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 A B S T R A C T

A class of elastodynamic problems describing contact between two deformable bodies as 
well as non-penetrating cracks in a single body is considered in the framework of FEM 
approximation. For time discretization, the Hilber–Hughes–Taylor (HHT-𝛼) method extending 
Newmark schemes is incorporated. Using mixed variational formulation of the fully discrete 
contact problem, a semi-smooth Newton method of solution is provided with the locally 
super-linear convergence. An equivalent primal–dual active set algorithm validates monotone 
properties of global convergence for the Newton iterates provided by M-matrix property. 
Numerical solution of the Signorini contact with rigid obstacle is presented for isotropic body 
in 2D using benchmark and moving load experiment.

1. Introduction

In the framework of computational contact and impact mechanics [1], motion of two deformable elastic bodies coming into 
contact is studied. As the special case, when contact surfaces for the both bodies coincide in the reference configuration, this 
setting allows straightforward extension to fracture problems with cracks subjected to non-penetration conditions, see [2]. For the 
variational theory of elastostatic models of solids and plates with non-penetrating cracks and for the relevant numerical treatment 
we refer the readers to [3–6] and other works by the authors.

The well-posedness of elastodynamics contact problems is an open question except in one spatial dimension and some particular 
cases. In several models of the dynamic impact of thin structures, an infinite number of solutions can be exhibited, which can 
be linked to the fact that the contact surface has its own inertia. To recover or establish the well-posedness, a regularization by 
viscous damping can be useful, together with the regularization of contact condition. The existence of solutions to the dynamic 
problems for viscoelastic bodies with frictional contact was proven in [7] with the use of penalization and regularization methods. 
Contact conditions were formulated in velocities, thus satisfying the persistency condition. Mathematical results on existence for 
damped evolutionary equations with damped unilateral conditions in case of viscoelastic materials were obtained in [8,9]. For 
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Fig. 1. Example of two body contact in 2D.

solvability of the elastodynamic problem for the crack with a modified contact law see [10]. The abstract theory of evolutionary 
variational–hemivariational inequalities with applications to dynamic viscoelastic contact mechanics is developing in the works 
by [11,12].

For the discretization of dynamical contact problems by finite element method (FEM) we refer to [13,14]. The space semi-
discretization is ill-posed in the sense that is has an infinite number of solutions corresponding to a choice of the restitution at 
impact of each contact node. Standard schemes are not stable with respect to mechanical energy and finally blow up rapidly for 
small time steps. The instability of time-discretization is partially due to violation of the discrete persistency condition. There are 
known stabilization methods of a restitution coefficient [15] and mass redistribution [13,16]. For energy-consistent methods using 
penalization we cite [17,18]. Nitsche’s method [19–21] is consistent and converges optimally, hence has better approximation 
properties than a penalty method. In [22], an unbiased formulation was suggested for bodies which are expected to come into 
contact in the same way without master and slave surfaces. We refer also to [23] for the relevant methods of boundary elements, 
and to [24] for domain decomposition.

The discrete problem implies a Linear Complementarity Problem (LCP), which has been studied extensively in the literature with 
respect to numerical algorithms such as well-established pivoting methods [25]. It is known that, for large number of constrained 
unknowns, the classical LCP-methods require a large number of iterations. Interior-point and semi-smooth algorithms are the most 
efficient and robust iterative algorithms with a rather small number of required iterations. In comparison to interior point methods, 
the semi-smooth Newton strategy determines not an approximate, but the exact solution of the discrete problem. For comprehensive 
comparisons of the semi-smooth and LCP algorithms we refer the reader to [26,27].

To solve efficiently variational inequalities stemming from complementarity conditions, a semi-smooth Newton method was 
proposed in [28,29] and other works. It is based on a generalized gradient of non-smooth merit functions, in particular, the 
minimum-based function. For globalization, Newton iterates can be implemented on primal–dual active sets (PDAS). The application 
of generalized Newton’s methods for solution of contact and frictional problems in mechanics can be found in [30], and for crack 
problems with non-penetration conditions in [31,32]. The PDAS strategy was applied to dynamic frictional contact problems in [33] 
within an energy conserving framework based on the shifted midpoint, and in [34] using the implicit second-order midpoint rule, 
however, without analysis of convergence properties.

In this work, we formulate the elastodynamic contact problem in Section 2, and introduce its mixed FEM approximation in 
Section 3. For temporal discretization, we apply the Hilber–Hughes–Taylor method [35] called HHT-𝛼 as commonly adopted in the 
literature (see e.g. [36]). Following [37] our notation extends the schemes of Newmark family given by two weight parameters 
𝛾 and 𝛽, which are considered here as the particular case of HHT-𝛼 when the parameter 𝛼 = 1. In benchmarks by compression 
and release, spurious oscillations in the energy are suppressed when using 𝛾-damped as well as 𝛼-damped schemes. Focusing on 
convergence analysis, in Section 4 we prove rigorously that Newton iterates converge to the fully discrete solution locally with a 
super-linear rate provided by the M-property of system matrix. We formulate the semi-smooth Newton iteration in the equivalent 
form of PDAS algorithm, then justify theoretically and validate numerically monotone properties of its global convergence for 
arbitrary initialization and various parameters 𝛼 and 𝛾, 𝛽. Motivated by railway applications [38], in Section 5 we compute the 
loop motion of a two-dimensional isotropic body compressed by a rigid obstacle under a moving load and for the corresponding 
symmetric crack problem.

2. Setting of the problem

We consider a system of two deformable elastic bodies coming into contact with each other. Example of the two-body contact 
geometry is presented in 2D in Fig.  1. For notational convenience, index 𝑖 is used to represent in unified way the first body as 𝑖 = 1, 
or the second body as 𝑖 = 2, respectively. Let 𝛺𝑖 be the domain in R𝑑 , with 𝑑 = 2 or 𝑑 = 3, occupied by the 𝑖th body in the reference 
configuration. We suppose that the boundary 𝜕𝛺𝑖 is Lipschitz continuous and has an outward unit normal vector 𝐧𝑖. Let 𝜕𝛺𝑖 consist 
of three mutually non-overlapping parts 𝛤 𝑖D, 𝛤 𝑖N and 𝛤 𝑖C. Each body is clamped on the Dirichlet boundary 𝛤 𝑖D, and on the Neumann 
boundary 𝛤 𝑖N it is assumed to be free of stress for the sake of simplicity. Whereas a portion of the boundary 𝛤 𝑖C of the 𝑖th body is a 
candidate for contact surface. This means that the actual surface on which the bodies come into contact with each other is unknown 
in advance and corresponds one-to-one to both 𝛤 1

C and 𝛤 2
C. Furthermore, 𝑡 ∈ [0, 𝑇 ) stands for a time with the prescribed final time 

𝑇 > 0. We denote for short by 𝛺𝑖
𝑇 = (0, 𝑇 )×𝛺𝑖 the cylinder, and similarly by 𝛤 𝑖D𝑇 = (0, 𝑇 )×𝛤 𝑖D, 𝛤 𝑖N𝑇 = (0, 𝑇 )×𝛤 𝑖N its surface portions.

Relatively to the fixed spatial frame, displacements of the bodies can be represented by the pair 𝐮 = (𝐮1,𝐮2) in the multi-domain 
𝛺 = 𝛺1 ∪ 𝛺2, where 𝐮𝑖 is the displacement field of the 𝑖th body. Small strain assumption is made, such that the linearized strain 
tensor field is represented by 

𝜺(𝐮𝑖) = 1 (∇𝐮𝑖 + (∇𝐮𝑖)⊤
)

, (2.1)

2

2 



V.A. Kovtunenko and Y. Renard Journal of Computational and Applied Mathematics 471 (2026) 116722 
with the transposed gradient, and the stress tensor field is given by Hooke’s law: 
𝝈(𝐮𝑖) = 𝐀𝑖𝜺(𝐮𝑖) in 𝛺𝑖

𝑇 (2.2)

where 𝐀1 and 𝐀2 are the fourth order symmetric elasticity tensors having the usual uniform ellipticity and boundedness properties. 
Each body is subjected to the volume force 𝐟 𝑖 prescribed in 𝛺𝑖

𝑇 .
The dynamic two-body contact problem consists in finding the displacement field 𝐮 ∶ [0, 𝑇 ) × 𝛺 ↦ R𝑑 satisfying constitutive 

Eqs. (2.1) and (2.2), the equation of motion 
𝜌𝑖𝐮̈𝑖 − div𝝈(𝐮𝑖) = 𝐟 𝑖 in 𝛺𝑖

𝑇 , (2.3)

where density of the elastic material denoted by 𝜌𝑖 is supposed to be constant, and the initial conditions: 
𝐮𝑖(0, ⋅ ) = 𝐮𝑖0, 𝐮̇𝑖(0, ⋅ ) = 𝐮̇𝑖0 in 𝛺𝑖. (2.4)

Here the notation 𝐮̇ stands for the velocity and 𝐮̈ for acceleration; 𝐮𝑖0 is the initial displacement and 𝐮̇𝑖0 is the initial velocity of the 
𝑖th body. Eqs. (2.1)–(2.4) are endowed with the mixed Dirichlet–Neumann boundary conditions: 

𝐮𝑖 = 𝟎 on 𝛤 𝑖D𝑇 , 𝝈(𝐮𝑖)𝐧𝑖 = 𝟎 on 𝛤 𝑖N𝑇 , (2.5)

and contact conditions described hereafter.
Let 𝛤C be a Lipschitz continuous oriented surface in R𝑑 with an outward unit normal vector 𝐧, and 𝛤C𝑇 = (0, 𝑇 ) × 𝛤C. For any 

displacement field 𝐯 defined on the surface we adopt the orthogonal decomposition: 
𝐯 = 𝑣𝑛𝐧 + 𝐯𝛤 , 𝑣𝑛 = 𝐯 ⋅ 𝐧 on 𝛤C, (2.6)

where ‘‘ ⋅ ’’ denotes the scalar product of vectors (or tensor contraction) and 𝐯𝛤  are tangential components of 𝐯. Let us assume a 
bijective mapping (diffeomorphism) 

𝛱 𝑖 ∶ 𝛤 𝑖C ↦ 𝛤C, (2.7)

associating each point of the boundary portion 𝛤 𝑖C of the 𝑖th body to a point of the contact surface 𝛤C such that the Jacobian 
determinant of the transformation 𝐽 𝑖 > 0. Then we can define the relative jump of fields across the contact surface:

[[𝐮]] = 𝐮1◦𝛱1 − 𝐮2◦𝛱2.

