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Abstract
We study a hypoplastic model for soil and granular materials stemming from geomechanical engineer-
ing which further incorporates effects of degradation of the granular hardness, therefore allowing for the 
description of environmental weathering. The governing system is described by a nonlinear system of 
transcendental-differential equations for stress and strain rate, which is investigated with respect to its 
long-time dynamic. Under deviatoric stress control, two different solutions of the underlying, implicit dif-
ferential equations are constructed analytically. The spherical components of stress and strain rate converge 
asymptotically to an attractor and lead to the sparsification of material states. Whereas under cyclic loading-
unloading carried out in a numerical simulation, finite ratcheting of the deviatoric strain rate is observed 
in the form of a square spiral.
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Introduction

We study stress–strain rate constitutive relations describing granular materials like cohesionless soils or broken rocks 
within the hypoplastic theory proposed by Kolymbas [21] and developed further by [34, 36, 37]. Unlike hyper- and hypoe-
lastic material laws, the hypoplastic response differs for loading and unloading, thus corresponding to inelastic materials 
[19]. On the other hand, the strain is not decomposed into elastic and plastic parts unlike classical elastoplastic concepts [3, 
20]. The hypoplastic model is incrementally nonlinear and of the rate type. See other incrementally nonlinear constitutive 
equations in [4, 13], the rate-independence concept and hysteresis in [31, 32, 35]. Under cyclic loading, one can naturally 
obtain limit circles with barodesy [22, 23]. For mathematical modeling of granular and multiphase media, we cite [15–17, 
28–30], and for well-posedness and stability analysis of the relevant differential equations, we refer to [11, 12, 14, 33].
Our study relies on a simplified version of the hypoplastic constitutive relation that was introduced independently by 
Bauer [5] and Gudehus [18]. In previous works [8, 9, 24, 26, 27], we omitted the pressure and density dependence of soil 
materials and considered the strain–stress law as a nonlinear differential equation for the stress under a given proportional 
strain rate, the so-called strain control. The existence of an analytical solution made it possible to describe explicitly stress 
paths obtained for the specific cases of monotonic compression, extension, and isochoric deformations. Recently, the 
case of unknown strain rate that should be derived from a given proportional stress, called stress control, was recovered 
within implicit differential equations in [10, 25] together with the pressure and density dependence of model parameters 
in the hypoplastic law. In such studies, the density of a granular material, which represents the distribution of pores and 
solid grains, is expressed with the help of the corresponding void ratio.
Our current mathematical modeling is based on the degradation of granular hardness suggested by Bauer [6, 7], which 
is suitable for the description of mechanical weathering of soils and granular materials under dry and wet states. This 
can be caused by long-time phenomena in various environmental events. We investigate the dynamic of the hypoplastic 
model subjected to the exponential degeneration for special cases of strain and stress control. Under the strain control, 
the spherical stress is constant. Whereas in the stress control case, the spherical components of stress and strain rate are 
described by implicit differential equations, which yield to two different solutions, and consequently, two degradation 
scenarios. It is shown that both solutions converge asymptotically to an attractor implying sparsification of the material 
state. When cyclic loading-unloading was applied, then finite ratcheting occurred, that is, a shift of the hysteresis loops 
was observed in a numerical simulation carried out by the standard 4th order Runge–Kutta method. The corresponding 
hysteresis curve of the deviatoric strain rate factor has, in this case, the form of a square spiral.

