2

)

y

1

v �

Z




(�f

3

)

y

1

w:

We have obtained the Gri�th formula (4.159). It is not di�cult to show that

the right-hand side of (4.159) does not depend on �. To prove this, consider

the di�erence between right-hand sides of (4.159) corresponding to any two

functions �

1

, �

2

. Let � = �

1

� �

2

. We integrate by parts, which implies that

the di�erence � between the right-hand sides of (4.159) evaluated for �

1

; �

2

is equal to

� =

Z


nS

L

� ((�

1j;j

+ f

1

)u

;1

+ (�

2j;j

+ f

2

)v

;1

+ (�

3j;j

+ f

3

)w

;1

)
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+

Z

�

l

nS

L

�

�

(2�+ �)[w

;1

w

;3

] + �[u

;1

u

;3

] + �[u

;1

w

;1

] (4:160)

+�[v

;1

v

;3

] + �[v

;1

w

;2

] + �[u

;1

w

;1

] + �[v

;2

w

;1

]

�

:

Here S

L

is a neighbourhood of the set L. We should recall at this point

that � = �

1

� �

2

= 0 in some neighbourhood of L. It is known that the

solution of the problem (4.140){(4.142) has an additional regularity up to

the crack faces (see Yakunina, 1981). For any point x 2 �

l

there exists a

neighbourhood V of the point x such that

W 2 H

2

(V n �

l

):

In particular, by the imbedding theorem, W is continuous up to the crack

faces. As it was shown in (Khludnev, Sokolowski, 1997) the solution W

satis�es the following boundary condition on �

l

:

[w] � 0; [�

33

] = 0; �

33

� 0; (4:161)

[w]�

33

= 0; �

13

= 0; �

23

= 0:

It is easy to see that

�

33

= 2�w

;3

+ �(u

;1

+ v

;2

+w

;3

); (4:162)

�

13

= �(u

;3

+w

;1

); �

23

= �(v

;3

+w

;2

):

By (4.140), (4.161), (4.162), from (4.160) it follows that

� =

Z

�

l

nS

L

� (�

33

[w

;1

] + [�

13

u

;1

] + [�

23

v

;1

]) (4:163)

and, consequently, by (4.161),

� =

Z

�

l

nS

L

��

33

[w

;1

]:

Let us prove that

�

33

[w

;1

] = 0 a.e. on �

l

n S

L

: (4:164)

In accordance with (4.161), on the set

M = fy 2 �

l

n S

L

�

�

�

[w(y)] > 0g;

we have �

33

(y) = 0 and, consequently, �

33

(y)[w

;1

(y)] = 0: The complement

(�

l

n S

L

) nM is characterized by the condition

[w(y)] = 0;
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hence [w

;1

(y)] = 0 a.e. on (�

l

n S

L

) nM (see Kinderlehrer, Stampacchia,

Chapter 2, Theorem A.1, 1980) which provides �

33

[w

;1

] = 0 a.e. on �

l

n

S

L

nM: As a result we obtain (4.164), and hence � = 0 which proves the

assertion.

To conclude the section we write the formula (4.159) in the form which

does not contain the function �: To this end, consider a neighbourhood S

L

of the set L with a smooth boundary �

L

assuming that � = 1 on S

L

. Denote

by (�

1

; �

2

; �

3

) the unit external normal vector to �

L

. Integrating by parts

in (4.159) we obtain
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+ 2�(v
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y
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+ u

y

1
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1
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�

+

1

2

Z
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�

3

�

2(2�+ �)w
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:

Denoting the right-hand side of (4.165) by k(l; h; f) we have

dJ(


�

)

d�

�

�

�

�=0

= k(l; h; f):

Here k(l; h; f) is some functional. Consequently,

J(


�

) = J(
) + k(l; h; f)� + �(�)�;

where �(�)! 0 as � ! 0. Note that k(l; h; f) is independent of S

L

.

4.9 Extreme crack shapes in a shallow shell

This section is concerned with an extreme crack shape problem for a shallow

shell (see Khludnev, 1997a). The shell is assumed to have a vertical crack

the shape of which may change. From all admissible crack shapes with �xed

tips we have to �nd an extreme one. This means that the shell displacements

should be as close to the given functions as possible. To be more precise,

we consider a functional de�ned on the set describing crack shapes, which,

in particular, depends on the solution of the equilibrium problem for the

shell. The purpose is to minimize this functional. We assume that the
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shell displacements (W;w) found at the opposite crack faces satisfy the

nonpenetration condition

[W ]� � h

�

�

�

�

�

@w

@�

�

�

�

�

�

:

Here [ � ] is a jump of a function at the crack faces, � is the unit normal

vector to the crack shape, and 2h is the thickness of the shell. A similar

extreme crack shape problem for a plate was considered in Section 2.4.

Note that the problem analysed in this section can be viewed as a shape

sensitivity problem (see Sokolowski, Zolesio, 1992; Pironneau, 1984; Oht-

suka, 1986, 1994; Mr�oz, 1963; Schae�er, 1975; Kinderlehrer, 1982; Athana-

sopoulos, 1981).

4.9.1 Convergence of solutions

Let 
 � R

2

be a bounded domain with a smooth boundary �, 


�

= 
 n�

�

,

where �

�

is the graph of the function y = � (x), x 2 [0; 1], (x; y) 2 
, �

is a small parameter,  2 H

3

0

(0; 1). We denote by W = (w

1

; w

2

), w the

horizontal and vertical displacements of the mid-surface points, respectively,

and � = (W;w) . Let

"

ij

(W ) =

1

2

 

@w

i

@x

j

+

@w

j

@x

i

!

; x

1

= x; x

2

= y;

Denote by e

ij

the strain deformation tensor of the mid-surface,

e

ij

= "

ij

(W ) + k

ij

w; i; j = 1; 2:

Here k

ij

are given smooth functions (the curvatures of the shell). The

normal vector to the curve y = � (x) is denoted by �

�

, �

�

= (�� 

x

; 1)(1+

�

2

 

2

x

)

�1=2

. We use the Kirchho�{Love model of the shell. Assume that

z = 0 corresponds to the mid-surface points, and (x; y; z) are Descartes

orthogonal coordinates. The nonpenetration condition can be written as

[W � zrw]�

�

� 0 on �

�

; jzj � h: (4:166)

Here [M ] = M

+

�M

�

,M

�

are the quantities ofM evaluated at the positive

and negative crack faces with respect to �

�

. We know that (4.166) can be

written in the equivalent form

[W ]�

�

� h

�

�

�

�

�

@w

@�

�

�
�

�

�

�

on �

�

:

The energy functional for the shell is of the form

�

�

(�) =

1

2

B

�

(w;w) +

1

2

hN

ij

; e

ij

i

�

� hf; �i

�

:
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We make use of the following notation:

N

11

= e

11

+ �e

22

; N

22

= e

22

+ �e

11

; N

12

= (1� �)e

12

;

0 < � < 1=2; � = const; f = (f

1

; f

2

; f

3

) 2 L

2

(
); hp; qi

�

=

Z




�

pqd


�

:

The bilinear form B

�

( � ; � ) describing the bending properties of the shell is

as follows:

B

�

(w; �w) =

Z




�

(w

xx

�w

xx

+ w

yy

�w

yy

+ �w

xx

�w

yy

+�w

yy

�w
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+ 2(1� �)w

xy

�w

xy

)d


�

:

Let us �x the conditions on the external boundary corresponding to the

clamping of the shell:

w =

@w

@n

=W = 0 on �:

We next denote by H

1;0

(


�

) the space of functions from H

1

(


�

) equal to

zero on �; the functions from H

2;0

(


�

) are equal to zero on � with the

�rst derivatives, H

2;0

(


�

) � H

2

(


�

). Let H(


�

) = H

1;0

(


�

)�H

1;0

(


�

)�

H

2;0

(


�

): Introduce the set of admissible displacements of the shell

K

�

(


�

) = f(W;w) 2 H(


�

) j (W;w) satisfy (4:166)g:

The equilibrium problem for the shallow shell having the vertical crack can

be formulated as a variational one,

inf

�2K

�

(


�

)

�

�

(�): (4:167)

Since the functional �

�

is convex and di�erentiable on H(


�

), the prob-

lem (4.167) can be written in the equivalent form: �nd � = (W;w) 2 K

�

(


�

)

such that

B

�

(w; �w �w) + hk

ij

N
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; �w� wi

�

+ hN

ij

; "

ij

(

�

W �W )i

�

(4:168)

�hf; �� � �i

�

� 0 8 �� = (

�

W; �w) 2 K

�

(


�

):

So, we consider the shallow shell with the distances on the mid-surface

coinciding with those on the plane. At the same time the curvatures are

not equal to zero, in general. The shells like these are called the weakly

curved plates.

At the beginning we study the �-dependence of the solution and next

we consider the problem of �nding extreme crack shapes. First, let us note

that the problem (4.168) has a solution owing to the coercivity and the weak

lower semicontinuity of �

�

on the space H(


�

). The solution is unique for
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every �xed �. In order to study the behaviour of the solution as � ! 0,

we accomplish a change of the variables in such a way that the domain 


�

maps onto 


0

. Let 


1

;


2

be domains such that 


1

� 


2

, 


2

� 
, �

�

� 


1

for all small �; and � 2 C

1

0

(


2

) be a function identically equal to unity on




1

. Extend the function  by zero beyond the interval (0; 1) and consider

the change of variables

~x = x; ~y = y � �� : (4:169)

The Jacobian q

�

of this transformation is equal to 1� � �

y

, being positive

for small �. Denote u(~x; ~y) = w(x; y), U (~x; ~y) = W (x; y), ! = (U; u). By

substituting �� = 0 in (4.168) we �nd

2�

�

(�) + hf; �i

�

� 0: (4:170)

This inequality can be written in the new variables. In order to clarify the

structure of the relation obtained in this way, we write down one of the

second derivatives of w:

w

xx

= u

~x~x

� 2�u

~x~y

( �)

x

+ �

2

u

~y~y

( �)

2

x

� �u

~y

( �)

xx

:

Hence the inequality (4.170) takes the form

Z




0

�

u

2

~x~x

+ u

2

~y~y

+ 2�u

~x~x

u

~y~y

+ 2(1� �)u

2

~x~y

�

q

�1

�

d


0

(4:171)

+ hN

�

ij

; e

�

ij

q

�1

�

i

0

� hf

�

; !q

�1

�

i

0

+ �

Z




0

G(~x; ~y; �;D

�

u;D

�

U )d


0

� 0;

where the following notation is used:

e

�

ij

= "

ij

(U ) + k

�

ij

u; k

�

ij

(~x; ~y) = k

ij

(x; y); f

�

(~x; ~y) = f(x; y):

In doing so we have j�j � 2, j�j � 1. The character of the dependence of G

on its arguments is completely determined by the transformation (4.169).

It is of importance that the higher order terms have square growth in D

�

u,

D

�

U . Introduce the notation

�

�

0

(!) =

1

2

B

0

(u; u) +

1

2

hN

�

ij

; e

�

ij

i

0

� hf

�

; !q

�1

�

i

0

:

Since q

�1

�

> 1=2 for small �; the inequality (4.171) yields

�

�

0

(!) + �

Z




0

G(~x; ~y; �;D

�

u;D

�

U )d


0

� 0: (4:172)

It can be proved that �

�

0

is coercive functional on the space H(


0

) uniformly

in j�j � �

0

, that is

�

�

0

(!) ! 1; k!k

H(


0

)

!1; � � �

0

:
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Indeed, let S � H(


0

) be the unit sphere. The following transformation

can be de�ned on S,

�

U ! R

�

U; �u! R�u;

�

U = (�u

1

; �u

2

); (

�

U; �u) 2 S;

where R is a positive parameter and  is a positive constant to be chosen

below. Assume that

kuk

2

2;


0

= B

0

(u; u); kUk

2

1;


0

= h�

ij

(U ); "

ij

(U )i

0

:

Here the functions �

ij

(U ) coincide with N

ij

(U ) if we put k

ij

� 0. Thus

k!k

2

H(


0

)

= kUk

2

1;


0

+ kuk

2

2;


0

:

Consider the quadratic part of �

�

0

(!) :

�

�

(!) =

1

2

B

0

(u; u) +

1

2

hN

�

ij

; e

�

ij

i

0

; ! = (U; u):

Let (

�

U; �u) 2 S and k�uk

2

2;


0

� 1=4: The image of (

�

U; �u) for the above

transformation is denoted by !. Then one has �

�

(!) � R

2

=8 uniformly in

�. If k

�

Uk

2

1;


0

� 3=4, then �

�

(!) � 3

2

R

2

=8� c

0

R

2

=2 uniformly in �. The

constant c

0

puts bound to the integral,

2hu; k

�

11

u

1

~x

+ k

�

22

u

2

~y

+ �(k

�

11

u

2

~y

+ k

�

22

u

1

~x

)i

0

;

on S uniformly in j�j � �

0

. The above arguments show that the inequality

�

�

(!) �

R

2

8

holds for any image of S provided the constant  is chosen from the equation

3

8



2

�

c

0

2

 = 1:

The linear in ! part of �

�

0

has the linear in R estimate, whence we always

have

�

�

0

(!) � cR

2

with the constant c uniform in j�j � �

0

. Hence the statement on the coer-

civity of �

�

0

is proved. As a result we conclude from (4.172) that (denoting

! by !

�

)

k!

�

k

H(


0

)

� c (4:173)

uniformly in �. Now one can write the inequality (4.168) in the new vari-

ables. In this case the test functions �! should satisfy the restriction

[

�

U � z(�u

~x

� � 

x

�u

~y

; �u

~y

)] � (�� 

x

; 1) � 0 on �

0

; jzj � h; (4:174)
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obtained from (4.166). A set of functions (

�

U; �u) from H(


0

) satisfying

(4.174) is denoted by K

�

(


0

).

By (4.173), we choose a subsequence, still denoted by !

�

, such that as

� ! 0

!

�

! ! weakly in H(


0

): (4:175)

In view of Lemma 4.4 below and the convergence (4.175), a passage to the

limit can be carried out in the variational inequality (4.168) which is written

in the new variables ~x; ~y. As a result we arrive at the relation

! = (U; u) 2 K

0

(


0

) :

B

0

(u; �u� u) + hk

ij

N

ij

; �u� ui

0

+ hN

ij

; "

ij

(

�

W �W )i

0

(4:176)

�hf; �! � !i

0

� 0 8 �! = (

�

U; �u) 2 K

0

(


0

):

This obviouslymeans that the limiting function ! is a solution of the equilib-

rium problem for the shell having the crack shape y =  (x) � 0, x 2 [0; 1].

Thus the following statement has been proved.

Theorem 4.7. From the sequence of solutions �

�

= !

�

of the problem (4.168)

one can choose a subsequence weakly converging in H(


0

) to !. The limiting

function ! is a solution of the problem (4.176).

4.9.2 Existence of extreme crack shapes

Consider the problem of �nding the extreme crack shapes. The setting

of this problem is as follows. Let 	 � H

3

0

(0; 1) be a convex, closed and

bounded set such that for any  2 	 the graph of the function y =  (x)

does not leave 
. For every �xed  2 	 a solution of the problem

�

 

2 K

 

(


 

) : h�

0

 

(�

 

); ��� �

 

i � 0 8 �� 2 K

 

(


 

)

can be found. The functional �

 

and the set K

 

(


 

) are introduced sim-

ilarly to �

�

, K

�

(


�

), respectively. Let �

0

2 L

2

(
) be a given function.

De�ne the cost functional

J( ) = k�

 

� �

0

k

0;


 

:

The problem of �nding an extreme crack shape is formulated as follows:

inf

 2	

J( ): (4:177)

In what follows we prove the existence of the extreme crack shape.

Theorem 4.8. Let the above hypotheses be ful�lled. Then there exists a

solution of the problem (4.177).
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Proof. Denote by  

n

2 	 the elements of a minimizing sequence.

Without decreasing a generality we assume that as n!1

 

n

!  weakly in H

3

0

(0; 1);  2 	;

j 

n

xx

(x)�  

xx

(x)j <

1

n

; x 2 (0; 1):

For every �xed n the solution of the problem

�

n

2 K

 

n

(


 

n

) : h�

0

 

n

(�

n

); ��� �

n

i � 0 8 �� 2 K

 

n

(


 

n

) (4:178)

obviously exists. Let us choose domains 


1

;


2

and a function � as before,

assuming that �

 

n

� 


1

for all n. Then we can extend the functions  and

 

n

by zero beyond (0; 1) and consider the transformation of the independent

variables

~x = x; ~y = y + ( �  

n

)�:

This transformation can be written as

~x = x; ~y = y �

1

n

'

n

�

with the functions '

n

= n( 

n

�  ) bounded in C

2

[0; 1]. Thus, we obtain

the one-to-one mapping between 


 

n

and 


 

with the Jacobian q

n

= 1�

n

�1

'

n

�

y

, which is positive for su�ciently large n. We can argue as in

Theorem 4.7. Namely, the problem (4.178) is to be rewritten in the new

variables. The appropriate estimates of the solutions are as follows,

ku

n

k

2;


 

� c; kU

n

k

1;


 

� c;

with the constants uniform in n. Suppose that a subsequence still denoted

by !

n

= (U

n

; u

n

) possesses the property

!

n

! ! weakly in H(


 

):

The statement analogous to Lemma 4.4 holds true in this case, that is for

any �xed �! 2 K

 

(


 

) there exists a sequence �!

n

2 K

 

n

(


 

) such that as

n!1

�!

n

! �! strongly in H(


 

):

This allows us to ful�l the passage to the limit in the relations obtained

from (4.178) by changing the independent variables and to obtain

! = (U; u) 2 K

 

(


 

) : h�

0

 

(!); �! � !i � 0 8 �! 2 K

 

(


 

):

This means that the function ! is the solution of the equilibriumproblem for

the shell with crack shape y =  (x), x 2 [0; 1]. At last, denote !

0n

(~x; ~y) =

�

0

(x; y). Then

inf

�

 2	

J(

�

 ) = lim inf k�

n

� �

0

k

0;


 

n

= lim inf kq

�1=2

n

(!

n

� !

0n

)k

0;
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� k! � �

0

k

0;


 

= J( ):

Consequently, the limiting function  is a solution of the extreme crack

shape problem (4.177). Theorem 4.8 is proved.

In conclusion we establish an auxiliary result used to prove Theorems 4.7,

4.8. It allows us to approximate the elements fromK

0

(


0

) by elements from

K

�

(


0

). Recall that functions from K

�

(


0

) should satisfy the inequality

(4.174).

Lemma 4.4. For every element (u

1

; u

2

; u) 2 K

0

(


0

) there exists a sequence

(u

�

1

; u

�

2

; u

�

) in K

�

(


0

) such that as � ! 0

(u

�

1

; u

�

2

; u

�

) ! (u

1

; u

2

; u) strongly in H(


0

):

Proof. Since (u

1

; u

2

; u) 2 K

0

(


0

) we have

[u

2

]� z[u

ey

] � 0 on �

0

; jzj � h:

The function u

ex

� � 

x

u

ey

belongs to the space H

1;0

(


0

). Hence, its traces

on the lines ey = 0+, ey = 0� are elements of H

1=2

(ey = 0�). The di�erence

between these traces belongs toH

1=2

(ey = 0) and coincides with [u

ex

�� 

x

u

ey

]

on �

0

.

Choose an extension of this di�erence from the space H

1

(R

2

) and denote

it by Q. Consequently, the restriction of the function �hj� 

x

Qj to 
 is an

element of H

1

0

(
). In 


0

we de�ne

(u

�

1

; u

�

2

; u

�

) = (u

1

; u

2

; u) + (0; � 

x

u

1

+ �hj� 

x

Qj; 0):

We �rst show that (u

�

1

; u

�

2

; u

�

) 2 K

�

(


0

). To this end we notice that the

boundary conditions on � are ful�lled for (u

�

1

; u

�

2

; u

�

): Hence, it su�ces to

prove (4.174). From the above considerations it follows that the inequality

h j� 

x

Qj � ��z 

x

[u

ex

� � 

x

u

ey

] 8z; jzj � h;

holds on �

0

. Hence, on �

0

we have

[u

1

](�� 

x

) + [u

2

] + � 

x

[u

1

] + h j� 

x

Qj+ �z 

x

[u

ex

� � 

x

u

ey

]� z[u

ey

]

� [u

2

]� z[u

ey

] � 0; jzj � h;

which means that inequality (4.174) holds for (u

�

1

; u

�

2

; u

�

): The strong con-

vergence of the sequence (u

�

1

; u

�

2

; u

�

) to (u

1

; u

2

; u) in H(


0

) is obvious. This

proves the lemma.
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Chapter 5

Cracks in elastoplastic

bodies

Concerning the solvability of static and quasistatic elastoplastic boundary

problems, a lot of results have been obtained by now (Anzellotti, 1983;

Anzellitti, Giaquinta, 1982; Temam, 1983, 1986; Temam, Strang, 1980;

Suquet, 1981; Demengel, 1983; Johnson, 1976; Carstensen, 1994); as for nu-

merical results, see (Kovtunenko, 1993, 1996a). For the variational inequal-

ity formulations, in particular, there are existence and regularity results,

both for the Prandtl{Reuss model in the quasistatic case and for the Hencky

model in the static case. It is, however, a drawback of that approach that

some of the boundary conditions, which are prescribed originally as part of

the boundary value problem, are not easily recovered from the variational

inequality, even if the solution is assumed to be regular. The di�culty arises

because the set of admissible stresses is not a linear space. The problem has

been solved in the one-dimensional case for beams and curvilinear bars; it

has been shown that the variational inequality solution satis�es all bound-

ary conditions one expects to hold (Khludnev, Ho�mann, 1992; Khludnev,

1993a,b). In the case of two and three space dimensions, however, no such

results are available so far, and the question of whether the solution sat-

is�es all required boundary conditions appears to be open. In the present

chapter we show that for the Hencky and Prandtl{Reuss models in three

dimensions and those models for plates in two dimensions with Neumann

boundary conditions, indeed all boundary conditions, hold true. Our proof

combines elliptic or parabolic regularizations with the penalty method in a

particular way. It can be used in a variety of elastoplastic problems. We

show in particular that, besides the standard situation of three- and two-

dimensional domains with a smooth boundary, which we discuss in Sections

5.1{5.4, it also applies both to the case of static and quasistatic interior

two-dimensional cracks, modelled by removing a two-dimensional surface
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from the interior of the domain and to the case of cracks in elastoplastic

plates.

5.1 Elastoplastic problems for

the Hencky model

We prove the existence of solutions for the three-dimensional elastoplastic

problem with Hencky's law and Neumann boundary conditions by ellip-

tic regularization and the penalty method, both for the case of a smooth

boundary and of an interior two-dimensional crack (see Brokate, Khludnev,

1998). It is shown in particular that the variational solution satis�es all

boundary conditions.

5.1.1 Notation and simple properties

Let 
 � R

3

be an open, bounded and connected set with smooth boundary

�. We de�ne the Banach space

LD(
) = fu = (u

1

; u

2

; u

3

) j u

i

2 L

1

(
); i = 1; 2; 3;

"

ij

(u) 2 L

1

(
); i; j = 1; 2; 3g

equipped with the norm

kuk

LD(
)

= kuk

L

1

(
)

+

3

X

i;j=1

k"

ij

(u)k

L

1

(
)

: (5:1)

Here "

ij

(u) = (u

i;j

+ u

j;i

)=2 are the components of the strain tensor. We

consider function spaces whose elements are characterized by the conditions

Z




u = 0;

Z




(u

i

x

j

� u

j

x

i

) = 0; i; j = 1; 2; 3; u = (u

1

; u

2

; u

3

): (5:2)

In particular, we de�ne

LD

N

(
) = fu 2 LD(
) j u satis�es (5:2)g:

Note that the linear space R(
) of functions � satisfying the conditions

"

ij

(�) = 0 in 
; i; j = 1; 2; 3; can be described as �(x) = c + Bx; x 2 
;

where c = (c

1

; c

2

; c

3

) is a constant vector, B = (b

ij

) is a constant matrix

with b

ij

= �b

ji

; for all i; j. In componentwise notation, �

i

(x) = c

i

+ b

ij

x

j

.

One sees that the orthogonal complement of the subspace R(
) in L

2

(
)

coincides with the subspace of all functions from L

2

(
) satisfying (5.2).

Therefore we see that if � 2 R(
) satis�es (5.2), then � � 0.
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Since

�

�

�

�

Z




u

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




(u

i

x

j

� u

j

x

i

)

�

�

�

�

is a seminorm on the space LD(
) and a norm on R(
), it follows that the

juj

LD(
)

=

�

�

�

�

Z




u

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




(u

i

x

j

� u

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(u)k

L

1

(
)

de�nes a norm on LD(
) which is equivalent to the original norm (5.1) (see

Temam, 1983).

Consider next the space of bounded measures M

1

(
). We know that

M

1

(
) is the space dual of the normed space C

0

(
) of continuous functions

with compact support, endowed with the uniform convergence topology (see

Giusti, 1984; Strang, Temam, 1980). Any ball from M

1

(
) is a compact

in the weak star topology, and every bounded sequence in M

1

(
) has a

subsequence which is weakly star convergent. We recall that by de�nition a

sequence g

m

2 M

1

(
) is weakly star convergent to an element g 2 M

1

(
)

if

g

m

(�) ! g(�); m!1

for any �xed � 2 C

0

(
). Now we can introduce the Banach space of bounded

deformations

BD(
) = fu = (u

1

; u

2

; u

3

) j u

i

2 L

1

(
); i = 1; 2; 3;

"

ij

(u) 2M

1

(
); i; j = 1; 2; 3g

equipped with the norm

kuk

BD(
)

= kuk

L

1

(
)

+

3

X

i;j=1

k"

ij

(u)k

M

1

(
)

:

Also, denote by BD

N

(
) the subspace of BD(
) which consists of all

elements of BD(
) satisfying (5.2). Consider also the space

H

1

(
) = fu = (u

1

; u

2

; u

3

) j u

i

2 L

2

(
); i = 1; 2; 3;

u

i;j

2 L

2

(
); i; j = 1; 2; 3g

with the norm

kuk

H

1

(
)

= kuk

0

+

3

X

i;j=1

ku

i;j

k

0

(5:3)

where k � k

0

is the norm of L

2

(
): As usual, to simplify the notations, we

write H

1

(
) instead of [H

1

(
)]

3

. Let

H

1

N

(
) = fu 2 H

1

(
) j u satis�es (5:2)g:
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In the sequel we shall use the following norm in H

1

(
),

juj

H

1

(
)

=

�

�

�

�

Z




u

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




(u

i

x

j

� u

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(u)k

0

;

which is equivalent to the norm (5.3). It is easy to see that by

juj

H

1

N

(
)

=

3

X

i;j=1

k"

ij

(u)k

0

; (5:4)

we obtain a norm on the subspace H

1

N

(
).