We choose the direction of normal 𝐧 such that the opening is non-negative: 
[[𝑢𝑛]] = (𝐮1◦𝛱1 − 𝐮2◦𝛱2) ⋅ 𝐧 ≥ 0. (2.8)

Using (2.6) and (2.7) such that the transformed stress field is decomposed as
{

𝐽 𝑖(𝝈(𝐮𝑖)𝐧𝑖)◦𝛱 𝑖 = 𝜎𝑛(𝐮𝑖)𝐧 +
(

𝐽 𝑖(𝝈(𝐮𝑖)𝐧𝑖)◦𝛱 𝑖)
𝛤 ,

𝜎𝑛(𝐮𝑖) =
(

𝐽 𝑖(𝝈(𝐮𝑖)𝐧𝑖)◦𝛱 𝑖) ⋅ 𝐧 on 𝛤C,
the two-body contact is friction-free: 

(

𝐽 𝑖(𝝈(𝐮𝑖)𝐧𝑖)◦𝛱 𝑖)
𝛤 = 𝟎 on 𝛤C𝑇 , (2.9)

and verifies the following unilateral conditions owing to non-penetration (2.8): 
[[𝑢𝑛]] ≥ 0, 𝜎𝑛(𝐮) ≤ 0, 𝜎𝑛(𝐮)[[𝑢𝑛]] = 0 on 𝛤C𝑇 . (2.10)

The normal stress across the contact surface: 
𝜎𝑛(𝐮) = −

(

𝐽 1(𝝈(𝐮1)𝐧1)◦𝛱1) ⋅ 𝐧 =
(

𝐽 2(𝝈(𝐮2)𝐧2)◦𝛱2) ⋅ 𝐧 (2.11)

is continuous ([[𝜎𝑛(𝐮)]] = 0), and the negative sign corresponds to compression.

Example 2.1.  As in example Fig.  1, let the contact surfaces 𝛤 𝑖C = 𝛤C coincide such that 𝛱 𝑖 is the identity transformation and 𝐽 𝑖 = 1. 
In this case, choice of the normal direction 𝐧 = −𝐧1 = 𝐧2 corresponds to the positive sign in (2.8). The normal jump in (2.8) and 
boundary stresses in (2.9) and (2.11) are:

[[𝑢𝑛]] = (𝐮1 − 𝐮2) ⋅ 𝐧, 𝜎𝑛(𝐮) = 𝝈(𝐮𝑖)𝐧 ⋅ 𝐧, 𝝈𝛤 (𝐮𝑖) = 𝝈(𝐮𝑖)𝐧 − 𝜎𝑛(𝐮)𝐧.

Remark 2.1.  Within Example  2.1, if the transmission conditions:
[[𝑢𝑛]] = 0, [[𝜎𝑛(𝐮)]] = 0 on 𝛴𝑇 = (0, 𝑇 ) × 𝛴

hold on a portion 𝛴 of contact boundary 𝛤C, then its complement:
[[𝑢𝑛]] ≥ 0, 𝜎𝑛(𝐮) ≤ 0, 𝜎𝑛(𝐮)[[𝑢𝑛]] = 0 on 𝛤C𝑇 ⧵ 𝛴𝑇

implies a non-penetrating crack according to the description of [2].
3 
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2.1. Variational formulation

Let us introduce the Hilbert space:

𝐕 =
{

𝐯 = (𝐯1, 𝐯2) ∈ 𝐻1(𝛺1)𝑑 ×𝐻1(𝛺2)𝑑 | 𝐯𝑖 = 𝟎 a.e. 𝛤 𝑖D
}

accounting for the Dirichlet boundary condition in (2.5), and the Bochner space

𝐖 =
{

𝐯 ∈ 𝐿2(0, 𝑇 ;𝐕), 𝐯̇ = (𝐯̇1, 𝐯̇2) ∈ 𝐿2(0, 𝑇 ;𝐿2(𝛺)𝑑 )
}

,

where 𝐿2(𝛺) = 𝐿2(𝛺1) × 𝐿2(𝛺2). We define the convex cone 𝐊 of admissible displacements which satisfy the non-penetration (2.8) 
on the contact surface:

𝐊 = {𝐯 ∈ 𝐕| [[𝑣𝑛]] ≥ 0 a.e. 𝛤C}.

Suppose that the initial fields in (2.4) satisfy 𝐮0 = (𝐮10,𝐮
2
0) ∈ 𝐊, and that 𝐮̇0 = (𝐮̇10, 𝐮̇

2
0) ∈ 𝐿2(𝛺)𝑑 . Suppose also that the body force 

𝐟 = (𝐟1, 𝐟2) ∈ 𝐶([0, 𝑇 ];𝐿2(𝛺)𝑑 ), which imply that 𝐟 belongs to 𝐿2((0, 𝑇 ) ×𝛺)𝑑 .
For smooth fields 𝐮𝑖 and 𝐯𝑖 in the 𝑖th body the Green’s formula holds:

−∫𝛺𝑖
div𝝈(𝐮𝑖) ⋅ 𝐯𝑖 𝑑𝐱 = ∫𝛺𝑖

𝝈(𝐮𝑖) ∶ 𝜺(𝐯𝑖) 𝑑𝐱 − ∫𝜕𝛺𝑖
𝝈(𝐮𝑖)𝐧𝑖 ⋅ 𝐯𝑖 𝑑𝛤 ,

where notation ‘‘ ∶ ’’ stands for the tensor double contraction. Applying on the contact surface the one-to-one transformation 
𝛱 𝑖 ∶ 𝛤 𝑖C ↦ 𝛤C from (2.6) and (2.7) yields the sum

−∫𝛺
div𝝈(𝐮) ⋅ 𝐯 𝑑𝐱 = ∫𝛺

𝝈(𝐮) ∶ 𝜺(𝐯) 𝑑𝐱 −
2
∑

𝑖=1
∫𝛤 𝑖D∪𝛤 𝑖N

𝝈(𝐮𝑖)𝐧𝑖 ⋅ 𝐯𝑖 𝑑𝛤

+
2
∑

𝑖=1
∫𝛤C

(

𝐽 𝑖(𝝈(𝐮𝑖)𝐧𝑖)◦𝛱 𝑖)
𝛤 ⋅ (𝐯𝑖◦𝛱 𝑖)𝛤 𝑑𝛤 + ∫𝛤C

[[𝜎𝑛(𝐮)𝑣𝑛]] 𝑑𝛤 . (2.12)

Denote by 𝜌 = (𝜌1, 𝜌2) the density in 𝛺 and by 𝛺𝑇 = (0, 𝑇 ) × 𝛺 the time-space domain. The substitution of the equation of motion 
(2.3) and boundary conditions (2.5), (2.9) and (2.10) into (2.12) tested by 𝐯 − 𝐮 and integrated over 𝑡 ∈ (0, 𝑇 ) yields

∫𝛺𝑇
(𝜌𝐮̈ − 𝐟 ) ⋅ (𝐯 − 𝐮) 𝑑𝐱𝑑𝑡 + ∫𝛺𝑇

𝝈(𝐮) ∶ 𝜺(𝐯 − 𝐮) 𝑑𝐱𝑑𝑡

= −∫𝛤C𝑇
𝜎𝑛(𝐮)[[𝑣𝑛]] 𝑑𝛤𝑑𝑡. (2.13)

Upon integrating (2.13) by parts over time using initial conditions (2.4) and

∫

𝑇

0
𝜌𝐮̈ ⋅ 𝐯 𝑑𝑡 = −∫

𝑇

0
𝜌𝐮̇ ⋅ 𝐯̇ 𝑑𝑡 + 𝜌𝐮̇(𝑇 , ⋅ ) ⋅ 𝐯(𝑇 , ⋅ ) − 𝜌𝐮̇(0, ⋅ ) ⋅ 𝐯(0, ⋅ ),

a weak formulation of the problem (2.1)–(2.11) reads as: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find 𝐮 ∈ 𝐖, 𝐮(𝑡, ⋅ ) ∈ 𝐊 for 𝑡 ∈ (0, 𝑇 ), 𝐮(0, ⋅ ) = 𝐮0, such that:

−∫𝛺𝑇
𝜌𝐮̇ ⋅ (𝐯̇ − 𝐮̇) 𝑑𝐱𝑑𝑡 + ∫𝛺𝑇

𝝈(𝐮) ∶ 𝜺(𝐯 − 𝐮) 𝑑𝐱𝑑𝑡

≥ ∫𝛺
𝜌𝐮̇0 ⋅ (𝐯(0, ⋅ ) − 𝐮0) 𝑑𝐱 + ∫𝛺𝑇

𝐟 ⋅ (𝐯 − 𝐮) 𝑑𝐱𝑑𝑡

for all 𝐯 ∈ 𝐖, 𝐯(𝑡, ⋅ ) ∈ 𝐊, and 𝐯 = 𝐮 for 𝑡 ≥ 𝑇 − 𝜁 with 𝜁 > 0.

