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Abstract: For Stokes equations under divergence-free andmixed boundary conditions, the inverse problem of
shape identification from boundary measurement is investigated. Taking the least-square misfit as an objec-
tive function, the state-constrained optimization is treated by using an adjoint state within the Lagrange
approach. The directional differentiability of a Lagrangian functionwith respect to shape variations is proved
within the velocity method, and a Hadamard representation of the shape derivative by boundary integrals is
derived explicitly. The application to gradient descent methods of iterative optimization is discussed.

Keywords: Stokes flow, incompressibility, state-constrained optimization, Lagrangian, saddle-point
problem, adjoint state, inverse identification problem, shape derivative

MSC 2010: 35Q30, 49Q10, 49Q12, 90C47
||
Dedicated toM.V. Klibanov 70th birthday [17]

1 Introduction
In the present paper, we prove the shape derivative for optimal value of a Lagrange function, which describes
the inverse Stokes problem of shape identification by a least-square misfit from boundary measurements.

In abroad scope, optimizationof shapes is a specific class of inverseproblems; lookat the survey [22]. The
shape optimization is ill-posed in general because objectives have typicallymany local minimawhen varying
shapes. For the theory of coefficient inverse problems, see [4], its applications in mathematical physics [36],
and proper regularization in [23]. We cite [3] for the least-square method, [1, 7, 32] for the use of least
squares in inverse scattering by obstacles, and [16] for coefficient identification in variational inequalities.
Our special interest concerns variational fracture models for nonpenetrating cracks in solids [26] and their
differentiabilitywith respect to crack perturbations [27, 31], which are useful for optimal control [37, 38, 47],
overdetermined [34] and inverse problems [19, 25]. The Stokes equations under consideration can be inter-
preted within the incompressible elasticity in solid mechanics; in this sense, the shape derivative is linked to
Griffith’s fracture criteria (see [2, 40]).
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The shape optimization in fluid mechanics was developed in [42, 44]. We refer to [35, 41] for the math-
ematical theory of incompressible flows described by Stokes and Navier–Stokes equations, to [28, 29] for
flow in channels and thin layers, and [5, 39] for mixed variational formulations provided by boundary con-
ditions. The overdetermined problems were studied in [11] with respect to well-posedness; the optimality
condition under mixed control-state constraints was obtained in [10]. In the optimization context, Bernoulli-
type free boundary problems [6, 24] and the coefficient identification [18] were based on least squares, while
the reconstruction of obstacles immersed in a fluid by boundary measurements in [45] utilized the enclosure
method.

A shape derivative is of the first importance in shape optimization because determining the first-order
optimality condition with respect to perturbation of geometry. The variational approach involving shape
derivatives was developed in [48] and further extended to constrained PDE models; see [12, 20, 21] and
other works. The geometry-dependent function space formulation needs a bijective change of coordinates
to transform a shape-perturbed problem to the reference geometry. The bijectivity is, however, not always
the case when dealing with feasible sets due to constraints such as contact, incompressibility (divergence-
free), etc. For comparison, preserving the divergence, in [43], the Piola transform was suggested to treat
unsteady problems in generalized Bochner spaces on moving non-cylindrical domains. In a general case,
the abstract formalism of directional derivatives of a minimax function [8] was successful to justify the shape
differentiability for constrained problems within the Lagrange approach [9].

In [30], the Lagrange method was applied first to derive the shape derivative of strain energy (the Griffith
formula) for curvilinear cracks constrained by the nonpenetration inequality, and for breaking-line identi-
fication under state constraints [13]. Recently, we studied Stokes and Brinkman–Stokes equations subject
to the divergence-free equality with respect to the shape differentiability of its energy function [14, 33].
For objective functions given in a general form, the Hadamard formula of shape derivatives by boundary
integrals was formally used in [46]. In the current paper, we prove rigorously the shape differentiability of
the least-square objective using the equivalent Lagrange formulation for Stokes equations and its adjoint
state. The obtained analytical expression of the shape derivative and the respective Hadamard representa-
tion are advantageous for gradient descent algorithms solving the inverse problem of shape identification
from boundary measurements (see Corollary 5.2).

In Section 2, we set well-posedness for a geometry-dependent forward Stokes problem under mixed
boundary condition (see Proposition 2.1), existence and non-uniqueness for the inverse identification prob-
lem (see Proposition 2.2). In Section 3, an equivalent saddle-point formulation with the adjoint Stokes
problem is presented in Theorem 3.1 and Corollaries 3.2 and 3.3. Based on Traits 1–4, the main theorem
(Theorem 4.1) on shape derivative of the corresponding optimal value Lagrange function is proved in Sec-
tion 4 and Appendix A. The Hadamard formula is established in Theorem 5.1 in Section 5, which provides
an identification strategy based on the descent gradient method.

2 Inverse Stokes problem of shape identification
We start with the description of a family of parameter-dependent geometries

[t 󳨃→ Ωt] : (t0, t1) 󳨃→ ℝd , d = 2, 3, Ωt ⊂ D, (2.1)

whereD ⊂ ℝd is a boundedhold-all set. For every fixed time parameter t, let Ωt be a domainwith the Lipschitz
continuous boundary ∂Ωt and the unit normal vector nt = (nt1, . . . , n

t
d)
⊤ which is outward to Ωt. Here and

in what follows, the upper script ⊤ swaps between rows and columns. We assume that ∂Ωt consists of two
nonempty, mutually disjoint sets ΓDt and ΓNt .