Let us recall the well-known Green formula. Namely, if �

ij

2 L

2

(
),

�

ij;j

2 L

2

(
), i; j = 1; 2; 3; then the values �

ij

n

j

can be correctly de�ned

on �, and moreover, �

ij

n

j

2 H

�1=2

(�);

�h�

ij;j

; �i = h�

ij

; �

;j

i � h�

ij

n

j

; �i

1=2;�

; 8� 2 H

1

(
); i = 1; 2; 3: (5:5)

Here n = (n

1

; n

2

; n

3

) is the unit outer unit normal to the boundary �,

the brackets h � ; � i, h � ; � i

1=2;�

denote the integration over 
 and a duality

pairing between the spaces H

�1=2

(�) and H

1=2

(�), respectively.

All functions which carry two lower indices are assumed to be symmetric

with respect to those indices, i.e. �

ij

= �

ji

, etc.

5.1.2 The case of a domain with a smooth boundary

Again, let 
 � R

3

be an open, bounded and connected set having a smooth

boundary �: The formulation of the elastoplastic problem is as follows. In

the domain 
 we want to �nd functions u = (u

1

; u

2

; u

3

), � = f�

ij

g, �

ij

,

i; j = 1; 2; 3; satisfying the following equations and inequalities:

��

ij;j

= f

i

; i = 1; 2; 3; (5:6)

"

ij

(u) = a

ijkl

�

kl

+ �

ij

; i; j = 1; 2; 3; (5:7)

�(�) � 0; �

ij

(��

ij

� �

ij

) � 0 8��; �(��) � 0; (5:8)

�

ij

n

j

= 0; i = 1; 2; 3; on �: (5:9)

Here � : R

6

! R is a continuous convex function describing the plastic

yield condition. The equations (5.7) provide a decomposition of the strain

tensor "

ij

(u) into a sum of an elastic part a

ijkl

�

kl

and a plastic part �

ij

,

and (5.6) are the equilibrium equations.

We assume that the functions a

ijkl

(x) possess the property a

ijkl

=

a

jikl

= a

klij

, and that there exist constants c

1

; c

2

> 0 such that

c

1

j�j

2

� a

ijkl

�

kl

�

ij

� c

2

j�j

2

; 8� = f�

ij

g: (5:10)
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The condition (5.10) allows us to solve the equations

"

ij

(u) = a

ijkl

�

kl

; i; j = 1; 2; 3

with respect to �

ij

, and to obtain �

ij

= b

ijkl

"

kl

(u); i; j = 1; 2; 3: The

functions b

ijkl

have the same properties as the functions a

ijkl

. In particular,

the inequalities corresponding to (5.10) hold true.

The basic assumption related to the function � is that the subset

f� = f�

ij

g j �(�) � 0g

of R

6

contains zero as its interior point.

The functions �

ij

can be eliminated from (5.7), (5.8). Indeed, multiply

(5.7) by ��

ij

� �

ij

, where �(��) � 0 and ��

ij

n

j

= 0; i = 1; 2; 3; on �, sum

the relations thus obtained over i; j and integrate over 
. By the second

inequality (5.8) this yields the relation

Z




a

ijkl

�

kl

(��

ij

� �

ij

) +

Z




u

i

(��

ij;j

� �

ij;j

) � 0;

which we will use to de�ne a solution of the problem (5.6){(5.9).

Consider the space

V

0

(
) = f� = f�

ij

g j �

ij

2 L

2

(
); i; j = 1; 2; 3;

�

ij;j

2 L

3

(
); i = 1; 2; 3; �

ij

n

j

= 0; i = 1; 2; 3; on �g:

According to the Green formula (5.5), the functions �

ij

n

j

; i = 1; 2; 3; are

correctly de�ned on � as elements of H

�1=2

(�) provided that �

ij

2 L

2

(
)

and �

ij;j

2 L

2

(
), i; j = 1; 2; 3:

We introduce the convex closed subset

K = f� = f�

ij

g j �

ij

2 L

2

(
); i; j = 1; 2; 3; �(�(x)) � 0 a.e. in 
g

of the space [L

2

(
)]

6

, and de�ne a penalty operator p related to the set K

by the formula p(�) = ����, where � is the orthogonal projection operator

of the space [L

2

(
)]

6

onto the set K. As it is well known, the operator p is

continuous, bounded and monotone.

Finally, we assume that there exists a function �

0

2 (1 + �)

�1

K, where

� > 0 is a constant, such that

h�

0

ij

; "

ij

(�u)i = hf; �ui 8�u 2 H

1

N

(
): (5:11)

Now we are in a position to state and prove an existence theorem of the

problem (5.6){(5.9).

Theorem 5.1. Let f 2 [L

3

(
)]

3

be given such that hf; �i = 0 holds for all

� 2 R(
): Assume that �

0

2 (1 + �)

�1

K satis�es (5.11). Then there exist

functions � = f�

ij

g 2 K \ V

0

(
); u 2 BD

N

(
) such that

h�

ij

; "

ij

(�u)i = hf; �ui 8�u 2 H

1

N

(
); (5:12)
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ha

ijkl

�

kl

; ��

ij

� �

ij

i + hu

i

; ��

ij;j

� �

ij;j

i � 0 8�� 2 K \ V

0

(
): (5:13)

Proof. Using elliptic regularization and the penalty approach, we con-

struct an auxiliary problem which approximates (5.6){(5.9). Its solution

will depend on two positive parameters � and � which are related to the

elliptic regularization and to the penalty approach, respectively. We will

obtain a solution �, u by passing to the limit as �; � ! 0. So, consider the

following boundary value problem in 


��(b

ijkl

"

kl

(u))

;j

� �

ij;j

= f

i

; i = 1; 2; 3; (5:14)

a

ijkl

�

kl

� "

ij

(u) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3; (5:15)

�

ij

n

j

+ �b

ijkl

"

kl

(u)n

j

= 0; i = 1; 2; 3; on �: (5:16)

Our purpose is to prove the existence of a solution of (5.14){(5.16) for

any �; � > 0 and to obtain appropriate a priori estimates with respect to

�; �. To simplify the notation, during the �rst step we do not indicate the

dependence of solutions on �; �. The second step of reasoning is concerned

with passage to the limit as �; �! 0.

We shall prove that problem (5.14){(5.16) is solvable in the following

sense:

u 2 H

1

N

(
); �

ij

2 L

2

(
); i; j = 1; 2; 3; (5:17)

�hb

ijkl

"

kl

(u); "

ij

(�u)i + h�

ij

; "

ij

(�u)i = hf; �ui 8�u 2 H

1

N

(
); (5:18)

a

ijkl

�

kl

� "

ij

(u) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3: (5:19)

First of all, let us establish an a priori estimate for solutions of (5.14){(5.16)

in a purely formal manner. To this end, we substitute u as a test function

in (5.18) and multiply (5.19) by �

ij

� �

0

ij

. Summing in i; j and integrating

over 
 we obtain the inequality

�hb

ijkl

"

kl

(u); "

ij

(u)i + h�

ij

; "

ij

(u)i � hf; ui (5:20)

+ ha

ijkl

�

kl

; �

ij

� �

0

ij

i � h"

ij

(u); �

ij

� �

0

ij

i � 0:

In so doing we have omitted the nonnegative term �

�1

hp(�)

ij

; �

ij

� �

0

ij

i.

Since �

0

satis�es (5.11), and because the coe�cients a

ijkl

; b

ijkl

have the

positive de�niteness property (5.10), the inequality (5.20) results in the

estimate

�

3

X

i;j=1

k"

ij

(u)k

2

0

+ k�k

2

0

� c;

with a constant c uniform in �; �. Hence

�juj

2

H

1

N

(
)

+ k�k

2

0

� c: (5:21)
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To prove the solvability of the boundary value problem (5.17){(5.19), we

write it in the form

A(w) = F; (5:22)

with an operator A which maps a Hilbert space V to its dual space V

0

; and

where F is a given element of V

0

. Here we choose V = H

1

N

(
) � [L

2

(
)]

6

and de�ne A by

A(w)( �w) = h�b

ijkl

"

kl

(u) + �

ij

; "

ij

(�u)i+ ha

ijkl

�

kl

� "

ij

(u) +

1

�

p(�)

ij

; ��

ij

i;

where w = (u; �); �w = (�u; ��), and we set F ( �w) = hf; �ui: The operator A is

bounded, monotone and semicontinuous; actually, the computations leading

to the estimate (5.21) also provide the coercivity of A in the sense

A(w)(w)

kwk

V

!1; kwk

V

!1:

Thus, the solvability of the equation (5.22), or, equivalently, of the problem

(5.17){(5.19) follows from Theorem 1.14. The boundary conditions (5.16)

are preserved in the identity (5.18); see also the comments at the end of this

section.

In addition to the estimate (5.21) one can prove (see Khludnev, Sokolow-

ski, 1997) that the estimate

1

�

kp(�)k

L

1

(
)

� c

holds uniformly in � and �. It then follows from (5.19) that the inequality

3

X

i;j=1

k"

ij

(u)k

L

1

(
)

� c (5:23)

is uniform in �; �. Since u 2 LD

N

(
), inequality (5.23) yields

juj

LD

N

(
)

� c (5:24)

with the constant c being uniform with respect to � and �. Taking into

account the continuity of the imbedding LD(
) � L

3=2

(
), which holds in

the three-dimensional case (see Temam, 1983), we �nd from (5.24) that

kuk

L

3=2

(
)

� c: (5:25)

Now we can justify a passage to the limit as �; � ! 0 in (5.17){(5.19).

Denote by u

��

; �

��

a solution of (5.17){(5.19) corresponding to given values

of � and �. From (5.19) it follows that for any �xed � there exists a constant

c(�) depending, in general, on � such that

3

X

i;j=1

k"

ij

(u

��

)k

0

� c(�)
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and hence

ju

��

j

H

1

N

(
)

� c(�):

Consequently, for any �xed �, from the sequence u

��

; �

��

one can choose a

subsequence still denoted by u

��

; �

��

such that as �! 0

u

��

! u

�

weakly in H

1

N

(
); (5:26)

�

��

ij

! �

�

ij

weakly in L

2

(
); i; j = 1; 2; 3: (5:27)

Note that the subsequence depends on � and that for any �xed � the �-

subsequences are di�erent, in general.

In view of (5.26){(5.27)we can turn to the limit as �! 0 in (5.18){(5.19)

and obtain

u

�

2 H

1

N

(
); �

�

ij

2 L

2

(
); i; j = 1; 2; 3; (5:28)

h�

�

ij

; "

ij

(�u)i = hf; �ui 8�u 2 H

1

N

(
); (5:29)

a

ijkl

�

�

kl

� "

ij

(u

�

) +

1

�

p(�

�

)

ij

= 0; i; j = 1; 2; 3: (5:30)

The passage from p(�

��

) to p(�

�

) is justi�ed by a standard monotonicity

argument, the details of which we omit here.

Let us consider the passage to the limit in (5.28){(5.30) as � ! 0. Be-

cause the imbedding L

1

(
) � M

1

(
) is continuous, due to (5.21), (5.23)

and (5.25) we can �nd a subsequence u

�

; �

�

converging to a limit u, � in

the sense

u

�

! u weakly in L

3=2

(
);

"

ij

(u

�

) ! "

ij

(u) ?{weakly inM

1

(
); i; j = 1; 2; 3;

�

�

ij

! �

ij

weakly in L

2

(
); i; j = 1; 2; 3:

Again, we just write u

�

; �

�

for the subsequence. As � ! 0, the identity

(5.12) results from (5.29).

Notice that the space H

1

(
) equals the direct sum

H

1

(
) = R(
)�H

1

N

(
)

of the subspace R(
) and H

1

N

(
) which are orthogonal with respect to the

scalar product

(u; v) = hu; vi+ h"

ij

(u); "

ij

(v)i; u; v 2 H

1

(
):

In fact, by the second Korn inequality this scalar product induces a norm

which is equivalent to the norm given by (5.3). Hence, because hf; �i = 0

for all � 2 R(
), the identity (5.29) actually holds for every �u 2 H

1

(
)).

Therefore, the equilibrium equations

��

�

ij;j

= f

i

; i = 1; 2; 3; (5:31)



Cracks in elastoplastic bodies 301

hold in 
 in the sense of distributions. Consequently, �

�

ij;j

2 L

2

(
); i =

1; 2; 3; and the use of Green's formula (5.5) gives �

�

ij

n

j

= 0, i = 1; 2; 3; on

�. Taking into account the boundary conditions obtained for �

�

it follows

from (5.30) that for any �� 2 K \ V

0

(
) the inequality

ha

ijkl

�

�

kl

; ��

ij

� �

�

ij

i+ hu

�

i

; ��

ij;j

� �

�

ij;j

i � 0 (5:32)

holds. Owing to (5.31) the values �

�

ij;j

can be replaced by �f

i

in (5.32),

and we can easily pass to the limit in (5.32) as � ! 0. This provides (5.13).

The inclusion � 2 K can be obtained in the usual way. The property

� 2 V

0

(
) is contained in (5.12). Indeed, as above, we conclude that the

equations

��

ij;j

= f

i

; i = 1; 2; 3;

hold in the sense of distributions, whence �

ij;j

2 L

2

(
); i = 1; 2; 3. The

boundary conditions (5.9) we readily obtain from (5.12), using the Green

formula (5.5). Theorem 5.1 is completely proved.

Remark. The speci�c choice of b

ijkl

as the inverse of the a

ijkl

for

the elliptic regularization appears to be natural, since in the case of pure

elastic (with K = [L

2

(
)]

6

, respectively p(�) � 0), the boundary condition

(5.16) reduces to (5.9). However, the proof of Theorem 5.1 works with any

other choice of b

ijkl

as long as requirements of symmetry, boundedness and

coercivity are met.

5.1.3 The case of two-dimensional cracks

In this section we shall prove the existence of a solution of the elastoplastic

boundary value problem for the particular case of a nonsmooth boundary

which arises if we remove a two-dimensional surface from the interior of the

body.

Let 
 � R

3

be an open, bounded and connected set with a smooth

boundary �, and �

c

� 
 be a smooth orientable two-dimensional surface.

We assume that this surface can be extended up to the outer boundary �

in such a way that 
 is divided into two subdomains 


1

;


2

with Lipschitz

boundaries. We assume that this inner surface �

c

is described parametri-

cally by the equations

x

i

= x

i

(y

1

; y

2

); i = 1; 2; 3; (5:33)

where (y

1

; y

2

) belong to the closure of an open bounded connected set ! �

R

2

having a smooth boundary . We suppose that the rank of the Jacobi

matrix @x

i

=@y

j

equals 2 at every point (y

1

; y

2

) 2 ! [ , and that the map

(5.33) is one-to-one. Let � = (�

1

; �

2

; �

3

) be a unit normal vector to �

c

, for

example

� =

@x

@y

1

�

@x

@y

2

j

@x

@y

1

�

@x

@y

2

j

:
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Denote 


c

= 
 n �

c

. The formulation of the elastoplastic problem for

a body occupying the domain 


c

in its undeformed state is as follows. In

the domain 


c

we have to �nd functions u = (u

1

; u

2

; u

3

), � = f�

ij

g, �

ij

,

i; j = 1; 2; 3; which satisfy the following equations and inequalities:

��

ij;j

= f

i

; i = 1; 2; 3; (5:34)

"

ij

(u) = a

ijkl

�

kl

+ �

ij

; i; j = 1; 2; 3; (5:35)

�(�) � 0; �

ij

(��

ij

� �

ij

) � 0 8��; �(��) � 0; (5:36)

�

ij

n

j

= 0; i = 1; 2; 3; on �; (5:37)

�

ij

�

j

= 0; i = 1; 2; 3; on �

�

c

: (5:38)

We use the same notation as in the previous subsection. The boundary

of 


c

consists of three components �;�

+

c

;�

�

c

, where �

�

c

correspond to the

positive and negative directions of the normal �, respectively. We introduce

the space

H

1

(


c

) = fu = (u

1

; u

2

; u

3

) j u

i

2 L

2

(


c

); i = 1; 2; 3;

u

i;j

2 L

2

(


c

); i; j = 1; 2; 3g:

Notice that boundary values on �

+

c

and �

�

c

of any element u 2 H

1

(


c

)

(which we may think of as one-sided limits) are di�erent, in general. Ac-

cordingly, for all functions on 


c

to be discussed below, their traces, if they

exist, will in general di�er on �

+

c

and �

�

c

.

As before, the Neumann boundary conditions (5.37) and (5.38) enforce

a function space decomposition based on the conditions

Z




c

u = 0;

Z




c

(u

i

x

j

� u

j

x

i

) = 0; i; j = 1; 2; 3; u = (u

1

; u

2

; u

3

): (5:39)

In particular, we de�ne

H

1

N

(


c

) = fu 2 H

1

(


c

) j u satis�es (5:39)g:

We also introduce the spaces

LD(


c

) = fu = (u

1

; u

2

; u

3

) j u

i

2 L

1

(


c

); i = 1; 2; 3;

"

ij

(u) 2 L

1

(


c

); i; j = 1; 2; 3g;

LD

N

(


c

) = fu 2 LD(


c

) j u satis�es (5:39)g;

BD

N

(


c

) = fu 2 BD(


c

) j u satis�es (5:39)g:

In the spaces H

1

(


c

) and LD(


c

) the following norms will be considered:

juj

H

1

(


c

)

=

�

�

�

�

Z




c

u

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




c

(u

i

x

j

� u

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(u)k

0;c

; (5:40)
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juj

LD(


c

)

=

�

�

�

�

Z




c

u

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




c

(u

i

x

j

� u

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(u)k

L

1

(


c

)

: (5:41)

Here k � k

0;c

is the norm in L

2

(


c

). Accordingly, on the subspaces H

1

N

(


c

),

LD

N

(


c

) we consider the following norms which are equivalent to (5.40),

(5.41), respectively,

juj

H

1

N

(


c

)

=

3

X

i;j=1

k"

ij

(u)k

0;c

; juj

LD

N

(


c

)

=

3

X

i;j=1

k"

ij

(u)k

L

1

(


c

)

:

In order to prove that the norms (5.40){(5.41) are equivalent to the standard

ones given by (5.3), (5.1) in H

1

(


c

) and LD(


c

), respectively, we extend �

c

in such a way that it divides 


c

into two subdomains 


1

;


2

with Lipschitz

boundaries (see the assumption at the beginning of this subsection), and

argue in the usual manner.

Let us introduce one more notation, namely

V

0

(
) = f� = f�

ij

g j �

ij

2 L

2

(
); i; j = 1; 2; 3;

�

ij;j

2 L

3

(
); i = 1; 2; 3;

�

ij

n

j

= 0; i = 1; 2; 3; on �; �

ij

�

j

= 0; i = 1; 2; 3; on �

�

c

g:

The set K is de�ned just as before,

K = f� = f�

ij

g j �

ij

2 L

2

(


c

); i; j = 1; 2; 3;

�(�(x)) � 0 a.e. in 


c

g:

We moreover assume that there exists a function �

0

= f�

0

ij

g such that

�

0

2 (1 + �)

�1

K, where � > 0 is a constant, and

h�

0

ij

; "

ij

(�u)i

c

= hf; �ui

c

8�u 2 H

1

N

(


c

): (5:42)

The brackets h � ; � i

c

represent integration over 


c

. Also, we recall that the

set f� = f�

ij

g j �(�) � 0g in R

6

has to include zero as an interior point.

Denote by R(


c

) the set of all functions � = (�

1

; �

2

; �

3

) which represent

rigid motions, that is �

i

(x) = c

i

+ b

ij

x

j

, where c

i

= const and b

ij

are

constant with b

ij

= �b

ji

. As before we see that if � 2 R(


c

) and if �

satis�es (5.39), then � � 0.

Now we can present our main existence theorem for problem (5.34){

(5.38).

Theorem 5.2. Let f 2 [L

3

(


c

)]

3

such that hf; �i

c

= 0 for all � 2 R(


c

);

and �

0

have the properties stated above. Then there exist functions � 2

K; u 2 BD

N

(


c

), such that

h�

ij

; "

ij

(�u)i

c

= hf; �ui

c

8�u 2 H

1

N

(


c

); (5:43)



304 Analysis of cracks in solids

ha

ijkl

�

kl

; ��

ij

� �

ij

i

c

+ hu

i

; ��

ij;j

� �

ij;j

i

c

� 0 8�� 2 K \ V

0

(


c

): (5:44)

Proof. The general scheme of reasoning is the same as that in the

previous subsection; we will pay attention to those details related to the

interior nonsmooth boundary �

c

.

Let p(�) = � � �� be the penalty operator, where � : [L

2

(


c

)]

6

! K

is the operator of orthogonal projection. Consider the following auxiliary

boundary value problem which includes two positive parameters � and �.

In the domain 


c

we want to �nd functions u = (u

1

; u

2

; u

3

), � = f�

ij

g,

i; j = 1; 2; 3; such that

��(b

ijkl

"

kl

(u))

;j

� �

ij;j

= f

i

; i = 1; 2; 3; (5:45)

a

ijkl

�

kl

� "

ij

(u) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3; (5:46)

�

ij

n

j

+ �b

ijkl

"

kl

(u)n

j

= 0; i = 1; 2; 3; on �; (5:47)

�

ij

�

j

+ �b

ijkl

"

kl

(u)�

j

= 0; i = 1; 2; 3; on �

�

c

: (5:48)

The solvability of the problem (5.45){(5.48) for �xed parameters �; �

will be proved in the following sense:

u 2 H

1

N

(


c

); �

ij

2 L

2

(


c

); i; j = 1; 2; 3; (5:49)

�hb

ijkl

"

kl

(u); "

ij

(�u)i

c

+ h�

ij

; "

ij

(�u)i

c

= hf; �ui

c

8�u 2 H

1

N

(


c

); (5:50)

a

ijkl

�

kl

� "

ij

(u) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3: (5:51)

To obtain an a priori estimate of the solution to (5.49){(5.51) we can argue

as in the previous subsection. Namely, we substitute �u = u in (5.50) and

multiply (5.51) by �

ij

� �

0

ij

. This gives the estimate

�

3

X

i;j=1

k"

ij

(u)k

2

0;c

+ k�k

2

0

� c: (5:52)

Since u 2 H

1

N

(


c

) it follows from (5.52) that

�juj

2

H

1

N

(


c

)

+ k�k

2

0;c

� c: (5:53)

The constant c does not depend on � and �.

The estimate (5.53) allows us to prove the solvability of (5.49){(5.51)

for any �xed parameters �; �. The boundary conditions (5.47){(5.48) are a

consequence of the identity (5.50).

From (5.51) we can derive an additional estimate. Indeed, for any �xed

� > 0 there exists a constant c(�) depending on � such that

3

X

i;j=1

k"

ij

(u)k

0;c

� c(�)
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and hence

juj

H

1

N

(


c

)

� c(�): (5:54)

Now we can pass to the limit in (5.49){(5.51) as �; � ! 0. Denote by

u

��

; �

��

the solution of (5.49){(5.51) corresponding to given parameters

�; �. Due to the estimates (5.53) and (5.54), we can choose a subsequence,

still denoted by u

��

; �

��

, such that for �! 0 and any �xed �

u

��

! u

�

weakly in H

1

N

(


c

);

�

��

ij

! �

�

ij

weakly in L

2

(


c

); i; j = 1; 2; 3:

On passing to the limit as �! 0, the equations (5.49){(5.51) become

u

�

2 H

1

N

(


c

); �

�

ij

2 L

2

(


c

); i; j = 1; 2; 3; (5:55)

h�

�

ij

; "

ij

(�u)i

c

= hf; �ui

c

8�u 2 H

1

N

(


c

); (5:56)

a

ijkl

�

�

kl

� "

ij

(u

�

) +

1

�

p(�

�

)

ij

= 0; i; j = 1; 2; 3: (5:57)

As before, we have

1

�

kp(�

�

)

ij

k

L

1

(


c

)

� c; i; j = 1; 2; 3;

uniformly in �. Consequently, the equations (5.57) imply that

3

X

i;j=1

k"

ij

(u

�

)k

L

1

(


c

)

� c

and since u

�

2 H

1

N

(


c

), this inequality gives

ju

�

j

LD

N

(


c

)

� c:

The imbeddings LD(


c

) � L

3=2

(


c

); L

1

(


c

) � M

1

(


c

) are continuous,

hence

ku

�

k

L

3=2

(


c

)

� c;

3

X

i;j=1

k"

ij

(u

�

)k

M

1

(


c

)

� c: (5:58)

Due to the estimates (5.53) and (5.58), we can assume that a subsequence

u

�

; �

�

possesses the properties

u

�

! u weakly in L

3=2

(


c

);

"

ij

(u

�

) ! "

ij

(u) ? {weakly in M

1

(


c

); i; j = 1; 2; 3;

�

�

ij

! �

ij

weakly in L

2

(


c

); i; j = 1; 2; 3:
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The identity (5.56) easily yields (5.43). We can next derive from (5.56) that

the equations

��

�

ij;j

= f

i

; i = 1; 2; 3;

hold in the sense of distributions in the domain 


c

, whence

h�

�

ij

; "

ij

(u

�

)i

c

= hf; u

�

i

c

= �h�

�

ij;j

; u

�

i

i

c

: (5:59)

Note that

h"

ij

(u

�

); ��

ij

i

c

= �hu

�

i

; ��

ij;j

i

c

8�� 2 V

0

(


c

): (5:60)

Let us multiply (5.57) by ��

ij

� �

�

ij

, where �� 2 K \ V

0

(


c

). Taking into

account (5.59), (5.60) we have

ha

ijkl

�

�

kl

; ��

ij

� �

�

ij

i

c

+ hu

�

i

; ��

ij;j

� �

�

ij;j

i

c

� 0; 8�� 2 K \ V

0

(


c

): (5:61)

The values �

�

ij;j

can be replaced by �f

i

in (5.61). This allows us to pass to

the limit as � ! 0, and we arrive at (5.44).

The inclusion � 2 K is proved by a standard method. The boundary

conditions (5.37){(5.38) are a consequence of (5.43). Indeed, consider the

scalar product in H

1

(


c

)

(u; v)

c

= hu; vi

c

+ h"

ij

(u); "

ij

(v)i

c

; u; v 2 H

1

(


c

):

Then the space H

1

(


c

) can be written as a sum

H

1

(


c

) = R(


c

)�H

1

N

(


c

)

of orthogonal subspaces, and hf; �i

c

= 0 8� 2 R(


c

). Hence, the equality

in (5.43) actually holds for all test functions fromH

1

(


c

), and in particular,

the equilibrium equations (5.34) hold in 


c

in the sense of distributions.