Modeling

For the reader’s convenience, the notations used throughout the paper are collected alphabetically in Table 1.
In this study, we consider a deformable granular body with constant volume and whose granular hardness, hs , can be 
subjected to degradation according to the following phenomenological equation found in [7]:

where the parameter c has the dimension of time and h∞
s

 denotes the final value of the degraded solid hardness. Therefore, 
the dependence of the granular hardness on the time t is expressed for prescribed 0 ≤ h∞

s
< h0

s
 by an exponential function

where h0
s
= hs(t0) for some t0 ≥ 0 , and hs(t) → h∞

s
 as t → ∞ . In particular, if h∞

s
= 0 , then Eq. 1 follows a constant 

proportion
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1

c
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h∞
s
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)
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It is worth mentioning that the degradation of the solid hardness as described in Eq. 1 is reasonable for modeling the cases 
when the material is subjected, for example, to variable weather conditions. Indeed, in these cases, even in the absence 
of applied external forces, we may still observe a degradation of the material caused by progressive or instantaneous 
weathering; see [7].
To describe the constitutive stress–strain relation for hypoplastic granular materials, we consider an extension of the 
model from [10] that takes into account the degradation of the solid hardness. More precisely, considering the Cauchy 
stress � to be a three-by-three matrix and assuming that its orthogonal decomposition after normalization is of the form

the constitutive response between the stress and the three-by-three matrix of the strain rate �̇ can be expressed as follows

using the dyadic product of tensors, where a > 0 is the yield strength, weight � ∈ (0, 1) , I is the three-by-three identity 
matrix, and ‖�̇‖ =

√
�̇ ∶ �̇ stands for the Frobenius norm. Concerning the physical interpretation of the right-hand side of 

the constitutive relation Eq. 4, the two terms which are linear with respect to the strain rate �̇ account for the hypoelastic 
behavior, whereas the term with the norm ‖�̇‖ describes the inelastic behavior and allows for different signs of the strain 
rate, therefore distinguishing the loading and unloading cycles. Note that the inelastic term is weighted by the density 
factor fd > 0 , while the stiffness factor, fs < 0 , influences both the hypoelastic and the inelastic processes of the system. 
Finally, a non-constant granular hardness hs entering Eq. 4 allows degradation phenomena.
For simplicity, the governing relations are given in time t ≥ t0 ≥ 0 and we omit the spatial dependence for all physical 
variables. Note that, unlike the model in [7], the constitutive relation Eq. 4 is rate dependent. This is due to the perturba-
tion originated by the term accounting for the degradation which, as seen in Eq. 2, shows a strong dependence on the 
time. There is a number of studies devoted to the investigation of rate-dependent processes, and in the past few years, this 
theory became more popular in the engineering community for applications in modeling hysteresis in multi-functional 
materials, see, e.g., [1, 2].
For cohesionless granular materials only non-positive principal stresses and not all equal to zero

(3)�̂ =
�

tr�
= �̂

∗ +
1

3
I,

(4)�̇ = fstr�
�
a2�̇ + (�̇ ∶ �̂)�̂ + afd(�̂ + �̂

∗)‖�̇‖� + tr�
ḣs

hs

�
𝜅�̂

∗ +
1

3
I

�
,

(5)�1 ≤ 0, �2 ≤ 0, �3 ≤ 0

Table 1  Alphabetical list of 
notations

Symbol Description Formula

a > 0 Yield strength Eq. 4
e ∈ (ed, ei) Void ratio Eq. 15
fd > 0 Density factor Eq. 16
fs < 0 Stiffness factor Eq. 16
hs ∈ (h∞

s
, h0

s
) Granular hardness Eq. 2

kd Deviatoric strain rate factor Eq. 28
p = −tr�∕3 Pressure Eq. 8
s(t) Loading parameter
y = (3p∕hs)

n Variable associated with the pressure Eq. 8
� = tr� Dilatation Eq. 9
�̇ , �′ Strain rate tensor Eqs. 4, 11
� ∈ (0, 1) Weight Eq. 4
� Cauchy stress tensor Eqs. 3, 4
�̂ Normalized stress tensor Eq. 3
�
∗ , �̂∗ Deviatoric components of the tensors Eqs. 3, 11
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are physically relevant; this yields, in particular, that the pressure p = −(�1 + �2 + �3)∕3 is positive. Like in [7], the factors 
fd and fs depend on the void ratio e. Indeed, in our investigation, while the volume of the grains in the body is assumed to 
be a constant Vs , the void space has variable volume Vv , hence the void ratio e is considered as a state quantity