For a given stationary force f(x) = (f1, . . . , fd)⊤ ∈ H1(D)d and the fluid viscosity μ > 0, we consider the
forward Stokes problem under mixed Dirichlet–Neumann boundary conditions: find a flow velocity vector
ut(x) = (ut1, . . . , u

t
d)
⊤ and a pressure pt(x) satisfying the following relations (see [5, 18]):

−μ∆ut + ∇pt = f, div(ut) = 0 in Ωt , (2.2a)
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ε(ut) := 12 (∇u
t + (∇ut)⊤), (2.2b)

ut = 0 on ΓDt , 2με(ut)nt − ptnt = 0 on ΓNt . (2.2c)

Here the notation stands for the gradient vector ∇ := (∂/∂x1, . . . , ∂/∂xd)⊤, the divergence div := (∇ ⋅ ), and
the Laplace operator ∆. The gradient of a vector is defined as ∇ut = (∂uti/∂xj)

d
i,j=1, the linearized strain ε(ut)

in (2.2b) is a d-by-d symmetric matrix, and ε(ut)nt in (2.2c) implies a matrix-vector multiplication.
Taking into account the no-slip boundary condition in (2.2c), we introduce the Sobolev space of admis-

sible velocity vectors
V(Ωt) := {w = (w1, . . . , wd)⊤ ∈ H1(Ωt)d | w = 0 a.e. ΓDt }. (2.3)

The incompressibility condition in (2.2a) is determined well by the mapping

[w 󳨃→ div] : V(Ωt) 󳨃→ L2(Ωt). (2.4)

Proposition 2.1. There exists the unique solution pair (ut , pt) ∈ V(Ωt) × L2(Ωt) satisfying the forward Stokes
problem (2.2) in a mixed variational form

∫
Ωt

(2με(ut) ⋅ ε(w) − pt div(w) − f⊤w) dx = 0 for all w ∈ V(Ωt), (2.5a)

∫
Ωt

λ div(ut) dx = 0 for all λ ∈ L2(Ωt), (2.5b)

where dot (⋅) in (2.5a) implies the scalar product of second order tensors.

Proof. The equilibrium equation in (2.2a) can be rewritten equivalently using

−μ∆ut = −μ(∆ut + ∇div(ut)) = −2μ div ε(ut)

by virtue of incompressibility and (2.2b). Then formulation (2.5) can be derived by the standard variational
techniquemultiplying equations (2.2a) with the corresponding test functions w, λ and integrating them over
Ωt, with the subsequent integration of the first equation by part using boundary conditions (2.2c).

The quadratic term in (2.5a) determines a bounded, symmetric, bilinear quadratic form,which is strongly
elliptic by the Korn–Poincaré inequality,

∫
Ωt

ε(w) ⋅ ε(w) dx ≥ KKP‖w‖2H1(Ωt)d for w ∈ V(Ωt), KKP > 0. (2.6)

Since ΓNt ̸= 0, the inf-sup (LBB) condition holds for λ ∈ L2(Ωt) (see [35]),

sup
w∈V(Ωt),w ̸=0

1
‖w‖H1(Ωt)d

∫
Ωt

λ div(w) dx ≥ KLBB‖λ‖L2(Ωt), KLBB > 0. (2.7)

Then the mapping in (2.4) is surjective, and the Ladyzhenskaya–Babuška–Brezzi–Nečas theorem follows
that there exists the unique solution to (2.5).

Our long-term aim is to identify Ωt by the shape optimization approach as described in [13]. Let

z(x) = (z1, . . . , zd)⊤ ∈ L2(ΓOt )d

be an observation given at a part ΓOt ⊂ ΓNt of the boundary ∂Ωt. We introduce a least-square L2-misfit from the
observation as the geometry-dependent objective [w 󳨃→ J] : V(Ωt) 󳨃→ ℝ,

J(w; Ωt) :=
1
2 ∫
ΓOt

|w − z|2 dSx , (2.8)

where |w| = √w⊤w denotes the Euclidean norm of vectors. In the hold-all domain Dwith a fixed part DD ⊂ D,
admissible geometries form a set

G = {Ωt ⊂ D | ΓDt ⊂ DD}. (2.9)
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For variable shapes from (2.9) parameterized by t, the inverse Stokes problem consists in a state-constrained
(MPEC) optimization problem: find Ωt such that

inf
Ωt⊂G

J(ut; Ωt), where (ut , pt) solves (2.5) in Ωt . (2.10)

Let Ω ⊂ ℝd be a domain with the Lipschitz continuous boundary ∂Ω consisting of two nonempty, mutu-
ally disjoint sets ΓD and ΓN such that Ω ⊂ D. We say that Ω is a feasible geometry if there exists a pair
(z, pz) ∈ V(Ω) × L2(Ω) which satisfies the variational equations from Proposition 2.1 stated in Ω,

∫
Ω

(2με(z) ⋅ ε(w) − pz div(w) − f⊤w) dx = 0 for all w ∈ V(Ω),

∫
Ω

λ div(z) dx = 0 for all λ ∈ L2(Ω). (2.11)

For ΓO ⊂ ΓN, we call the trace at ΓO of z satisfying (2.11) a feasible measurement.

Proposition 2.2. For every feasible measurement z, there exists a solution to the inverse Stokes problem (2.10),
which is non-unique in general.