(2.14)

Note that within the function space 𝐕 the boundary trace 𝝈(𝐮𝑖)𝐧𝑖 can be defined at 𝜕𝛺𝑖 as 𝐻−1∕2-distribution only. Therefore, it 
follows

Remark 2.2.  Let 𝐮 be a sufficiently regular solution to the variational problem (2.14), then it solves the initial boundary value 
problem (2.1)–(2.11).

For fixed 𝑡 ∈ [0, 𝑇 ], the mechanical energy associated with the solution 𝐮 of the problem (2.14) is defined as 

𝐸(𝑡) = 1
2 ∫𝛺

𝜌|𝐮̇|2 𝑑𝐱 + 1
2 ∫𝛺

𝝈(𝐮) ∶ 𝜺(𝐮) 𝑑𝐱, (2.15)

where | ⋅ | is the vector 𝓁2-norm. Formally testing (2.12) with 𝐯 = 𝐮̇, after integration by parts with the boundary conditions (2.5), 
(2.9) and (2.10) yields similarly to (2.13) the identity:

(𝜌𝐮̈ − 𝐟 ) ⋅ 𝐮̇ 𝑑𝐱 + 𝝈(𝐮) ∶ 𝜺(𝐮̇) 𝑑𝐱 = − 𝜎𝑛(𝐮)[[𝑢̇𝑛]] 𝑑𝛤 .
∫𝛺 ∫𝛺 ∫𝛤C

4 
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If 𝐮̇ is continuous in time, then the persistency condition 𝜎𝑛(𝐮)[[𝑢̇𝑛]] = 0 holds on 𝛤C𝑇 . Upon differentiating (2.15) with respect to 
time we end up with: 

𝑑
𝑑𝑡
𝐸(𝑡) − ∫𝛺

𝐟 ⋅ 𝐮̇ 𝑑𝐱 = 0. (2.16)

As a consequence of (2.16), we get

Remark 2.3.  If the body force 𝐟 vanishes and the persistency condition is valid, then energy conservation holds: 𝐸(𝑡) = 𝐸(0) for 
all 𝑡 ∈ [0, 𝑇 ].

3. Discretization of the variational problem

Let  𝑖
ℎ  be a family of triangulations of the domain 𝛺𝑖. The mesh size ℎ = max𝐾∈ 𝑖ℎ

ℎ𝐾 where ℎ𝐾 is the diameter of set 𝐾. The 
triangulation is supposed regular and conformal to the subdivisions of the boundaries into 𝛤 𝑖D, 𝛤 𝑖N and 𝛤 𝑖C, which means that a face 
of an element 𝐾 ∈  𝑖

ℎ  is not allowed to have simultaneous non-empty intersection with more than one part of the subdivision. We 
introduce the family of finite-dimensional vector spaces 𝐕ℎ = 𝐕1

ℎ × 𝐕2
ℎ indexed by ℎ > 0 and build by piecewise on  𝑖

ℎ  polynomials 
of degree 𝑝 ∈ N:

𝐕𝑖ℎ =
{

𝐯𝑖ℎ ∈ 𝐶0(𝛺𝑖)| 𝐯𝑖ℎ
|

|

|𝐾
∈ (P𝑝(𝐾))𝑑 for all 𝐾 ∈  𝑖

ℎ , 𝐯𝑖ℎ = 𝟎 on 𝛤 𝑖D
}

.

Let us assume a discrete counterpart of the bijection 𝛱 𝑖 in (2.7):
𝛱 𝑖
ℎ ∶ 𝐾 ∩ 𝛤 𝑖C ↦ 𝛤 ℎC for all 𝐾 ∈  𝑖

ℎ ,

where 𝛤 ℎC  is a finite set of 𝑁ℎ
C ∈ N nodes belonging to the contact surface 𝛤C. The discretized non-penetration condition (2.8) is 

[[𝑢ℎ𝑛]] = (𝐮1ℎ◦𝛱
1
ℎ − 𝐮2ℎ◦𝛱

2
ℎ) ⋅ 𝐧 ≥ 0 on 𝛤 ℎC . (3.1)

Complementary to (3.1) we introduce the Lagrange multiplier 𝜆ℎ ∶ [0, 𝑇 ) ↦ R𝑁
ℎ
C  which verifies the complementarity conditions 

according to (2.10): 
[[𝑢ℎ𝑛]] ≥ 0, 𝜆ℎ ≤ 0, 𝜆ℎ[[𝑢ℎ𝑛]] = 0 on 𝛤 ℎC𝑇 , (3.2)

where 𝛤 ℎC𝑇 = (0, 𝑇 ) × 𝛤 ℎC . If the normal stress 𝜎𝑛(𝐮) in (2.11) is regular, then 𝜆ℎ in (3.2) implies its FEM approximation.
The semi-discretized in space variational problem (2.14) reads: 

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Find 𝐮ℎ ∶ (0, 𝑇 ) ↦ 𝐕ℎ, 𝐮ℎ(0, ⋅ ) = 𝐮0ℎ, [[𝑢ℎ𝑛]] ≥ 0 on 𝛤 ℎC𝑇 :

∫𝛺𝑇
𝜌𝐮̈ℎ ⋅ (𝐯ℎ − 𝐮ℎ) 𝑑𝐱𝑑𝑡 + ∫𝛺𝑇

𝝈(𝐮ℎ) ∶ 𝜺(𝐯ℎ − 𝐮ℎ) 𝑑𝐱𝑑𝑡

≥ ∫𝛺𝑇
𝐟 ⋅ (𝐯ℎ − 𝐮ℎ) 𝑑𝐱𝑑𝑡

for all 𝐯ℎ ∈ 𝐶0([0, 𝑇 ];𝐕ℎ) with [[𝑣ℎ𝑛]] ≥ 0 on 𝛤 ℎC𝑇 ,

(3.3)

where 𝐮0ℎ (respectively 𝐮̇0ℎ) is an approximation in 𝐕ℎ of the initial displacement 𝐮0 (respectively the initial velocity 𝐮̇0).

Remark 3.1.  We assume [[𝑢𝑛]] ≥ 0 a.e. 𝛤C follows that [[𝑢ℎ𝑛]] ≥ 0 on 𝛤 ℎC . The semi-discrete variational problem (3.3) is consistent in 
the following sense: if the solution 𝐮 of (2.14) is sufficiently smooth, then it satisfies also (3.3).

Indeed, from the Green’s formula (2.13) hold for smooth 𝐮, using the complementarity conditions (2.10) we infer the identity:

∫𝛺𝑇
𝜌𝐮̈ ⋅ 𝐮 𝑑𝐱𝑑𝑡 + ∫𝛺𝑇

𝝈(𝐮) ∶ 𝜺(𝐮) 𝑑𝐱𝑑𝑡 = ∫𝛺𝑇
𝐟 ⋅ 𝐮 𝑑𝐱𝑑𝑡,

and the variational equation hold for all 𝐯 ∈ 𝐕:

∫𝛺𝑇
𝜌𝐮̈ ⋅ 𝐯 𝑑𝐱𝑑𝑡 + ∫𝛺𝑇

𝝈(𝐮) ∶ 𝜺(𝐯) 𝑑𝐱𝑑𝑡 = ∫𝛺𝑇
𝐟 ⋅ 𝐯 𝑑𝐱𝑑𝑡 − ∫𝛤C𝑇

𝜎𝑛(𝐮)[[𝑣𝑛]] 𝑑𝛤𝑑𝑡.

Using 𝜎𝑛(𝐮) ≤ 0 and testing 𝐯 = 𝐯ℎ yields (3.3) with 𝐮ℎ replaced by 𝐮.
For integer 𝑁 , let 𝜏 = 𝑇 ∕𝑁 be the step size, and consider a uniform discretization of the time interval [0, 𝑇 ] with points 

𝑡𝑚 = 𝑚𝜏 for 𝑚 = 0,… , 𝑁 . Hereafter we denote by 𝐮𝑚ℎ  (respectively 𝐮̇𝑚ℎ  and 𝐮̈𝑚ℎ ) the discretized displacement (respectively velocity 
and acceleration) at time 𝑡𝑚, and weighted sum with parameter 𝛼 > 0:

𝐯𝑚+𝛼ℎ = 𝛼𝐯𝑚+1ℎ + (1 − 𝛼)𝐯𝑚ℎ .

Respectively, the semi-discrete force 𝐟𝑚 = 𝐟 (𝑡𝑚, ⋅ ) and the Lagrange multiplier 𝜆𝑚ℎ = 𝜆ℎ(𝑡𝑚) for 𝑚 = 0,… , 𝑁 and intermediate time 
steps 𝑚 + 𝛼.
5 



V.A. Kovtunenko and Y. Renard Journal of Computational and Applied Mathematics 471 (2026) 116722 
It is well-known that a standard scheme such as Crank–Nicolson is not stable since the energy may start oscillate and blow 
up by decreasing step size. Therefore, we apply a most general Hilber–Hughes–Taylor (HHT) implicit 𝛼-method following [37], 
which extends the Newmark scheme with prescribed parameters 𝛾 ∈ [0, 1] and 𝛽 ∈ [0, 0.5]. For 𝑚 ≥ 0 we perform the fully discrete 
variational problem (3.3) in mixed formulation owing to (3.2): 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Find 𝐮𝑚+1ℎ , 𝐮̇𝑚+1ℎ , 𝐮̈𝑚+1ℎ ∈ 𝐕ℎ and 𝜆𝑚+𝛼ℎ ∈ R𝑁
ℎ
C  such that:

𝐮𝑚+1ℎ = 𝐮𝑚ℎ + 𝜏𝐮̇𝑚ℎ + 𝜏2

2
𝐮̈𝑚+2𝛽ℎ ,

𝐮̇𝑚+1ℎ = 𝐮̇𝑚ℎ + 𝜏𝐮̈𝑚+𝛾ℎ ,

∫𝛺
𝜌𝐮̈𝑚+1ℎ ⋅ 𝐯ℎ 𝑑𝐱 + ∫𝛺

𝝈(𝐮𝑚+𝛼ℎ ) ∶ 𝜺(𝐯ℎ) 𝑑𝐱 + 𝜆𝑚+𝛼ℎ ⋅ [[𝑣ℎ𝑛]]

= ∫𝛺
𝐟𝑚+𝛼 ⋅ 𝐯ℎ 𝑑𝐱 for all 𝐯ℎ ∈ 𝐕ℎ,

[[𝑢𝑚+𝛼ℎ𝑛 ]] ≥ 0, 𝜆𝑚+𝛼ℎ ≤ 0, 𝜆𝑚+𝛼ℎ [[𝑢𝑚+𝛼ℎ𝑛 ]] = 0 on 𝛤 ℎC ,

(3.4)

with initial fields 𝐮0ℎ = 𝐮0ℎ and 𝐮̇0ℎ = 𝐮̇0ℎ. The acceleration may be initialized through solution 𝐮̈0ℎ of the system:
⎧

⎪

⎨

⎪

⎩

∫𝛺
(𝜌𝐮̈0ℎ − 𝐟0) ⋅ 𝐯ℎ 𝑑𝐱 + ∫𝛺

𝝈(𝐮0ℎ) ∶ 𝜺(𝐯ℎ) 𝑑𝐱 + 𝜆0ℎ ⋅ [[𝑣ℎ𝑛]] = 0 for all 𝐯ℎ ∈ 𝐕ℎ,

[[𝑢0ℎ𝑛]] ≥ 0, 𝜆0ℎ ≤ 0, 𝜆0ℎ[[𝑢
0
ℎ𝑛]] = 0 on 𝛤 ℎC .

Remark 3.2.  The HHT-𝛼 system (3.4) for 𝛼 = 1 turns into the scheme of Newmark family. The HHT-𝛼 scheme corresponds to the 
special choice of parameters 𝛾 = 1∕2 + 𝛼̃ and 𝛽 = (1 + 𝛼̃)2∕4, where 𝛼̃ = 1 − 𝛼. It yields unconditional stability for 0 < 𝛼̃ < 1∕3 and 
second order consistency for linear elasticity (see [36,39]) and turns into the Crank–Nicolson scheme as 𝛼 = 1 (𝛼̃ = 0).

3.1. Well-posedness and stability of the fully discrete formulation

We first recall estimates for 𝐯ℎ ∈ 𝐕ℎ provided by uniform ellipticity and boundedness properties of the elasticity tensor in (2.2). 
There exist constants 𝐶E, 𝐶K , 𝐶I > 0, which are independent of the mesh size ℎ, such that 

‖𝜺(𝐯ℎ)‖0,𝛺 ≤ ‖∇𝐯ℎ‖0,𝛺 , ‖𝝈(𝐯ℎ)‖0,𝛺 ≤ 𝐶E‖∇𝐯ℎ‖0,𝛺 , (3.5)

in the 𝐿2(𝛺)-norm ‖ ⋅ ‖0,𝛺, and Korn’s and Poincaré’s inequalities yield 

∫𝛺
𝝈(𝐯ℎ) ∶ 𝜺(𝐯ℎ) 𝑑𝐱 ≥ 𝐶K‖𝐯ℎ‖21,𝛺 , ‖𝐯ℎ‖21,𝛺 = ‖𝐯ℎ‖20,𝛺 + ‖∇𝐯ℎ‖20,𝛺 , (3.6)

with respect to the 𝐻1(𝛺)-norm ‖ ⋅ ‖1,𝛺. Suppose that the mesh  𝑖
ℎ  is quasi-uniform, then the inverse inequality holds: 

‖𝐯ℎ‖0,𝛺 ≥ 𝐶Iℎ‖𝐯ℎ‖1,𝛺 . (3.7)

Proposition 3.1.  At each time-step 𝑚, the fully discrete mixed variational problem (3.4) admits one unique solution.

Proof.  Reducing the unknowns 𝐮̇𝑚+1ℎ  and 𝐮̈𝑚+1ℎ  such that 
⎧

⎪

⎨

⎪

⎩

𝐮̇𝑚+1ℎ =
𝛾
𝛽𝜏

(

𝐮𝑚+1ℎ − 𝐮𝑚ℎ
)

+
(

1 −
𝛾
𝛽
)

𝐮̇𝑚ℎ + 𝜏
(

1 −
𝛾
2𝛽

)

𝐮̈𝑚ℎ ,

𝐮̈𝑚+1ℎ = 1
𝛽𝜏2

(

𝐮𝑚+1ℎ − 𝐮𝑚ℎ
)

− 1
𝛽𝜏

𝐮̇𝑚ℎ +
(

1 − 1
2𝛽

)

𝐮̈𝑚ℎ ,
(3.8)

the HHT system (3.4) can be rewritten explicitly: 
⎧

⎪

⎨

⎪

⎩

Find (𝐮𝑚+𝛼ℎ , 𝜆𝑚+𝛼ℎ ) ∈ 𝐕ℎ × R𝑁
ℎ
C  such that:

𝐀𝜏 (𝐮𝑚+𝛼ℎ , 𝐯ℎ) + 𝜆𝑚+𝛼ℎ ⋅ [[𝑣ℎ𝑛]] = 𝐅𝑚𝜏 (𝐯ℎ) for all 𝐯ℎ ∈ 𝐕ℎ,
[[𝑢𝑚+𝛼ℎ𝑛 ]] ≥ 0, 𝜆𝑚+𝛼ℎ ≤ 0, 𝜆𝑚+𝛼ℎ [[𝑢𝑚+𝛼ℎ𝑛 ]] = 0 on 𝛤 ℎC ,

(3.9)

with the bilinear operator 𝐀𝜏 ∶ 𝐕ℎ × 𝐕ℎ ↦ R in the left-hand side: 

𝐀𝜏 (𝐮ℎ, 𝐯ℎ) = ∫𝛺

( 𝜌
𝛼𝛽𝜏2

𝐮ℎ ⋅ 𝐯ℎ + 𝝈(𝐮ℎ) ∶ 𝜺(𝐯ℎ)
)

𝑑𝐱, (3.10)

and the linear operator 𝐅𝑚𝜏 ∶ 𝐕ℎ ↦ R in the right-hand side of (3.9): 

𝐅𝑚(𝐯ℎ) =
[

𝐟𝑚+𝛼 + 𝜌 ( 1 𝐮𝑚 + 𝜏𝐮̇𝑚 + 𝜏2
(1 − 𝛽

)

𝐮̈𝑚
)]

⋅ 𝐯ℎ 𝑑𝐱. (3.11)
𝜏 ∫𝛺 𝛽𝜏2 𝛼 ℎ ℎ 2 ℎ
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When reducing 𝜆𝑚+𝛼ℎ , the mixed problem (3.9) yields a variational inequality: 

⎧

⎪

⎨

⎪

⎩

Find 𝐮𝑚+𝛼ℎ ∈ 𝐕ℎ with [[𝑢𝑚+𝛼ℎ𝑛 ]] ≥ 0 on 𝛤 ℎC  such that
𝐀𝜏 (𝐮𝑚+𝛼ℎ , 𝐯ℎ − 𝐮𝑚+𝛼ℎ ) ≥ 𝐅𝑚𝜏 (𝐯ℎ − 𝐮𝑚+𝛼ℎ )
for all 𝐯ℎ ∈ 𝐕ℎ with [[𝑣ℎ𝑛]] ≥ 0 on 𝛤 ℎC .

(3.12)

The operator 𝐀𝜏 is bounded due to (3.5) and coercive owing to (3.6) and (3.7): 

𝐀𝜏 (𝐯ℎ, 𝐯ℎ) ≥
( 𝜌ℎ2

𝛼𝛽𝜏2
𝐶2
I + 𝐶K

)

‖𝐯ℎ‖21,𝛺 . (3.13)

Therefore, the Lions–Stampacchia theorem for variational inequalities [40] justifies unique solution to (3.12), hence to (3.4) and 
(3.9). □

Remark 3.3.  For the fully implicit scheme as 𝛾 = 1, 𝛽 = 0.5, 𝛼 = 1 in (3.4) the following stability estimate holds: 

𝐸𝑚+1ℎ − ∫𝛺
𝐟𝑚+1 ⋅ 𝐮𝑚+1ℎ 𝑑𝐱 ≤ 𝐸𝑚ℎ − ∫𝛺

𝐟𝑚+1 ⋅ 𝐮𝑚ℎ 𝑑𝐱, (3.14)

where the energy is discretized from (2.15): 

𝐸𝑚ℎ = 1
2 ∫𝛺

𝜌|𝐮̇𝑚ℎ |
2 𝑑𝐱 + 1

2 ∫𝛺
𝝈(𝐮𝑚ℎ ) ∶ 𝜺(𝐮𝑚ℎ ) 𝑑𝐱, 𝑚 = 0,… , 𝑁. (3.15)

Indeed, for 𝛼 = 1 inserting the identity 𝐮̈𝑚+1ℎ = (𝐮̇𝑚+1ℎ − 𝐮̇𝑚ℎ )∕𝜏 and the test function 𝐯ℎ = 𝐮𝑚+1ℎ − 𝐮𝑚ℎ = 𝜏(𝐮̇𝑚+1ℎ + 𝐮̇𝑚ℎ )∕2 into (3.4) 
yields

1
2 ∫𝛺

𝜌(𝐮̇𝑚+1ℎ − 𝐮̇𝑚ℎ ) ⋅ (𝐮̇
𝑚+1
ℎ + 𝐮̇𝑚ℎ ) 𝑑𝐱 − ∫𝛺

𝐟𝑚+1 ⋅ (𝐮𝑚+1ℎ − 𝐮𝑚ℎ ) 𝑑𝐱

+1
2 ∫𝛺

𝝈(𝐮𝑚+1ℎ + 𝐮𝑚ℎ ) ∶ 𝜺(𝐮𝑚+1ℎ − 𝐮𝑚ℎ ) 𝑑𝐱 + 𝜆
𝑚+1
ℎ ⋅ [[𝑢𝑚+1ℎ𝑛 ]]

= 𝜆𝑚+1ℎ ⋅ [[𝑢𝑚ℎ𝑛]] −
1
2 ∫𝛺

𝝈(𝐮𝑚+1ℎ − 𝐮𝑚ℎ ) ∶ 𝜺(𝐮𝑚+1ℎ − 𝐮𝑚ℎ ) 𝑑𝐱 ≤ 0,

which leads to (3.14) using the notation (3.15).