Consequently, the boundary conditions (5.37) are satis�ed in the sense of

H

�1=2

(�). As for the conditions (5.38), they are valid in the weak sense,

namely they hold at all points of �

�

c

where the solution of (5.43){(5.44) is

smooth enough.

5.2 Elastoplastic problems for the Prandtl{

Reuss model

In this section the existence of a solution to the three-dimensional elasto-

plastic problem with the Prandtl{Reuss constitutive law and the Neumann

boundary conditions is obtained. The proof is based on a suitable combina-

tion of the parabolic regularization of equations and the penalty method for

the elastoplastic yield condition. The method is applied in the case of the

domain with a smooth boundary as well as in the case of an interior two-

dimensional crack. It is shown that the weak solutions to the elastoplastic

problem satisfying the variational inequality meet all boundary conditions.

The results of this section can be found in (Khludnev, Sokolowski, 1998a).



Cracks in elastoplastic bodies 307

5.2.1 Domain with a smooth boundary

We start with notations and preliminary remarks. Let 
 � R

3

be a bounded

domain with a smooth boundary � having an exterior unit normal vector

n = (n

1

; n

2

; n

3

).

We know that if v = (v

1

; v

2

; v

3

), "

ij

(v) = 0 in 
, i; j = 1; 2; 3; then

v

i

(x) = c

i

+ b

ij

x

j

, i = 1; 2; 3; where c

i

; b

ij

2 R, b

ij

= �b

ji

, i; j = 1; 2; 3.

The linear space of all vectors v = (v

1

; v

2

; v

3

); v

i

(x) = c

i

+ b

ij

x

j

; is called

the space of rigid displacements. We denote it by R(
).

In the sequel we consider di�erent functional spaces. To simplify the

notation we write L

2

(
), H

1

(
) instead of [L

2

(
)]

3

, [H

1

(
)]

3

and so on.

Consider all functions from L

2

(
) satisfying the conditions

Z




v = 0;

Z




(v

i

x

j

� v

j

x

i

) = 0; i; j = 1; 2; 3; v = (v

1

; v

2

; v

3

): (5:62)

It is clear that if � 2 R(
) satis�es (5.62) then � � 0. In fact, we have

L

2

(
) = R(
)�R(
)

?

; and R(
)

?

coincides with all functions from L

2

(
)

satisfying (5.62). Let

H

1

(
) = fv = (v

1

; v

2

; v

3

) j v

i

2 L

2

(
); i = 1; 2; 3;

v

i;j

2 L

2

(
); i; j = 1; 2; 3g:

In the space H

1

(
) we shall consider di�erent equivalent norms, in partic-

ular

kvk

2

1

= kvk

2

0

+

3

X

i;j=1

k"

ij

(v)k

2

0

; (5:63)

jvj

1

=

�

�

�

�

Z




v

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




(v

i

x

j

� v

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(v)k

0

: (5:64)

Here, k � k

0

is the norm in L

2

(
). The norm (5.63) is equivalent to the usual

norm in H

1

(
) due to the second Korn inequality. As for the norm (5.64) it

is easy to see that the two �rst terms in the right-hand side of (5.64) give a

seminorm on H

1

(
) being a norm on R(
); and the statement follows from

(Temam, 1983).

Denote by h � ; � i the scalar product in L

2

(
). We can consider the scalar

product in H

1

(
) inducing the norm (5.63),

(u; v) = hu; vi+ h"

ij

(u); "

ij

(v)i; u; v 2 H

1

(
) : (5:65)

In this case H

1

(
) = R(
)�H

1

N

(
); where

H

1

N

(
) = fv = (v

1

; v

2

; v

3

) 2 H

1

(
) j v satis�es (5:62)g:
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This means that in H

1

N

(
) one can consider the equivalent norm

jvj

1

=

3

X

i;j=1

k"

ij

(v)k

0

:

Introduce some additional notations which are useful in the sequel. Con-

sider the space

LD(
) = fv = (v

1

; v

2

; v

3

) j v

i

2 L

1

(
); i = 1; 2; 3;

"

ij

(v) 2 L

1

(
); i; j = 1; 2; 3g

equipped with the norm

kvk

LD(
)

= kvk

L

1

(
)

+

3

X

i;j=1

k"

ij

(v)k

L

1

(
)

: (5:66)

Let

LD

N

(
) = fv 2 LD(
) j v satis�es (5:62)g :

Along with the usual norm (5.66) we shall consider the following norm in

LD(
):

jvj

LD(
)

=

�

�

�

�

Z




v

�

�

�

�

+

3

X

i;j=1

�

�

�

�

Z




(v

i

x

j

� v

j

x

i

)

�

�

�

�

+

3

X

i;j=1

k"

ij

(v)k

L

1

(
)

:

Consequently, the subspace LD

N

(
) of the space LD(
) is de�ned by the

norm

kvk

LD

N

(
)

=

3

X

i;j=1

k"

ij

(v)k

L

1

(
)

:

Also, we consider the space of bounded measures M

1

(
). Introduce the

Banach space of bounded deformation

BD(
) = fv = (v

1

; v

2

; v

3

) j v

i

2 L

1

(
); i = 1; 2; 3;

"

ij

(v) 2M

1

(
); i; j = 1; 2; 3g

endowed with the norm

kvk

BD(
)

= kvk

L

1

(
)

+

3

X

i;j=1

k"

ij

(v)k

M

1

(
)

:

As above,

BD

N

(
) = fv 2 BD(
) j v satis�es (5:62)g: (5:67)
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Let 
 � R

3

be a bounded domain with a smooth boundary �, Q = 
�

(0; T ); x = (x

1

; x

2

; x

3

) 2 
; t 2 (0; T ): The formulation of the elastoplastic

problem for a body occupying the domain 
 in the nondeformed state is as

follows. In the domain Q, we want to �nd the functions v = (v

1

; v

2

; v

3

), � =

f�

ij

g, �

ij

, i; j = 1; 2; 3, satisfying the following equations and inequalities:

��

ij;j

= f

i

; i = 1; 2; 3; (5:68)

"

ij

(v) = c

ijkl

_�

kl

+ �

ij

; i; j = 1; 2; 3; (5:69)

�(�) � 0; �

ij

(��

ij

� �

ij

) � 0 8��; �(��) � 0; (5:70)

�

ij

n

j

= 0; i = 1; 2; 3; on �� (0; T ); (5:71)

� = 0; t = 0: (5:72)

The functions v; �

ij

; "

ij

(v) represent the velocity, components of the stress

tensor and components of the rate strain tensor. The dot denotes the deriva-

tive with respect to t. The convex and continuous function � describes the

plasticity yield condition. It is assumed that the set

f� = f�

ij

g 2 R

6

j �(�) � 0g (5:73)

contains zero as its interior point. We assume that c

ijkl

(x) = c

jikl

(x) =

c

klij

(x) for i; j; k; l = 1; 2; 3 and there exist two positive constants c

1

; c

2

such that

c

1

j�j

2

� c

ijkl

�

kl

�

ij

� c

2

j�j

2

8� = f�

ij

g: (5:74)

To simplify the formulae below we assume that c

ijkl

= �

i

k

�

j

l

; �

i

j

is the

Kronecker symbol. Nevertheless, all the results obtained in the section are

valid in the general case (5.74).

The values �

ij

can be eliminated from (5.69), (5.70). In fact, multiply

(5.69) by ��

ij

� �

ij

and sum in i; j: This provides

�(�) � 0; ( _�

ij

� "

ij

(v))(��

ij

� �

ij

) � 0 8��; �(��) � 0: (5:75)

Inequality (5.75) will be used in the de�nition of a solution to the problem

(5.68){(5.72).

Consider the set of admissible stresses

K = f� = f�

ij

g j �

ij

2 L

2

(
); i; j = 1; 2; 3; �(�(x)) � 0 a.e. in 
g

and the penalty operator p related to the set K. The operator can be

constructed by the formula p(�) = � � ��; where � : [L

2

(
)]

6

! K is the

operator of orthogonal projection. Recall that the operator p is bounded,

monotone and continuous.

Let the brackets ( � ; � ) denote the scalar product in L

2

(Q), and f =

(f

1

; f

2

; f

3

),

V

0

(
) = f� = f�

ij

g j �

ij

2 L

2

(
); i; j = 1; 2; 3;
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�

ij;j

2 L

3

(
); i = 1; 2; 3; �

ij

n

j

= 0; i = 1; 2; 3; on �g:

Suppose that there exists a function � = f�

ij

g satisfying the equation

(5.68) such that � 2 C

2

(

�

Q), �(0) =

_

�(0) = 0 and (1 + �)�(t) 2 K \ V

0

(
),

where � = const > 0, t 2 [0; T ]:

Now we can prove the following existence theorem for the problem

(5.68){(5.72).

Theorem 5.3. Let f 2 L

3

(Q),

_

f 2 L

2

(Q), f(0) = 0, hf(t); �i = 0 8� 2

R(
); t 2 [0; T ]; and the above assumption on � hold. Then there exist

functions v = (v

1

; v

2

; v

3

); � = f�

ij

g such that

v 2 L

2

(0; T ;BD

N

(
)); � 2 L

2

(0; T ;V

0

(
));

_� 2 L

2

(Q); �(t) 2 K; t 2 (0; T );

(�

ij

; "

ij

(�v)) = (f; �v) 8�v 2 L

2

(0; T ;H

1

(
)); (5:76)

( _�

ij

; ��

ij

� �

ij

) + (v

i

; ��

ij;j

� �

ij;j

) � 0 8�� 2 L

2

(0; T ;V

0

(
)); (5:77)

��(t) 2 K a.e. in (0; T );

� = 0; t = 0: (5:78)

Proof. We consider a parabolic regularization of the problem approx-

imating (5.68){(5.72). The auxiliary boundary value problem will contain

two positive parameters �; �. The �rst parameter is responsible for the

parabolic regularization and the second one characterizes the penalty ap-

proach. Our aim is �rst to prove an existence of solutions for the �xed

parameters �; � and second to justify a passage to limits as �; � ! 0. A pri-

ori estimates uniform with respect to �; � are needed to analyse the passage

to the limits, and we shall obtain all necessary estimates while the theorem

of existence is proved.

Now we consider in the domain Q an auxiliary boundary value problem:

to �nd functions v = (v

1

; v

2

; v

3

); � = f�

ij

g such that

� _v

i

� �"

ij

(v)

;j

� �

ij;j

= f

i

; i = 1; 2; 3; (5:79)

_�

ij

+ ��

ij

� "

ij

(v) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3; (5:80)

�

ij

n

j

+ �"

ij

(v)n

j

= 0; i = 1; 2; 3; on � � (0; T ); (5:81)

v = 0; � = 0; t = 0: (5:82)

The dependence of solutions to (5.79){(5.82) on the parameters �; � is not

indicated at this step in order to simplify the formulae. Note that boundary

conditions (5.81) do not coincide with (5.71); the conditions (5.81) can be

viewed as a regularization of (5.71) connected with the proposed regulariza-

tion of the equilibrium equations (5.68). Also, the arti�cial initial condition

for v is introduced.
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Solvability of the problem (5.79){(5.82) will be proved in the following

sense:

v 2 L

2

(0; T ;H

1

(
)); _v; �; _� 2 L

2

(Q); (5:83)

�( _v; �v) + �("

ij

(v); "

ij

(�v)) + (�

ij

; "

ij

(�v)) = (f; �v) (5:84)

8�v 2 L

2

(0; T ;H

1

(
));

_�

ij

+ ��

ij

� "

ij

(v) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3; (5:85)

v = 0; � = 0; t = 0: (5:86)

In this case the boundary conditions (5.81) are included in (5.84). At the

�rst step we get a priori estimates. Assume that the solutions of (5.79){

(5.82) are smooth enough. Multiply (5.79), (5.80) by v

i

, �

ij

� �

ij

, respec-

tively, and integrate over 
. Taking into account that the penalty term is

nonnegative this provides the inequality

1

2

d

dt

�

�kvk

2

0

+ k�k

2

0

�

+ �k�k

2

0

� h�"

ij

(v)

;j

+ �

ij;j

; v

i

i (5:87)

�h"

ij

(v); �

ij

� �

ij

i � hf; vi � h�� + _�; �i:

We do not show the dependence of v; �; �; f on t in (5.87). The integration

by parts in the third term of the left-hand side of (5.87) can be done. Recall

that � satis�es the equation (5.68). As a result the following inequality is

obtained:

1

2

�

�kv(t)k

2

0

+ k�(t)k

2

0

�

+ �

3

X

i;j=1

t

Z

0

k"

ij

(v)k

2

0

d� (5:88)

� h�(t); �(t)i �

t

Z

0

h�(� );

_

�(� )id� +

�

2

t

Z

0

k�(� )k

2

0

d�:

Since h�; �i � 1=4 k�k

2

0

+k�k

2

0

; the integration of (5.88) implies the estimate

sup

0�t�T

k�(t)k

2

0

+ �kvk

2

L

2

(Q)

+ �

3

X

i;j=1

T

Z

0

k"

ij

(v)k

2

0

d� � c (5:89)

with the constant c being uniform in �; �, � � �

0

. Hence

sup

0�t�T

k�(t)k

2

0

+ �kvk

2

L

2

(0;T ;H

1

(
))

� c: (5:90)

A derivation of the next estimate requires the (�; �)-uniform bounded-

ness of �

�1

p(�) in the space L

1

(Q). By (5.90), it is easy to see that uniformly

in �; �

1

�

T

Z

0

hp(�); � � �idt � c
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provided that the penalty term is not neglected in (5.87). Due to the mono-

tonicity of p

1

�

T

Z

0

hp(�); �� � �idt � 0 8�� 2 L

2

(Q); ��(t) 2 K:

Combining the two last inequalities we have

1

�

T

Z

0

hp(�); �� � �idt � c:

We can take here �� = � +

�

�, k

�

�k

L

1

(Q)

� �. By the hypothesis imposed on

� the inclusions ��(t) 2 K, t 2 (0; T ); hold provided that � is small enough,

hence

1

�

T

Z

0

hp(�);

�

�idt � c 8

�

�; k

�

�k

L

1

(Q)

� �

and, consequently,

1

�

kp(�)k

L

1

(Q)

� c: (5:91)

In the sequel this estimate will be improved, namely, we state that �

�1

p(�)

is, in fact, bounded in L

2

(0; T ;L

1

(
)):

Next, it follows from (5.79), (5.80), (5.82) that

_v

i

(0) = 0; i = 1; 2; 3; _�

ij

(0) = 0; i; j = 1; 2; 3:

Di�erentiate with respect to t the equations (5.79), (5.80) and multiply

by _v

i

; _�

ij

�

_

�

ij

, respectively. Since the term

1

�

h

d

dt

p(�(t)); _�(t)i

is nonnegative for almost all t 2 (0; T ) (see Lions, 1969) the above multipli-

cation and integration over 
 result in the inequality

1

2

d

dt

�

�k _vk

2

0

+ k _�k

2

0

�

+ �k _�k

2

0

� h�"

ij

( _v)

;j

+ _�

ij;j

; _v

i

i

�h"

ij

( _v); _�

ij

�

_

�

ij

i � h

_

f ; _vi � h� _� + ��;

_

�i +

1

�

h

d

dt

p(�);

_

�i:

Boundary conditions (5.81) can be taken into account here in order to in-

tegrate by parts in the left-hand side. Next we can integrate the inequality

obtained in t from 0 to t. This implies

1

2

�

�k _v(t)k

2

0

+ k _�(t)k

2

0

�

+ �

3

X

i;j=1

t

Z

0

k"

ij

( _v)k

2

0

d� �

1

�

hp(�);

_

�ij

t

0
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�

1

�

t

Z

0

hp(�);

�

�id� + h _�;

_

�ij

t

0

�

t

Z

0

h _�;

�

�id� +

�

2

t

Z

0

k

_

�(� )k

2

0

d� :

By the estimates (5.90), (5.91) and the condition

_

�(0) = 0 the (�; �)-uniform

estimate follows:

k _�k

2

L

2

(Q)

+ �k _vk

2

L

2

(Q)

� c: (5:92)

Let v = v

N

+ �

N

be the decomposition of the function v into the sum

of two orthogonal elements, v

N

2 L

2

(0; T ;H

1

N

(
)); �

N

2 L

2

(0; T ;R(
)):

We should note at this point that L

2

(0; T ;H

1

(
)) = L

2

(0; T ;R(
)) �

L

2

(0; T ;H

1

N

(
)) provided that the scalar product (5.65) is considered in

H

1

(
). For almost all t 2 (0; T )

Z




v

N

(t) = 0;

Z




(v

Ni

(t)x

j

� v

Nj

(t)x

i

) = 0; i; j = 1; 2; 3:

Hence, by (5.90), (5.92), it follows from (5.80) that "

ij

(v

N

) are bounded in

L

2

(Q) uniformly in � for any �xed �: This implies the estimate

kv

N

k

L

2

(0;T ;H

1

N

(
))

� c(�) (5:93)

with the constant c(�) depending on �; in general.

Now, observe that in view of the estimates (5.90), (5.92) we can use the

Galerkin approach for parabolic problems with monotone operators (Lions,

1969) and obtain that for any �xed �; � a solution to (5.79){(5.82) exists

in the sense of (5.83){(5.86). The estimates obtained allow us to pass to

the limit as � ! 0. Indeed, denote the solution of (5.83){(5.86) by v

�

; �

�

and consider the decomposition v

�

= v

�

N

+ �

�

N

; v

�

N

2 L

2

(0; T ;H

1

N

(
)),

�

�

N

2 L

2

(0; T ;R(
)): Note that the solution (v

�

; �

�

) satis�es the estimates

(5.90), (5.92), (5.93). Hence, from the sequence v

�

; �

�

one can choose a

subsequence (with the previous notation for the subsequence) such that for

any �xed � > 0 and �! 0

�v

�

! 0 weakly in L

2

(0; T ;H

1

(
));

v

�

N

! v

�

weakly in L

2

(0; T ;H

1

N

(
));

� _v

�

! 0 weakly in L

2

(Q); �

�

; _�

�

! �

�

; _�

�

weakly in L

2

(Q):

Passing to the limit in (5.79), (5.80) as �! 0 one derives

(�

�

ij

; "

ij

(�v)) = (f; �v) 8�v 2 L

2

(0; T ;H

1

(
)); (5:94)

_�

�

ij

� "

ij

(v

�

) +

1

�

p(�

�

)

ij

= 0; i; j = 1; 2; 3: (5:95)

A justi�cation of the convergence p(�

�

)! p(�

�

) can be done by the mono-

tonicity arguments. We omit the details.
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Now let us prove that �

�1

p(�

�

) are bounded in L

2

(0; T; L

1

(
)) uniformly

in �: It follows from (5.94) that

�h�

�

ij

(t); "

ij

(�v)i = hf(t); �vi 8�v 2 H

1

(
):

Hence, for almost all t 2 (0; T )

�h�

�

ij

(t); "

ij

(v

�

(t))i = hf(t); v

�

(t)i: (5:96)

Multiply (5.95) by �

�

ij

� �

ij

and integrate over 
: This provides

h"

ij

(v

�

(t)); �

�

ij

(t) � �

ij

(t)i +

1

�

hp(�

�

(t)); �(t) � �

�

(t)i (5:97)

= h _�

�

(t); �

�

(t) � �(t)i:

By (5.90), (5.92), the right-hand side of (5.97) is bounded in L

2

(0; T ) uni-

formly in �: Combining (5.96) and (5.97) we obtain that

1

�

hp(�

�

(t)); �

�

(t)� �(t)i are bounded in L

2

(0; T ) (5:98)

uniformly in �: Introduce next the convex functional on the space [L

2

(
)]

6

;

F (�) = k� � ��k

2

0

; � = f�

ij

g; i; j = 1; 2; 3:

The derivative of the functional F can be found by the formula F

0

(�) =

2p(�): Let us take a function ~� = f~�

ij

g 2 L

1

(Q). Then it follows from the

conditions imposed on � that �(t) + ~�(t) belongs to the set K, t 2 (0; T );

provided that the norm k~�k

L

1

(Q)

is small enough. By the convexity of F

we have

1

�

hp(�

�

(t)); ~�(t)i �

1

�

hp(�

�

(t)); �

�

(t)� �(t)i (5:99)

+

1

2�

F (�(t) + ~�(t)) �

1

2�

F (�

�

(t)):

The second term of the right-hand side of (5.99) equals zero by the inclusion

�(t) + ~�(t) 2 K and consequently, by (5.98),

1

�

hp(�

�

(t)); ~�(t)i are bounded in L

2

(0; T ):

Since ~� is an arbitrary element of the space L

1

(Q) with a small norm we

infer that the desired estimate

1

�

p(�

�

(t)) is bounded in L

2

(0; T ;L

1

(
)):

Hence, it follows from (5.95) that

k"

ij

(v

�

)k

L

2

(0;T ;L

1

(
))

� c; i; j = 1; 2; 3: (5:100)
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By (5.100) the inclusion v

�

2 L

2

(0; T ;H

1

N

(
)) yields the estimate

kv

�

k

L

2

(0;T ;LD

N

(
))

� c ;

being uniform in �. Moreover, the space L

1

(
) is continuously imbedded in

M

1

(
), and consequently

kv

�

k

L

2

(0;T ;BD

N

(
))

� c: (5:101)

It is useful to bear in mind that the inequality

k�

�

k

L

2

(Q)

+ k _�

�

k

L

2

(Q)

� c (5:102)

holds true uniformly in �. Recall that BD(
) � L

3=2

(
) in the three-

dimensional case. Moreover, the estimate

k�

�

(T )k

0

� c

�

k�

�

k

L

2

(Q)

+ k _�

�

k

L

2

(Q)

�

(5:103)

holds with the constant c independent of functions.

By (5.101), (5.102), (5.103), we can choose a subsequence with the pre-

vious notation for the subsequence such that, as � ! 0,

�

�

; _�

�

! �; _� weakly in L

2

(Q); v

�

! v weakly in L

2

(0; T ;L

3=2

(
));

"

ij

(v

�

) ! "

ij

(v) ?{weakly in L

2

(0; T ;M

1

(
)); i; j = 1; 2; 3;

�

�

(T ) ! �(T ) weakly in L

2

(
):

As a result, passing to the limit as � ! 0 in (5.94), we obtain

(�

ij

; "

ij

(�v)) = (f; �v) 8�v 2 L

2

(0; T ;H

1

(
)): (5:104)

The equations (5.95) imply

( _�

�

ij

; ��

ij

� �

�

ij

)� ("

ij

(v

�

); ��

ij

� �

�

ij

) � 0 8�� 2 L

2

(0; T ;V

0

(
)); (5:105)

��(t) 2 K; t 2 (0; T ):

The identity (5.104) provides a ful�lment of the equilibrium equations

��

�

ij;j

= f

i

; i = 1; 2; 3; (5:106)

in the distribution sense.

Consider next that by (5.94)

("

ij

(v

�

); �

�

ij

) = �(�

�

ij;j

; v

�

i

)

and, moreover,

("

ij

(v

�

); ��

ij

) = �(v

�

i

; ��

ij;j

) 8�� 2 L

2

(0; T ;V

0

(
)):
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Hence, the inequality (5.105) can be rewritten in the form

( _�

�

ij

; ��

ij

� �

�

ij

) + (v

�

i

; ��

ij;j

� �

�

ij;j

) � 0 8�� 2 L

2

(0; T ;V

0

(
)); (5:107)

��(t) 2 K; t 2 (0; T ):

By (5.106), the values �

�

ij;j

can be replaced by �f

i

and, as a result, from

(5.107) it follows that

( _�

�

ij

; ��

ij

) + (v

�

i

; ��

ij;j

+ f

i

) �

1

2

k�

�

(T )k

2

0

: (5:108)

Passing on to the lower limit on both sides of (5.108) and next changing

f

i

by ��

ij;j

we easily arrive at (5.77). The inclusion �(t) 2 K, t 2 (0; T );

can be veri�ed by the standard arguments. Since v

�

2 L

2

(0; T ;H

1

N

(
)), the

convergence of v

�

to v provides the inclusion v 2 L

2

(0; T ;BD

N

(
)). The

property �(t) 2 V

0

(
), t 2 (0; T ), actually follows from (5.104) provided

that we take into account the equations

��

ij;j

= f

i

; i = 1; 2; 3;

and the Green formula (5.5). Theorem 5.3 is proved.

5.2.2 Domain with a crack

In this subsection we prove an existence theorem for the elastoplastic prob-

lem in the case where the domain has a nonsmooth boundary.