Proof. If z is feasible, thus (z, pz) satisfy (2.11), then J(ut; Ωt) in (2.10) attains the minimal value zero as
Ωt = Ω and (ut , pt) = (z, pz).

Supposing uniqueness, we present the following counter-example. Let f = 0 outside Ω, and let z solving
(2.11) be zero at ΓN \ ΓO ̸= 0. Extending (z, pz) with zero into larger Ωt such that Ω ⊂ Ωt ⊂ D and preserving
the observation boundary ΓOt = ΓO, we get an extension ( ̄z, ̄pz) ∈ V(Ωt) × L2(Ωt). The zero-extension satisfies
the variational equations (2.11) restated in Ωt. Henceforth, J( ̄z; Ωt) = J(z; Ω) = 0, and those Ωt solve (2.10)
as well as Ω.

3 Lagrange formulation using adjoint state
To express the state-constrained optimization problem (2.10) in a form suitable for analysis and numerical
solution, we apply the Lagrange approach.

Based on the objective J from (2.8) and state equations (2.5), the Lagrangian function L : U(Ωt)2 󳨃→ ℝ
over U(Ωt) := V(Ωt) × L2(Ωt) is defined by

L(u, p, v, q; Ωt) :=
1
2 ∫
ΓOt

|u − z|2 dSx − ∫
Ωt

(2με(u) ⋅ ε(v) − p div(v) − f⊤v − q div(u)) dx. (3.1)

We formulate the corresponding saddle-point (minimax) problem: find a solution quadruple

(ut , pt , vt , qt) ∈ U(Ωt)2

such that
L(ut , pt , v, q; Ωt) ≤ L(ut , pt , vt , qt; Ωt) ≤ L(u, p, vt , qt; Ωt) (3.2)

for all test functions (u, p, v, q) ∈ U(Ωt)2.

Theorem 3.1. There exists the unique saddle point (ut , pt , vt , qt) satisfying (3.2):

sup
(v,q)∈U(Ωt)

inf
(u,p)∈U(Ωt)

L(u, p, v, q; Ωt) = L(ut , pt , vt , qt; Ωt) = inf
(u,p)∈U(Ωt)

sup
(v,q)∈U(Ωt)

L(u, p, v, q; Ωt). (3.3)

The primal state (ut , pt) ∈ U(Ωt) solves the forward Stokes problem (2.5). The adjoint state (vt , qt) ∈ U(Ωt) is
the unique solution to Stokes equations (see [46]),

∫
Ωt

(2με(w) ⋅ ε(vt) − qt div(w)) dx = ∫
ΓOt

(ut − z)⊤w dSx , (3.4a)

∫
Ωt

λ div(vt) dx = 0 for all (w, λ) ∈ U(Ωt), (3.4b)
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which describes the boundary-value relations

−μ∆vt + ∇qt = 0, div(vt) = 0 in Ωt , (3.5a)

ε(vt) := 12 (∇v
t + (∇vt)⊤), (3.5b)

vt = 0 on ΓDt , 2με(vt)nt − qtnt =
{
{
{

ut − z on ΓOt ,
0 on ΓNt \ ΓOt .

(3.5c)

Proof. The former maximization problem in (3.2) after shortening reads

− ∫
Ωt

(2με(ut) ⋅ ε(v) − pt div(v) − f⊤v − q div(ut)) dx

≤ − ∫
Ωt

(2με(ut) ⋅ ε(vt) − pt div(vt) − f⊤vt − qt div(ut)) dx (3.6)

for all test functions (v, q) ∈ U(Ωt). Testing (3.6) with v = vt ± w and q = qt, we get equality (2.5a); inserting
v = vt and q = qt ± λ leads to (2.5b). Conversely, from (2.5a) with w = v − vt and div(ut) = 0 according to
(2.5b), we arrive at (3.6) which hold with the equality sign.

The latter minimization problem in (3.2) after shortening reads
1
2 ∫
ΓOt

|ut − z|2 dSx − ∫
Ωt

(2με(ut) ⋅ ε(vt) − pt div(vt) − qt div(ut)) dx

≤
1
2 ∫
ΓOt

|u − z|2 dSx − ∫
Ωt

(2με(u) ⋅ ε(vt) − p div(vt) − qt div(u)) dx (3.7)

for all test functions (u, p) ∈ U(Ωt). Substituting in (3.7) u = ut ± sw and p = pt such that
1
2 ∫
ΓOt

|ut − z ± sw|2 dSx −
1
2 ∫
ΓOt

|ut − z|2 dSx ≥ ∫
Ωt

(2με(±sw) ⋅ ε(vt) + qt div(±sw)) dx,

after dividing it with s ̸= 0 and then passing the parameter s → 0, it follows equality (3.4a). The substitution
of u = ut and p = pt ± λ in (3.7) follows (3.4b). Conversely, testing (3.4a) with w = u − ut such that

∫
Ωt

(2με(u − ut) ⋅ ε(vt) − qt div(u − ut)) dx = ∫
ΓOt

(ut − z)⊤(u − ut) dSx , (3.8)

using the incompressibility div(vt) = 0 in (3.4b) and the convexity of J,

∫

ΓOt

(ut − z)⊤(u − ut) dSx ≤
1
2 ∫
ΓOt

|u − z|2 dSx −
1
2 ∫
ΓOt

|ut − z|2 dSx , (3.9)

from (3.8) and (3.9), we conclude with (3.7).
The unique solvability to the adjoint variational equations (3.4) follows from Proposition 2.1. This fin-

ishes the proof.