4. Semi-smooth Newton method for the discretized problem

We introduce a nonlinear merit function 𝛷 ∶ R2 ↦ R arising as the minimum: 
𝛷([[𝑢ℎ𝑛]], 𝜆ℎ) = min([[𝑢ℎ𝑛]],−𝑟𝜆ℎ), (4.1)

where 𝑟 > 0 is an arbitrary constant. Using (4.1) we express (3.9) equivalently as the system of variational and nonlinear equations 
for 𝑚 ≥ 0: 

⎧

⎪

⎨

⎪

⎩

Find (𝐮𝑚+𝛼ℎ , 𝜆𝑚+𝛼ℎ ) ∈ 𝐕ℎ × R𝑁
ℎ
C  such that:

𝐀𝜏 (𝐮𝑚+𝛼ℎ , 𝐯ℎ) + 𝜆𝑚+𝛼ℎ ⋅ [[𝑣ℎ𝑛]] = 𝐅𝑚𝜏 (𝐯ℎ) for all 𝐯ℎ ∈ 𝐕ℎ,
𝛷([[𝑢𝑚+𝛼ℎ𝑛 ]], 𝜆𝑚+𝛼ℎ ) = 0 on 𝛤 ℎC .

(4.2)

Whilst the minimum function is not differentiable at zero, for solution of (4.2) we employ a concept of semi-smooth functions 
from [41] .

Lemma 4.1.  Define a generalized gradient ∇𝛷 ∶ R2 ↦ R2 (non-unique): 
∇𝛷([[𝑢ℎ𝑛]], 𝜆ℎ) =

(

𝟏([[𝑢ℎ𝑛]],𝜆ℎ),−𝑟𝟏([[𝑢ℎ𝑛]],𝜆ℎ)
)

, (4.3)

with the indicator function 𝟏{ ⋅ } of the strictly active set: 

([[𝑢ℎ𝑛]], 𝜆ℎ) = {𝐱 ∈ 𝛤 ℎC | ([[𝑢ℎ𝑛]] + 𝑟𝜆ℎ)(𝐱) < 0}, (4.4)

and its complementary inactive set of nodes: 
([[𝑢ℎ𝑛]], 𝜆ℎ) = {𝐱 ∈ 𝛤 ℎC | ([[𝑢ℎ𝑛]] + 𝑟𝜆ℎ)(𝐱) ≥ 0}. (4.5)

The function 𝛷(𝑦) is semi-smooth in the following sense of asymptotic estimate: 
{

‖𝛿𝛷‖∞ = 𝑜(‖𝛿𝑦‖∞) as 𝛿𝑦 ∶= [[𝑢ℎ𝑛 − 𝑣ℎ𝑛]] + 𝑟(𝜆ℎ − 𝜇ℎ) → 0,
where 𝛿𝛷 ∶= 𝛷([[𝑢ℎ𝑛]], 𝜆ℎ) −𝛷([[𝑣ℎ𝑛]], 𝜇ℎ) − ∇𝛷([[𝑢ℎ𝑛]], 𝜆ℎ) ⋅ ([[𝑢ℎ𝑛 − 𝑣ℎ𝑛]], 𝜆ℎ − 𝜇ℎ),

(4.6)

using the supremum norm ‖ ⋅ ‖  and Landau ‘‘little-o’’ notation.
∞
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Proof.  Using the active (4.4) and the inactive (4.5) sets we reformulate (4.1) as 

𝛷([[𝑢ℎ𝑛]], 𝜆ℎ) = [[𝑢ℎ𝑛]]𝟏([[𝑢ℎ𝑛]],𝜆ℎ) − 𝑟𝜆ℎ𝟏([[𝑢ℎ𝑛]],𝜆ℎ). (4.7)

From (4.3) and (4.7) it can be calculated the function increment:

𝛿𝛷 = [[𝑣ℎ𝑛]]
(

𝟏([[𝑢ℎ𝑛]],𝜆ℎ) − 𝟏([[𝑣ℎ𝑛]],𝜇ℎ)
)

− 𝑟𝜇ℎ
(

𝟏([[𝑢ℎ𝑛]],𝜆ℎ) − 𝟏([[𝑣ℎ𝑛]],𝜇ℎ)
)

.

For ([[𝑢ℎ𝑛]], 𝜆ℎ) fixed, 𝛿𝛷 = 0 for all argument increments 𝛿𝑦 which are small:

‖𝛿𝑦‖∞ < min{𝐱 ∈ 𝛤 ℎC | ([[𝑢ℎ𝑛]] + 𝑟𝜆ℎ)(𝐱) ≠ 0}.

In particular, this implies the asymptotic estimate (4.6). □

Remark 4.1.  Geometrically, (4.6) defines a slant asymptote, which is the consequence of smooth derivative if it exists.

Remark 4.2.  For the proof of Lemma  4.1 for 𝛷 ∶ 𝐿𝑝(𝛤C)2 ↦ 𝐿2(𝛤C) with 𝑝 > 2 see [29] and references therein.

Remark 4.3.  In (4.1) the nonlinear equation 𝛷([[𝑢𝑚+𝛼ℎ𝑛 ]], 𝜆𝑚+𝛼ℎ ) = 0 can be rewritten in the classical form:

𝜆𝑚+𝛼ℎ = 1
𝑟
min

(

[[𝑢𝑚+𝛼ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼ℎ , 0
)

.

Decomposing [[𝑣ℎ𝑛]] = [[𝑣ℎ𝑛]] + 𝑟𝜇ℎ − 𝑟𝜇ℎ and inserting it into (4.2) as 
⎧

⎪

⎨

⎪

⎩

𝐀𝜏 (𝐮𝑚+𝛼ℎ , 𝐯ℎ) +
1
𝑟
min

(

[[𝑢𝑚+𝛼ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼ℎ , 0
)

⋅ ([[𝑣ℎ𝑛]] + 𝑟𝜇ℎ) − 𝑟𝜆𝑚+𝛼ℎ ⋅ 𝜇ℎ

= 𝐅𝑚𝜏 (𝐯ℎ) for all (𝐯ℎ, 𝜇ℎ) ∈ 𝐕ℎ × R𝑁
ℎ
C

(4.8)

was useful to formulate the Nitsche method in [20,21].

Based on the generalized gradient ∇𝛷 from Lemma  4.1 we formulate the Newton method for solution of the nonlinear system 
of Eqs. (4.2). Initialize with some guess (𝐮𝑚+𝛼,0ℎ , 𝜆𝑚+𝛼,0ℎ ) ∈ 𝐕ℎ × R𝑁

ℎ
C  at 𝑘 = 0, at every integer 𝑘 ≥ 0 solve

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐀𝜏 (𝐮
𝑚+𝛼,𝑘+1
ℎ − 𝐮𝑚+𝛼,𝑘ℎ , 𝐯ℎ) + (𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼,𝑘ℎ )[[𝑣ℎ𝑛]]

= 𝐅𝑚𝜏 (𝐯ℎ) − 𝐀𝜏 (𝐮
𝑚+𝛼,𝑘
ℎ , 𝐯ℎ) − 𝜆

𝑚+𝛼,𝑘
ℎ ⋅ [[𝑣ℎ𝑛]] for all 𝐯ℎ ∈ 𝐕ℎ,

∇𝛷([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ) ⋅ ([[𝑢𝑚+𝛼,𝑘+1ℎ𝑛 − 𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼,𝑘ℎ )

= −𝛷([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ),

which after the insertion of (4.3) and (4.7) yields the following linear system: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find (𝐮𝑚+𝛼,𝑘+1ℎ , 𝜆𝑚+𝛼,𝑘+1ℎ ) ∈ 𝐕ℎ × R𝑁
ℎ
C  such that:

𝐀𝜏 (𝐮
𝑚+𝛼,𝑘+1
ℎ , 𝐯ℎ) + 𝜆

𝑚+𝛼,𝑘+1
ℎ ⋅ [[𝑣ℎ𝑛]] = 𝐅𝑚𝜏 (𝐯ℎ) for all 𝐯ℎ ∈ 𝐕ℎ,

[[𝑢𝑚+𝛼,𝑘+1ℎ𝑛 ]]𝟏([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]],𝜆𝑚+𝛼,𝑘ℎ ) − 𝑟𝜆
𝑚+𝛼,𝑘+1
ℎ 𝟏([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]],𝜆𝑚+𝛼,𝑘ℎ ) = 0.

(4.9)

Following [29], we state the well-posedness and local convergence result.