Again, let 
 � R

3

be a bounded domain with a smooth boundary �

and �

c

� 
 be a smooth orientable two-dimensional surface with a regular

boundary. We assume that �

c

can be extended in such a way that the

domain 
 is divided into two parts with Lipschitz boundaries. The surface

�

c

can be described parametrically

x

i

= x

i

(y

1

; y

2

); i = 1; 2; 3; (5:109)

where (y

1

; y

2

) 2 �!; ! � R

2

is a bounded domain with smooth boundary ,

�! = ! [ . Assume that for any point (y

1

; y

2

) 2 �! the rank of the Jacobi

matrix @x

i

=@y

j

equals 2 and the map (5.109) is one-to-one. In this case one

can choose a unit normal vector to the surface �

c

;

� =

@x

@y

1

�

@x

@y

2

j

@x

@y

1

�

@x

@y

2

j

:

Denote 


c

= 
 n �

c

, Q

c

= 


c

� (0; T ), T > 0: Formulation of the

equilibrium problem for an elastoplastic body occupying the domain 


c

is

as follows. In the domain Q

c

we want to �nd functions v = (v

1

; v

2

; v

3

), � =

f�

ij

g, �

ij

, i; j = 1; 2; 3; satisfying the following equations and inequalities:

��

ij;j

= f

i

; i = 1; 2; 3; (5:110)



Cracks in elastoplastic bodies 317

"

ij

(v) = c

ijkl

_�

kl

+ �

ij

; i; j = 1; 2; 3; (5:111)

�(�) � 0; �

ij

(��

ij

� �

ij

) � 0 8��; �(��) � 0; (5:112)

�

ij

n

j

= 0; i = 1; 2; 3; on �� (0; T ); (5:113)

�

ij

�

j

= 0; i = 1; 2; 3; on �

�

c

� (0; T ); (5:114)

� = 0; t = 0: (5:115)

All notations �t those used in the preceding subsection. As we see, in

this case the boundary of the domain 


c

consists of the parts �, �

+

c

, �

�

c

;

where �

�

c

correspond to the positive and negative directions of the normal

�, respectively. Introduce the space

H

1

(


c

) = fv = (v

1

; v

2

; v

3

) j v

i

2 L

2

(


c

); i = 1; 2; 3;

v

i;j

2 L

2

(


c

); i; j = 1; 2; 3g:

In this subsection we shall consider functions satisfying the relations

Z




c

v = 0;

Z




c

(v

i

x

j

� v

j

x

i

) = 0; i; j = 1; 2; 3; v = (v

1

; v

2

; v

3

) : (5:116)

Let

LD(


c

) = fv = (v

1

; v

2

; v

3

) j v

i

2 L

1

(


c

); i = 1; 2; 3;

"

ij

(v) 2 L

1

(


c

); i; j = 1; 2; 3g:

The subspaces H

1

N

(


c

), LD

N

(


c

) consist of all functions from H

1

(


c

)

and LD(


c

), respectively, satisfying (5.116). In the subspaces H

1

N

(


c

),

LD

N

(


c

) we can consider the norms

jvj

H

1

N

(


c

)

=

3

X

i;j=1

k"

ij

(v)k

0;c

; jvj

LD

N

(


c

)

=

3

X

i;j=1

k"

ij

(v)k

L

1

(


c

)

:

which are equivalent to the standard ones. Here k � k

0;c

stands for the norm

in L

2

(


c

). The proof of the equivalency is based on the compactness of

imbeddings H

1

(


c

) � L

2

(


c

), LD(


c

) � L

1

(


c

) which take place under

the conditions imposed on �

c

and �. Consider two more spaces,

BD

N

(


c

) = fv 2 BD(


c

) j v satis�es (5:116)g ;

U

0

(


c

) = f� = f�

ij

g j

�

ij

2 H

1

(


c

); i; j = 1; 2; 3; �

ij;j

2 L

3

(


c

); i = 1; 2; 3;

�

ij

n

j

= 0; i = 1; 2; 3; on �; �

ij

�

j

= 0; i = 1; 2; 3; on �

�

c

g :

Again, to simplify the formulae we assume c

ijkl

= �

i

k

�

j

l

: Recall that the set

(5.73) contains zero as its interior point. The set K is introduced as before,

K = f� = f�

ij

g j �

ij

2 L

2

(


c

); i; j = 1; 2; 3;
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�(�(x)) � 0 a.e. in 


c

g:

The scalar products in L

2

(


c

) and L

2

(Q

c

) are denoted by h � ; � i

c

, ( � ; � )

c

;

respectively. The space of all rigid displacements on 


c

is denoted by R(


c

).

We assume that there exists a function � = f�

ij

g, � 2 C

2

(

�

Q

c

), such that

�(0) =

_

�(0) = 0; satisfying the equation

(�

ij

; "

ij

(�v))

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

1

(


c

)) (5:117)

and (1 + �)�(t) 2 K \ U

0

(


c

), � = const > 0, t 2 [0; T ]: Now we are in a

position to prove the theorem of existence of the problem (5.110){(5.115).

Theorem 5.4. Let f 2 L

3

(Q

c

),

_

f 2 L

2

(Q

c

), f(0) = 0, hf(t); �i

c

= 0 for all

� 2 R(


c

0), t 2 [0; T ]; and the above assumption on � hold. Then there

exist functions v = (v

1

; v

2

; v

3

), � = f�

ij

g such that

v 2 L

2

(0; T ;BD

N

(


c

)); �; _� 2 L

2

(Q

c

); �(t) 2 K; t 2 (0; T );

(�

ij

; "

ij

(�v))

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

1

(


c

)); (5:118)

( _�
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; ��
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� �
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)

c

+ (v

i

; ��

ij;j

� �

ij;j

)

c

� 0 8�� 2 L

2

(0; T ;U

0

(


c

)); (5:119)

��(t) 2 K a.e. on (0; T );

� = 0; t = 0: (5:120)

Proof. The general scheme of reasoning coincides with that used in

the proof of Theorem 5.3 and our attention now focuses on details related

to the nonsmoothness of the boundary.

Let p be the penalty operator related to the set K, p(�) = � � ��; �

is the orthogonal projection operator of the space [L

2

(


c

)]

6

onto the set

K. Consider two positive parameters �; � and the auxiliary boundary value

problem in Q

c

for �nding v = (v

1

; v

2

; v

3

) and � = f�

ij

g;

� _v

i

� �"

ij

(v)

;j

� �

ij;j

= f

i

; i = 1; 2; 3; (5:121)

_�
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+ ��
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� "

ij

(v) +

1

�

p(�)

ij

= 0; i; j = 1; 2; 3; (5:122)

�

ij

n

j

+ �"
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(v)n

j

= 0; i = 1; 2; 3; on �� (0; T ); (5:123)

�

ij

n

j

+ �"

ij

(v)�

j

= 0; i = 1; 2; 3; on �

�

c

� (0; T ); (5:124)

v = 0; � = 0; t = 0: (5:125)

We �rst obtain a priori estimates of solutions to the problem (5.121){(5.125).

Multiply (5.121), (5.122) by v

i

, �

ij

� �

ij

and integrate over 
. As for

obtaining (5.90) we derive

sup

0�t�T

k�(t)k

2

0;c

+ �kvk

2

L

2

(Q

c

)

+ �

3

X

i;j=1

T

Z

0

k"
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(v)k

2

0;c

d� � c (5:126)



Cracks in elastoplastic bodies 319

with a constant c uniform in �; �; � � �

0

.

From (5.121), (5.122), (5.125) we have

_v

i

(0) = 0; i = 1; 2; 3; _�

ij

(0) = 0; i; j = 1; 2; 3:

Hence, a di�erentiation of (5.121), (5.122) with respect to t and multiplica-

tion by _v

i

, _�

ij

�

_

�

ij

result in the estimate

k _�k

2

L

2

(Q

c

)

+ �k _vk

2

L

2

(Q

c

)

� c: (5:127)

Moreover, if v = v

N

+ �

N

, v

N

2 L

2

(0; T ;H

1

N

(


c

)), �

N

2 L

2

(0; T ;R(


c

));

then (5.122) provides

kv

N

k

L

2

(0;T ;H

1

N

(


c

))

� c(�) (5:128)

where the constant c(�) depends, in general, on �.

The estimates (5.126){(5.127) allow us to prove the solvability of the

system (5.121){(5.125) for the �xed parameters �; � in the following sense:

v

�

2 L

2

(0; T ;H

1

(


c

)); _v

�

; �
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; _�
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�( _v
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; �v)

c

+ �("
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(v
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); "
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(�v))

c

+ (�

�
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; "
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(�v))

c

= (f; �v)

c

(5:129)
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� "

ij

(v

�

) +

1

�

p(�

�

)

ij

= 0; i; j = 1; 2; 3; (5:130)

v

�

= 0; �

�

= 0; t = 0: (5:131)

The solution of the above problem is denoted by v

�

; �

�

since the following

step of our reasoning is a passage to the limit as �! 0. Note that boundary

conditions (5.123), (5.124) are included in the identity (5.129).

In accord with the estimates (5.126){(5.128) for any �xed � > 0 one can

choose a subsequence v

�

; �

�

such that as �! 0

�v

�

! 0 weakly in L

2

(0; T ;H

1

(


c

));

v

�

N

! v

�

weakly in L

2

(0; T ;H

1

N

(
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));

� _v

�
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2

(Q

c

); �

�

; _�

�

! �

�

; _�

�

weakly in L

2

(Q

c

):

Having ful�lled the passage to the limit as �! 0 we obtain

(�

�
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; "

ij

(�v))

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

1

(


c

)); (5:132)
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(v
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) +

1

�

p(�

�

)

ij

= 0; i; j = 1; 2; 3: (5:133)

Analogously to (5.101) the following estimate holds
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�

k

L

2

(0;T ;BD

N

(


c

))

� c (5:134)
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being uniform in �. Consequently, without any loss we can assume that

there exists a subsequence still denoted by v

�

; �

�

such that as � ! 0

�

�

; _�

�

! �; _� weakly in L

2

(Q

c

);

v

�
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2

(0; T ;L

3=2

(
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));

"
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(v
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) ! "
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(v) �{weakly in L

2

(0; T ;M

1

(


c

));

�

�

(T ) ! �(T ) weakly in L

2

(


c

):

From (5.132) we obtain
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; "
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(�v))

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

1

(


c

)); (5:135)

and, hence, the equations

��

ij;j

= f

i

; i = 1; 2; 3;

hold in Q

c

in the distribution sense. Also, (5.132) implies

��

�

ij;j

= f

i

; i = 1; 2; 3: (5:136)

Hence, by (5.132), (5.136) we have
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)

c

= �(�
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ij;j

; ; v

�
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)

c

= (f

i

; v
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i

)

c

:

Moreover, for �� 2 L

2

(0; T ;U

0

(


c

)) we have ("

ij

(v

�

); ��

ij

)

c

= �(v

�

i

; ��

ij;j

)

c

:

As a result, it follows from (5.133) for any �� 2 L

2

(0; T ;U

0

(


c

)), ��(t) 2 K

a.e. on (0; T ); that

( _�

�
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; ��
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� �

�

ij

)

c

+ (v

�

i

; ��

ij;j

� �

�

ij;j

)

c

� 0: (5:137)

A passage to the limit as � ! 0 can be ful�lled in (5.137) as that in (5.107).

Therefore, we arrive at (5.119). The property �(t) 2 K, t 2 (0; T ); is ob-

tained in a standard way. Boundary conditions (5.113), (5.114) are included

in the identity (5.118). Theorem 5.4 is proved.

5.3 Elastoplastic problems for plates

with cracks

We prove an existence theorem for elastoplastic plates having cracks. The

presence of the cracks entails the domain to have a nonsmooth boundary.

The proof of the theorem combines an elliptic regularization and the penalty

method. We show that the solution satis�es all boundary conditions im-

posed at the external boundary and at the crack faces. The results of this

section follow the paper (Khludnev, 1998).
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5.3.1 The Hencky model. Problem formulation

Let 
 � R

2

be a bounded domain with a smooth boundary �; and �

c

be a

smooth curve without sel�ntersections, �

c

� 
. We assume that �

c

contains

its end points. Denote by 


c

the mid-surface of the plate, 


c

= 
 n �

c

: We

choose a unit normal vector � = (�

1

; �

2

) to the curve �

c

: The curve �

c

corresponds to the crack in the plate. The crack shape as a surface in R

3

can be described as x 2 �

c

; �h � z � h; where x = (x

1

; x

2

) 2 
; 2h is

the thickness of the plate, z is a distance to 
: The domain 


c

contains,

therefore, three components of the boundary: �, �

+

c

, �

�

c

: Here �

�

c

�t to

the positive and negative directions of the normal �, respectively. Let n =

(n

1

; n

2

) be the external unit normal vector to �:

Denote by H

1;0

(


c

) the Sobolev space of functions having the �rst

square integrable derivatives in 


c

and equal to zero on the external bound-

ary �. The space H

2

(


c

) contains all functions having derivatives up to the

second order square integrable in 


c

:

Hereafter the known Green formula will be used, namely, for all smooth

functions w, fm

ij

g, i; j = 1; 2, we have

Z
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ij;ij

=

Z




w

;ij

m
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+

Z

�
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)w �
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�

m
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n

j

n

i

@w

@n

; (5:138)

where R

n

(m

ij

) is the transverse force on the boundary � de�ned by the

formula

R

n

(m

ij

) = m

ij;j

n

i

�

@
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[(m

11

�m

22
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1
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(n

2

2

�n

2

1

)] ; � = (�n

2

; n

1

):

The same formula is valid for the domain 


c

: In this case the addi-

tional integrals over �

+

c

;�

�

c

will appear. By M

1

(


c

) we denote the space

of bounded measures on 


c

.

Formulation of the elastoplastic problem for the plate having the crack

is as follows. In the domain 


c

we want to �nd functions w, m = fm

ij

g,

�

ij

, i; j = 1; 2; satisfying the following equations and inequalities:

�m

ij;ij

= f; (5:139)

�w

;ij

= a

ijkl

m

kl

+ �

ij

; i; j = 1; 2; (5:140)

�(m
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) � 0; �

ij

( �m
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�m
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) � 0 8 �m; �( �m

ij

) � 0; (5:141)

w = 0; m

ij

n

j

n

i

= 0 on �; (5:142)

m

ij

�

j

�

i

= 0; R

�

(m

ij

) = 0 on �

�

c

: (5:143)

Here � : R

3

! R is the convex and continuous function describing a plas-

ticity yield condition. The function w describes vertical displacements of

the plate, m

ij

are bending moments, (5.139) is the equilibrium equation,

and equations (5.140) give a decomposition of the curvatures �w

;ij

as a
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sum of elastic and plastic parts a

ijkl

m

kl

; �

ij

, respectively. Let a

ijkl

(x) =

a

jikl

(x) = a

klij

(x); i; j; k; l = 1; 2; and there exist two positive constants

c

1

; c

2

such that

c

2

jmj

2

� a

ijkl

m

kl

m
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� c

1

jmj

2

; 8m = fm

ij

g:

As for the function �, the main assumption is that the following set in R

3

fm j �(m

ij

) � 0g

contains zero as its interior point.

The functions �

ij

can be eliminated from (5.140), (5.141), which gives

�(m

ij

) � 0; (a

ijkl

m

kl

+ w

;ij

)( �m

ij

�m

ij

) � 0 8 �m; �( �m

ij

) � 0:

These inequalities will be used in de�nition of solutions to the problem

(5.139){(5.143).

5.3.2 Solution existence

Introduce the notation

U (


c

) = fm = fm

ij

g 2 H

2

(


c

) j m

ij

n

j

n
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= 0 on �;
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i
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) = 0 on �
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g;

K = fm = fm

ij

g 2 L
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) j �(m
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(x)) � 0 a.e. in 


c

g:

Assume that there exists a function m

0

= fm

0

ij

g; (1 + �)m

0

2 K, � =

const > 0, such that the equation (5.139) is ful�lled in the following sense:
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; �w

;ij

i = hf; �wi 8 �w 2 H
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) \H

1;0

(


c

): (5:144)

The brackets h � ; � i denote the integration over 


c

:

The main result of this section can be formulated as follows.

Theorem 5.5. Assume that f 2 L

2

(


c

) and the above assumption on m

0

holds. Then there exist functions w;m = fm

ij

g such that
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1;0
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); i; j = 1; 2; m 2 K;
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; �w
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i = hf; �wi 8 �w 2 H
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); (5:145)
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m
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i+ hw; �m

ij;ij

�m

ij;ij

i � 0 8 �m 2 U (


c

)\K: (5:146)

Proof. The idea of the proof is to use an elliptic regularization for the

penalty equations approximating (5.139){(5.143). Solutions of the auxiliary

problem will depend on two positive parameters "; �. The �rst parameter is

responsible for the elliptic regularization and the second one characterizes
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the penalty approach. More precisely, in the domain 


c

we want to �nd the

functions w;m = fm

ij

g such that

"w

;ijij

�m

ij;ij

= f; (5:147)
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+ w

;ij

+

1
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= 0; i; j = 1; 2; (5:148)
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= 0 on �; (5:149)
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; (5:150)
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(m
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)� "R

�
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;ij

) = 0 on �

�

c

: (5:151)

Here p(m) = m � �(m) is the penalty operator, where � : [L

2

(


c

)]

3

! K

is the orthogonal projection operator. Note that p is monotone, continuous

and bounded.

We do not show the dependence of the solution to (5.147){(5.151) on the

parameters to simplify the notation. Our aim is �rst to prove the solution

existence of the problem (5.147){(5.151) and second to pass to the limit as

"! 0; � ! 0:

Let us derive a priori estimates for solutions of (5.147){(5.151) assuming

that solutions are su�ciently smooth. Multiply (5.147), (5.148) by w;m

ij

�

m

0

ij

; sum and integrate over 


c

: This gives
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0
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i:

Integrate by parts in the �fth and sixth terms of the left-hand side of (5.152)

taking into account the boundary conditions (5.149){(5.151) and the Green

formula like (5.138) for the domain 


c

: The penalty term is nonnegative

and m

0

ij

satisfy the equation (5.144). Hence the uniform in the "; � estimate

follows,
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;ij
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ijkl
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and consequently
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+ kmk
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� c: (5:153)

Here k � k

s

stands for the norm in H

s

(


c

): The estimate (5.153) allows us to

prove the solvability of the problem (5.147){(5.151) for the �xed parameters

"; � in the following sense:

w 2 H
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); i; j = 1; 2; (5:154)
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ha

ijkl

m

kl

+w

;ij

+

1

�

p(m)

ij

; �m

ij

i = 0 8 �m

ij

2 L

2

(


c

): (5:156)
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Indeed, introduce the space V (


c

) = (H

2

(


c

) \H

1

0

(


c

)) � [L

2

(


c

)]

3

. The

elements of this space are denoted by u, where u = (w;m
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). Consider the

operator B : V (
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)! (V (
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0

de�ned by the formula
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where �u = ( �w; �m

ij

). De�ne the linear and continuous functional on V (


c

)

by the formula F (�u) = hf; �wi: In this case the identities (5.154){(5.156) can

be written in the form

B(u)(�u) = F (�u) 8�u 2 V (


c

);

which means

B(u) = F: (5:157)

Note that the derivation of the estimate (5.153), actually provides the co-

ercivity of the operator B in the following sense:

B(u)(u)

kuk

V (
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)

!1; kuk

V (


c

)

!1:

Moreover, B is monotone, bounded and semicontinuous. Hence, the solv-

ability of the equation (5.157) or, equivalently, of the problem (5.154){

(5.156) follows from Theorem 1.14. We should recall that the parameters

"; � are �xed at this point.

Now we can pass to the limit as " ! 0; � ! 0: Denote the solution of

(5.154){(5.156) by w

"�

;m

"�

: The estimate (5.153) provides the inequality
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� c: (5:158)

From (5.156) the following equations are obtained:
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; i; j = 1; 2:

Hence, in view of zero boundary conditions for w
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, these equations imply
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� c(�); (5:159)

where the constant c(�) depends on �; in general.

By (5.158), (5.159), we choose a subsequence, still denoted by w
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such that for any �xed � as "! 0
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); i; j = 1; 2;
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�
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2

(


c

) \H

1;0
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c

):

Passing to the limit as "! 0 in (5.154){(5.156) we have
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Convergence p(m

"�

) ! p(m

�

) can be justi�ed by the monotonicity argu-

ments.

Let us prove that uniformly in �

2

X

i;j=1

kw

�

;ij

k

L

1

(


c

)

� c: (5:162)

First we notice from (5.160), (5.161) that uniformly in �

1

�

hp(m

�

)

ij

;m

�

ij

�m

0

ij

i � c: (5:163)

Consider the convex functional P on [L

2

(


c

)]

3

,

P (m) =

1

2�

kp(m)k

2

0

:

The Gateaux derivative P

0

of the functional P can be found by the formula

P

0

(m) = �

�1

p(m). Hence, by the convexity of P , we have

P (m

0

+ q)� P (m

�

) � P

0

(m

�

)(m

0

+ q �m

�

); (5:164)

q = fq

ij

g 2 [L

2

(


c

)]

3

:

Let kqk

L

1

(


c

)

� �; where � is chosen to be small enough so that m

0

+

q 2 K. Here we use the conditions imposed on m

0

and the set fm =

fm

ij

g j �(m

ij

) � 0g: Since P (m

0

+ q) = 0, it follows from (5.164) that

1

�

hp(m

�

); qi �

1

�

hp(m

�

);m

�

�m

0

i:

In view of the inequality (5.163) we have

1

�

hp(m

�

); qi � c 8q; kqk

L

1

(


c

)

� �;

which completes the proof of (5.162).

Taking into account Lemma 5.2 (see below) we conclude from (5.162)

that

kw

�

k

W

2

1

(


c

)

� c: (5:165)

Here, W

2

1

(


c

) is the Sobolev space of functions having derivatives up to the

second order belonging to L

1

(


c

):

Extend the curve �

c

outside both ends so that each extension cuts the

boundary �; therefore, the domain 


c

is divided into two subdomains 


1
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and 


2

with Lipschitz boundaries �

1

;�

2

: We assume that meas�

i

\ � 6= ;,

i = 1; 2; and each set �

i

\ � is not a subset of a straight line. It is known

that the imbedding W

1

1

(D) � L

2

(D) is continuous provided that D � R

2

is a bounded domain with a Lipschitz boundary. Hence

2

X

i=1

kw

�

;i

k

W

1

1

(


c

)

=

2

X

i=1

kw

�

;i

k

W

1

1

(


1

)

+

2

X

i=1

kw

�

;i

k

W

1

1

(


2

)

(5:166)

� c

 

2

X

i=1

kw

�

;i

k

L

2

(


1

)

+

2

X

i=1

kw

�

;i

k

L

2

(


2

)

!

� c

2

X

i=1

kw

�

;i

k

L

2

(


c

)

:

Analogously, we have

kw

�

k

W

1

1

(


c

)

� ckw

�

k

L

2

(


c

)

: (5:167)

Hence, from (5.165), (5.166), (5.167) the boundedness of w

�

follows, i.e.

kw

�

k

1

� c:

The imbedding L

1

(


c

) � M

1

(


c

) is continuous, and consequently, by

(5.162), from equations (5.161) it is clear that

2

X

i;j=1

kw

�

;ij

k

M

1

(


c

)

� c:

As a result we derive the following uniform in � estimate for the solution

w

�

;m

�

of the problem (5.160), (5.161),

km

�

k

0

+ km

�

ij;ij

k

0

+ kw

�

k

1

+

2

X

i;j=1

kw

�

;ij

k

M

1

(


c

)

� c:

Now we can pass to the limit as � ! 0: Choosing a subsequence w

�

;m

�

we

can assume that as � ! 0

m

�

ij

! m

ij

weakly in L

2

(


c

); i; j = 1; 2;

m

�

ij;ij

! m

ij;ij

weakly in L

2

(


c

);

w

�

! w weakly in H

1;0

(


c

);

w

�

;ij

! w

;ij

? {weakly in M

1

(


c

); i; j = 1; 2:

It follows from (5.160) that �m

�

ij;ij

= f in the sense of distributions,

whence

�m

ij;ij

= f: (5:168)
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Moreover, from (5.160) we obtain the identity (5.145). Next, by the mono-

tonicity of p, from (5.161) the following inequality is derived:

ha

ijkl

m

�

kl

; �m

ij

�m

�

ij

i + hw

�

;ij

; �m

ij

�m

�

ij

i � 0 8 �m 2 U (


c

) \K: (5:169)

We see that for �m 2 U (


c

) the relation

hw

�

;ij

; �m

ij

i = hw

�

; �m

ij;ij

i

holds. Furthermore, by (5.160), (5.168) the equalities

�hm

�

ij

; w

�

;ij

i = hf; w

�

i = �hm

ij;ij

; w

�

i

take place. Consequently, (5.169) implies

ha

ijkl

m

�

kl

; �m

ij

�m

�

ij

i+ hw

�

; �m

ij;ij

�m

ij;ij

i � 0 8 �m 2 U (


c

)\K: (5:170)

Passing to the limit as � ! 0 in (5.170) we arrive at (5.146).

The inclusion m 2 K can be proved by standard arguments. Note that

the second boundary condition (5.142) and the conditions (5.143) are in-

cluded in the identity (5.145). This means that it is possible to obtain these

conditions by integrating by parts provided that the solution is su�ciently

smooth. Actually, we can prove that the second condition (5.142) holds in

the sense H

�1=2

(�); but the arguments are omitted here. The theorem is

proved.

Now we have to prove an auxiliary statement which was used in proving

the theorem.

Assume that D � R

2

is a bounded domain with a Lipschitz boundary

, and 

0

is a curve being a part of  such that the length of 

0

is positive.

Denote by W

2;

0

1

(D) the subspace of the space W

2

1

(D) consisting of all

functions equal to zero on 

0

: Furthermore, we assume that 

0

is not a

segment of a straight line. The following statement holds.

Lemma 5.1. There exists a constant c > 0 such that

2

X

i;j=1

kw

;ij

k

L

1

(D)

� ckwk

W

2

1

(D)

8w 2W

2;

0

1

(D): (5:171)

Proof. Assume that the inequality (5.171) is not valid. Then there

exists a sequence w

k

2 W

2;

0

1

(D) such that

kw

k

k

W

2

1

(D)

= 1; (5:172)

2

X

i;j=1

kw

k

;ij

k

L

1

(D)

<

1

k

: (5:173)
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Since the imbedding W

2

1

(D) � W

1

1

(D) is compact, by (5.172) we conclude

that

w

k

! w strongly in W

1

1

(D):

Consequently, in view of (5.173)

w

k

! w strongly in W

2

1

(D); (5:174)

and, besides, w

;ij

(x) � 0 in D. Whence, w(x) = c

0

+ c

1

x

1

+ c

2

x

2

; where

c

0

; c

1

; c

2

are constants. Since w 2 W

2;

0

1

(D), we derive w(x) � 0 { a

contradiction to the equality kwk

W

2

1

(D)

= 1 which follows from (5.172),

(5.174). Lemma 5.1 is proved.

Consider the subspace W

2;�

1

(


c

) of the space W

2

1

(


c

) which contains all

functions from W

2

1

(


c

) equal to zero on �:

Lemma 5.2. There exists a constant c > 0 such that

2

X

i;j=1

kw

;ij

k

L

1

(


c

)

� ckwk

W

2

1

(


c

)

8w 2W

2;�

1

(


c

):

Proof. We divide the domain 


c

into two subdomains 


1

;


2

with

Lipschitz boundaries as in the proof of Theorem 5.5. Then, by Lemma 5.1

2

X

i;j=1

kw

;ij

k

L

1

(


c

)

=

2

X

i;j=1

kw

;ij

k

L

1

(


1

)

+

2

X

i;j=1

kw

;ij

k

L

1

(


2

)

� c

�

kwk

W

2

1

(


1

)

+ kwk

W

2

1

(


2

)

�

= ckwk

W

2

1

(


c

)

8w 2 W

2;�

1

(


c

);

which completes the proof of Lemma 5.2.

5.4 The Prandtl{Reuss elastoplastic plates

We prove an existence of solutions for the Prandtl{Reuss model of elasto-

plastic plates with cracks. The proof is based on a special combination of

a parabolic regularization and the penalty method. With the appropriate a

priori estimates, uniform with respect to the regularization and penalty pa-

rameters, a passage to the limit along the parameters is ful�lled. Both the

smooth and nonsmooth domains are considered in the present section. The

results obtained provide a ful�lment of all original boundary conditions.