Based on thewell-posedness assertion proved in Theorem3.1, as a corollary, we claim the equivalence below.

Corollary 3.2. An equivalent formulation of the shape optimization problem (2.10) using adjoint state reads:
find Ωt such that

inf
Ωt⊂G

L(ut , pt , vt , qt; Ωt), where (ut , pt , vt , qt) solves (3.2) in Ωt . (3.10)

Proof. For solutions (ut , pt) to the reference problem (2.5) and (ut , pt , vt , qt) to the minimax problem (3.2),
the optimal value function ℓ : (t0, t1) 󳨃→ ℝ defined as ℓ(t) := J(ut; Ωt) allows an equivalent representation

ℓ(t) := J(ut; Ωt) = L(ut , pt , vt , qt; Ωt), (3.11)

derived straightforwardly from (2.8) and (3.1). This proves the assertion.
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For a small perturbation parameter s ∈ (0, t1 − t), we consider a perturbed according to (2.1) geometry
Ωt+s ⊂ D with the Dirichlet, observation and Neumann boundaries ΓDt+s, ΓOt+s ⊂ ΓNt+s. Recalling the notation
U(Ωt+s) = V(Ωt+s) × L2(Ωt+s), the space V(Ωt+s) is defined in accordance with (2.3) as

V(Ωt+s) := {w = (w1, . . . , wd)⊤ ∈ H1(Ωt+s)d | w = 0 a.e. ΓDt+s}.

The perturbed Stokes problem (2.5) reads: find (ut+s , pt+s) ∈ U(Ωt+s) such that

∫
Ωt+s (2με(u

t+s) ⋅ ε(w) − pt+s div(w) − f⊤w) dx = 0,

∫
Ωt+s λ div(u

t+s) dx = 0 for all (w, λ) ∈ U(Ωt+s).

The corresponding (vt+s , qt+s) ∈ U(Ωt+s) solves the perturbed adjoint equations

∫
Ωt+s (2με(w) ⋅ ε(v

t+s) − qt+s div(w)) dx = ∫
ΓOt+s
(ut+s − z)⊤w dSx ,

∫
Ωt+s λ div(v

t+s) dx = 0 for all (w, λ) ∈ U(Ωt+s).

To attain a minimum in (2.10), we look for a decreasing optimal value function

ℓ(t + s) = J(ut+s; Ωt+s) = L(ut+s , pt+s , vt+s , qt+s; Ωt+s) < ℓ(t).

If the asymptotic expansion ℓ(t + s) = ℓ(t) + s∂tJ(ut; Ωt) + o(s) holds as s → 0+, then we aim at the descent
direction as common for gradient numerical methods,

∂tJ(ut; Ωt) < 0. (3.12)

Corollary 3.3. If the one-sided limit ∂tℓ(t) := lims→0+ (ℓ(t + s) − ℓ(t))/s exists, then the right derivative has two
equivalent formulations

lim
s→0+ J(u

t+s; Ωt+s) − J(ut; Ωt)
s

=: ∂tJ(ut; Ωt) = ∂tℓ(t) = ∂tL(ut , pt , vt , qt; Ωt)

:= lim
s→0+ L(u

t+s , pt+s , vt+s , qt+s; Ωt+s) − L(ut , pt , vt , qt; Ωt)
s

. (3.13)

Proof. Indeed, assertion (3.13) follows straightforwardly from equation (3.11) after its formal differentiation
with respect to t.

Our task is to provide the limit in (3.13) called a shape derivative.

4 Shape differentiability of the Lagrangian
Since the optimal value function in (3.11) is shape-dependent, we utilize a coordinate transformation to fixed
geometry. For t ∈ (t0, t1) fixed, let flows

[(s, x) 󳨃→ ϕs(x)], [(s, y) 󳨃→ ϕ−1s (y)] ∈ C1([0, t1 − t];W1,∞(D))d , ϕs|∂D = ϕ−1s |∂D = 0, (4.1)

describe a coordinate transformation y = ϕs(x) and the inverse x = ϕ−1s (y) such that their composition is
[ϕ−1s ∘ ϕs](x) = x and [ϕs ∘ ϕ−1s ](y) = y. Here and inwhat follows,we associate space points x = (x1, . . . , xd)⊤
to the fixed geometry Ωt, and y = (y1, . . . , yd)⊤ to a perturbed one Ωt+s. Then (4.1) forms a diffeomorphism

ϕs : Ωt 󳨃→ Ωt+s , x 󳨃→ y, ϕ−1s : Ωt+s 󳨃→ Ωt , y 󳨃→ x. (4.2)
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The transformation determines the kinematic velocity Λ by the implicit formula

Λ(t + s, y) := d
ds

ϕs(ϕ−1s (y)).

Conversely, given explicitly a velocity vector Λ = (Λ1, . . . , Λd)⊤ such that

Λ(t, x) ∈ C([t0, t1];W1,∞(D))d , Λ|∂D = 0, (4.3)

where Λ = 0 at ∂D preserves the hold-all domain D, it determines flows in (4.1) as the solution vector
ϕs = ((ϕs)1, . . . , (ϕs)d)⊤ to the non-autonomous ODE system

d
ds

ϕs = Λ(t + s, ϕs) for s ∈ (0, t1 − t), ϕs = x as s = 0, (4.4a)

and the solution vector ϕ−1s (y) = ((ϕ−1s )1, . . . , (ϕ−1s )d)⊤ to transport equations

∂
∂s

ϕ−1s + (∇yϕ−1s )Λ|t+s = 0 in (0, t1 − t) × D, ϕ−1s = y as s = 0, (4.4b)

where the second-order tensor is ∇yϕ−1s = (∂(ϕ−1s )i/∂yj)di,j=1 and Λ|t+s denotes Λ(t + s, y) for short. For the
details of (4.1)–(4.4), see [20].