Theorem 4.1.  At each 𝑘, the semi-smooth Newton iterate (4.9) admits one unique solution. If the initial guess is chosen sufficiently close 
to the solution, then the sequence of iterates converges super-linearly with the estimate: 

⎧

⎪

⎨

⎪

⎩

‖𝐮𝑚+𝛼,𝑘+1ℎ − 𝐮𝑚+𝛼ℎ ‖1,𝛺 + ‖𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼ℎ ‖∞ = 𝑜
(

‖𝛿𝑦𝑘‖∞
)

as 𝛿𝑦𝑘 ∶= [[𝑢𝑚+𝛼,𝑘ℎ𝑛 − 𝑢𝑚+𝛼ℎ𝑛 ]] + 𝑟(𝜆𝑚+𝛼,𝑘ℎ − 𝜆𝑚+𝛼ℎ ) → 0.
(4.10)

Proof.  Owing to 𝜆𝑚+𝛼,𝑘+1ℎ = 0 on the inactive set ([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ), system (4.9) can be expressed as the Dirichlet problem on the 
active set:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Find 𝐮𝑚+𝛼,𝑘+1ℎ ∈ 𝐕ℎ such that:
[[𝑢𝑚+𝛼,𝑘+1ℎ𝑛 ]] = 0 on ([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ),
𝐀𝜏 (𝐮

𝑚+𝛼,𝑘+1
ℎ , 𝐯ℎ) = 𝐅𝑚𝜏 (𝐯ℎ)

for all 𝐯ℎ ∈ 𝐕ℎ with [[𝑣ℎ𝑛]] = 0 on ([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ).

The bounded and coercive operator 𝐀𝜏 (see (3.13)) is one-to-one, thus justifying well-posedness to the Newton iterate.
Using the identity 𝛷([[𝑢 ]] + 𝑟𝜆 , 0) = ([[𝑢 ]] + 𝑟𝜆 )𝟏  and the notation of increment 𝛿𝑦𝑘 in (4.10), we assemble the terms 
ℎ𝑛 ℎ ℎ𝑛 ℎ ([[𝑢ℎ𝑛]],𝜆ℎ)

8 
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as follows:
𝑟𝜆𝑚+𝛼,𝑘+1ℎ = ([[𝑢𝑚+𝛼,𝑘+1ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼,𝑘ℎ )𝟏([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]],𝜆𝑚+𝛼,𝑘ℎ )

= 𝛷([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼,𝑘ℎ , 0) + 𝛿𝑦𝑘+1 − 𝛿𝑦𝑘.

Subtract here 𝑟𝜆𝑚+𝛼ℎ = 𝛷([[𝑢𝑚+𝛼ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼ℎ , 0) according to (4.9), which yields 

⎧

⎪

⎨

⎪

⎩

[[𝑢𝑚+𝛼,𝑘ℎ𝑛 − 𝑢𝑚+𝛼ℎ𝑛 ]]𝟏([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]],𝜆𝑚+𝛼,𝑘ℎ ) − 𝑟(𝜆
𝑚+𝛼,𝑘
ℎ − 𝜆𝑚+𝛼ℎ )𝟏([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]],𝜆𝑚+𝛼,𝑘ℎ )

= −𝛿𝛷𝑘,
where 𝛿𝛷𝑘 ∶= 𝛷([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼,𝑘ℎ , 0) −𝛷([[𝑢𝑚+𝛼ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼ℎ , 0) −𝛷′([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]] + 𝑟𝜆𝑚+𝛼,𝑘ℎ , 0)𝛿𝑦𝑘,

(4.11)

and thanks to (4.6) the asymptotic estimate takes place: 
‖𝛿𝛷𝑘

‖∞ = 𝑜(‖𝛿𝑦𝑘‖∞) as 𝛿𝑦𝑘 → 0. (4.12)

From the difference of problems (4.2) and (4.9) we infer the equation: 
{

𝐀𝜏 (𝐮
𝑚+𝛼,𝑘+1
ℎ − 𝐮𝑚+𝛼ℎ , 𝐯ℎ) = −(𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼ℎ ) ⋅ [[𝑣ℎ𝑛]]

for all 𝐯ℎ ∈ 𝐕ℎ.
(4.13)

For any 𝜙 ∈ R𝑁
ℎ
C  let us consider extensions 𝐯ℎ ∈ 𝐕ℎ such that [[𝑣ℎ𝑛]] = 𝜙 on 𝛤 ℎC  which are bounded: ‖𝐯ℎ‖1,𝛺 ≤ 𝐶‖[[𝑣ℎ𝑛]]‖∞ with 

constant 𝐶 > 0. Then using the upper bound (3.5) we estimate from (4.13) the dual norm:

‖𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼ℎ ‖∞ = sup
𝜙∈R𝑁

ℎ
C

|(𝜆𝑚+𝛼,𝑘+1ℎ − 𝜆𝑚+𝛼ℎ ) ⋅ 𝜙|
‖𝜙‖∞

≤
( 𝜌
𝛼𝛽𝜏2

+ 𝐶E
)

𝐶‖𝐮𝑚+𝛼,𝑘+1ℎ − 𝐮𝑚+𝛼ℎ ‖1,𝛺 . (4.14)

On the other side, testing (4.13) with 𝐯ℎ = 𝐮𝑚+𝛼,𝑘+1ℎ − 𝐮𝑚+𝛼ℎ , applying the lower bound (3.13) and (4.11) it follows that
( 𝜌ℎ2

𝛼𝛽𝜏2
𝐶2
I + 𝐶K

)

‖𝐮𝑚+𝛼,𝑘+1ℎ − 𝐮𝑚+𝛼ℎ ‖

2
1,𝛺 ≤ ‖𝛿𝛷𝑘

‖∞
(

‖

1
𝑟
[[𝑢𝑚+𝛼,𝑘ℎ𝑛 − 𝑢𝑚+𝛼ℎ𝑛 ]]‖∞ + ‖𝜆𝑚+𝛼,𝑘ℎ − 𝜆𝑚+𝛼ℎ ‖∞

)

.

The inequalities (4.14) and (4.15) in the virtue of (4.12) provide the asymptotic estimate (4.10). For the initial guess (𝐮𝑚+𝛼,0ℎ , 𝜆𝑚+𝛼,0ℎ )
chosen sufficiently close to the solution (𝐮𝑚+𝛼ℎ , 𝜆𝑚+𝛼ℎ ) of the problem (4.2), this estimate validates the super-linear convergence of 
the semi-smooth Newton iterates as 𝑚 → ∞. □

Next we propose a globalization procedure for arbitrary initialization.

4.1. Primal–dual active set (PDAS) algorithm

For analysis of the Newton iterate (4.9) represented equivalently as 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Find (𝐮𝑚+𝛼,𝑘+1ℎ , 𝜆𝑚+𝛼,𝑘+1ℎ ) ∈ 𝐕ℎ × R𝑁
ℎ
C  such that:

𝐀𝜏 (𝐮
𝑚+𝛼,𝑘+1
ℎ , 𝐯ℎ) + 𝜆

𝑚+𝛼,𝑘+1
ℎ ⋅ [[𝑣ℎ𝑛]] = 𝐅𝑚𝜏 (𝐯ℎ) for all 𝐯ℎ ∈ 𝐕ℎ,

[[𝑢𝑚+𝛼,𝑘+1ℎ𝑛 ]] = 0 on ([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ),

𝜆𝑚+𝛼,𝑘+1ℎ = 0 on ([[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]], 𝜆𝑚+𝛼,𝑘ℎ ),

(4.15)

we write (4.15) in the algebraic form using mass and stiffness matrices. Applying the Schur complement reduces the matrix equation 
to the system with respect to the constrained components 𝐔𝑘 = [[𝑢𝑚+𝛼,𝑘ℎ𝑛 ]] and 𝜦𝑘 = 𝜆𝑚+𝛼,𝑘ℎ : 

⎧

⎪

⎨

⎪

⎩

𝐌𝐔𝑘+1 +𝜦𝑘+1 = 𝐅,
𝐔𝑘+1 = 0 on (𝐔𝑘,𝜦𝑘) = 𝑘,
𝜦𝑘+1 = 0 on (𝐔𝑘,𝜦𝑘) = 𝑘,

(4.16)

where the system matrix 𝐌 ∈ R𝑁
ℎ
C×𝑁

ℎ
C  and the right-hand side 𝐅 ∈ R𝑁

ℎ
C .

Algorithm 4.1 (PDAS algorithm).
Initialization: Choose −1 ⊂ {1,… , 𝑁ℎ

C} and its complementary set −1, set iteration number 𝑘 = −1.

Iteration step: Solve for (𝐔𝑘+1,𝜦𝑘+1) ∈ R𝑁
ℎ
C × R𝑁

ℎ
C  the linear system (4.16). Compute the active and inactive sets of indexes: 

{

𝑘+1 = {𝑖 ∈ {1,… , 𝑁ℎ
C}| (𝐔𝑘+1 + 𝑟𝜦𝑘+1)𝑖 < 0},

𝑘+1 ℎ 𝑘+1 𝑘+1 (4.17)

 = {𝑖 ∈ {1,… , 𝑁C}| (𝐔 + 𝑟𝜦 )𝑖 ≥ 0}.

9 
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Stopping rule: If 𝑘+1 = 𝑘 then stop with the exact solution (𝐔,𝜦) = (𝐔𝑘+1,𝜦𝑘+1) of the linear complementarity problem (LCP): 
⎧

⎪

⎨

⎪

⎩

𝐌𝐔 +𝜦 = 𝐅,
𝐔 = 0 on (𝐔,𝜦),
𝜦 = 0 on (𝐔,𝜦),

(4.18)

else iterate the solution of (4.16) at the iteration step 𝑘 = 𝑘 + 1.

The solution of LCP (4.18) implies the constrained components 𝐔 = [[𝑢𝑚+𝛼ℎ𝑛 ]] and 𝜦 = 𝜆𝑚+𝛼ℎ  of the primal–dual variational problem 
(3.11). Following [29], we recall the result on monotone global convergence.