5.4.1 Domain with a smooth boundary

Let 
 � R

2

be a bounded domain with a smooth boundary �; Q =


 � (0; T ); x = (x

1

; x

2

) 2 
; t 2 (0; T ). Formulation of the elastoplas-

tic problem for a plate is as follows. In the domain Q we have to �nd
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functions v;m = fm

ij

g; �

ij

, i; j = 1; 2; satisfying the following equations

and inequalities:

�m

ij;ij

= f; (5:175)

�v

;ij

= a

ijkl

_m

kl

+ �

ij

; i; j = 1; 2; (5:176)

�(m

ij

) � 0; �

ij

( �m

ij

�m

ij

) � 0 8 �m; �( �m

ij

) � 0; (5:177)

v = 0; m

ij

n

j

n

i

= 0 on �� (0; T ); (5:178)

m = 0; t = 0: (5:179)

Here � : R

3

! R is the convex and continuous function describing a

plasticity yield condition, the dot denotes a derivative with respect to t,

n = (n

1

; n

2

) is the unit normal vector to the boundary �. The function v

describes a vertical velocity of the plate,m

ij

are bending moments, (5.175) is

the equilibrium equation, and equations (5.176) give a decomposition of the

curvature velocities �v

ij

as a sum of elastic and plastic parts a

ijkl

_m

kl

; �

ij

,

respectively. Let a

ijkl

(x) = a

jikl

(x) = a

klij

(x); i; j; k; l = 1; 2; and there

exist two positive constants c

1

; c

2

such that for all m = fm

ij

g

c

2

jmj

2

� a

ijkl

m

kl

m

ij

� c

1

jmj

2

: (5:180)

As for the function �, the main assumption is that the following set in R

3

fm j �(m

ij

) � 0g

contains zero as its interior point.

In the sequel the known Green formula is used, namely, for all smooth

functions v, fm

ij

g, i; j = 1; 2; we have

Z




vm

ij;ij

=

Z




v

;ij

m

ij

+

Z

�

R

n

(m

ij

)v �

Z

�

m

ij

n

j

n

i

@v

@n

; (5:181)

where R

n

(m

ij

) is the transverse force on the boundary � de�ned by the

formula

R

n

(m

ij

) = m

ij;j

n

i

�

@

@�

[(m

11

�m

22

)n

1

n

2

+m

12

(n

2

2

�n

2

1

)]; � = (�n

2

; n

1

):

The Green formula (5.181) can be speci�ed for the case where the functions

v;m

ij

are not smooth enough. To this end, introduce the Hilbert space

V (
) = fm = fm

ij

g j m

ij

2 L

2

(
); i; j = 1; 2; m

ij;ij

2 L

2

(
)g

equipped with the norm

kmk

2

V (
)

= kmk

2

0

+ km

ij;ij

k

2

0

where k � k

s

is the norm in the Sobolev space H

s

(
). It can be proved (see

Section 1.4) that form 2 V (
) the valuesm

ij

n

j

n

i

andR

n

(m

ij

) are correctly
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de�ned on � as elements ofH

�1=2

(�);H

�3=2

(�); respectively. Moreover, for

v 2 H

2

(
) the following formula arises:

hv;m

ij;ij

i = hm

ij

; v

;ij

i + hR

n

(m

ij

); vi

3=2;�

� hm

ij

n

j

n

i

;

@v

@n

i

1=2;�

: (5:182)

Here, H

�s

(�) is the space dual of the space H

s

(�), and h � ; � i, h � ; � i

s;�

denote the scalar product in L

2

(
) and the duality pairing between H

�s

(�);

H

s

(�), respectively.

Introduce the closed convex set in [L

2

(
)]

3

K = fm = fm

ij

g j m

ij

2 L

2

(
); i; j = 1; 2;

�(m

ij

(x)) � 0 a.e. in 
g:

Let � : [L

2

(
)]

3

! K be the operator of orthogonal projection, and

p(m) = m � �m be the penalty operator which is monotonous, bounded

and continuous from [L

2

(
)]

3

to [L

2

(
)]

3

:

To simplify the formulae the assumption a

ijkl

= �

i

k

�

j

l

will be used, where

�

i

k

is the Kronecker symbol. Nevertheless, we have to note that all the results

obtained in the section hold true in the general case (5.180).

Let H

1

0

(
) be the subspace of the Sobolev space H

1

(
) which consists

of all functions equal to zero on �; H

2;0

(
) = H

2

(
) \H

1

0

(
).

Denote by M

1

(
) the bounded measures on 
. Consider next the sub-

space in V (
):

V

0

(
) = fm = fm

ij

g 2 V (
) j m

ij

n

j

n

i

= 0 on �g:

In accordance with the above remarks the values m

ij

n

j

n

i

are de�ned on

� in the sense of H

�1=2

(�).

The functions �

ij

can be eliminated from (5.176), (5.177) which gives

�(m

ij

) � 0; (a

ijkl

_m

kl

+v

;ij

)( �m

ij

�m

ij

) � 0 8 �m; �( �m

ij

) � 0: (5:183)

Inequalities (5.183) will be used in de�nition of solutions to the problem

(5.175){(5.179).

Let the brackets ( � ; � ) denote the scalar product in L

2

(Q). Assume that

there exists a function M = fM

ij

g 2 L

1

(0; T ;V

0

(
)),

_

M;

�

M 2 L

1

(Q),

satisfying equation (5.175) and, besides, (1 + �)M (t) 2 K, t 2 (0; T ), � =

const > 0, M (0) =

_

M (0) = 0. Now we are in a position to formulate the

existence theorem related to the problem (5.175){(5.179).

Theorem 5.6. Let f;

_

f 2 L

2

(Q), f(0) = 0; and the above assumption on M

hold. Then there exist functions v;m = fm

ij

g such that

v 2 L

2

(0; T ;H

1

0

(
)); v

;ij

2 L

2

(0; T ;M

1

(
)); i; j = 1; 2;

m 2 L

2

(0; T ;V

0

(
)); _m 2 L

2

(Q); m(t) 2 K; t 2 (0; T );
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( _m

ij

; �m

ij

�m

ij

) + (v; �m

ij;ij

�m

ij;ij

) � 0 (5:184)

8 �m 2 L

2

(0; T ;V

0

(
)); �m(t) 2 K; t 2 (0; T );

and the equation (5.175) and initial condition (5.179) hold.

Proof. The idea of the proof is to use a parabolic regularization for the

penalty equations approximating (5.175){(5.179). Solutions of the auxiliary

problem will depend on two positive parameters "; �. The �rst parameter is

responsible for the parabolic regularization and the second one characterizes

the penalty approach. Namely, in the domain Q we want to �nd functions

v;m = fm

ij

g such that

" _v + "�

2

v �m

ij;ij

= f; (5:185)

_m

ij

+ "m

ij

+ v

;ij

+

1

�

p(m)

ij

= 0; i; j = 1; 2; (5:186)

v = 0; (m

ij

� "v

;ij

)n

j

n

i

= 0 on �� (0; T ); (5:187)

v = 0; m = 0; t = 0: (5:188)

To simplify the notations we do not indicate the dependence of the solutions

on the parameters "; �. Our aim is �rst to prove the existence of solutions to

(5.185){(5.188) and next to justify the passage to limits as "; � ! 0. A priori

estimates uniformwith respect to "; � are needed to study the passage to the

limits, and we shall derive all the necessary inequalities while the existence

theorem is proved.

Assume �rst that the solution of (5.185){(5.188) is smooth enough. Mul-

tiply (5.185), (5.186) by v;m

ij

� M

ij

, respectively, and integrate over 
.

This gives

1

2

d

dt

�

"kv(t)k

2

0

+ km(t)k

2

0

�

+ "km(t)k

2

0

+ h"v

;ijij

(t)�m

ij;ij

(t); v(t)i (5:189)

+ hv

;ij

(t);m

ij

(t)i � hv

;ij

(t);M

ij

(t)i � hf(t); v(t)i � h"m(t) + _m(t);M (t)i:

In so doing we have omitted the nonnegative term containing the penalty

operator. Using the formula (5.181), the integration by parts can be done

in the third and the �fth terms of the left-hand side of (5.189). Also, note

that M

ij

satisfy equation (5.175). Integration of (5.189) in t from 0 to t

results in the inequality

1

2

�

"kv(t)k

2

0

+ km(t)k

2

0

�

+ "

2

X

i;j=1

t

Z

0
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;ij

(� )k

2

0

d� � hm(t);M (t)i

�

t

Z

0

hm(� );

_

M (� )id� +

"

2

t

Z

0

kM (� )k

2

0

d�:
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To evaluate the right-hand side we can use the inequality h�; �i � 1=4 k�k

2

0

+

k�k

2

0

: Also, we use the well-known estimate

2

X

i;j=1

kv

;ij

k

0

� c kvk

H

2;0

(
)

8v 2 H

2;0

(
);

where the constant c does not depend on v. Next we can apply the Grown-

wall lemma which gives

kmk

2

L

2

(Q)

+ "kvk

2

L

2

(0;T ;H

2;0

(
))

� c (5:190)

with the constant c being uniform in "; �; " � "

0

.

A derivation of the next estimate requires the boundedness of the penalty

term in L

1

(Q); i.e. uniformly in "; �

1

�

kp(m)k

L

1

(Q)

� c

0

: (5:191)

Let us establish (5.191). By (5.190), it is clear that uniformly in "; �

1

�

T

Z

0

hp(m);m �M idt � c

provided that the penalty term is not neglected in (5.189). Due to the

monotonicity of p,

1

�

T

Z

0

hp(m); �m �midt � 0 8 �m 2 L

2

(Q); �m(t) 2 K:

Summing the two last inequalities we have

1

�

T

Z

0

hp(m); �m �M idt � c:

We can take here �m =M +

�

M; k

�

Mk

L

1

(Q)

� �: By the hypothesis imposed

on M the inclusions �m(t) 2 K, t 2 (0; T ); hold provided that � is small

enough, and hence

1

�

T

Z

0

hp(m);

�

M idt � c 8

�

M; k

�

Mk

L

1

(Q)

� �;

which implies (5.191). Notice that in the sequel we shall improve the esti-

mate (5.191), namely, we prove that �

�1

p(m) are bounded in L

2

(0; T ;L

1

(
))

uniformly with respect to �.
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It is seen from the equations (5.185), (5.186) considered for t = 0 and

the initial conditions (5.188) that

_v(0) = 0; _m

ij

(0) = 0; i; j = 1; 2: (5:192)

Di�erentiate with respect to t the equations (5.185), (5.186) and multiply

by _v; _m

ij

�

_

M

ij

; respectively. The nonnegative term (see Lions, 1969)

1

�

h

d

dt

p(m(t)); _m(t)i; t 2 (0; T );

can be neglected. Hence, the integration over 
 yields

1

2

d

dt

�

"k _v(t)k

2

0

+ k _m(t)k

2

0

�

+ "k _m(t)k

2

0

+ h" _v

;ijij

(t) � _m

ij;ij

(t); _v(t)i

+ h _v

;ij

(t); _m

ij

(t)i � h _v

;ij

(t);

_

M

ij

(t)i � h

_

f (t); _v(t)i

� h" _m(t) + �m(t);

_

M(t)i +

1

�

h

d

dt

p(m(t));

_

M (t)i:

Taking into account the conditions (5.187), we �rst integrate by parts in

the left-hand side of the inequality obtained and next we integrate in t.

Simultaneously, the integration by parts in t is ful�lled. This gives the

inequality

1

2

�

"k _v(t)k

2

0

+ k _m(t)k

2

0

�

+ "

2

X

i;j=1

t

Z

0

k _v

;ij

(� )k

2

0

d�

� h _m(t);

_

M(t)i �

t

Z

0

h _m(� );

�

M (� )id� +

1

�

hp(m(t));

_

M (t)i

�

t

Z

0

1

�

hp(m(� ));

�

M (� )id� +

"

2

t

Z

0

k

_

M (� )k

2

0

d�:

As a result the "; �-uniform estimate is derived:

"k _vk

2

L

2

(Q)

+ k _mk

2

L

2

(Q)

� c : (5:193)

Moreover, by the estimate (5.190), from (5.186) it follows that v

;ij

are

bounded in L

2

(Q) uniformly in " for any �xed �: Hence, by the �rst bound-

ary condition (5.187)

kvk

L

2

(0;T ;H

2;0

(
))

� c(�); (5:194)

where the constant c(�) depends on �, in general.
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So the necessary estimates are obtained, and we can use the Galerkin

method to prove the solvability of the parabolic boundary value problem

(5.185){(5.188) (see Lions, 1969). This proves that the solution exists in

the following sense,

v

"�

2 L

2

(0; T ;H

2;0

(
)); _v

"�

; m

"�

; _m

"�

2 L

2

(Q); (5:195)

"( _v

"�

; �v) + "(v

"�

;ij

; �v

;ij

)� (m

"�

ij

; �v

;ij

) = (f; �v) (5:196)

8�v 2 L

2

(0; T ;H

2;0

(
));

_m

"�

ij

+ "m

"�

ij

+ v

"�

;ij

+

1

�

p(m

"�

)

ij

= 0; i; j = 1; 2; (5:197)

and the initial conditions (5.188) hold.

Let us pass on to the limit as "! 0 in (5.195){(5.197). By the estimates

(5.190), (5.193), (5.194), one can choose a subsequence still denoted by

v

"�

;m

"�

such that for any �xed � and "! 0

" _v

"�

! 0 weakly in L

2

(Q); v

"�

! v

�

weakly in L

2

(0; T ;H

2;0

(
));

m

"�

ij

; _m

"�

ij

! m

�

ij

; _m

�

ij

weakly in L

2

(Q); i; j = 1; 2:

We have to note that for any �xed � the "-subsequences are di�erent, in

general. Passing on to the limit in (5.195){(5.197), the following relations

are derived:

�(m

�

ij

; �v

;ij

) = (f; �v) 8�v 2 L

2

(0; T ;H

2;0

(
)); (5:198)

_m

�

ij

+ v

�

;ij

+

1

�

p(m

�

)

ij

= 0; i; j = 1; 2: (5:199)

A convergence justi�cation of the nonlinear terms �

�1

p(m

"�

)

ij

to the term

�

�1

p(m

�

)

ij

can be done by monotonicity arguments. The details are omit-

ted here.

Now we shall derive an additional a priori estimate which improves

(5.191). It follows from (5.198) that for almost all t 2 (0; T )

�hm

�

ij

(t); �v

;ij

i = hf(t); �vi 8�v 2 H

2;0

(
):

Consequently, for almost all t 2 (0; T )

�hm

�

ij

(t); v

�

;ij

(t)i = hf(t); v

�

(t)i: (5:200)

Multiply (5.199) by m

�

ij

�M

ij

and integrate over 
. This implies

hv

�

;ij

(t);m

�

ij

(t) �M

ij

(t)i+

1

�

hp(m

�

(t));m

�

(t)�M (t)i (5:201)

= h _m

�

(t);M (t)�m

�

(t)i:
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Notice that the right-hand side of (5.201) is the function bounded in L

2

(0; T )

uniformly in �. Let us integrate by parts in the left-hand side of (5.201)

and use the fact that M

ij

satisfy equation (5.175). Combining (5.201) with

(5.200) we infer that

1

�

hp(m

�

(t));m

�

(t) �M (t)i are bounded in L

2

(0; T ) (5:202)

uniformly in �.

Consider next the convex functional on the space [L

2

(
)]

3

,

P (m) = km� �mk

2

0

; m = fm

ij

g:

Its derivative can be found (see Khludnev, Sokolowski, 1997) by the formula

P

0

(m) = 2(m � �m); i.e. P

0

(m) = 2p(m). We take any function m̂ =

fm̂

ij

g 2 L

1

(Q) such that M (t) + m̂(t) belongs to the set K, t 2 (0; T ).

This can be done provided the norm km̂k

L

1

(Q)

is small enough. At this

point we need the assumptions imposed onM and the set fm j �(m

ij

) � 0g.

For almost all t 2 (0; T ); due to the convexity of P; we have

�

�1

hp(m

�

(t)); m̂(t)i � �

�1

hp(m

�

(t));m

�

(t) �M (t)i (5:203)

+

1

2

�

�1

P (M (t) + m̂(t))�

1

2

�

�1

P (m

�

(t)):

The second term on the right-hand side of (5.203) equals zero by the inclu-

sion M (t) + m̂(t) 2 K and hence, owing to (5.202),

1

�

hp(m

�

(t)); m̂(t)i are bounded in L

2

(0; T ) :

Since m̂ is an arbitrary element of L

1

(Q) with a small norm we conclude

that

1

�

p(m

�

(t))

ij

are bounded in L

2

(0; T ;L

1

(
)); i; j = 1; 2; (5:204)

uniformly in �. Then it follows from (5.199), (5.204) that

kv

�

;ij

k

L

2

(0;T ;L

1

(
))

� c; i; j = 1; 2: (5:205)

Let W

2

1

(
) be the Sobolev space of functions having derivatives up to

the second order in 
 which are integrable with power one. By continuously

imbedding W

2

1

(
) � H

1

(
), the estimate (5.205) yields

kv

�

k

L

2

(0;T ;H

1

0

(
))

� c: (5:206)

Besides, the space L

1

(
) is continuously imbedded in M

1

(
), whence

kv

�

;ij

k

L

2

(0;T ;M

1

(
))

� c; i; j = 1; 2: (5:207)
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Note that the estimate

km

�

(T )k

0

� c

�

km

�

k

L

2

(Q)

+ k _m

�

k

L

2

(Q)

�

holds with a constant uniform in �; and, moreover, by (5.190), (5.193), the

right-hand side is bounded in �:

Now we can choose a subsequence v

�

;m

�

denoted just as the sequence

such that as � ! 0

v

�

! v weakly in L

2

(0; T ;H

1

0

(
));

m

�

ij

; _m

�

ij

! m

ij

; _m

ij

weakly in L

2

(Q); i; j = 1; 2;

v

�

;ij

! v

;ij

? {weakly in L

2

(0; T ;M

1

(
)); i; j = 1; 2;

m

�

(T ) ! m(T ) weakly in L

2

(
):

From (5.198), (5.199) it follows that

�(m

ij

; �v

;ij

) = (f; �v) 8�v 2 L

2

(0; T ;H

2;0

(
)); (5:208)

( _m

�

ij

; �m

ij

�m

�

ij

) + (v

�

; �m

ij;ij

�m

�

ij;ij

) � 0 (5:209)

8 �m 2 L

2

(0; T ;V

0

(
)); �m(t) 2 K; t 2 (0; T ):

Hence, the equilibrium equation (5.175) holds in the sense (5.208). The

second boundary condition (5.178) is contained in the identity (5.208) and,

consequently, m 2 L

2

(0; T ;V

0

(
)).

By (5.198), the equation

�m

�

ij;ij

= f

holds in the sense of distributions, and hence (5.209) can be written in the

form

( _m

�

ij

; �m

ij

) + (v

�

; �m

ij;ij

+ f) �

1

2

km

�

(T )k

2

0

: (5:210)

By passing on to the lower limit on both sides of (5.210) and next changing

f by �m

ij;ij

we readily arrive at (5.184).

The inclusion m(t) 2 K, t 2 (0; T ); can be obtained in the standard

way. Theorem 5.6 is proved.

5.4.2 Domain with the crack

In this subsection we prove the solvability of the elastoplastic problem for a

plate having a nonsmooth boundary. A solution of the problem will satisfy

all boundary conditions both at the exterior boundary and at the crack

faces.

Let 
 � R

2

be a bounded domain with a smooth boundary �, and �

c

�


 be a smooth curve without sel�ntersections. Assume that �

c

contains
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its end points. We put 


c

= 
 n �

c

; the domain 


c

corresponds to the

mid-surface points of the plate. Denote by � = (�

1

; �

2

) a unit normal vector

to �

c

. Boundary of 


c

consists of three components �;�

+

c

;�

�

c

; where �

�

c

�t

the positive and negative directions of �. Formulation of the elastoplastic

problem in this case is as follows. In the domainQ

c

= 


c

�(0; T ), T > 0; we

have to �nd functions v;m = fm

ij

g; �

ij

, i; j = 1; 2; satisfying the following

equations and inequalities:

�m

ij;ij

= f; (5:211)

�v

;ij

= a

ijkl

_m

kl

+ �

ij

; i; j = 1; 2; (5:212)

�(m

ij

) � 0; �

ij

( �m

ij

�m

ij

) � 0 8 �m; �( �m

ij

) � 0; (5:213)

v = 0; m

ij

n

j

n

i

= 0 on �� (0; T ); (5:214)

m

ij

�

j

�

i

= 0; R

�

(m

ij

) = 0 on �

�

c

� (0; T ); (5:215)

m = 0; t = 0: (5:216)

All notations �t those in the previous subsection. Some arguments are

required to explain in which sense boundary conditions (5.215) hold. This

will be done later on. Note that conditions (5.215) will be contained in an

integral identity.

Denote by H

1;0

(


c

) the subspace ofH

1

(


c

) consisting of functions equal

to zero at the external boundary �; H

2;0

(


c

) = H

2

(


c

) \H

1;0

(


c

):

Consider the Sobolev space W

2

1

(


c

) of functions whose derivatives up

to the second order in 


c

are integrable with the �rst power. Introduce the

notation

U (


c

) = fm = fm

ij

g j m

ij

2 H

2

(


c

); i; j = 1; 2; m

ij

n

j

n

i

= 0 on �;

m

ij

�

j

�

i

= R

�

(m

ij

) = 0 on �

�

c

g:

Let ( � ; � )

c

denote the scalar product in L

2

(Q

c

) and

K = fm = fm

ij

g j m

ij

2 L

2

(
); i; j = 1; 2;

�(m

ij

(x)) � 0 a.e. in 


c

g:

Assume that there exists a function M = fM

ij

g 2 L

1

(Q

c

),

_

M;

�

M 2

L

1

(Q

c

); satisfying the equation (5.211) in the following sense,

�(M

ij

; �v

;ij

)

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

2;0

(


c

)); (5:217)

and, moreover, (1+�)M (t) 2 K, t 2 (0; T ), � = const > 0,M (0) =

_

M (0) =

0.

Now we can prove the existence of solutions to (5.211){(5.216).

Theorem 5.7. Let f;

_

f 2 L

2

(Q

c

), f(0) = 0; and the above assumption on M

satisfying (5.217) hold. Then there exist functions v;m = fm

ij

g such that

v 2 L

2

(0; T ;H

1;0

(


c

)); v

;ij

2 L

2

(0; T ;M

1

(


c

)); i; j = 1; 2;
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m; _m 2 L

2

(Q

c

); m(t) 2 K; t 2 (0; T );

�(m

ij

; �v

;ij

)

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

2;0

(


c

)); (5:218)

( _m

ij

; �m

ij

�m

ij

)

c

+ (v; �m

ij;ij

�m

ij;ij

)

c

� 0 (5:219)

8 �m 2 L

2

(0; T ;U (


c

)); �m(t) 2 K; t 2 (0; T )

and the initial condition (5.216) holds.

Proof. A scheme of reasoning is the same as that used in the previous

subsection, and our attention now focuses on the details related to the

nonsmoothness of the boundary.

Let "; � be positive parameters and p : [L

2

(


c

)]

3

! [L

2

(


c

)]

3

be the

penalty operator de�ned as before. In the domain Q

c

, consider the follow-

ing problem with the parameters "; �. We want to �nd functions v;m =

fm

ij

g; i; j = 1; 2; such that

" _v + "�

2

v �m

ij;ij

= f; (5:220)

_m

ij

+ "m

ij

+ v

;ij

+

1

�

p(m)

ij

= 0; i; j = 1; 2; (5:221)

v = 0; (m

ij

� "v

;ij

)n

j

n

i

= 0 on �� (0; T ); (5:222)

(m

ij

� "v

;ij

)�

j

�

i

= 0; R

�

(m

ij

� "v

;ij

) = 0 on �

�

c

� (0; T ); (5:223)

v = 0; m = 0; t = 0: (5:224)

Multiplying (5.220), (5.221) by v;m

ij

� M

ij

we can argue as in the

previous subsection where the estimate (5.190) is derived. This provides

the uniform in the "; � inequality

"kvk

2

L

2

(Q

c

)

+ kmk

2

L

2

(Q

c

)

+ "

T

Z

0

2

X

i;j=1;2

kv

;ij

k

2

0;c

� c: (5:225)

In this section k � k

s;c

denotes the norm in H

s

(


c

).

The arguments used to prove Lemma 5.2 allow us to obtain the estimate

2

X

i;j=1;2

kv

;ij

k

2

0;c

� c kvk

2

2;c

8v 2 H

2;0

(


c

):

Hence, it follows from (5.225) that

kmk

2

L

2

(Q

c

)

+ "kvk

2

L

2

(0;T ;H

2;0

(


c

))

� c (5:226)

with the constant c being uniform in "; �; " � "

0

.

Again, we have the initial conditions

_v(0) = 0; _m(0) = 0:
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This gives from (5.220){(5.224) two more estimates

"k _vk

2

L

2

(Q

c

)

+ k _mk

2

L

2

(Q

c

)

� c ; (5:227)

kvk

L

2

(0;T ;H

2;0

(


c

))

� c(�); (5:228)

where the constant c(�) depends on �, in general.

Now we can use the Galerkin approach to prove the existence of solutions

to (5.220){(5.224). The solutions v

"�

; m

"�

= fm

"�

ij

g exist in the following

sense,

v

"�

2 L

2

(0; T ;H

2;0

(


c

)); _v

"�

; m

"�

; _m

"�

2 L

2

(Q

c

); (5:229)

"( _v

"�

; �v)

c

+ "(v

"�

;ij

; �v

;ij

)

c

� (m

"�

ij

; �v

;ij

)

c

= (f; �v)

c

(5:230)

8�v 2 L

2

(0; T ;H

2;0

(


c

));

_m

"�

ij

+ "m

"�

ij

+ v

"�

;ij

+

1

�

p(m

"�

)

ij

= 0; i; j = 1; 2; (5:231)

and the initial conditions (5.224) hold.