The bounds ed > 0 and ei > 0 depend proportionally on the mechanical pressure according to the following identities 
found in [6] (which are related to Eq. 15)

for fixed values 0 < emin < emax , by means of the auxiliary variable

Notably, the variable y appears in the compression law proposed by Bauer with typically n ∈ (0, 1) and is related to the 
point of inflection observed in experiments in the compression curve, see [7].
Now, observe that tr�̇ is the relative volume increment and, as mentioned before, the solid volume Vs is constant during the 
evolution. Denoting by V the total volume, the physical consistency of the system relies on a volume balance equation which 
reads as follows:

which in terms of the void ratio e introduced in Eq. 6 can be interpreted as

where � = tr� is the volume strain (dilatation). Further, the solution of Eq. 9 for prescribed �0 and e0 is

Note that Eq. 9 can be also understood as a mass balance equation. Indeed, recalling that the material’s density is expressed 
in terms of the mass m of the granular body by

we get the continuity equation

In order to obtain a more approachable formulation of the problem, let us consider the decomposition of the strain rate 
into deviatoric and spherical parts

By differentiating Eq. 3, we get

Recalling that p = −tr�∕3 , from Eq. 4, it follows the following scalar differential equation for the trace

(6)e =
Vv

Vs

∈ (ed, ei).

(7)ed = emin exp(−y), ei = emax exp(−y),

(8)y =

(
3p

hs

)n

=

(
−tr�

hs

)n

.

V̇v = Vtr�̇ = (Vv + Vs)tr�̇

(9)ė = (1 + e)�̇�,

(10)� − �0 = ln
1 + e

1 + e0
.

� =
m

Vs(1 + e)

�̇� + 𝜌 �̇� = 0.

(11)�̇ = �̇
∗ +

1

3
�̇�I, �̇� = tr�̇.

̇̂
�
∗ =

�̇

tr�
−

tr�̇

tr�
�̂.
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Using the identities above, we rewrite Eq. 4 in terms of the deviatoric part

while by differentiating Eq. 8, we obtain

Besides accounting for the effects of degradation, in our study of the constitutive equation for stress–strain relation, we 
assume that the void ratio changes in time according to the equation

The identity above has been proposed in [7] for modeling under isotropic compression and it allows us to simplify the 
system by restoring constant density and stiffness factors in Eq. 13. Similar technique has been used in [25] for studying 
the long-term dynamic of such type of system. More precisely, for prescribed y0 ≥ 0 and e0 ∈ (emin, emax) exp(−y0) , the 
positive solution to Eq. 14 is expressed in terms of the auxiliary variable y as

In turn, the density and stiffness factors are functions of the current void ratio

for a model parameter b > 0 , and the critical void ratio ec is described, as counterpart of Eq. 7, by the identity

with constant ecrt ∈ (emin, emax) . As a consequence of Eqs. 15 and 16 the dependence of the void ratio can be suppressed 
and, thanks to Eq. 7, both the density and the stiffness correspond to the following constant factors

In summary, the coupled system we want to investigate comprehends the algebraic Eq. 8, and the differential Eqs. 12 
and 13, for unknowns �∗, p, �̂∗ . Our investigation of system Eqs. 12 and 13 focuses on its behavior when subjected to 
periodically oscillating loading-unloading cycles, therefore its analysis needs to be carried out in the corresponding 
monotonicity intervals of the cycle. Since the system is positive 1-homogeneous, by choosing a loading parameter s(t) 
to be a monotone differentiable function in some interval t ∈ (t0, t1) , assuming that the prime denotes the derivative with 
respect to s, from Eq. 12, we get by the chain rule

where ṡ stands for the derivative of s with respect to t; and analogously for Eq. 13. Thus, dividing by this term, we finally 
obtain the corresponding system of differential Eqs. 12 and 13 in terms of s. More precisely:

ṗ

p
=

tr�̇

tr�
= fs

�
a2�̇� + �̇ ∶ �̂ + afd‖�̇‖

�
+

ḣs

hs
.