The following traits are required to prove the shape differentiability.

Trait 1. The function spaces constitute a bijective map

(w, λ) 󳨃→ (w ∘ ϕs , λ ∘ ϕs) : U(Ωt+s) 󳨃→ U(Ωt). (4.5)

Proof. By the construction, coordinate transformation (4.1) builds a diffeomorphism, thus preserving inte-
grable functions and first derivatives that form L2 and H1 spaces entering (4.5).

Based on Trait 1, after transformation to the reference geometry Ωt, perturbed objective function

̃J(s, ̃u) : (0, t1 − t) × V(Ωt) 󳨃→ ℝ

and perturbed Lagrangian function L̃(s, ̃u, ̃p, ̃v, ̃q) : (0, t1 − t) × U(Ωt)2 󳨃→ ℝ are well defined by

̃J(s, w ∘ ϕs; Ωt) = J(w; Ωt+s) for w ∈ V(Ωt+s), (4.6a)
L̃(s, u ∘ ϕs , p ∘ ϕs , v ∘ ϕs , q ∘ ϕs; Ωt) = L(u, p, v, q; Ωt+s) (4.6b)

for all (u, p, v, q) ∈ U(Ωt+s)2. At s = 0, relations (4.6) imply that

̃J(0, w; Ωt) = J(w; Ωt) for w ∈ V(Ωt),
L̃(0, u, p, v, q; Ωt) = L(u, p, v, q; Ωt+s) for (u, p, v, q) ∈ U(Ωt)2.

We formulate corresponding to (4.6b) a perturbed saddle-point problem: find a solution quadruple

( ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s) ∈ U(Ωt)2

such that

L̃(s, ̃ut+s , ̃pt+s , v, q; Ωt) ≤ L̃(s, ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s; Ωt)

≤ L̃(s, u, p, ̃vt+s , ̃qt+s; Ωt) for all (u, p, v, q) ∈ U(Ωt)2. (4.7)

Trait 2. The set of saddle points ( ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s) satisfying (4.7), that is,

sup
(v,q)∈U(Ωt)

inf
(u,p)∈U(Ωt)

L̃(s, u, p, v, q; Ωt) = L̃(s, ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s; Ωt)

= inf
(u,p)∈U(Ωt)

sup
(v,q)∈U(Ωt)

L̃(s, u, p, v, q; Ωt), (4.8)

is nonempty for all s ∈ [0, t1 − t].
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Proof. According to Theorem 3.1, in the perturbed domain Ωt+s, there exists the unique saddle point

(ut+s , pt+s , vt+s , qt+s) ∈ U(Ωt+s)2

such that

L(ut+s , pt+s , v, q; Ωt+s) ≤ L(ut+s , pt+s , vt+s , qt+s; Ωt+s)

≤ L(u, p, vt+s , qt+s; Ωt+s) for all (u, p, v, q) ∈ U(Ωt+s)2. (4.9)

By virtue of (4.6b) applied to (4.9), we derive the transformed saddle point

( ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s) := (ut+s ∘ ϕs , pt+s ∘ ϕs , vt+s ∘ ϕs , qt+s ∘ ϕs),

which satisfies perturbed minimax problem (4.7) in the reference space Ωt.

Applying coordinate transformation (4.2) to J and L in accordance with (4.6), we derive from (2.8) explicit
expressions for the perturbed objective

̃J(s, w; Ωt) =
1
2 ∫
ΓOt

|w − z ∘ ϕs|2ωs dSx , (4.10a)

and from (3.1) for the perturbed Lagrange function

L̃(s, u, p, v, q; Ωt) = ̃J(s, u; Ωt) − ∫
Ωt

(2μE(∇ϕ−⊤s ∘ ϕs , u) ⋅ E(∇ϕ−⊤s ∘ ϕs , v) − p tr((∇ϕ−⊤s ∘ ϕs)∇v)
− (f ∘ ϕs)⊤v − q tr((∇ϕ−⊤s ∘ ϕs)∇u))Js dx. (4.10b)

For the derivation, we have used the chain rule ∇yu = (∇ϕ−⊤s ∘ ϕs)∇(u ∘ ϕs) with the transpose of the
inverse −⊤, the convention div(u) = tr(∇u) using the trace of matrix, and the Jacobian determinant

Js := det(∇ϕs) in Ωt , ωs := |(∇ϕ−⊤s ∘ ϕs)nt|Js at ∂Ωt . (4.11)

The notation in (4.10b) implies a generalized strain tensor

E(M, w) := 12 (M∇w + ∇w
⊤M⊤), M ∈ ℝd×d ,

such that E(I, w) = ε(w) for the d × d identity matrix I. For more details, see [30, 31, 34].