Let us pass on to the limit as "! 0 for any �xed � > 0. By the estimates

(5.226){(5.228), we can choose a subsequence denoted just as the sequence

v

"�

; m

"�

such that for any �xed � > 0 and "! 0

" _v

"�

! 0 weakly in L

2

(Q

c

); v

"�

! v

�

weakly in L

2

(0; T ;H

2;0

(


c

));

m

"�

ij

; _m

"�

ij

! m

�

ij

; _m

�

ij

weakly in L

2

(Q

c

); i; j = 1; 2:

Then the relations (5.230){(5.231) result in the following identity and equa-

tions:

�(m

�

ij

; �v

;ij

)

c

= (f; �v)

c

8�v 2 L

2

(0; T ;H

2;0

(


c

)); (5:232)

_m

�

ij

+ v

�

;ij

+

1

�

p(m

�

)

ij

= 0; i; j = 1; 2: (5:233)

Similarly to (5.205) we can derive

kv

�

;ij

k

L

2

(0;T ;L

1

(


c

))

� c; i; j = 1; 2: (5:234)

By Lemma 5.2, from (5.234) it follows that

kv

�

k

L

2

(0;T ;W

2

1

(


c

))

� c (5:235)

with the constant uniform in �. It is known that for a bounded domain

D � R

2

with the Lipschitz boundary the imbedding W

1

1

(D) � L

2

(D) is

continuous. Consequently, if subdomains 


1

;


2

are chosen as those in

Lemma 5.2 we �nd for each v 2W

2

1

(


c

),

2

X

i=1

kv

;i

k

W

1

1

(


c

)

=

2

X

i=1

kv

;i

k

W

1

1

(


1

)

+

2

X

i=1

kv

;i

k

W

1

1

(


2

)

(5:236)



340 Analysis of cracks in solids

� c

�

2

X

i=1

kv

;i

k

L

2

(


1

)

+

2

X

i=1

kv

;i

k

L

2

(


2

)

�

� c

2

X

i=1

kv

;i

k

L

2

(


c

)

:

The same reasoning provides the inequality

kvk

W

1

1

(


c

)

� c kvk

L

2

(


c

)

: (5:237)

By (5.236){(5.237), the estimate (5.235) implies

kv

�

k

L

2

(0;T ;H

1;0

(


c

))

� c (5:238)

and, besides, the inequality (5.234) gives

kv

�

;ij

k

L

2

(0;T ;M

1

(


c

))

� c; i; j = 1; 2: (5:239)

So, we have the following estimate,

T

Z

0

�
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�

k

2

0;c

+ k _m

�

k

2

0;c

+ km

�

ij;ij

k

2

0;c

+ kv

�

k

2

1;c

+

2

X

i;j=1;2

kv

�

;ij

k

2

M

1

(


c

)

�

� c;

which allows us to choose a subsequence still denoted by v

�

;m

�

such that

as � ! 0

v

�

! v weakly in L

2

(0; T ;H

1;0

(


c

));

m

�

ij

; _m

�

ij

! m

ij

; _m

ij

weakly in L

2

(Q

c

); i; j = 1; 2;

v

�

;ij

! v

;ij

? {weakly in L

2

(0; T ;M

1

(


c

)); i; j = 1; 2;

m

�

(T ) ! m(T ) weakly in L

2

(


c

);

m

�

ij;ij

! m

ij;ij

weakly in L

2

(Q

c

):

Here, the last line is a corollary of the equation

�m

�

ij;ij

= f (5:240)

holding in Q

c

in the sense of distributions.

The required identity (5.218) is readily derived from (5.232). The equa-

tions (5.233) give

( _m

�

ij

; �m

ij

�m

ij

)

c

+ (v

�

;ij

; �m

ij

�m

�

ij

)

c

� 0 (5:241)

8 �m 2 L

2

(0; T ;U (


c

)); �m(t) 2 K; t 2 (0; T ):

For each �m 2 L

2

(0; T ;U (


c

)) we have

(v

�

;ij

; �m

ij

)

c

= (v

�

; �m

ij;ij

)

c

: (5:242)

By (5.240), the equation
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�m

ij;ij

= f (5:243)

holds inQ

c

. Consequently, in view of (5.232), (5.233) the following equalities

hold:

�(m

�

ij

; v

�

;ij

)

c

= (f; v

�

)

c

= �(m

ij;ij

; v

�

)

c

: (5:244)

Relations (5.242), (5.244) allow us to rewrite (5.241) in the form

( _m

�

ij

; �m

ij

�m

�

ij

)

c

+ (v

�

; �m

ij;ij

�m

ij;ij

)

c

� 0 (5:245)

8 �m 2 L

2

(0; T ;U (


c

)); �m(t) 2 K; t 2 (0; T ):

Passage to the limit as � ! 0 can be ful�lled in (5.245) as in (5.209). As a

result we easily arrive at (5.219). In a regular way the inclusion m(t) 2 K,

t 2 (0; T ); follows.

The second boundary condition (5.214) and the conditions (5.215) are

involved in (5.218). This means that those conditions hold at any point of

�, �

�

c

, respectively, provided the solution v, m

ij

is smooth enough. The

statement can be veri�ed by integrating by parts. Theorem 5.7 is proved.

5.5 Contact elastoplastic problem for

the curvilinear Kirchho� rod

5.5.1 Formulation of the problem

Let the rod axis be described by the functions x = a(�), y = b(�), � 2 I,

I = (0; 1), and the rigid punch surface be de�ned as  (x; y) = 0 (see Fig.5.1).

We assume that a bounded domain G � R

2

is chosen such that the curve

x = a(�), y = b(�), � 2 I, belongs to G. Moreover, we assume that the

surface line  (x; y) = 0 is smooth and divides G into two subdomains with

the properties  (x; y) > 0 for the �rst part and  (x; y) < 0 for the second

one. Let v = v(�), w = w(�) be tangential and normal displacements of

the rod, respectively, m = m(�) be the bending moment, and n = n(�) be

the stress integrated across the rod.

Fig.5.1. Curvilinear rod and the punch shape



342 Analysis of cracks in solids

A linear approximation for the nonpenetration condition between the

rod and rigid punch can be written as follows:

 (a(�); b(�)) +r (a(�); b(�)) ��

�

v(�)

w(�)

�

� 0; (5:246)

r = ( 

x

;  

y

); � =

1

�

�

a

�

�b

�

b

�

a

�

�

; � =

p

a

2

�

+ b

2

�

:

On the segment I we want to �nd the functions v; w;m; n; �; �, which satisfy

the inequality (5.246) and the following relations:

(n

�

+ km

�

+ g�)(�v� v) +

��

1

�

m

�

�

�

� k�n+ f�

�

( �w�w) � 0; (5:247)

v

�

+ k�w = c

1

�n+ �; (5:248)

(kv)

�

�

�

1

�

w

�

�

�

= c

2

�m+ �; (5:249)

�(n;m) � 0; (5:250)

�(�n� n) + �( �m �m) � 0 8(�n; �m); �(�n; �m) � 0; (5:251)

v = w = w

�

= 0; � = 0; 1: (5:252)

The inequality (5.247) should be ful�lled for all functions (�v; �w) satisfying

the restriction (5.246) and the boundary conditions (5.252). The function

� : R

2

! R describes the plastic yield condition. We assume � to be convex

and continuous. The relations (5.248), (5.249) give the representations of

the mid-axis strains of the rod and the curvature variations as the sum

of elastic and plastic parts; inequality (5.251) de�nes the direction of a

plastic strain vector (�; �) with respect to the yield surface �(n;m) = 0.

The functions g, f are the densities of exterior forces; c

1

, c

2

are positive

constants; k is the curvature of the line x = a(�), y = b(�).

Note that from (5.247) we obtain two equilibrium equations

n

�

+ km

�

+ g� = 0;

�

1

�

m

�

�

�

� k�n+ f� = 0

provided that there is no a contact between the punch and the rod (i.e.

the solution u;w satis�es a strict inequality (5.246)). Moreover, (5.248),

(5.249) imply the elastic constitutive law provided that there are no plastic

deformations, i.e. � = � = 0 (see the elastic shell model in Section 1.1.3).

In the sequel the values �g, �f , �k, c

1

�, c

2

� are denoted by g

1

, f

1

, k

1

,

�

1

, �

2

, respectively. Assume that the set

�

(n;m) 2 R

2

j �(n;m) � 0
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contains zero as its interior point, and g

1

; f

1

2 L

2

(I), k 2 H

1

(I), �

i

�

c

0

, i = 1; 2, c

0

being a positive constant,  2 H

2

(G), a; b 2 H

2

(I),

r (a(�); b(�)) 6= 0. Moreover we assume that there exists a solution n

0

;m

0

of the equations

n

0

�

+ km

0

�

+ g

1

= 0;

�

1

�

m

0

�

�

�

� k

1

n

0

+ f

1

= 0; (5:253)

satisfying the inclusion (1 + �)(n

0

;m

0

) 2 K, where

K =

�

(n;m) 2 L

2

(I) j �(n(x);m(x)) � 0 a.e. in I

	

;

� > 0 is a constant. The set of functions (v; w) 2 H

1

0

(I)�H

2

0

(I) satisfying

the inequality (5.246) is denoted by B. Here H

s

0

(I) is the completion of the

space C

1

0

(I) in the norm of H

s

(I), s = 1; 2. The results of sections 5.5{5.8

of this chapter can be partly found in (Khludnev, 1992, 1993a, 1993b).

5.5.2 Existence of the solution

Assuming a su�cient regularity of the solution to (5.247){(5.252), we can

deduce relations considered as a corollary from the exact formulation of

the problem. In what follows the theorem of existence of these relations is

established. Substituting the values �; � from (5.248), (5.249) in (5.251) and

summing the resulting inequality with (5.247), we obtain, after integration

over I,

�(n;m) � 0;  (a(�); b(�)) +r ��

�

v(�)

w(�)

�

� 0;

hn; �v

�

i + hm; (k�v)

�

i � hg

1

; �v � vi � hm;

�

1

�

�w

�

�

�

i

+ hk

1

n; �wi � hf

1

; �w �wi + h�

1

n; �n� ni � hk

1

w; �ni (5:254)

+ hv; �n

�

i+ h�

2

m; �m �mi+ hkv; �m

�

i+ hw;

�

1

�

�m

�

�

�

i � 0:

This inequality should be ful�lled for all su�ciently smooth functions (�n; �m);

�(�n; �m) � 0 and (�v; �w) 2 B. In the sequel the space of bounded measures

on I is denoted by M

1

(I).

Theorem 5.8. Let the above assumptions be ful�lled and at least one function

(v

0

; w

0

) 2 B can be found. Then, there exists a solution of the variational

inequality (5.254) such that n;m; v 2 L

2

(I), w 2 H

1

0

(I), v

�

,

�

�

�1

w

�

�

�

2

M

1

(I):

Proof. We introduce the penalty operator q : [L

2

(I)]

2

! [L

2

(I)]

2

connected with the set of functions (v; w) satisfying (5.62). Let � be the

operator of the orthogonal projection of the space

h

L

2

(I)

i

2

on the set K.
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Assume that p(n;m) = (n;m) � �(n;m). Consider the auxiliary bound-

ary problem containing three positive parameters "; �; � without stating the

dependence of the solution on these parameters:

�"v

��

� n

�

� km

�

+

1

�

q

1

(v; w) = g

1

; (5:255)

"w

����

�

�

1

�

m

�

�

�

+ k

1

n+

1

�

q

2

(vw) = f

1

; (5:256)

�

1

n� v

�

� k

1

w +

1

�

p

1

(n;m) = 0; (5:257)

�

2

m +

�

1

�

w

�

�

�

� (kv)

�

+

1

�

p

2

(n;m) = 0; (5:258)

v = w = w

�

= 0; � = 0; 1: (5:259)

Here, the components of the penalty operators are denoted by q

i

; p

i

, i = 1; 2.

To obtain a priori estimates, we multiply (5.255){(5.258) by v�v

0

, w�w

0

,

n� n

0

, m�m

0

, respectively, and integrate over I. Using the monotonicity

of the operator q and the equations (5.253), we arrive at the inequality

"kv

�

k

2

+ "kw

��

k

2

+

1

Z

0

(�

1

n

2

+ �

2

m

2

)d�+

1

�

hp(n;m); (n;m)� (n

0

;m

0

)i

� � hg

1

; v

0

i � hf

1

; w

0

i+ hn; v

0

�

i � hm;

�

1

�

w

0

�

�

�

i+ h�

1

n; n

0

i (5:260)

+ h�

2

m;m

0

i+ "hv

�

; v

0

�

i + "hw

��

; w

0

��

i + hk

1

n;w

0

i + hm; (kv

0

)

�

i:

It is easy to see that simple arguments allow us to deduce from (5.260) the

estimate

"kv

�

k

2

+ "kw

��

k

2

+ knk

2

+ kmk

2

� c

uniform in " � "

0

, �, �. This estimate and the properties of the operators

p; q admit the use of Theorem 1.14, so that the solution of (5.255){(5.259)

exists for all �xed ", �, �. In addition, we obtain from (5.260) one more

estimate

1

�

hp

1

; n� n

0

i+

1

�

hp

2

;m�m

0

i � c (5:261)

with the constant independent of " � "

0

, �, �. From here, it follows that

�

�1

p

1

, �

�1

p

2

are bounded in the space L

1

(I). Indeed, let us introduce the

functional H(n;m) = (2�)

�1

k(n;m)��(n;m)k

2

. Its derivative at the point

(n;m) is calculated by the formula H

0

(n;m) = �

�1

(p

1

(n;m); p

2

(n;m)) (see

Khludnev, Sokolowski, 1997). It follows from the assumption on the solution

(n

0

;m

0

) that (n

0

;m

0

) + (�n; �m) 2 K provided that k(�n; �m)k

L

1

(I)

�  and
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 > 0 is su�ciently small. The convexity of the functional H provides the

inequality

hH

0

(n;m); (�n; �m)i � hH

0

(n;m); (n;m)� (n

0

;m

0

)i

+H((n

0

;m

0

) + (�n; �m))�H(n;m):

According to the above arguments, we have H((n

0

;m

0

) + (�n; �m)) = 0. Be-

sides, by (5.261), the right-hand side of the obtained inequality is bounded

from above and nonnegative. Therefore

1

�

kp

1

k

L

1

(I)

+

1

�

kp

2

k

L

1

(I)

� c

uniformly in " � "

0

, �, �. This estimate is among the major ones, and on its

basis it is possible to obtain the estimates for v, w. Namely, from (5.257),

(5.258) and the boundedness of n, m in L

2

(I), it follows that v

�

+ k

1

w,

�

�

�1

w

�

�

�

�(kv)

�

are bounded in L

1

(I) uniformly in " � "

0

, �, �. Following

these considerations, we can show that v are bounded in L

1

(I) and w are

bounded in H

1

0

(I). Actually, (5.257), (5.258) can be written as follows,

v

�

+ k

1

w = b

1

;

�

1

�

w

�

� kv

�

�

= b

2

; (5:262)

where b

1

; b

2

are the functions bounded in L

1

(I) uniformly in the parameters.

From the �rst equation of (5.262) one has

v(�) = �

�

Z

0

(k

1

w � b

1

)d�;

and from the second equation we obtain

1

�

w

�

� kv = b

3

; (5:263)

where b

3

are bounded in W

1

1

(I).

Substituting the values of v(�) in (5.263), we have

w

�

+ k

1

�

Z

0

(k

1

w � b

1

)d� = b

3

�:

Multiplying this equation by w and integrating, we obtain that w are

bounded in L

2

(I). Consequently, v are bounded in H

1

0

(I). Thus, the fol-

lowing a priori estimate holds,

kvk+ kwk

1

+ knk+ kmk � c; (5:264)
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which is uniform in " � "

0

, �, �. Besides, by the continuous imbedding

L

1

(I) �M

1

(I) and (5.262), we have one more estimate,

kv

�

k

M

1

(I)

+ k

�

1

�

w

�

�

�

k

M

1

(I)

� c: (5:265)

Now, it is possible to realize a passage to the limit as follows: " ! 0,

� ! 0, �! 0. Every time, when justifying the next passage to the limit, the

solution is to be supplied with the appropriate index without mentioning the

dependence on the other parameters. Denote the solution of the problem

(5.255){(5.259) by v

"

, w

"

, n

"

, m

"

. It follows from the estimates (5.264),

(5.265) and the boundedness of

p

"v

�

,

p

"w

��

in L

2

(I) that a subsequence

can be chosen (denoted as previously) such that as "! 0

n

"

;m

"

! n

�

;m

�

weakly in L

2

(I); v

"

! v

�

strongly in L

2

(I);

"v

"

! 0 strongly in H

1

0

(I); "w

"

! 0 strongly in H

2

0

(I);

w

"

! w

�

weakly in H

1

0

(I); strongly in L

2

(I);

v

"

�

! v

�

�

;

�

1

�

w

"

�

�

�

!

�

1

�

w

�

�

�

�

? { weakly in M

1

(I):

Here, the strong convergence of v

"

is a consequence of the compact imbed-

ding of the space fu 2 L

2

(I); u

�

2 M

1

(I)g in L

2

(I) (see Giusti, 1984).

It should be noted that the solution v

"

, w

"

, n

"

, m

"

satisfy the equations

(5.255){(5.258) in the sense of identities

h"v

"

�

+ n

"

; �v

�

i+ hm

"

; (k�v)

�

i+ h

1

�

q

1

(v

"

; w

"

)� g

1

; �vi = 0;

"hw

"

��

; �w

��

i � hm

"

;

�

1

�

�w

�

�

�

i+ hk

1

n+

1

�

q

2

(v

"

; w

"

)� f

1

; �wi = 0;

hv

"

; �n

�

i+ h�

1

n

"

� k

1

w

"

+

1

�

p

1

(n

"

;m

"

); �ni = 0;

hw

"

;

�

1

�

�m

�

�

�

i+ hkv

"

; �m

�

i+ h�

2

m

"

+

1

�

p

2

(n

"

;m

"

); �mi = 0:

These identities are ful�lled for all functions

�v 2 H

1

0

(I); �w 2 H

2

0

(I); �n 2 H

1

(I); �m 2 H

2

(I):

Besides, it can be assumed that

q(v

"

; w

"

) ! q(v

�

; w

�

) strongly in L

2

(I);

p(n

"

;m

"

) ! �

�

weakly in L

2

(I):
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It is clear that the above convergence allows us to justify a passage to the

limit as "! 0 in the identities. As a result, we arrive at the relations

hn

�

; �v

�

i + hm

�

; (k�v)

�

i+ h

1

�

q

1

(v

�

; w

�

)� g

1

; �vi = 0;

�hm

�

;

�

1

�

�w

�

�

�

i+ hk

1

n

�

+

1

�

q

2

(v

�

; w

�

)� f

1

; �wi = 0; (5:266)

hv

�

; �n

�

i+ h�

1

n

�

� k

1

w

�

+

1

�

p

1

(n

�

;m

�

); �ni = 0;

hw

�

;

�

1

�

�m

�

�

�

i + hkv

�

; �m

�

i+ h�

2

m

�

+

1

�

p

2

(n

�

;m

�

); �mi = 0:

These identities hold for the functions �v, �w, �n, �m from the same spaces

as above. The equality �

�

= p(n

�

;m

�

) is justi�ed by the monotonicity

arguments.

Now let us pass to the limit as � ! 0. From the sequence v

�

, w

�

, n

�

,

m

�

, we choose a subsequence possessing the following properties:

n

�

;m

�

! n

�

;m

�

weakly in L

2

(I);

w

�

! w

�

weakly in H

1

0

(I); strongly in L

2

(I);

v

�

! v

�

strongly in L

2

(I); q(v

�

; w

�

) ! q(v

�

; w

�

) strongly in L

2

(I);

v

�

�

! v

�

�

;

�

1

�

w

�

�

�

�

!

�

1

�

w

�

�

�

�

? {weakly in M

1

(I):

From the �rst two identities (5.266), we have

hn

�

; �v

�

i + hm

�

; (k�v)

�

i+ h

1

�

q

1

(v

�

; w

�

) � g

1

; �vi = 0; (5:267)

�hm

�

;

�

1

�

�w

�

�

�

i+ hk

1

n

�

+

1

�

q

2

(v

�

; w

�

) � f

1

; �wi = 0:

Substituting �n�n

�

, �m�m

�

as the test functions into the third and the fourth

identities of (5.266), respectively, where (�n; �m) 2K, �n 2 H

1

(I), �m 2 H

2

(I),

and taking into account the monotonicity of p, we arrive at the following

relation:

hv

�

; �n

�

� n

�

�

i+ h�

1

n

�

� k

1

w

�

; �n� n

�

i+ h�

2

m

�

; �m�m

�

i (5:268)

+ hw

�

;

�

1

�

( �m

�

�m

�

�

)

�

�

i+ hkv

�

; �m

�

�m

�

�

i � 0:

The expression hv

�

; n

�

�

i+ hkv

�

;m

�

�

i appearing in (5.268) makes sense, and,

moreover, it is possible to pass to the limit in the written terms as � ! 0.

Actually, these terms can be written as hv

�

; n

�

�

+ km

�

�

i. At the same time,
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it follows from the �rst equation of (5.266) that the function n

�

�

+ km

�

�

�

n

�

�

+ (km

�

)

�

� k

�

m

�

is bounded in the space L

2

(I) (generally speaking,

nonuniformly in �). Consequently, a subsequence can be chosen such that

as � ! 0

n

�

�

+ km

�

�

! n

�

�

+ km

�

�

weakly in L

2

(I):

Since v

�

converge to v

�

strongly in L

2

(I), the above arguments prove the

possibility of passage to the limit in the term hv

�

; n

�

�

+km

�

�

i. A similar jus-

ti�cation can be used to prove the convergence in the term hw

�

;

�

�

�1

m

�

�

�

�

i

of (5.268). In fact, it follows from the second equation of (5.266) that

�

�

�1

m

�

�

�

�

is bounded in L

2

(I) (generally speaking, nonuniformly in �).

Therefore, one can assume that as � ! 0

�

1

�

m

�

�

�

�

!

�

1

�

m

�

�

�

�

weakly in L

2

(I):

In view of the above convergence of w

�

we obtain the desired property

hw

�

;

�

1

�

m

�

�

�

�

i ! hw

�

;

�

1

�

m

�

�

�

�

i:

It is clear that

lim inf

� ! 0

h�

1

n

�

; n

�

i � h�

1

n

�

; n

�

i; lim inf

� ! 0

h�

2

m

�

;m

�

i � h�

2

m

�

;m

�

i:

Thus, from (5.268) we can derive that

hv

�

; �n

�

� n

�

�

i+ h�

1

n

�

� k

1

w

�

; �n� n

�

i+ h�

2

m

�

; �m�m

�

i (5:269)

+ hw

�

;

�

1

�

( �m

�

�m

�

�

)

�

�

i+ hkv

�

; �m

�

�m

�

�

i � 0:

In addition, we have the inclusion (n

�

;m

�

) 2 K which can be proved from

the two last equations of (5.266) in a standard way.

In conclusion we shall pass to the limit as �! 0. Let a subsequence v

�

,

w

�

, n

�

, m

�

possess the property

n

�

;m

�

! n;m weakly in L

2

(I); w

�

! w weakly in H

1

0

(I);

v

�

! v strongly in L

2

(I);

v

�

�

! v

�

;

�

1

�

w

�

�

�

�

!

�

1

�

w

�

�

�

? {weakly in M

1

(I):

We take (�v; �w) 2 B and substitute �v � v

�

, �w � w

�

as test functions in

(5.267). The terms containing the derivatives of n

�

, m

�

in the �rst equation

of (5.267) are to be written down as follows, hn

�

�

+ km

�

�

; �v � v

�

i. As it was

mentioned, the functions n

�

�

+km

�

�

belong to the space L

2

(I), i.e. the scalar
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product makes sense. Analogously, in the second equation of (5.267) after

substitution of �w�w

�

as a test function, the term containing the derivative

of m

�

can be written as h

�

�

�1

m

�

�

�

�

; �w � w

�

i. Summing the obtained

relations with (5.269) and using the monotonicity of q, we therefore obtain

hn

�

; �v

�

i+ hm

�

; (k�v)

�

i � hg

1

; �v � v

�

i+ hk

1

n

�

; �wi � hm

�

;

�

1

�

�w

�

�

�

i

� hf

1

; �w� w

�

i+ h�

1

n

�

; �n� n

�

i � hk

1

w

�

; �ni+ hv

�

; �n

�

i

+ h�

2

m

�

; �m�m

�

i + hw

�

;

�

1

�

�m

�

�

�

i+ hkv

�

; �m

�

i � 0:

If the term h�

1

n

�

; n

�

i+h�

2

m

�

;m

�

i is transferred into the right-hand side of

this inequality and we pass to the lower limit, the inequality (5.254) follows.

Let us show that the functions v, w satisfy the restriction (5.246). Ac-

tually, q(v

�

; w

�

) ! q(v; w) strongly in L

2

(I). Meanwhile it follows from

(5.267) that q(v

�

; w

�

)! 0 strongly in H

�1

(I) �H

�2

(I), which proves the

assertion. Theorem 5.8 is completely proved.

5.5.3 The perfectly plastic problem

Let us consider the case of contact between a perfectly plastic rod and a rigid

punch. This corresponds to the case when c

1

= c

2

= 0 in (5.247){(5.252)

or, equivalently, when �

1

= �

2

= 0.

Theorem 5.9. Let all the assumptions of Theorem 5.8 be ful�lled and also

the set f(n;m) 2 R

2

j �(n;m) � 0g be bounded in R

2

. Then there exists

a solution of the variational inequality (5.254) when �

1

= �

2

= 0.

Proof. Consider the auxiliary problem (5.255){(5.259)with �

1

= �

2

=

0. The inequality (5.260) can be written as follows:

"kv

�

k

2

+ "kw

��

k

2

+

1

�

(knk

2

+ kmk

2

)

�

1

�

h�(n;m); (n;m)� (n

0

;m

0

)i+

1

�

h(n;m); (n

0

;m

0

)i � hg

1

; v

0

i � hf

1

; w

0

i

+ hn; v

0

�

i � hm;

�

1

�

w

0

�

�

�

i + "hv

�

; v

0

�

i+ "hw

��

; w

0

��

i

+ hk

1

n;w

0

i + hm; (kv

0

)

�

i:

It is obvious that in the case under consideration the elements �(n;m) are

bounded in L

2

(I). Therefore, from the obtained inequality it follows that

"kv

�

k

2

+ "kw

�

k

2

+ knk

2

+ kmk

2

� c (5:270)

uniformly in " � "

0

, �, �. The estimate (5.270) provides the solvability of

the problem (5.255){(5.259) for �xed ", �, �. Besides, it is possible to obtain
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estimates (5.264){(5.265) uniformly in " � "

0

, � � �

0

, �. We then pass to

the limit as " ! 0, � ! 0, � ! 0 following the lines of those of Theorem

5.8. As a result we conclude that the limiting functions v, w, n, m satisfy

the relations

(n;m) 2 K; (v; w) 2 L

2

(I) �H

1

0

(I); v

�

;

�

1

�

w

�

�

�

2M

1

(I);

 (a(�); b(�)) +r ��

�

v(�)

w(�)

�

� 0; (5:271)

hn; �v

�

i+ hm; (k�v)

�

i � hg

1

; �v � vi+ hk

1

n; �wi � hm;

�

1

�

�w

�

�

�

i

+ hf

1

; �w� wi � hk

1

w; �ni+ hv; �n

�

i+ hw;

�

1

�

�m

�

�

�

i+ hkv; �m

�

i � 0

8(�v; �w) 2 B; 8(�n; �m) 2 K; �n 2 H

1

(I); �m 2 H

2

(I):

This completes the proof of Theorem 5.9.