(12)̇̂
�
∗ = fs

�
a2(�̇∗ − �̇��̂

∗) + afd�̂
∗‖�̇‖� − (1 − 𝜅)

ḣs

hs
�̂
∗,

(13)
ẏ

ny
=

ṗ

p
−

ḣs

hs
= fs

��
a2 +

1

3

�
�̇� + �̇

∗ ∶ �̂
∗ + afd‖�̇‖

�
.

(14)ė = −eny

(
ṗ

p
−

ḣs

hs

)
= −eẏ.

(15)e = e0 exp(y0 − y).

(16)fd(e) =

(
e − ed

ec − ed

)𝛼

, fs(e) = −b
(ei
e

)𝛽

, 𝛼 ∈ (0, 0.5), 𝛽 > 1,

(17)ec = ecrt exp(−y)

(18)fd =

(
exp(y0) − emin

ecrt − emin

)�

, fs = −b

(
emax

e0 exp(y0)

)�

.

(�̂∗)�ṡ = fs
�
a2
�
(�∗)�ṡ − 𝛿�ṡ�̂∗

�
+ afd�̂

∗‖��ṡ‖� − (1 − 𝜅)
h�
s
ṡ

hs
�̂
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where s± = 1 if ṡ > 0 , and s± = −1 if ṡ < 0 . With this in mind, we identify a loading cycle for s increasing, i.e., ṡ > 0 , 
while an unloading cycle refers to s decreasing, ṡ < 0.
The governing system comprehends two equations: one tensor equation for the deviator, Eq. 19, and one scalar equation 
for the trace, Eq. 20, which is implicitly given in terms of the auxiliary variable y introduced in Eq. 8, where the granular 
hardness hs represents an inhomogeneous coefficient given by Eq. 2. Note that both equations are implicit through the norm 
‖�′‖ . Besides, the system is under-determined for unknown p, (�∗)�, �̂∗ and it can be interpreted in terms of the stress if 
the strain is given, and vice versa. More precisely, the strain-controlled case consists in choosing a fixed tensor D normal-
ized by trD = 1 , and assuming that the strain tensor has the form � = �(s(t))D as presented in the “Strain control” section. 
Analogously, in the stress-controlled case, we assume that a fixed tensor T is normalized by trT = 1 , and consider the 
stress given by � = −3p(s(t))T in the “Stress control” section. The study of the long-time behavior for periodical cycling 
loading-unloading under stress control is contained in the “Long-time behavior of the stress-controlled case” section.
As mentioned before, in our investigation, we will also take into account equations Eqs. 9 and 14 which describe the 
changes of the void ratio. Combining these two identities, together with Eq. 15, and considering the time transformation, 
we get

We can see that the monotonicity intervals of y and � coincide; therefore, it is natural to choose the loading parameter s so 
that ṡ > 0 for �̇� > 0 , while ṡ < 0 for �̇� < 0 . The opposite relation holds for the variable y, that is, ṡ > 0 for ẏ < 0 , and ṡ < 0 
for ẏ > 0 . Since y is associated with the pressure p = −tr� via identity Eq. 8, the rate ẏ < 0 corresponds to compressive 
loading, and ẏ > 0 to unloading related to the extension phase.
Throughout the paper, we consider the initial conditions at t = t0 corresponding to the loading parameter value s(t0) pre-
scribed by given e0, p0, 𝛿0, (�∗)�0, �̂

∗
0
 and y0 = (3p0∕h

0
s
)n.

Analysis

The solvability of the initial value problem in the general case is open. We study the special cases under strain and 
stress control conditions.