Trait 3. Let z ∈ H2(Ω)d. The asymptotic expansions in the first argument of the objective ̃J and the Lagrange
function L̃ from (4.10),

̃J(s, w; Ωt) = J(w; Ωt) + O(s), (4.12a)
L̃(s, u, p, v, q; Ωt) = L(u, p, v, q; Ωt) + s

∂
∂s

L̃(0, u, p, v, q; Ωt) + o(s), (4.12b)

hold as s → 0+. The partial derivative ∂L̃/∂s : (t0 − t, t1 − t) × U(Ωt)2 󳨃→ ℝ in (4.12b) yields a continuous func-
tion given analytically as

∂
∂s

L̃(s, u, p, v, q; Ωt) := ∫
ΓOt

(
1
2 divτt Λ|t+s|u − z|2 − (∇zΛ|t+s)⊤(u − z)) dSx

− ∫
Ωt

(2μ(div Λ|t+sε(u) ⋅ ε(v) − ε(u) ⋅ E(∇Λ|⊤t+s , v) − ε(v) ⋅ E(∇Λ|⊤t+s , u))
+ p tr(∇Λ|⊤t+s∇v) − (div Λ|t+s f + ∇fΛ|t+s)⊤v + q tr(∇Λ|⊤t+s∇u)) dx, (4.13)

where we have used the notation Λ|t+s = Λ(t + s, x) and the tangential divergence divτt Λ = div Λ − (∇Λnt)⊤nt
at ∂Ωt.

Proof. As s → 0+, the following asymptotic formula holds (see [48, Chapter 2]):

f ∘ ϕs = f + s∇fΛ + o(s), ∇ϕ−1s ∘ ϕs = I − s∇Λ + o(s),
Js = 1 + s div Λ + o(s), ωs = 1 + s divτt Λ + o(s).

(4.14)

With the help of (4.14), we expand the terms in (4.10), (4.11) and derive directly expansion (4.12) with the
first asymptotic term given in (4.13).
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Trait 4. For the saddle points in (3.3) and (4.8), there exists a subsequence sk for k →∞ such that, as sk → 0+,

( ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s) → (ut , pt , vt , qt) strongly in U(Ωt)2. (4.15)

The proof of Trait 4 is rather technical and given in Appendix A.
Based on Traits 1–4, we establish the following theorem on differentiability.

Theorem 4.1. The shape derivative ∂tℓ(t) in (3.13) exists, expressed explicitly by the partial derivative from
(4.13) as

∂tJ(ut; Ωt) = ∂tL(ut , pt , vt , qt; Ωt) =
∂
∂s

L̃(0, ut , pt , vt , qt; Ωt), (4.16)

where (ut , pt , vt , qt) ∈ U(Ωt)2 is the saddle point defined in (3.3).

Proof. All assumptions in [9, Chapter 10, Theorem 5.1] specifying the abstract result on directional differ-
entiability for shape optimization problems are satisfied by (4.8), (4.12) and (4.15) (see details in [33]).

5 Hadamard formula
Provided by a smooth solution to the Stokes problem (see [15]), a Hadamard representation of the shape
derivative ∂tℓ(t) by boundary integrals is presented next.

Theorem 5.1. Assume that the primal and adjoint solutions of (2.5) and (3.4) are smooth such that

(ut , pt , vt , qt) ∈ (H2(O)d × H1(O))2 in O ⊂ Ωt .

If Λ is constant outside some domain Ot ⊂ O with C2,0-smooth boundary ∂Ot and outward normal vector nt,
then an equivalent expression of the shape derivative (4.16) holds,

∂
∂s

L̃(0, ut , pt , vt , qt; Ωt) = J∂Ot (Λ) + JΓOt (Λ),

JΓOt (Λ) = ∫
ΓOt

((Λ⊤nt)D1(ut) + Λ⊤D2(ut)) dSx +
{{
{{
{

(Λ⊤τt)m(ut)|∂ΓOt in 2d,

∫

∂ΓOt

(Λ⊤bt)m(ut) dLx in 3d,

J∂Ot (Λ) := ∫
∂Ot

((Λ⊤nt)D3(ut , vt) + Λ⊤D4(ut , pt , vt , qt)) dSx ,

(5.1)

where τt is a tangential vector at the boundary positive oriented to nt in 2d, and bt = τt × nt is a binomial
vector within the moving frame at the respective boundary in 3d. The notation m(u), the scalar D1, D3 and
vector-valuedD2 = (D2

1, . . . ,D2
d)
⊤,D4 = (D4

1, . . . ,D
4
d)
⊤ terms in (5.1) are defined as follows:

D1(u) := 𝜘tm(u) + ∇m(u)⊤nt , m(u) := 12 |u − z|
2,

D2(u) := ∇u⊤(u − z),
D3(u, v) := f⊤v − 2με(u) ⋅ ε(v),

D4(u, p, v, q) := ∇u⊤(2με(v)nt − qnt) + ∇v⊤(2με(u)nt − pnt),

(5.2)

and the curvature is 𝜘t := divτt nt.