After all, we can get the answer to the question on the convergence for

solutions of the elastoplastic problem to a solution of the perfectly plastic

problem provided that the assumptions of Theorem 5.9 are ful�lled. To this

end, consider the problem (5.255){(5.259), where ��

1

and ��

2

are used

instead of �

1

and �

2

, � > 0. A priori estimates are of the same form as in

the case of the perfectly plastic problem. It is important to note that the

estimates are uniform not only in " � "

0

, � � �

0

, �, but also in � � �

0

. For

each �xed � it is possible to pass to the limit as " ! 0, � ! 0, � ! 0 in

(5.255){(5.259) and to derive, therefore, that the solution v

�

, w

�

, n

�

, m

�

satis�es the inequality

�h�

1

n

�

; �n� n

�

i � hk

1

w

�

; �ni + hm

�

; (k�v)

�

i+ �h�

2

m

�

; �m�m

�

i

+ hn

�

; �v

�

i � hg

1

; �v � v

�

i � hm

�

;

�

1

�

�w

�

�

�

i + hk

1

n

�

; �wi (5:272)

�hf

1

�w � w

�

i+ hv

�

; �n

�

i+ hw

�

;

�

1

�

�m

�

�

�

i+ hkv

�

; �m

�

i � 0

8(�n; �m) 2 K; �n 2 H

1

(I); �m 2 H

2

(I); 8(�v; �w) 2 B:

In the case under study the functions v

�

, w

�

are bounded in L

2

(I), H

1

0

(I),

respectively, and v

�

�

,

�

�

�1

w

�

�

�

�

are bounded in M

1

(I) uniformly in �.

Moreover, the functions n

�

, m

�

are bounded in L

2

(I). Then, suppose that

a subsequence v

�

, w

�

, n

�

, m

�

, denoted as before, possesses the properties

n

�

; m

�

! n; m weakly in L

2

(I);

w

�

! w weakly in H

1

0

(I); v

�

! v strongly in L

2

(I); (5:273)
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v

�

�

! v

�

;

�

1

�

w

�

�

�

�

!

�

1

�

w

�

�

�

? {weakly inM

1

(I):

We transfer the term �h�

1

n

�

; n

�

i+ �h�

2

m

�

;m

�

i to the right-hand side of

(5.272). It can be ignored, due to its nonnegativeness, and then, we can pass

to the limit in the inequality obtained as �! 0. As a result, the inequality

(5.271) follows. We have proved the following assertion.

Theorem 5.10. Let all the assumption of Theorem 5.9 be ful�lled. Then,

from the solutions v

�

, w

�

, n

�

, m

�

of the elastoplastic contact problem

(5.272) we can choose a subsequence converging to a solution of perfectly

plastic problem in the sense (5.273).

Note that di�erent perfectly plastic models for three dimensional case

are considered in (Mosolov, Myasnikov, 1971).

5.6 Contact elastoplastic problem for

the curvilinear Timoshenko rod

In this section we analyse the contact problem for a curvilinear Timoshenko

rod. The plastic yield condition will depend just on the moments m. We

shall prove that the solution of the problem satis�es all original boundary

conditions, i.e., in contrast to the preceding section, we prove existence of

the solution to the original boundary value problem.

5.6.1 Existence of the solution

We shall use the notation of the preceding section. The nonpenetration

condition in a linear approach is written in the form

 (a(�); b(�)) + (r (a(�); b(�));�h(�)) � 0; � 2 I; (5:274)

where

� =

1

�

�

a

�

�b

�

b

�

a

�

�

; � =

p

a

2

�

+ b

2

�

; h =

�

v

w

�

:

The brackets ( � ; � ) mean a scalar product in R

2

. On the interval I it is

required to �nd the functions v, w, m, n, � such that

(n

�

+ km

�

)(�v � v) +

��

1

�

m

�

�

�

� k�n

�

( �w � w) � 0; (5:275)

v

�

+ k�w = �n; (5:276)

(kv)

�

�

�

1

�

w

�

�

�

= �

�

1

�

m

�

�

�

+ �; (5:277)

jmj � C

?

; (5:278)
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�( �m �m) � 0 8 �m; j �mj � C

?

; (5:279)

v = w = m = 0; � = 0; 1: (5:280)

The test functions h =

�

�v

�w

�

in (5.275) should satisfy the restriction

(5.274). The function k 2 W

1

1

(I) is given (the curvature of the rod). We

assume also  2 H

4

(G), r (a(�); b(�)) 6= 0, � 2 I, C

?

= const > 0.

Comparison of the models (5.247){(5.251) and (5.275){(5.279) show that

equation (5.277) does not coincide with (5.249). Relations (5.278), (5.279)

can be considered as a particular case of (5.250), (5.251).

The set of all functions h =

�

v

w

�

from H

1

0

(I) satisfying (5.274)

is denoted by B

 

. We suppose that there exists at least one function

�

v

0

w

0

�

2 B

 

. To avoid the trivial solution of the problem (5.274){(5.280)

the assumption

�

0

0

�

62 B

 

is used. Also, let

K = fm 2 H

1

0

(I) j jmj � C

?

on Ig: (5:281)

Theorem 5.11. Let the above assumptions be ful�lled, a; b 2 H

2

(I), � � � >

0 on I, � = const, and the norm of k in W

1

1

(I) be small enough. Then

there exist functions v, w, m, n, �, satisfying (5.276){(5.277) as well as the

relations

�

v

w

�

2 B

 

; m 2 K; n 2 L

2

(I); � 2 H

�1

(I); (5:282)

hn

�

+km

�

; �v�vi+h

�

1

�

m

�

�

�

�k�n; �w�wi � 0 8

�

�v

�w

�

2 B

 

; (5:283)

h�; �m�mi � 0 8 �m 2 K: (5:284)

Proof. Let (q

1

; q

2

) : [L

2

(I)]

2

! [L

2

(I)]

2

be the penalty operator con-

nected with the restriction (5.274), p(m) = m��m, where � is the operator

of orthogonal projection of L

2

(I) onto the set fm 2 L

2

(I) j jmj � C

?

g.

We introduce three positive parameters ", �, � and consider the regularized

problem

�"v

��

� n

�

� km

�

+

1

�

q

1

(v; w) = 0; (5:285)

�"w

��

�

�

1

�

m

�

�

�

+ k�n+

1

�

q

2

(v; w) = 0; (5:286)

�n� v

�

� k�w = 0; (5:287)

�(kv)

�

+

�

1

�

w

�

�

�

�

�

1

�

m

�

�

�

+

1

�

p(m) = 0; (5:288)



Cracks in elastoplastic bodies 353

v = w = m = 0; � = 0; 1: (5:289)

To obtain a priori estimates of the problem (5.285){(5.289) we multiply

(5.285){(5.288) by v � v

0

, w � w

0

, n, m, respectively. Taking into account

the monotonicity of the operators (q

1

; q

2

), p, one can derive

"kv

�

k

2

+ "kw

�

k

2

+ k

p

�nk

2

+ k

1

p

�

m

�

k

2

� c; (5:290)

1

�

hp(m);mi � c (5:291)

with the constants c uniform in " � "

0

, �, �.

In view of the properties of p, one has

1

�

hp(m); �m �mi � 0 8 �m 2 K: (5:292)

Therefore, by (5.291), we obtain �

�1

hp(m); �mi � c 8 �m 2 K: Consequently,

1

�

kp(m)k

H

�1

(I)

� c (5:293)

uniformly in " � "

0

, �, �. In view of the boundary conditions for v, w, m

one can conclude that all assumptions of Theorem 1.14 are ful�lled, and the

solvability of the problem (5.285){(5.289) for the �xed parameters can be

stated. This means that the functions v, w, m 2 H

1

0

(I), n 2 L

2

(I) exist

such that the equations (5.285){(5.288) hold. Moreover, by (5.290), (5.293)

and the boundary conditions (5.289), from (5.287), (5.288) we obtain one

more estimate

kv

�

k+ k

1

p

�

w

�

k � c: (5:294)

The assumption of the smallness of k in the space W

1

1

(I) is used to obtain

(5.294). Indeed, with this assumption, from (5.287), (5.288) we have

v

�

+ k�w 2 L

2

(I); �(�w

�

)

�

+ (kv)

�

2 H

�1

(I);

and therefore the estimate (5.294) follows.

Let us show that the passages to the limit as "! 0, �! 0, � ! 0 can be

justi�ed. At every step the solution is supplied with the appropriate symbol

without mentioning the dependence of the solution on the other parameters.

So, let v

"

, w

"

, m

"

, n

"

be the solution of the problem (5.285){(5.289).

By the estimates obtained we can choose a subsequence, with the previous

notation, such that as "! 0

v

"

; w

"

; m

"

! v

�

; w

�

; m

�

weakly in H

1

0

(I); strongly in L

2

(I);

n

"

! n

�

weakly in L

2

(I):
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Passing to the limit in (5.285){(5.288) as "! 0 we have

v

�

; w

�

; m

�

2 H

1

0

(I); n

�

2 L

2

(I);

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; (5:295)

�

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0; (5:296)

�n

�

� v

�

�

� k�w

�

= 0; (5:297)

�(kv

�

)

�

+

�

1

�

w

�

�

�

�

�

�

1

�

m

�

�

�

�

+

1

�

p(m

�

) = 0: (5:298)

The passage to the limit in the nonlinear terms can be justi�ed using the

strong convergence of v

"

, w

"

, m

"

. Now we can choose a subsequence v

�

,

w

�

, m

�

such that as �! 0

v

�

; w

�

; m

�

! v

�

; w

�

; m

�

weakly in H

1

0

(I);

v

�

; w

�

! v

�

; w

�

strongly in L

2

(I); n

�

! n

�

weakly in L

2

(I);

1

�

p(m

�

) ! �

�

weakly in H

�1

(I):

It is clear that after the passage to the limit in (5.295){(5.298) we arrive at

the relations

v

�

; w

�

2 H

1

0

(I); m

�

2 K; n

�

2 L

2

(I); � 2 H

�1

(I); (5:299)

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; (5:300)

�

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0; (5:301)

�n

�

� v

�

�

� k�w

�

= 0; (5:302)

�(kv

�

)

�

+

�

1

�

w

�

�

�

�

�

�

1

�

m

�

�

�

�

+ �

�

= 0; (5:303)

h�

�

; �m�m

�

i � 0 8 �m 2 K: (5:304)

The inclusion m

�

2 K was obtained from (5.298). Now, let us pass to the

limit as � ! 0. Choosing a subsequence, if necessary, we assume as � ! 0

that

v

�

; w

�

; m

�

! v; w; m weakly in H

1

0

(I);

n

�

! n weakly in L

2

(I); �

�

! � weakly in H

�1

(I):
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Multiplying (5.300), (5.301), (5.302) by �v�v

�

, �w�w

�

, n

�

, respectively, and

integrating over I, the following relations are obtained:

hn

�

�

+ km

�

�

; �v � v

�

i+ h

�

1

�

m

�

�

�

�

� k�n

�

; �w �w

�

i � 0; (5:305)

h

�

1

�

m

�

�

�

�

+ (kv

�

)

�

�

�

1

�

w

�

�

�

�

; �m�m

�

i � 0; (5:306)

h�n

�

; n

�

i � hv

�

�

; n

�

i � hk�w

�

; n

�

i = 0: (5:307)

In doing so, we have taken into account (5.303), (5.304). Summing relations

(5.305){(5.307), in view of the weak lower semicontinuity of the norm in

L

2

(I) the passage to the limit can be ful�lled. The limiting relation for

v, w, m, n can be written as (5.305){(5.306). The passage to the limit in

(5.302) is obvious. The inclusion

�

v

w

�

2 B

 

is proved in a standard way.

Therefore, we obtain the relations (5.276), (5.277), (5.282){(5.284).

We should note that the uniqueness of m, n can be proved in (5.276),

(5.277), (5.282){(5.284). To verify this, it su�ces to derive the relation

for the di�erence of two possible solutions. The proof Theorem 5.11 is

completed.

5.6.2 Construction of a measure

In this subsection we construct a nonnegative measure characterizing the

work of interacting forces. The measure is de�ned on the Borel subsets of

I. The space of continuous functions de�ned on I with compact supports

is denoted by C

0

(I).

Theorem 5.12. A nonnegative measure �

 

can be de�ned on the �-algebra

of Borel subsets of I such that the representation

hn

�

+ km

�

; �vi+ h

�

1

�

m

�

�

�

� k�n; �wi =

1

Z

0

(r ;�

�

h)d�

 

(5:308)

holds for all

�

h =

�

�v

�w

�

2 H

1

0

(I) \ C

0

(I).

Proof. We introduce the notation H =

�

n

�

+ km

�

(�

�1

m

�

)

�

� k�n

�

. Let

�

h =

�

�v

�w

�

2 H

1

0

(I) \ C

0

(I). For � = (r ;�

�

h) the functional

	(�) = �hH;

�

hi (5:309)

can be considered. This functional is de�ned on the linear space of all the

above functions �. We �rst prove that the functional is well de�ned by the
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formula (5.309). To this end, we note that, if h

0

2 H

1

0

(I) and (r ;�h

0

) � 0

a.e. on I, the inequality

�hH;h

0

i � 0 (5:310)

holds. Really, the inequality (5.283) can be written in the form

hH;

�

h� hi � 0 8

�

h 2 B

 

; (5:311)

where h =

�

v

w

�

is the solution satisfying (5.282){(5.284). Obviously,

h + h

0

2 B

 

. Substitute h + h

0

in (5.311) as the test function

�

h. We

obtain precisely (5.310). In particular, this fact provides a positiveness of

the functional (5.309). Furthermore, if �

1

� �

2

= 0, then 	(�

1

� �

2

) =

�hH;

�

h

1

�

�

h

2

i = 0, and hence 	(�

1

) = 	(�

2

). The correctness of the

de�nition (5.309) is proved. The functional (5.309) can be extended to the

space C

0

(I). Moreover, the extended functional is linear and positive. This

means that a nonnegative measure �

 

exists such that (Landkof, 1966)

	(�) =

1

Z

0

�d�

 

8� 2 C

0

(I): (5:312)

The representation (5.312) coincides with (5.308) for � = (r ;�

�

h),

�

h 2

H

1

0

(I) \ C

0

(I). Theorem 5.12 is proved.

It is easy to build an explicit representation for the measure �

 

. Taking

�

h =

�

0

�w

�

it follows from (5.308) that

h

�

1

�

m

�

�

�

� k�n; �wi =

1

Z

0

(b

�

 

x

� a

�

 

y

) �w

�

d�

 

:

Hence

h

�

1

�

m

�

�

�

� k�n; �w(b

�

 

x

� a

�

 

y

)i =

1

Z

0

(b

�

 

x

� a

�

 

y

)

2

�

�wd�

 

: (5:313)

Similarly, taking

�

h =

�

�v

0

�

in (5.308) we �nd

�hn

�

+ km

�

; �v(a

�

 

x

+ b

�

 

y

)i =

1

Z

0

(a

�

 

x

+ b

�

 

y

)

2

�

�vd�

 

: (5:314)

Let us take �v = �w in (5.313), (5.314) and sum these relations. This implies

�hn

�

+ km

�

; �v(a

�

 

x

+ b

�

 

y

)i+ h

�

1

�

m

�

�

�

� k�n; �v(b

�

 

x

� a

�

 

y

)i
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=

1

Z

0

�jr j

2

�vd�

 

:

Obviously �(H;�

?

r ) 2 H

�1

(I), where �

?

is the matrix conjugate to �.

Therefore, the previous equality can be written in the form

�h�(H;�

?

r ); �vi =

1

Z

0

�jr j

2

�vd�

 

;

whence we obtain the representation for the measure �

 

,

�

 

= �

(H;�

?

r )

jr j

2

:

The inequality  + (r ;�h) > 0 is valid at the points � 2 I where the

contact is absent. This means that the equations

n

�

+ km

�

= 0;

�

1

�

m

�

�

�

� k�n = 0 (5:315)

hold in the neighbourhoods of the mentioned points. This property follows

immediately from the inequality (5.283). Using the notation introduced

above, the equation (5.315) can be written in the form

H = 0:

There is no contact in the neighbourhoods of the points � = 0, � = 1 pro-

vided that  (a(0); b(0)) > 0,  (a(1); b(1)) > 0. Consequently, the equation

H = 0 holds in the neighbourhoods of the points � = 0, � = 1. In particu-

lar, this implies that �

 

= 0 near � = 0, � = 1. Furthermore, the measure

of every compact M � I is �nite. Hence, the conditions  (a(0); b(0)) > 0,

 (a(1); b(1)) > 0 provide the validity of the inequality �

 

(I) < +1.

5.6.3 Optimal control problem

Let � � H

4

(G) be a convex, closed and bounded set such that every element

 2 � satis�es the following relations:

 (a(0); b(0)) > 0;  (a(1); b(1)) > 0; jr (a(�); b(�))j � 1; � 2 I:

It is assumed that for each  2 �, the level line  (x; y) = 0 divides G

into two subdomains such that  (x; y) > 0 for the �rst subdomain and

 (x; y) < 0 for the second one. We consider the cost functional

J( ) = km �m

0

k+ �

 

(I):
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The optimal control problem to be analysed is formulated as follows: to

�nd an element  2 � such that

J( ) � J(

�

 ) 8

�

 2 �: (5:316)

Theorem 5.13. Let the above hypotheses be ful�lled and ja

�

(�)j � c

0

on I

for a given c

0

= const > 0. Then a solution to problem (5.316) exists.

Proof. We choose a minimizing sequence  

i

, this sequence is obviously

bounded in H

4

(G). Without loss of generality we assume that as i!1

 

i

!  weakly in H

4

(G); strongly in C

2

(

�

G): (5:317)

One can solve the problem (5.274){(5.280) for every  =  

i

and �nd the

functions v

i

, w

i

, m

i

, n

i

, �

i

such that

h

i

=

�

v

i

w

i

�

2 B

 

; m

i

2 K; n

i

2 L

2

(I); �

i

2 H

�1

(I); (5:318)

hH

i

;

�

h

i

� h

i

i � 0 8

�

h

i

2 B

 

i ; (5:319)

v

i

�

+ k�w

i

= �n

i

; (5:320)

(kv

i

)

�

�

�

1

�

w

i

�

�

�

= �

�

1

�

m

i

�

�

�

+ �

i

; (5:321)

h�

i

; �m�m

i

i � 0 8 �m 2 K: (5:322)

It can be proved (see Lemma 5.3 below) that for every

�

h 2 B

 

a sequence

�

h

i

2 B

 

i exists such that

�

h

i

!

�

h strongly in H

1

0

(I):

Let us substitute the elements of such a strongly converging sequence in

(5.319) as test functions and multiply simultaneously (5.320), (5.321) by

n

i

, �m �m

i

, respectively, �m 2 K. We �nd that v

i

, w

i

, m

i

are bounded in

H

1

0

(I), n

i

are bounded in L

2

(I), and �

i

are bounded in H

�1

(I). Therefore,

a subsequence (with the same notation) can be chosen such that as i!1

v

i

; w

i

; m

i

! v; w; m weakly in H

1

0

(I);

n

i

! n weakly in L

2

(I); �

i

! � weakly in H

�1

(I):

Thus, the passage to the limit can be justi�ed in (5.318){(5.322) using the

same scheme as above. As a result, we obtain the relations like (5.276),

(5.277), (5.282){(5.284). This means that v = v( ), w = w( ), m = m( ),

n = n( ), � = �( ). In view of the above weak convergence one has

H

i

! H weakly in H

�1

(I):
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Therefore

(H

i

;�

?

r 

i

)

jr 

i

j

2

!

(H;�

?

r )

jr j

2

weakly in H

�1

(I):

In particular, by the formula for �

 

obtained in the previous subsection,

this implies that �

 

i ! �

 

?{weakly as measures. Hence (Landkof, 1966)

lim inf �

 

i
(I) � �

 

(I):

Therefore, we have proved the weak lower semicontinuity of the functional

J . This provides that the function  is the solution of the optimal control

problem (5.316). Theorem 5.13 is completely proved.

Remark. The condition ja

�

j � c

0

of Theorem 5.13 actually means that

the equation of the rod axis could be written in the form y = F (x), where

F = ba

�1

.

When proving Theorem 5.13 the auxiliary statement on strong conver-

gence of

�

h

i

was used. Here we prove the statement.

Lemma 5.3. For every

�

h 2 B

 

a sequence

�

h

i

2 B

 

i can be constructed such

that

�

h

i

!

�

h strongly in H

1

0

(I)

provided that all hypotheses of Theorem 5.13 are ful�lled and  

i

converge to

 in the sense (5.317).

Proof. Let

�

h 2 B

 

, i.e.

 (a(�); b(�)) + (�

?

r (a(�); b(�));

�

h(�)) � 0; � 2 I:

By the convergence of  

i

, we can assume that at the curve points x = a(�),

y = b(�) the inequalities

j 

i

�  j <

1

2i

2

; j�

?

(r 

i

�r )k

�

hj <

1

2i

2

(5:323)

are ful�lled. There exists a constant � > 0 such that  (a(0); b(0)) > �,

 (a(1); b(1)) > �. Consequently, a constant � > 0 can be found such that

the inequalities

 

i

>

2

3

�; j(�

?

r 

i

;

�

h)j <

�

4

(5:324)

are valid on the intervals (0; �), (1��; 1). Let us take

�

h

i

=

�

h+i

�1

r 

i

�(�);

where �(�) is a smooth �nite function on I equal to sign a

�

(�) on (�; 1��),

j�(�)j � 1. Then for su�ciently large i the inequality

�

�

�

�

(�

?

r 

i

;r 

i

)

i

�

�

�

�

�

�

4

(5:325)

holds. Consequently, by (5.324), (5.325), the following inequality is valid

throughout the intervals (0; �), (1� �; 1):

 

i

+ (�

?

r 

i

;

�

h

i

) � 0: (5:326)
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The relation (5.326) is also valid beyond these intervals, because due to

(5.323) for su�ciently large i and � 2 (�; 1� �) one can obtain

 

i

+ (�

?

r 

i

;

�

h

i

) = ( 

i

�  ) +  + (�

?

r ;

�

h) + (�

?

(r 

i

�r );

�

h)

+

�(�)

i

(�

?

r 

i

;r 

i

) � �

1

i

2

+

�(�)a

�

(�)

�i

= �

1

i

2

+

c

0

�i

� 0:

This means that the inequality (5.326) takes place for all � 2 I, i.e.

�

h

i

2

B

 

i
. The strong convergence of

�

h

i

to

�

h is clear, which proves Lemma 5.3.

5.7 Viscoelastoplastic curvilinear

Timoshenko rod

5.7.1 Solution existence

Again, we use the notation of the two previous sections. Let the rod axes be

described by the functions x = a(�), y = b(�), � 2 I. The punch shape is

described by the equation  (x; y) = 0, Q = I � (0; T ), T > 0. We consider

the nonpenetration condition for the displacement vector h,

 (a(�); b(�)) + (r (a(�); b(�));�h(t; �)) � 0; (�; t) 2 Q; (5:327)

� =

1

�

�

a

�

�b

�

b

�

a

�

�

; h =

�

v

w

�

; � =

p

a

2

�

+ b

2

�

:

As compared to the previous section the constitutive law corresponds to the

viscoelastoplastic rod. The formulation of the problem is as follows. In the

domain Q we want to �nd the functions v, w, m, n, � satisfying (5.327) and

the relations

(n

�

+ km

�

)(�v � v) +

��

1

�

m

�

�

�

� k�n

�

( �w �w) � 0; (5:328)

v

�

+ k�w = �n

t

; (5:329)

(kv)

�

�

�

1

�

w

�

�

�

= �

�

1

�

m

t�

�

�

+ �; (5:330)

jmj � C

?

; �( �m �m) � 0 8 �m; j �mj � C

?

; (5:331)

m = 0; n = 0; t = 0; (5:332)

v = w = m = 0; � = 0; 1: (5:333)

The test functions

�

h =

�

�v

�w

�

in (5.328) should satisfy (5.327). Let k 2

W

1

1

(I),  2 H

2

(G), where G � R

2

is a bounded domain such that the

curve x = a(�), y = b(�) lies in G, � 2 I. The sets B � B

 

, K are



Cracks in elastoplastic bodies 361

introduced like those in the preceding section. We assume that there exist

functions v

0

, w

0

such that v

0

; w

0

2 B, v

0

xx

; w

0

xx

2 L

2

(I). For simplicity,

we assume that the exterior forces are zero. In doing so the assumption

(0; 0) 62 B is accepted, otherwise the functions v = 0, w = 0, m = 0, n = 0,

� = 0 provide the solution of the problem (5.327){(5.333). Now we are in a

position to prove the following statement.