Strain control

For a prescribed three-by-three symmetric second-order tensor D such that trD = 1 , let us assume that

hence its deviatoric part reads (�∗)� = ��D∗ , and

Recalling that the loading parameter s follows the monotonicity intervals of � , from the identities above and Eq. 19, we 
get the following differential equation with respect to �̂∗ coupled with �′:

(19)(�̂∗)� = fs
�
a2
�
(�∗)� − 𝛿��̂

∗
�
+ s±afd�̂

∗‖��‖� − (1 − 𝜅)
h�
s

hs
�̂
∗,

(20)
y�

ny
= fs

��
a2 +

1

3

�
𝛿� + (�∗)� ∶ �̂

∗ + s±afd‖��‖
�
,

(21)�� = −
e

1 + e
y� = −

y�

1 +
exp(y−y0)

e0

.

(22)�
� = ��D, D = D

∗ +
1

3
I,

‖��‖ = ����
�

‖D∗‖2 + 1

3
.



Journal of Mathematical Sciences 

Similarly, from Eq. 20, we obtain

this together with Eq. 21 implies

Equation 24 is trivially satisfied if y� = 0 , that is, y = y0 is constant and

In this case, by Eq. 21, we have �� = 0 and consequently the differential Eq. 23 for the deviatoric stress corresponds to

hence its solution can be obtained explicitly and has the form

Note that, for �� = y� = 0 , Eq. 22 indicates that there is no change of strain; therefore, in accordance with the identity 
above, the stress forces are due only to the degradation of the granular material.
The other possible solution of Eq. 24 is expressed by the transcendental equation for y coupled with �̂∗ , namely,

Although the solvability of Eq. 26 follows from the general theory of ordinary differential equations, there is no explicit 
formula for its solution. The investigation of such a problem can thus rely on numerical techniques and it is a question for 
a future work. The theoretical and numerical analysis of a related hypoplastic problem like Eq. 4 for the strain-controlled 
case has been carried out in [8, 9, 24, 26, 27], however, disregarding the degradation effects.

Stress control

For a prescribed three-by-three symmetric second-order tensor T with non-positive eigenvalues, and trT = 1 , let

such that Eq. 5 holds and tr� < 0 . Inserting Eq. 27 into Eqs. 19 and 20, dividing by fs and a2 , using (�̂∗)� = 0 , we get the 
coupled system for (�∗)� and �′:

(23)(�̂∗)� = fs

�
a2(D∗ − �̂

∗) + s±afd�̂
∗

�
‖D∗‖2 + 1

3

�
𝛿� − (1 − 𝜅)

h�
s

hs
�̂
∗.

y�

ny
= fs

�
a2 +

1

3
+ D

∗ ∶ �̂
∗ + s±afd

�
‖D∗‖2 + 1

3

�
𝛿�,

(24)
⎛
⎜⎜⎝

1

fsny
+

𝜆± + D
∗ ∶ �̂

∗

1 +
exp(y−y0)

e0

⎞
⎟⎟⎠
y� = 0, 𝜆± = a2 +

1

3
+ s±afd

�
‖D∗‖2 + 1

3
.

(25)e = e0, � = �0, p =
p0

h0
s

hs.

(�̂∗)� = −(1 − 𝜅)
h�
s

hs
�̂
∗,

�̂
∗ = �̂

∗
0

(
hs

h0
s

)−(1−𝜅)

.

(26)
1

fsny
+

𝜆± + D
∗ ∶ �̂

∗

1 +
exp(y−y0)

e0

= 0.

(27)
�

tr�
= �̂ = T = T

∗ +
1

3
I,
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Note that, the first equation is implicit as the norm ‖��‖ =
√‖(�∗)�‖2 + (��)2∕3 . On the other hand, recalling the definition 

of y, we can see that Eq. 29 gives an equation for the pressure p, while the assumption of Eq. 27 indicates the relation 
between the stress components and the pressure, � = −3pT.
We will show that, under certain conditions, we can find an explicit solution for the system. The first step towards 
such an analytical solution is to derive an expression for the norm ‖�′‖.