Proof. Since ∇Λ = 0 in Ωt \ Ot and the solution (ut , pt , vt , qt) is smooth in Ot, the shape derivative from
Theorem 4.1 in accordance with formula (4.13) reads

∂
∂s

L̃(s, ut , pt , vt , qt; Ωt) = I1 + I2 + I3 + JΓOt (Λ),

JΓOt (Λ) := ∫
ΓOt

(
1
2 divτt Λ|ut − z|2 − (∇zΛ)⊤(ut − z)) dSx .
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Integrating the terms entering (4.13) by parts in Ot, we have

I1 := − ∫
Ot

2μ(div Λε(ut) ⋅ ε(vt) − ε(ut) ⋅ E(∇Λ, vt) − ε(vt) ⋅ E(∇Λ, ut)) dx

= − ∫
Ot

Λ⊤(∇(ut)⊤2μ div ε(vt) + ∇(vt)⊤2μ div ε(ut)) dx

− ∫
∂Ot

2μ((Λ⊤nt)ε(ut) ⋅ ε(vt) − Λ⊤(∇(ut)⊤ε(vt) + ∇(vt)⊤ε(ut))nt) dSx ,

and using the incompressibility div(ut) = div(vt) = 0,

I2 := − ∫
Ot

(pt tr(∇Λ⊤∇vt) + qt tr(∇Λ⊤∇ut)) dx

= ∫
Ot

Λ⊤(∇(vt)⊤∇pt + ∇(ut)⊤∇qt) dx − ∫
∂Ot

Λ⊤(∇(vt)⊤pt + ∇(ut)⊤qt)nt dSx ,

whereas the integral
I3 := ∫

Ot

(div Λf + ∇fΛ)⊤vt dx.

After summation, employing the equilibrium equations (2.2a), (3.5a) and the identity

div(Λ(f⊤vt)) = div Λ(f⊤vt) + Λ⊤∇(f⊤vt),

gathering the like terms yields

I1 + I2 + I3 = ∫
Ot

div(Λ(f⊤vt)) dx

− ∫
∂Ot

((Λ⊤nt)2με(ut) ⋅ ε(vt) − Λ⊤(∇(ut)⊤(2με(vt) − qt) + ∇(vt)⊤(2με(ut) − pt))nt) dSx

= J∂Ot (Λ).

Applying the divergence theorem to the first integral over Ot in the right-hand side, we arrive at formulas for
D3 andD4 in (5.1) and (5.2).

Integration along the boundary ΓOt is given by the following formula (see [48, equation (2.125)]):

∫

ΓOt

(divτt Λm(u) + Λ⊤∇m(u)) dSx = ∫
ΓOt

(Λ⊤nt)(𝜘tm(u) + ∇m(u)⊤nt) dSx +
{{
{{
{

(Λ⊤τt)m(u)|∂ΓOt in 2d,

∫

∂ΓOt

(Λ⊤bt)m(u) dLx in 3d.

Together with the identity ∇m(u) = ∇u⊤(u − z) − ∇z⊤(u − z), this leads to the expression of J∂Ot (Λ) involving
D1,D2 and m(u) in (5.1) and (5.2).

The important corollary deals with the inverse problem of shape identification (3.10) and guarantees the
descent direction for optimization as suggested in (3.12). In the following consideration, we decompose the
vectors into orthogonal, normal and tangential components at the boundary,

Λ = (Λ⊤nt)nt + Λτt , Di = ((Di)⊤nt)nt +Di
τt , i = 2, 4.

Corollary 5.2. A descent direction for ∂tJ(ut; Ωt) < 0 in (3.12) is provided by the velocity Λ,

Λ⊤nt = −k1(D1(ut) +D2(ut)⊤nt), Λτt = −k2D2(ut)τt at ΓOt ,
Λ⊤τt = −k5m(ut) in 2d, Λ⊤bt = −k5m(ut) in 3d at ∂ΓOt ,
Λ⊤nt = −k3(D3(ut , vt) +D4(ut , pt , vt , qt)⊤nt), Λτt = −k4D4(ut , pt , vt , qt)τt at ∂Ot ,

(5.3)

with not all ki ≥ 0, i = 1, . . . , 5, simultaneously equal to zero.
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Proof. The direct substitution into (5.1) of Λ from (5.3) yields

∂
∂s

L̃(0, ut , pt , vt , qt; Ωt) = − ∫

ΓOt

(k1(D1(ut) +D2(ut)⊤nt)2 + k2D2(ut)2τt ) dSx

− ∫
∂Ot

(k3(D3(ut , vt) +D4(ut , pt , vt , qt)⊤nt)2 + k4D4(ut , pt , vt , qt)2τt ) dSx

−
{{
{{
{

k5m(ut)|2∂ΓOt in 2d,

∫

∂ΓOt

k5m(ut)2 dLx in 3d,

thus provides the decrease ∂L̃(0, ut , pt , vt , qt; Ωt)/∂s < 0.

Corollary 5.2 gives practical formulas for numerical simulation of the inverse Stokes problem by gradient
methods.

A Proof of Trait 4
We split the proof in three blocks: uniform estimate, weak convergence and strong convergence.

Uniform estimate. By virtue of representation (4.10) of L̃, the former, primal maximization problem in (4.7)
implies the optimality conditions

∫
Ωt

(2μE(∇ϕ−⊤s ∘ ϕs , ̃ut+s) ⋅ E(∇ϕ−⊤s ∘ ϕs , v)
− ̃pt+s tr((∇ϕ−⊤s ∘ ϕs)∇v) − (f ∘ ϕs)⊤v)Js dx = 0, (A.1a)

∫
Ωt

q tr((∇ϕ−⊤s ∘ ϕs)∇ ̃ut+s)Js dx = 0 for all (v, q) ∈ U(Ωt). (A.1b)

We expand (A.1a) due to asymptotic formulas (4.14) as s → 0+ and apply the Cauchy–Schwarz inequality to
derive the uniform estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