Proposition 4.1.  Let the system matrix 𝐌 = (𝑀𝑖𝑗 ) be M-matrix: 
{

𝑀𝑖𝑖 > 0, 𝑀𝑖𝑗 ≤ 0 for 𝑗 ≠ 𝑖,
there exists the positive inverse matrix 𝐌−1 ≥ 0.

(4.19)

If the 𝑘th iterate of Algorithm  4.1 is feasible: 𝐔𝑘 ≥ 0, then all subsequent iterates are feasible and monotone together with the active sets 
such that: 

{

0 ≤ 𝐔𝑘 ≤ 𝐔𝑘+1 ≤ … ≤ 𝐔,
𝑘 ⊇ 𝑘+1 ⊇… ⊇ (𝐔,𝜦).

(4.20)

For the initial guess −1 = ∅ the 1st iterate is feasible. When reaching a feasible iterate, exact solution to the LCP (4.18) is attained in a 
finite number of steps.

Proof.  Let us split the matrix equation in (4.16) into the blocks: 
⎧

⎪

⎨

⎪

⎩

𝐌𝑘𝑘𝐔𝑘+1𝑘 +𝐌𝑘𝑘𝐔𝑘+1𝑘
+𝜦𝑘+1

𝑘 = 𝐅𝑘 ,

𝐌𝑘𝑘𝐔𝑘+1𝑘 +𝐌𝑘𝑘𝐔𝑘+1𝑘
+𝜦𝑘+1

𝑘
= 𝐅𝑘 ,

(4.21)

where 𝐔𝑘+1
𝑘 = 0 and 𝜦𝑘+1

𝑘
= 0, and similarly at the 𝑘th iterate: 

⎧

⎪

⎨

⎪

⎩

𝐌𝑘𝑘𝐔𝑘𝑘 +𝐌𝑘𝑘𝐔𝑘𝑘 +𝜦𝑘
𝑘 = 𝐅𝑘 ,

𝐌𝑘𝑘𝐔𝑘𝑘 +𝐌𝑘𝑘𝐔𝑘𝑘 +𝜦𝑘
𝑘 = 𝐅𝑘 .

(4.22)

Within the iteration either 𝑈𝑘
𝑖 = 0 or 𝛬𝑘𝑖 = 0 for all 𝑖, such that 𝑈𝑘

𝑖 ≤ 0, 𝛬𝑘𝑖 ≤ 0 for 𝑖 ∈ 𝑘, and 𝑈𝑘
𝑖 ≥ 0, 𝛬𝑘𝑖 ≥ 0 for 𝑖 ∈ 𝑘 in (4.17). 

Therefore,

𝐔𝑘+1
𝑘 − 𝐔𝑘𝑘 = −𝐔𝑘𝑘 ≥ 0, 𝜦𝑘+1

𝑘
−𝜦𝑘

𝑘 = −𝜦𝑘
𝑘 ≤ 0.

Calculating the difference between (4.21) and (4.22) it follows 

𝐔𝑘+1
𝑘

− 𝐔𝑘𝑘 = −𝐌−1
𝑘𝑘𝐌𝑘𝑘 (𝐔𝑘+1𝑘 − 𝐔𝑘𝑘 ) −𝐌−1

𝑘𝑘 (𝜦
𝑘+1
𝑘

−𝜦𝑘
𝑘 ) ≥ 0, (4.23)

since 𝐌−1
𝑘𝑘

≥ 0 and 𝐌𝑘𝑘 ≤ 0 as a consequence of the assumption (4.19). When starting with feasible 𝐔𝑘 ≥ 0 we conclude with 
feasible 𝐔𝑘+1 ≥ 0 and the monotony 𝐔𝑘+1 − 𝐔𝑘 ≥ 0 of all subsequent iterates.

From the feasibility of 𝐔𝑘+1 and 𝜦𝑘+1
𝑘

= 0 we derive that 𝑈𝑘+1
𝑖 + 𝑟𝛬𝑘+1𝑖 ≥ 0 for 𝑖 ∈ 𝑘, hence 𝑘+1 ⊇ 𝑘, which justifies the 

monotone properties in (4.20).
For the initialization −1 = ∅ we have 𝜦0 = 𝟎 implying that 𝐔0

0
≥ 0. Then 𝐔1

0
≥ 𝐔0

0
 owing to (4.23) and 𝐔1

0 = 0 provide 
feasibility for the 1st iterate.

The monotony of active and inactive sets in finite dimensions guarantees that the stopping rule in Algorithm  4.1 is attained after 
a finite number of iterations. If 𝑘+1 = 𝑘, then from (4.16) and (4.17) it follows that the iterate 𝐔𝑘+1 ≥ 0 on 𝑘+1 and 𝜦𝑘+1 < 0
on 𝑘+1, hence fulfills the complementarity conditions:

𝐔𝑘+1𝑖 ≥ 0, 𝜦𝑘+1
𝑖 ≤ 0, 𝜦𝑘+1

𝑖 𝐔𝑘+1𝑖 = 0 for 𝑖 ∈ {1,… , 𝑁ℎ
C}

implying (4.18). The proof is complete. □

Remark 4.4.  Consider Example  2.1. It is known that the standard P1-FEM on uniform grids builds a stiffness matrix for Laplacian 
which has M-property. According to [29] a small perturbation of M-matrix and its Schur complement is an M-matrix again. This 
justifies the assumption (4.19) in Proposition  4.1.
10 
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Fig. 2. The compression-release benchmark: discrete energy 𝐸𝑚
ℎ  versus time 𝑡𝑚 for the selected in plots (a)–(d) parameters [𝛾, 𝛽, 𝛼] when decreasing the time 

step 𝜏.

Fig. 3. The double impact benchmark: discrete energy 𝐸𝑚
ℎ  versus time 𝑡𝑚 for the selected in plots (a)–(d) parameters [𝛾, 𝛽, 𝛼] when decreasing the time step 

𝜏 = 1∕160, 1∕80, 1∕40.

Fig. 4. The double impact benchmark: discrete energy 𝐸𝑚
ℎ  versus time 𝑡𝑚 for the selected in plots (a)–(d) parameters [𝛾, 𝛽, 𝛼] when decreasing the time step 

𝜏 = 1∕25, 1∕20, 1∕15.

5. Numerical example of dynamic signorini contact

In what follows we consider a Signorini contact problem. Let the 1st-body be rigid such that 𝐮1 = 𝟎 and 𝐮2 = 𝐮.
We utilize the standard piecewise linear P1-polynomial approximation in the FEM space 𝐕2

ℎ. After the full discretization, the 
dynamic Signorini contact problem (3.9) reads in the body 𝛺2: 

⎧

⎪

⎨

⎪

⎩

Find (𝐮𝑚+𝛼ℎ , 𝜆𝑚+𝛼ℎ ) ∈ 𝐕2
ℎ × R𝑁

ℎ
C  such that:

𝐀𝜏 (𝐮𝑚+𝛼ℎ , 𝐯ℎ) + 𝜆𝑚+𝛼ℎ ⋅ (𝜓 − 𝑣ℎ𝑛) = 𝐅𝑚𝜏 (𝐯ℎ) for all 𝐯ℎ ∈ 𝐕2
ℎ,

𝑢𝑚+𝛼ℎ𝑛 ≤ 𝜓, 𝜆𝑚+𝛼ℎ ≤ 0, 𝜆𝑚+𝛼ℎ (𝜓 − 𝑢𝑚+𝛼ℎ𝑛 ) = 0 on 𝛤 ℎC ,
(5.1)

where 𝜓 = (𝐮1◦𝛱1) ⋅ 𝐧 from (2.8). For simulation we choose the 2D-geometry:
{

𝛺2 = {𝐱 ∈ (0, 𝐿1) × (0, 𝐿2)}, 𝐿1 = 2.5 [m], 𝐿2 = 1 [m],
𝛤 2
D = {𝑥2 = 0}, 𝛤 2

N = {𝑥1 = 0, 𝐿1}, 𝛤C = {𝑥2 = 𝐿2},

with contact surface 𝛤C = 𝛤 1
C = 𝛤 2

C and 𝜓 = 0. The parameters of isotropic body are: density 𝜌 = 2700 [kg/m3], Young’s modulus 
𝐸 = 73000 [mPa] and Poisson ratio 𝜈 = 0.34 entering Lamé parameters 𝜆L = 2𝜇L𝜈∕(1 − 2𝜈) and 𝜇L = 𝐸∕(2(1 + 𝜈)).

To examine stability we propose benchmark in which the body is compressed with the uniform body force 𝑓2 = 50 [kN] at 𝑡0 = 0, 
then released with 𝐮̇0 = 𝟎 and 𝐮̈0 = 𝟎 for 𝑡𝑚 ∈ (0, 2.5] [s]. In Fig.  2 there is depicted the discrete energy from formula (3.15). The 
ℎ ℎ
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Fig. 5. Displacement under moving vertical load in the current configuration 𝐱 + 𝐮𝑚ℎ .

Fig. 6. Vectors of velocity 𝐮̇𝑚ℎ  at nodes of the body under moving vertical load.

Fig. 7. Vectors of acceleration 𝐮̈𝑚ℎ  at nodes of the body under moving vertical load.

solution 𝐮𝑚ℎ , 𝐮̇𝑚ℎ  is computed by the HHT-𝛼 scheme (3.4) for the fixed mesh size ℎ = 1∕20 and time step 𝜏 = 1∕160, 1∕80, 1∕40, so the 
Courant number varies 𝜈C ∶= 𝜏𝑣𝑐∕ℎ ∈ {𝑣𝑐∕8, 𝑣𝑐∕4, 𝑣𝑐∕2}, with 𝑣𝑐 =

√

𝐸∕𝜌 ≈ 5200 [m/s] the speed of compression waves. In Fig.  2 we 
compare the standard Crank–Nicolson (CN) scheme [𝛾 = 0.5, 𝛽 = 0.25] (left) with the 𝛾-damped Newmark scheme [𝛾 = 0.6, 𝛽 = 0.5] 
(center-left) from [37] as 𝛼 = 1, and two 𝛼-damped schemes for [𝛾 = 0.6, 𝛽 = 0.3025, 𝛼 = 0.9] (center-right) from [35,37] and 
[𝛾 = 0.51, 𝛽 = 0.255025, 𝛼 = 0.99] (right). Within the release phase, the energy is constant in the plot (a) because CN is energy 
preserving in the purely elastic case, and the energy does not increase in time in all other plots (b)–(d).