Theorem 1 Let Eq. 27 hold and assume that

Then

with the positive discriminant

Proof Recalling the decomposition of the strain rate Eq. 11 (with the corresponding time transformation), from Eq. 28 
it follows the identity

This leads to a quadratic equation for ‖�′‖ , more precisely:

whose discriminant is given by Eq. 32 and is positive thanks to Eq. 30. To see that Eq. 31 is indeed the positive solution 
of the equation above it is enough to observe that Eq. 30 implies fd

a
‖T∗‖2 ≤ ‖T∗‖ , while 

√
Disc ≥ ‖T∗‖���

s
� .   ◻

Theorem 1 allows us to write the deviatoric part of the strain rate, Eq. 28, in terms of the function � as follows

Using this and Eq. 21, Eq. 29 can also be reduced to a quadratic differential equation in y′ whose analysis is the content 
of the following theorem.

(28)(�∗)� = kdT
∗, kd = �� +

1 − �

fsa
2

h�
s

hs
− s±

fd

a
‖��‖,

(29)
y�

fsny
=
�
a2 +

1

3

�
�� + (�∗)� ∶ T

∗ + s±afd‖��‖.

(30)1 −
f 2
d

a2
‖T∗‖2 ≥ 0.

(31)‖��‖ =
−s±

fd

a
‖T∗‖2��

s
+
√
Disc

1 −
f 2
d

a2
‖T∗‖2

, ��
s
= �� +

1 − �

fsa
2

h�
s

hs
,

(32)Disc = ‖T∗‖2(��
s
)2 +

1

3

�
1 −

f 2
d

a2
‖T∗‖2

�
(��)2.

(33)�
� =

�
��
s
− s±

fd

a
‖��‖

�
T
∗ +

1

3
��I.

�
1 −

f 2
d

a2
‖T∗‖2

�
‖��‖2 + 2s±

fd

a
‖T∗‖2��

s
‖��‖ − ‖T∗‖2(��

s
)2 −

1

3
(��)2 = 0,

(34)(�∗)� = kdT
∗, kd =

��
s
− s±

fd

a

√
Disc

1 −
f 2
d

a2
‖T∗‖2

.
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Theorem 2 (Analytical solution) If Eqs. 27 and 30 hold, then the auxiliary variable y in Eq. 8 satisfies the quadratic 
differential equation

with the inhomogeneous coefficients depending on y as follows

where for brevity

and c0,B,C,D are constant factors given by

Assume that

then Eq. 35 has two solutions, y+ and y− , which satisfy respectively the following two differential equations:

Proof Using Eqs. 31 and 34, from Eq. 29, we get the equation

Recalling that by Eq. 21 �� = −y�∕(1 +
exp(y−y0)

e0
) , we rewrite the identity above using the notation in Eq. 37 to obtain

where Disc , given by Eq. 32, corresponds to

(35)c2(y)(y
�)2 − 2c1(y)

1 − �

fsa
2

h�
s

hs
y� + c0

(
1 − �

fsa
2

h�
s
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)2

= 0

(36)
c2(y) =

�
A(y) +

B

1+
exp(y−y0)

e0

�2

− D

�
1

1+
exp(y−y0)

e0

�2

C2,

c1(y) =

�
A(y) +

B

1+
exp(y−y0)

e0

�
B −

1

1+
exp(y−y0)

e0

‖T∗‖2C2,

A(y) =
1

fsny
+

a2 +
1

3

1 +
exp(y−y0)

e0

,

(37)
c0 = B2 − ‖T∗‖2C2, B =

(1−f 2
d
)‖T∗‖2

1−
f2
d

a2
‖T∗‖2

,

C =
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a

a2−‖T∗‖2
1−

f2
d
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‖T∗‖2

, D = ‖T∗‖2 + 1

3

�
1 −

f 2
d

a2
‖T∗‖2

�
.