Theorem 5.14. Let the above hypotheses be ful�lled, a; b 2 H

2

(I), � � � > 0

on I, � = const, and the norm of k in W

1

1

(I) be su�ciently small. Then

there exist functions v, w, m, n, � satisfying (5.329), (5.330), (5.332) and

the relations

m; m

t

2 L

1

(0; T ;H

1

0

(I)); n; n

t

2 L

1

(0; T ;L

2

(I));

v; w 2 L

2

(0; T ;H

1

0

(I));

� 2 L

2

(0; T ;H

�1

(I)); m(t) 2 K; (v(t); w(t)) 2 B a.e. on (0; T );

T

Z

0

hn

�

+ km

�

; �v � vidt +

T

Z

0

h

�

1

�

m

�

�

�

� k�n; �w� widt � 0

8�v; �w 2 L

2

(0; T ;H

1

0

(I)); (v(t); w(t)) 2 B;

T

Z

0

h�; �m�midt � 0 8 �m 2 L

2

(0; T ;H

1

0

(I)); �m 2 K:

Proof. Let the operators (q

1

; q

2

), p be the same as in the preceding

section. In the domainQ we consider the auxiliary boundary value problem

with three positive parameters ", �, �,

"v

t

� "v

��

� n

�

� km

�

+

1

�

q

1

(v; w) = 0; (5:334)

"w

t

� "w

��

�

�

1

�

m

�

�

�

+ k�n+

1

�

q

2

(v; w) = 0; (5:335)

�n

t

� v

�

� k�w = 0; (5:336)

�

�

1

�

m

t�

�

�

� (kv)

�

+

�

1

�

w

�

�

�

+

1

�

p(m) = 0; (5:337)

v = v

0

; w = w

0

; m = 0; n = 0; t = 0; (5:338)

v = w = m = 0; x = 0; 1: (5:339)

First of all the solvability of the problem (5.334){(5.339) is proved for �xed

", �, �. In the sequel the passages to limits as " ! 0, � ! 0, � ! 0 will

be justi�ed, which provide the proof of the theorem. Let us derive an a

priori estimate of the solution. To this end, we multiply (5.334){(5.337) by



362 Analysis of cracks in solids

v � v

0

, w � w

0

, n, m, respectively, integrate over I and sum. This implies

the inequality

1

2

d

dt

�

"kv(t)k

2

+ "kw(t)k

2

+ k�

�1=2

m

�

(t)k

2

+ k�

1=2

n(t)k

2

�

+

"

2

kv

�

(t)k

2

+

"

2

kw

�

(t)k

2

� "hv

t

(t); v

0

i+ "hw

t

(t); w

0

i (5:340)

+

1

2

k�

�

1

2

m

�

(t)k

2

+

1

2

k�

1

2

n(t)k

2

+ c

with the constant c uniform in " � "

0

, �, �. By integrating (5.340) we arrive

at the estimates

max

0�t�T

�

"kv(t)k

2

+ "kw(t)k

2

�

� c; (5:341)

k�

�1=2

m

�

k

L

2

(Q)

+ k�

1=2

nk

L

2

(Q)

� c; (5:342)

"kv

�

k

2

L

2

(Q)

+ "kw

�

k

2

L

2

(Q)

� c: (5:343)

As before, the constants in (5.341){(5.343) are uniform in " � "

0

, �, �.

Next, it follows from (5.334){(5.337) that

v

t

(0) = v

0

��

; w

t

(0) = w

0

��

; n

t

(0) 2 L

2

(I); m

t

(0) 2 H

2

(I): (5:344)

Now we can di�erentiate the equations (5.334){(5.337) with respect to t and

multiply by v

t

, w

t

, n

t

, m

t

, respectively. The penalty terms are nonnegative

and, therefore, they can be neglected. As a result, the following di�erential

inequality is derived:

1

2

d

dt

�

"kv

t

(t)k

2

+ "kw

t

(t)k

2

+ k�

�1=2

m

t�

k

2

+ k�

1=2

n

t

k

2

�

+ "kv

t�

(t)k

2

+ "kw

t�

(t)k

2

� 0:

Taking into account the initial conditions (5.344) we �nd

max

0�t�T

�

"kv

t

(t)k

2

+ "kw

t

(t)k

2

+ k�

�1=2

m

t�

(t)k

2

(5:345)

+ k�

1=2

n

t

(t)k

2

�

� c;

"kv

t�

k

2

L

2

(Q)

+ "kw

t�

k

2

L

2

(Q)

� c: (5:346)

Let us establish one more estimate. By the estimates obtained, it is seen

that the multiplication of (5.334){(5.337) by v � v

0

, w �w

0

, n, m provides

the boundedness of �

�1

hp(m);mi in L

2

(0; T ) uniformly in " � "

0

, �, �. Let

us choose a function m̂ 2 L

1

(Q) such that jm̂(t)j � C

?

a.e. on (0; T ).
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Since the derivative of the convex functional P (m) = 1=2 km � �mk

2

can

be found by the formula P

0

m

= p(m) we have for almost all t 2 (0; T )

1

�

hp(m); m̂i �

1

�

hp(m);mi +

1

�

P (m̂) �

1

�

P (m):

Meantime P (m̂) = 0 for almost all t, hence, by the above boundedness

of �

�1

hp(m);mi in L

2

(0; T ), one obtains that �

�1

p(m) are bounded in the

space L

2

(0; T ;L

1

(I)). In view of the continuous imbedding L

1

(I) � H

�1

(I)

the ultimate estimate of the penalty term has the form

1

�

p(m) are bounded in L

2

(0; T ;H

�1

(I)): (5:347)

Hence, by (5.341){(5.343), (5.345){(5.347), the equations (5.336), (5.337)

can be rewritten as follows,

v

�

+ k�w = h

1

; �

�

1

�

w

�

�

�

+ (kv)

�

= h

2

; (5:348)

where h

1

are bounded in L

2

(Q), and h

2

are bounded in L

2

(0; T ;H

�1

(I)).

We can express the function v from the �rst equation of (5.348) and sub-

stitute it in the second equation. In this case, it is seen that the estimate

for w follows, when the norm of k in W

1

1

(I) is su�ciently small. Then, the

�rst equation provides the boundedness of v. So, from (5.348) we have that

v; w are bounded in L

2

(0; T ;H

1

0

(I)): (5:349)

To prove the solvability of the problem (5.334){(5.339) we can use the

Galerkin approach. In this case the estimates (5.341){(5.343), (5.345),

(5.346) will provide an existence of the solution for �xed ", �, �. To ob-

tain the additional estimate (5.349) the above reasonings can be repeated

after proving the solvability. Thus the problem (5.334){(5.339) possesses

the solution with the following regularity:

n; n

t

2 L

1

(0; T ;L

2

(I)); v; v

t

; w; w

t

2 L

1

(0; T ;H

1

0

(I));

m; m

t

2 L

1

(0; T ;H

1

0

(I)):

Of course, these inclusions are not uniform in the parameters, in general,

i.e. the norms of the functions are not bounded uniformly with respect to

the parameters "; �; �. Now, let us justify the passages to the limit as the

parameters tend to zero. At the �rst step we denote the solution by v

"

, w

"

,

m

"

, n

"

omitting the dependence on the other parameters. Then, choosing

a subsequence, if necessary, we suppose that as "! 0

"v

"

t

; "w

"

t

! 0 ? {weakly in L

1

(0; T ;L

2

(I));

m

"

; m

"

t

! m

�

; m

�

t

? {weakly in L

1

(0; T ;H

1

0

(I));
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n

"

; n

"

t

! n

�

; n

�

t

? {weakly in L

1

(0; T ;L

2

(I)); (5:350)

v

"

; w

"

! v

�

; w

�

weakly in L

1

(0; T ;H

1

0

(I));

m

"

! n

�

strongly in L

2

(Q):

Consequently, the passage to the limit can be justi�ed in (5.334){(5.339).

As a result we arrive at the relations

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; (5:351)

�

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0; (5:352)

�n

�

t

� v

�

�

� k�w

�

= 0; (5:353)

�

�

1

�

m

�

t�

�

�

� (kv

�

)

�

+

�

1

�

w

�

�

�

�

+

1

�

p(m

�

) = 0: (5:354)

The following step is the justi�cation of the passage to the limit as � ! 0.

Let a subsequence, denoted as before, possess the following properties as

�! 0:

v

�

; w

�

! v

�

; w

�

weakly in L

2

(0; T ;H

1

0

(I));

m

�

; m

�

t

! m

�

; m

�

t

? {weakly in L

1

(0; T ;H

1

0

(I)); (5:355)

n

�

; n

�

t

! n

�

; n

�

t

? {weakly in L

1

(0; T ;L

2

(I));

1

�

p(m

�

) ! �

�

weakly in L

2

(0; T ;H

�1

(I)):

Meantime from (5.352) it is clear that m

�

are bounded in L

2

(0; T ;H

2

(I)\

H

1

0

(I)) nonuniformly in �, in general. Hence, by (5.345), we can assume

that for every �xed �

m

�

! m

�

strongly in L

2

(0; T ;H

1

0

(I)): (5:356)

Next, the equation (5.354) implies

�

�

1

�

m

�

t�

�

�

� (kv

�

)

�

+

�

1

�

w

�

�

�

�

+ �

�

= 0: (5:357)

Besides, we obtain from the same equation the following inequality,

T

Z

0

h

�

1

�

m

�

t�

�

�

+ (kv

�

)

�

�

�

1

�

w

�

�

�

�

; �m�m

�

idt � 0;

which holds for all �m 2 L

2

(0; T ;H

1

0

(I)), �m(t) 2 K. Hence, by (5.355),

(5.356), we derive

T

Z

0

h�

�

; �m�m

�

idt � 0 8 �m 2 L

2

(0; T ;H

1

0

(I)); �m(t) 2 K (5:358)
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and moreover, m

�

2 K a.e. on (0; T ). Consequently, in the limit, the

equations (5.351){(5.353) take the form

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; (5:359)

�

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0; (5:360)

�n

�

t

� v

�

�

� k�w

�

= 0: (5:361)

In conclusion we choose a subsequence, with the same notation, possessing

the following properties as � ! 0:

v

�

; w

�

! v; w weakly in L

2

(0; T ;H

1

0

(I));

�

�

! � weakly in L

2

(0; T ;H

�1

(I)):

m

�

; m

�

t

! m; m

t

? { weakly in L

1

(0; T ;H

1

0

(I));

n

�

; n

�

t

! n; n

t

? { weakly in L

1

(0; T ;L

2

(I));

In this case from (5.357), (5.361) one has

�

�

1

�

m

t�

�

�

� (kv)

�

+

�

1

�

w

�

�

�

+ � = 0; (5:362)

�n

t

� v

�

� k�w = 0: (5:363)

Let us multiply (5.359), (5.360) by �v � v

�

, �w � w

�

, respectively, integrate

over Q and sum, assuming �v, �w 2 L

2

(0; T ;H

1

0

(I)), (�v(t); �w(t)) 2 B. This

implies

T

Z

0

hn

�

�

+ km

�

�

; �v � v

�

i dt+

T

Z

0

h

�

1

�

m

�

�

�

�

� k�n

�

; �w �w

�

i dt � 0:

We can sum this inequality with (5.358), where �

�

is found from (5.357).

By that, the terms

T

Z

0

hn

�

�

; v

�

i dt;

T

Z

0

h

�

1

�

m

�

�

�

�

; w

�

i dt

vanish. This provides the passage to the limit in the above relation, and

next we can add and subtract the terms

T

Z

0

hn

�

; vi dt;

T

Z

0

h

�

1

�

m

�

�

�

; wi dt:
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The limiting relation, therefore, can be written in the form

T

Z

0

hn

�

+ km

�

; �v � vi dt +

T

Z

0

h(

1

�

m

�

)

�

� k�n; �w�wi dt (5:364)

+

T

Z

0

h�; �m�mi dt � 0;

where �v, �w, �m 2 L

2

(0; T ;H

1

0

(I)), �m(t) 2 K, (�v(t); �w(t)) 2 B a.e. on (0; T ).

The function � is de�ned from (5.362). Since (�v; �w), �m are independent

the inequality (5.364) yields the two written in the formulation of Theorem

5.14. The initial conditions for m, n are ful�lled since the limiting passages

" ! 0, � ! 0, � ! 0 keep the conditions (5.332). By (5.362), (5.363), we

complete the proof of Theorem 5.14.

5.8 Curvilinear rod under creep conditions

5.8.1 Problem formulation and existence of solutions

The contact problem for a rod under creep conditions is considered in this

section. Our goal is to prove an existence theorem. We use the notations

of the preceding sections. For convenience, introduce the notations

Ms(t; x) = �s(t; x) +

t

Z

0

�s(�; x) d�;

M

1

s(t; x) =

�

1

�

s

�

�

�

(t; x) +

t

Z

0

�

1

�

s

�

�

�

(�; x) d�:

The formulation of the problem is as follows. In the domain Q = I � (0; T )

we have to �nd the functions v, w, m, n, � satisfying the following relations:

 (a(�); b(�)) + (r (a(�); b(�));�

�

v(t; �)

w(t; �)

�

) � 0 in Q; (5:365)

(n

�

+ km

�

)(�v � v) + (

�

1

�

m

�

�

�

� k�n)( �w �w) � 0; (5:366)

v

�

+ k�w = Mn; (5:367)

(kv)

�

�

�

1

�

w

�

�

�

=M

1

m + �; (5:368)

jmj � C

?

; �( �m �m) � 0 8 �m; jmj � C

?

; (5:369)
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v = w = m = 0; � = 0; 1: (5:370)

The inequality (5.366) should be ful�lled for all functions (�v; �w) satisfying

(5.365). We assume the existence of at least one element (v

0

; w

0

) 2 B. The

point (0; 0) is supposed not to belong to B.

Theorem 5.15. Assume that a; b 2 H

2

(I), � � � > 0 on I, � = const, and

the norm of k in the space W

1

1

(I) is su�ciently small. Then there exist

functions v, w, m, n, � satisfying (5.367), (5.368) and

v; w; m; m

t

2 L

1

(0; T ;H

1

0

(I)); (5:371)

n; n

t

2 L

2

(G); � 2 L

2

(0; T ;H

�1

(I)); (5:372)

m(t) 2 K; (v(t); w(t)) 2 B a.e. on (0; T ); (5:373)

T

Z

0

hn

�

+ km

�

; �v � vi dt+

T

Z

0

h

�

1

�

m

�

�

�

� k�n; �w�wi dt � 0 (5:374)

8 �v; �w 2 L

2

(0; T ;H

1

0

(I)); (�v(t); �w(t)) 2 B;

T

Z

0

h�; �m�mi dt � 0; 8 �m 2 L

2

(0; T ;H

1

0

(I)); �m(t) 2 K: (5:375)

Proof. Consider the regularized problem with three positive parame-

ters ", �, �,

�"v

��

� n

�

� km

�

+

1

�

q

1

(v; w) = 0; (5:376)

�"w

��

�

�

1

�

m

�

�

�

+ k�n+

1

�

q

2

(v; w) = 0; (5:377)

�v

�

� k�w +Mn = 0; (5:378)

�M

1

m +

�

1

�

w

�

�

�

� (kv)

�

+

1

�

p(m) = 0; (5:379)

v = w = m = 0; � = 0; 1: (5:380)

To obtain a priori estimates of the solution of the auxiliary problem (5.376){

(5.380) we multiply (5.376){(5.379) by v � v

0

, w � w

0

, n, m, respectively,

integrate over Q and sum. The simple calculations lead to the following

estimates:

"kv

�

k

2

L

2

(Q)

+ "kw

�

k

2

L

2

(Q)

� c; (5:381)

k�

�1=2

m

�

k

L

2

(Q)

+ k�

1=2

nk

L

2

(Q)

� c; (5:382)

k

T

Z

0

�

�1=2

m

�

d�k+ k

T

Z

0

�

1=2

nd�k � c: (5:383)
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The equations (5.376){(5.379) could be considered when t = 0. In this case

we see that the obtained equations with the boundary condition (5.380)

exactly coincide with the elliptic boundary value problem (5.285){(5.289).

The a priori estimate of the corresponding solution v

1

, w

1

, m

1

, n

1

is as

follows,

km

1

k

1

+ kn

1

k+ "kv

1

k

2

1

+ "kw

1

k

2

1

� c; (5:384)

with the constant c uniform in " � "

0

, �, �. This estimate can be derived

by multiplying (5.376){(5.379), taken for t = 0, by v

1

� v

0

, w

1

� w

0

, n

1

,

m

1

, respectively.

Now, we can di�erentiate the equations (5.376){(5.379) with respect to

t and multiply by v

t

, w

t

, n

t

, m

t

. The penalty terms are nonnegative, hence

the following estimates can be derived:

"kv

t�

k

2

L

2

(Q)

+ "kw

t�

k

2

L

2

(Q)

� c; (5:385)

k�

�1=2

m

t�

k

L

2

(Q)

+ k�

1=2

n

t

k

L

2

(Q)

� c; (5:386)

k�

�1=2

m

�

(T )k + k�

1=2

n(T )k � c: (5:387)

In doing so the functions m

1

, n

1

satisfying (5.384) are taken as the initial

values for m, n when t = 0. Despite the dependence of v

1

, w

1

, m

1

, n

1

on

the parameters ", �, � the estimate (5.384) is uniform in " � "

0

, �, �. As

a result, the estimates (5.385){(5.387) are also uniform in " � "

0

, �, �. To

obtain an estimate of �

�1

p(m) the arguments of Section 5.7 can be used;

see the estimate (5.347). So, we can assume that �

�1

p(m) are bounded in

L

2

(0; T ;H

�1

(I)). By that, the equations (5.378), (5.379) can be written as

follows,

v

�

+ k�w = h

1

; (5:388)

�

�

1

�

w

�

�

�

+ (kv)

�

= h

2

; (5:389)

where h

1

are bounded in L

2

(Q), and h

2

are bounded in L

2

(0; T ;H

�1

(I)).

By the boundary conditions (5.380), from (5.388) one has

v(�) =

�

Z

0

(h

1

� k�w) d�:

It is seen that after a substitution of this value in (5.389) the estimate

kw

�

k

L

2

(Q)

� c (5:390)

follows provided that the norm of k in the space W

1

1

(I) is su�ciently small.

Consequently, from (5.388) we obtain

kv

�

k

L

2

(Q)

� c: (5:391)
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To establish the solvability of the problem (5.376){(5.380) for �xed ", �, �,

we can use Theorem 1.14. In this case it su�ces, actually, to take into

account the estimates (5.381){(5.383). Let the solution of the problem

(5.376){(5.380) be denoted by v

"

, w

"

, m

"

, n

"

. Choosing a subsequence,

if necessary, we can assume that as "! 0

"v

"

; "w

"

! 0 weakly in L

2

(0; T ;H

1

0

(I));

m

"

! m

�

strongly in L

2

(Q);

v

"

; w

"

; m

"

; m

"

t

! v

�

; w

�

; m

�

; m

�

t

weakly in L

2

(0; T ;H

1

0

(I));

Mn

"

; n

"

t

;

t

Z

0

1

�

m

"

�

d� ! Mn

�

; n

�

t

;

t

Z

0

1

�

m

�

�

d� weakly in L

2

(Q):

Consequently, the passage to the limit as "! 0 in (5.376){(5.379) implies

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; (5:392)

�

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0; (5:393)

�v

�

� k�w

�

+Mn

�

= 0; (5:394)

�M

1

m

�

+

�

1

�

w

�

�

�

�

� (kv

�

)

�

+

1

�

p(m

�

) = 0: (5:395)

As usual, we use the monotonicity of the operator (q

1

; q

2

) to justify the

passage to the limit of the terms q

i

(v

"

; w

"

). The next step is the passage

to the limit as � ! 0. For a subsequence, with the same notation, the

following convergence can be assumed as �! 0:

v

�

; w

�

; m

�

; m

�

t

! v

�

; w

�

; m

�

; m

�

t

weakly in L

2

(0; T ;H

1

0

(I));

Mn

�

; n

�

t

;

t

Z

0

1

�

m

�

�

d� ! Mn

�

; n

�

t

;

t

Z

0

1

�

m

�

�

d� weakly in L

2

(Q);

(5:396)

1

�

p(m

�

) ! �

�

weakly in L

2

(0; T ;H

�1

(I)):

It follows from (5.393) that m

�

are bounded in L

2

(0; T ;H

2

(I) \ H

1

0

(I))

nonuniformly in �, in general. Since m

�

t

are bounded in L

2

(0; T ;H

1

0

(I)), we

can additionally suppose that for every �xed �

m

�

! m

�

strongly in L

2

(0; T ;H

1

0

(I)): (5:397)

Consequently, it is clear that, on the one hand, the equations (5.394), (5.395)

provide

�v

�

�

� k�w

�

+Mn

�

= 0; (5:398)



370 Analysis of cracks in solids

�M

1

w

�

+

�

1

�

w

�

�

�

�

� (kv

�

)

�

+ �

�

= 0: (5:399)

On the other hand, the equation (5.395) can be multiplied by �m � m

�

,

�m 2 L

2

(0; T ;H

1

0

(I)), �m(t) 2 K, and the inequality can be obtained. By

(5.396), (5.397), we can pass to the limit � ! 0 in this inequality, which

implies

T

Z

0

h�

�

; �m�m

�

idt � 0 8 �m 2 L

2

(0; T ;H

1

0

(I)); �m(t) 2 K;

where �

�

is de�ned from (5.399). In this case, the inclusion m

�

(t) 2 K a.e.

on (0; T ) follows. In addition to this, the limiting functions v

�

, w

�

, m

�

, n

�

satisfy the equations

�n

�

�

� km

�

�

+

1

�

q

1

(v

�

; w

�

) = 0; �

�

1

�

m

�

�

�

�

+ k�n

�

+

1

�

q

2

(v

�

; w

�

) = 0:

Similar arguments can be used to justify the convergence as � ! 0 which

lead to the relations (5.367), (5.368), (5.371){(5.375). Theorem 5.15 is com-

pletely proved.

5.9 Conclusion

To complete the book we have to glance at the results presented. The prin-

cipal point enveloping the analysed problems consists in studying nonpen-

etration conditions of inequality type at the crack faces. Di�erent models

are considered for two- and three-dimensional bodies, plates and shells with

various constitutive laws: elastic, viscoelastic, thermoelastic and elastoplas-

tic. The main focus is on qualitative properties of solutions of boundary

value problems. We prove the existence of solutions and derive the solution

properties resulting from the mathematical problem formulation. Mean-

while there are many open questions related to the problems considered in

the monograph, for example, it is interesting to know the precise asymp-

totics near the crack tips of sulutions to boundary value problems describing

bodies with cracks. We do hope that the book will give rise to many inves-

tigations allied to the problems discussed.
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R

m

; m = 1; 2; 3 : space of m-tuples x = (x

1

; :::; x

m

) of real numbers

(x

1

; x

2

; x

3

); (x; y; z) : Descartes coordinates in R

3

t 2 [0; T ]; T > 0 : time variable


 : domain in R

m

(body, plate, bar)

Q = 
� (0; T ) : cylinder fx 2 
; t 2 (0; T )g

� : boundary of 



 = 
 [ � : domain with its boundary

�

c

; �

l

; �

 

; y =  (x) : crack surface inside 


@�

c

: boundary of �

c

�

c

= �

c

n @�

c

; �

c

= �

c

: crack surface without its boundary

� : �

c

� �; 
 = 


1

[ 


2

; � = 


1

\ 


2

: extension of �

c

�

�

c

: positive and negative faces of �

c




c

= 
 n �

c

: domain without the crack surface

@


c

= � [ �

+

c

[ �

�

c

: boundary of 


c

( � )j

�

�

c

; ( � )

�

: traces of a function at the crack faces

[ � ] = ( � )j

�

+

c

� ( � )j

�

�

c

: jump of a function at the crack

n = (n

1

; n

2

; n

3

); � = (�

1

; �

2

) : unit outer normal vector at a boundary

� = (�

1

; �

2

; �

3

); s = (s

1

; s

2

) : unit tangential vector at a boundary

z = �(x) : punch shape

u = (u

1

; u

2

; u

3

) : displacements in a body

� = (W;w); W = (w

1

; w

2

) : displacements in a shell (plate)



372 Analysis of cracks in solids

(u

n

; u

�

); (u

�

; u

s

) : normal and tangential components of the displace-

ment vector at a boundary

" = f"

ij

g; i; j = 1; 2; 3 : strain tensor

� = f�

ij

g; i; j = 1; 2; 3 : stress tensor

(�

n

; �

�

); (�

�

; �

s

) : normal and tangential components of the stress vec-

tor at a boundary

"

ij

; e

ij

; i; j = 1; 2 : strains in a shell

N

ij

; �

ij

; i; j = 1; 2 : integrated stresses in a shell

k

ij

; i; j = 1; 2 : curvatures of a shell

M = fM

ij

g; m = fm

ij

g; i; j = 1; 2 : bending moments

Q

i

; i = 1; 2 : transverse forces

M ( � ); m( � ) : bending moment at a boundary

R( � ); t( � ) : transverse force at a boundary

�; � : Lam�e parameters

E : Young's modulus

�; 0 < � < 1=2 : Poisson ratio

h; " : thickness of a shell

G = 2Eh=(1� �

2

); D = 2Eh

3

=3(1� �

2

) : constants

f = (f

1

; f

2

; f

3

) : external forces

� : temperature function

�

ij

; i; j = 1; 2; 3 : thermal expansion coe�cients

� = f�

ij

g; i; j = 1; 2; 3 : plastic deformations

�( � ) : yield surface

�( � ) : potential energy of a deformed body

B( � ; � ); b( � ; � ) : bilinear forms in the plate theory

K : set of admissible displacements

a:e: : almost everywhere

J( � ) : cost functional
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p( � ) : penalty operator

�(A) : measure of the set A

X

?

: space dual of X

O(x

0

) : neighbourhood of the point x

0

R

�

(x

0

); B

�

(x

0

) : ball of the radius � centred at the point x

0

_v : derivative of v with respect to t

D

�

; � = (�

1

; :::; �

m

) : derivatives of the order j�j = �

1

+ :::+ �

m

� : Laplace operator

C

k

(
); k = 0; 1; 2; :::; C

0

(
) = C(
) : space of functions having k

continuous derivatives in 


C

k;1

(
); k = 0; 1; 2; ::: : space of functions having k Lipschitz continuous

derivatives in 


C

k

0

(
); k = 0; 1; 2; ::: : space of functions from C

k

(
) with compact

support in 


C

1

0

(
) : space of in�nitely di�erentiable functions with compact sup-

ports in 


L

1

(
) : space of functions, absolutely integrable in 


W

k

1

(
); k = 1; 2; ::: : space of functions having k derivatives from L

1

(
)

L

1

(
) : space of functions, bounded almost everywhere in 


L

2

(
) : space of functions, integrable with square in 


L

2

loc

(
) : space of functions, integrable with square in any compact sub-

domain of 


H

k

(
); k = 0; 1; :::; H

0

(
) = L

2

(
) : Sobolev space of functions having

k derivatives from L

2

(
)

H

k

loc

(
); k = 0; 1; ::: : space of functions having k derivatives which are

integrable with square in any compact subdomain of 


H

k

0

(
); k = 1; 2; ::: : completion of C

1

0

(
) in H

k

(
)-norm

H

�k

(
); k = 1; 2; ::: : space dual of H

k

0

(
)

H

k�1=2

(�); k = 1; 2; ::: : space of traces of functions from H

k

(
) at the

boundary �

H

�k+1=2

(�) = H

k�1=2

(�)

?

; k = 1; 2; ::: : space dual of H

k�1=2

(�)
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h � ; � i

�;�

; � � 0 : duality pairing between H

�

(�) and H

�

(�)

?

H

k;0

(


c

); H
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(


c

); k = 1; 2; ::: : space of functions u from H

k
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c

)

with u = @u=@n = ::: = @
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H
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); k = 1; 2; ::: : functions from H
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c

) with compact

support in �

c

L

1

(0; T ;H) : space of functions (0; T ) 7! H, absolutely integrable on
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1
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(
)
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) : Banach space of bounded deformations in M
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(
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