The second benchmark is associated with a double impact in the structure presented in the experiment by [16]. The initially 
compressed body is released as before, first compressed with the uniform body force 𝑓2 for 𝑡𝑚 ∈ (0.5, 1] [s] then released, and gets 
compressed second time for 𝑡𝑚 ∈ (1.5, 2] [s] then released again. For the discretization parameters as before, the spurious oscillations 
in the energy are suppressed by the implicit Newmark scheme in the plot (b) and by the HHT-𝛼 schemes in plots (c) and (d) of Fig. 
3. From benchmark it is clear that Crank–Nicolson is unstable, Newmark 𝛾 = 0.6 is too much dissipative, and HHT 𝛼 = 0.99 is not 
sufficiently dissipative. Fig.  4 depicts FEM solution for the Courant number fixed at 𝜈C = 2𝑣𝑐 implying that both mesh and step sizes 
vary simultaneously when 𝜏 = 1∕25, 1∕20, 1∕15. The discrete energy is convergent within this simulation time.

For the choice of weight 𝛼 we remark the following. Increasing the parameter 𝛼 > 1 (that is 𝛼̃ < 0 in [36]) reduces the mass 
matrix in (3.10), hence M-property of the system matrix 𝐌 that is assumed in Proposition  4.1 may be lost. As the consequence, loss 
of the monotone property of Newton iterates may cause cycling of the algorithm and lead to numerical instabilities of the solution.

The other difficulty concerns the so-called grazing contact when the bodies only touch each other, that is both [[𝑢𝑚+𝛼ℎ𝑛 ]] and 𝜆𝑚+𝛼ℎ
are almost zeros, thus posed on the boundary between active and inactive sets. To remedy numerical instabilities in this case we 
suggest to use a small gap 𝛿 > 0 such that [[𝑢ℎ𝑛]] + 𝑟𝜆ℎ < 𝛿 in (4.4), respectively [[𝑢ℎ𝑛]] + 𝑟𝜆ℎ ≥ 𝛿 in (4.5). In our simulation we have 
used 𝛿 = 10−5.

5.1. Elastodynamic response to a moving load

Now boundary load at the contact surface is summed from reaction to the gravitational mass 𝑚1 of the 1st body and moving 
vertical load prescribed by the hat-function 𝛿 (𝑥 − 𝑡) in a small ℎ-neighborhood of 𝑥 = 𝑡 such that the body force for the forward 
ℎ 1 1
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Fig. 8. The standard Crank–Nicolson scheme: maximal amplitude of horizontal displacements 𝑢ℎ1 (a) and vertical displacements 𝑢ℎ2 (b) within two consequent 
motion loops.

Fig. 9. The HHT [𝛾 = 0.6, 𝛽 = 0.3025, 𝛼 = 0.98]: maximal amplitude of horizontal displacements 𝑢ℎ1 (a) and vertical displacements 𝑢ℎ2 (b) within two consequent 
motion loops.

Fig. 10. Iterates 𝑘 of the PDAS algorithm: the contact opening 𝐔𝑘 (a); Lagrange multiplier 𝜦𝑘 (b); active set 𝑘 (c).

motion for 𝑡 ∈ [0, 𝐿1]: 

∫𝛺2
𝐟 (𝑡) ⋅ 𝐯ℎ 𝑑𝐱 = ∫𝛺2

(0, 𝑚1 𝑔) ⋅ 𝐯ℎ 𝑑𝐱 − ∫𝛤C

(

0, 𝜇L𝛿ℎ(𝑡)
)

⋅ 𝐯ℎ 𝑑𝛤 , (5.2)

and for the backward motion for 𝑡 ∈ (𝐿1, 2𝐿1]: 

∫𝛺2
𝐟 (𝑡) ⋅ 𝐯ℎ 𝑑𝐱 = ∫𝛺2

(0, 𝑚1 𝑔) ⋅ 𝐯ℎ 𝑑𝐱 − ∫𝛤C

(

0, 𝜇L𝛿ℎ(2𝐿1 − 𝑡)
)

⋅ 𝐯ℎ 𝑑𝛤 , (5.3)

where 𝑚1 = 5×103 [kg] and 𝑔 = 9.81 [m/s2]. For illustration reason, we present the motion loop at time steps 𝑚 = 1,… , 9 of initially 
compressed body in the current configuration 𝐱 + 𝐮𝑚ℎ  (where ℎ = 0.5) for 𝐱 ∈ 𝛺2 in Fig.  5. The corresponding vectors of velocity 𝐮̇𝑚ℎ
are depicted at nodal points in Fig.  6, and acceleration 𝐮̈𝑚ℎ  in Fig.  7 within quiver plots over 𝛺2.

It is worth noting that the computed solution describes also the solution
{

𝑢1𝑚ℎ1 (𝐱) = 𝑢2𝑚ℎ1 (𝑥1, 2𝐿2 − 𝑥2), 𝑢1𝑚ℎ2 (𝐱) = −𝑢2𝑚ℎ2 (𝑥1, 2𝐿2 − 𝑥2) for 𝐱 ∈ 𝛺1,
𝛺1 = {𝐱 ∈ (0, 𝐿1) × (𝐿2, 2𝐿2)}, 𝛤 1

D = {𝑥2 = 2𝐿2}, 𝛤 1
N = {𝑥1 = 0, 𝐿1},

to a symmetric problem with crack depicted in Fig.  11 in the current configuration 𝐱 + 𝐮0ℎ at 𝑚 = 0 in 𝛺1 ∪ 𝛺2. Due to the mirror 
symmetry of the problem, the transmission conditions hold on the active set of 𝛤 ℎC :

[[𝑢0 ]] = 0, [[𝑢0 ]] = 0, [[𝜎 (𝐮0 )]] = 0, [[𝜎 (𝐮0 )]] = 0 on ([[𝑢0 ]], 𝜆0 ),
ℎ1 ℎ2 12 ℎ 22 ℎ ℎ𝑛 ℎ
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Fig. 11. The solution 𝐱 + 𝐮0ℎ of the Signorini contact (a) and symmetric crack problem (b).

whereas the inactive set determines an open crack that is free of stress:

[[𝑢0ℎ1]] = 0, [[𝑢0ℎ2]] ≥ 0, [[𝜎12(𝐮0ℎ)]] = 0, 𝜎22(𝐮0ℎ) = 0 on ([[𝑢0ℎ𝑛]], 𝜆0ℎ).

We remark here a smooth closing of the crack faces without the physically inconsistent, square-root singularity.
In this example the issue of stability is tested also with respect to displacement field in the body. For the discretization with 

ℎ = 1∕20 and 𝜏 = 1∕20 in two figures we compare maximal amplitude along the contact surface of the horizontal displacement 
max𝐱∈𝛤 ℎC

(−𝑢𝑚ℎ1) (left) and the vertical displacement max𝐱∈𝛤 ℎC
(−𝑢𝑚ℎ2) (right). They are computed for times 𝑡𝑚 ∈ [0, 5] [s] within two 

consequent loops of the forward–backward motion prescribed by (5.2) and (5.3). In Fig.  8 the depicted numerical result by CN 
evidently oscillates. Whereas in Fig.  9 the spurious oscillations are damped by applying the HHT scheme with 𝛼 = 0.98 and 𝛾 = 0.6, 
𝛽 = 0.3025.

To solve numerically the mixed variational problem (5.1) we employ the semi-smooth Newton iteration in the form of PDAS 
Algorithm  4.1, where 𝑟 ∈ [10−8, 108]. We demonstrate a typical behavior of the algorithm for the initialization −1 = ∅ at 0-th iterate 
in Fig.  10. There are about 104 degrees of freedom in the spatial system as ℎ = 1∕50, and 180 time steps. The contact opening 𝐔𝑘
(left), Lagrange multiplier 𝜦𝑘 (center), and active set 𝑘 (right) are depicted on 𝛤 ℎC  with the number 𝑁ℎ

C = 90 of points on discrete 
contact surface. The algorithm converges in only 5 iterations at the exact solution of the Signorini contact problem (5.1). Typically 
the iteration number does not exceeded ten for all time steps 𝑚. In this figure we can observe a super-liner convergence of the 
Newton iterates from Theorem  4.1 and its monotone behavior as stated in Proposition  4.1.

6. Conclusion

The semi-smooth Newton method is one of the best iterative algorithms for solution of LCP as well as nonlinear complementarity 
problems (NLCP) with system matrices which obey the M-property. However, in the larger class of P-matrices this algorithm may 
cycle [42]. To give more discussion on development of semi-smooth approaches for dynamic contact problems and to present 
comparisons with other numerical methods known in the literature is the subject of outgoing research.

In the present manuscript, dynamic contact problems for elastic bodies given in multi-domains and domains with cracks are 
treated in the unified way by FEM semi-discretization and HHT-𝛼 methods. For a mixed primal–dual variational formulation of the 
problem based on Lagrange multipliers, a semi-smooth Newton method converges locally super-linear to the discrete solution. It 
is equivalent to a primal–dual active set strategy which iterates converge globally monotone, supported by the M-matrix property. 
The theoretical results are verified in some benchmark experiments carried out for the Signorini contact problem under impact and 
moving loads.
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