(38)c0

�
1 −

f 2
d

a2
‖T∗‖2

�
≥ 0,

(39)y� =
1 − �

fsa
2

h�
s

hs

c1(y) +
√

c2
1
(y) − c2(y)c0

c2(y)
,

(40)y� =
1 − �

fsa
2
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s
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c1(y) −
√

c2
1
(y) − c2(y)c0
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Squaring Eq. 41, after gathering alike terms, we get the quadratic Eq. 35 for y′ with the corresponding coefficients 
c2(y), c1(y), c0 from Eqs. 36-37. Note that

after some simplification yields to

Therefore, assumption Eq. 38 ensures that the discriminant of Eq. 35 is positive. Further, Eq. 38 together with Eq. 30 
implies c0 ≥ 0 , hence the quadratic Eq. 35 has two solutions, Eqs. 39 and 40, and the proof is complete.   ◻

Finally, by solving the differential Eqs. 39 or 40 with respect to y and recalling the relation �� = −y�∕(1 +
exp(y−y0)

e0
) , we 

obtain an explicit formula for the strain rate via Eq. 34.

Long‑time behavior of the stress‑controlled case

In the stress-controlled case analyzed in Theorem 2, we can make the following statements about the long-time behavior 
of the model:

Theorem 3 (Attractor) Under the stress control Eq. 27 and assumption Eq. 30, as t → ∞ the system Eqs. 9, 14, 28, and 
29 tends exponentially to a stationary state given by constant

Proof Indeed, as t → ∞ in Eq. 2, we have hs(t) → h∞
s

 and ḣs = 0 in the limit. Then h�
s
= 0 and, by Theorem 1, the norm 

‖�′‖ is given by Eq. 31 with ��
s
= �� . Moreover, for h�

s
= 0 , the discriminant in Eq. 42 corresponds to 

√
Disc =

√
D���� 

and we can factorize Eq. 41 as follows

This implies that, in the limit, y is constant. We claim that this convergence is exponential, and as a consequence of Eqs. 10 
and 15, we conclude Eq. 44. Indeed, note that equations Eqs. 39 and 40 are of the form y� = (h�

s
∕hs)F(y) for some bounded 
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function F. Observing that h�
s
∕hs behaves as the exponential function exp(−t)

�+exp(−t)
 , with 𝛾 > 0 constant, we need to distinguish 

two cases: F(y0) < 0 and F(y0) > 0 , for a prescribed y(0) = y0 . The case F(y0) = 0 is trivial. If F(y0) < 0 the exponential 
decay is clear. On the other hand, if F(y0) > 0 , then the convergence is driven by the exponential term which multiplies 
F. In summary, in either case, one can show that y converges to a constant at an exponential rate which proves the 
result.   ◻

For an illustrative example, we consider the normalized stress matrix in Eq. 27 of the shear form:

such that the principal eigenvalues of T are {0.8, 0.2, 0} , and ‖T∗‖ ≈ 0.588 . The material parameters are taken from [6, 7] 
as follows: h∞

s
= 78.5 MPa, h0

s
= 120 MPa and c = 4 hours for the degradation in Eq. 1; the exponents n = 0.82 in Eq. 8, 

and � = 0.18 , � = 1.05 , b = 1 in Eq. 16; the void ratio bounds emin = 0.1 and emax = 0.3 in Eq. 7, ecrt = 0.24 in Eq. 17; 
a = 0.6 and � = 0.6 in the hypoplastic law of Eq. 4. The initial values at t0 = 0 are prescribed as e0 = 0.2 , p0 = 10 MPa, 
and �0 = 0 such that the factors fd ≈ 1.561 and fs ≈ −0.844 in Eq. 16. These data yield the coefficient c0 ≈ 0.136 in Eq. 36 
and satisfy the solvability condition of Eq. 38 of Theorem 2.
We discretize the system of equations based on equidistant time points. To compute solutions y = y+ to the first-order 
differential Eq. 39 and y = y− to Eq. 40, the standard fourth-order Runge–Kutta method is applied with the uniform 
step of 1 (hour).
A monotone behavior as t → ∞ in the hypoplastic model is described by the unified factor s± = ±1 implying the load-
ing parameter s(t) = s±t versus time t. This means that s± = 1 when � is increasing, and s± = −1 when � decreases. In 
this case, a numerical solution to the system Eqs. 30–40 is plotted in Fig. 1.
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Fig. 1  An example solution under monotone loading versus time t (hours)
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The plots from (a) to (f) show respectively: the granular hardness hs , auxiliary variable y, pressure p, void ratio e, volume 
strain � , and the deviatoric strain rate factor kd for t ∈ [0, 50] . As seen in the figures, the spherical components y, p, e, � 
coincide for the loading/unloading, and they demonstrate two different scenarios of degradation corresponding either 
y+ or y− . In contrast, the deviatoric component kd is the same for y = y+ and y = y− , whereas two curves in the plot (f) 
distinguish either loading as s± = 1 or unloading as s± = −1 in Eq. 34.