(2με( ̃ut+s) ⋅ ε(v) − ̃pt+s div(v) − f⊤v) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ sC0‖v‖H1(Ωt)d (A.2)

with constant C0 > 0. From tr((∇ϕ−⊤s ∘ ϕs)∇ ̃ut+s)Js = 0 due to (A.1b), the incompressibility condition holds
in the asymptotic sense div( ̃ut+s) = O(s∇ ̃ut+s). Therefore, testing (A.2) with v = ̃ut+s, it follows the inequality

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

(2με( ̃ut+s) ⋅ ε( ̃ut+s) − f⊤ ̃ut+s) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ sC1‖ ̃ut+s‖H1(Ωt)d , C1 > 0. (A.3)

We apply here the Korn–Poincaré inequality (2.6) to get the lower bound

‖ ̃ut+s‖H1(Ωt)d ≤ Cu :=
1

2μKKP
(‖f ‖L2(Ωt)d + C1s). (A.4)

Henceforth, (A.1a) implies a linear bounded functional such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

̃pt+s tr((∇ϕ−⊤s ∘ ϕs)∇v)Js dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

(2μE(∇ϕ−⊤s ∘ ϕs , ̃ut+s) ⋅ E(∇ϕ−⊤s ∘ ϕs , v) − (f ∘ ϕs)⊤v)Js dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ C2‖v‖H1(Ωt)d

with constant C2 := C3(Cu + ‖f ‖L2(Ωt)d ) and C3 > 0. Dividing this inequality with the norm of v, using asymp-
totic formulas (4.14) as s → 0+, it follows

1
‖v‖H1(Ωt)d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

̃pt+s div(v) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C2 + sC4‖ ̃pt+s‖L2(Ωt), C4 > 0.
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For sufficiently small s ≤ s1 < KLBB/C4, from LBB condition (2.7), we derive

‖ ̃pt+s‖L2(Ωt) ≤ Cp :=
C2

KLBB − s1C4
. (A.5)

The latter, dual minimization problem in (4.7) implies the adjoint system

∫
Ωt

(2μE(∇ϕ−⊤s ∘ ϕs , u) ⋅ E(∇ϕ−⊤s ∘ ϕs , ̃vt+s)
− ̃qt+s tr((∇ϕ−⊤s ∘ ϕs)∇u))Js dx = ∫

ΓOt

( ̃ut+s − z ∘ ϕs)⊤uωs dSx ,

∫
Ωt

p tr((∇ϕ−⊤s ∘ ϕs)∇ ̃vt+s)Js dx = 0 for all (u, p) ∈ U(Ωt),

(A.6)

which is of type (A.1), hence admits similar to (A.4) and (A.5) estimates of ̃vt+s and ̃qt+s. Therefore, we
conclude with existence of C > 0 such that

‖ ̃ut+s‖H1(Ωt)d + ‖ ̃pt+s‖L2(Ωt) + ‖ ̃v
t+s‖H1(Ωt)d + ‖ ̃qt+s‖L2(Ωt) ≤ C. (A.7)

Weakconvergence. Basedonuniformestimate (A.7), a subsequence sk → 0+ as k →∞andanaccumulation
point (u, p, v, q) ∈ U(Ωt)2 exist such that

( ̃ut+s , ̃pt+s , ̃vt+s , ̃qt+s) ⇀ (u, p, v, q) weakly in U(Ωt)2. (A.8)

On taking the limit in (A.1) and (A.6) as sk → 0,we arrive at the Stokes problem (2.5) and adjoint system (3.4).
Therefore, (u, p, v, q) = (ut , pt , vt , qt).

Strong convergence. With the help of the algebraic formula (a − b)2 = a2 − b2 − 2(a − b)b, we rearrange the
terms in (A.3) and (2.5a) tested with w = ut as follows:

∫
Ωt

2με( ̃ut+sk − ut) ⋅ ε( ̃ut+sk − ut) dx ≤ ∫
Ωt

(f⊤( ̃ut+sk − ut) − 4με( ̃ut+sk − ut) ⋅ ε(ut)) dx + skC1‖ ̃ut+sk‖H1(Ωt)d .

The application of limit as sk → 0+ due to weak convergences (A.8) and the Korn–Poincaré inequality (2.6)
provide the strong convergence by means of

lim sup
sk→0+ ‖ ̃ut+sk − ut‖2H1(Ωt)d

≤ 0. (A.9)

On the other hand, subtracting (2.5a) with w = u from (A.2), we get the inequality
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

(( ̃pt+sk − pt)div(v) − 2με( ̃ut+sk − ut) ⋅ ε(v)) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ skC0‖v‖H1(Ωt)d .

Dividing it with the norm of v such that

1
‖v‖H1(Ωt)d

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ωt

( ̃pt+sk − pt)div(v) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2μ‖ ̃ut+sk − ut‖H1(Ωt)d + skC0

and passing to the limit as sk → 0+ due to (A.8) and (A.9), LBB condition (2.7) leads to the upper bound

lim sup
sk→0+ ‖ ̃pt+sk − pt‖L2(Ωt) ≤ 0. (A.10)

Since adjoint systems (3.4), (A.6) are of the same type as (2.5), (A.1), then the estimates of type (A.9) and
(A.10) hold also true for the adjoint state,

lim sup
sk→0+ ‖ ̃vt+sk − vt‖2H1(Ωt)d

+ lim sup
sk→0+ ‖ ̃qt+sk − qt‖L2(Ωt) ≤ 0,

which finishes the proof of the strong convergence (4.15).
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