Cyclic loading‑unloading

In this section, we aim to investigate the model behavior in the stress-controlled case when the loading-unloading cycles 
are given by a continuous function s(t) such that

with an increasing sequence of turning points tk+1 > tk for k = 0, 1, 2,… . For instance, starting with s(t0) = 0 , we set 
tk+1 = 2k − 1 and the piecewise-linear periodic function

such that ṡ = 1 for loading, and ṡ = −1 for unloading, which is illustrated in the plot (a) of Fig. 2 during 10 cycles.
After solving the hypoplastic system Eqs. 30–40 numerically as described before, in Fig.  2b, we depict the correspond-
ing void ratio e versus pressure p, while the stress–strain curve presenting the trace of the stress tensor tr� = −3p versus 
volume strain � is plotted in Fig. 2c. Recalling that assumption of Eq. 38 yields two solutions, if y+ ≠ y− , we get distinct 
�(y+) ≠ �(y−) in Eq. 21. As a consequence Fig. 2b and c describe two possible scenarios of the granular body sparsifica-
tion corresponding to the two roots y+ and y− of the quadratic differential Eq. 35. Indeed, in Fig. 2b, we can see that the 
curves identifying the void ratio in either case, e(y+) and e(y−) , approach one another as the pressure increases. Similarly, 
Fig. 2c shows that at higher pressure (therefore, smaller values of −3p ) the volume strain has basically the same curvature 
for both �(y+) and �(y−).
To study the long-time behavior of the deviatoric strain rate factor kd , we consider the process of loading-unloading with 
an increasing number of cycles. The deviatoric strain rate factor kd during 2, 3, and 10 loading-unloading cycles is shown 
within the plots (a), (b), and (c) in Fig. 3, respectively. The dynamic presents a square-spiral curve, in which hysteresis 
loops are not closed and obey ratcheting. This limit cyclic behavior can be explained by the fact that h∞

s
> 0 , which is in 

accordance with the expected limiting behavior of the granular degradation of Eq. 2 which is rate dependent. Despite that, 
when the number of cycles increases, the loops converge to an attractor set in accordance with Theorem 3.
In order to highlight the role of degradation, we vary the creep time c in the exponential function Eq. 2 for the granular 
hardness hs . Compared to c = 4 hours from Fig. 3, increasing the creep time to c = 20 hours decreases the deviation of 
the solution and suppresses its hysteresis ratcheting as presented in Fig. 4.

{
ṡ(t) > 0 for t ∈ (t2j, t2j+1),

ṡ(t) < 0 for t ∈ (t2j+1, t2j+2),
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s(t) = s(t2j+1) + t2j+1 − t for t ∈ (t2j+1, t2j+2)

Fig. 2  Spherical components 
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Fig. 3  The deviatoric 
component under cyclic 
loading-unloading with creep 
time c = 4
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Fig. 4  The deviatoric 
component under cyclic 
loading-unloading with creep 
time c = 20
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From our numerical tests, we found that an increase in the value of c delays the degradation, leading to a kind of limiting cycle 
which can be observed, while the convergence to a stationary constant state becomes visible just with a higher number of cycles.
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