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a b s t r a c t

A new class of unilateral variational models appearing in the theory of poroelasticity
is introduced and studied. A poroelastic medium consists of solid phase and pores
saturated with a Newtonian fluid. The medium contains a fluid-driven crack, which
is subjected to non-penetration between the opposite crack faces. The fully coupled
poroelastic system includes elliptic–parabolic governing equations under the unilateral
constraint. Well-posedness of the corresponding variational inequality is established
based on the Rothe semi-discretization in time, after subsequent passing time step to
zero. The NLCP-formulation of non-penetration conditions is given which is useful for a
semi-smooth Newton solution strategy.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the paper we introduce mathematical modeling for a new class of variational inequalities motivated by hydrofrack-
ng. A poroelastic body consisting of solid phase and pores saturated with a Newtonian fluid is considered, which contains
fluid-driven crack. The crack associates a hydraulic fracture created by pumping fracturing fluid, as it is used to stimulate
roduction of oil and natural gas in mining. The novelty consists in the fact that we endow the crack with a non-
enetration condition between its opposite faces (the fracture walls), thus allowing compressive pressure at which the
rack might close. As the result, the poroelastic problem is described by a coupled system of governing equations and
nequalities for unknown solid phase displacement, pore pressure, and contact force. The model is endowed with the
luid pressure prescribed to be inhomogeneous and different at the fracture walls.

The variational theory of solids with non-penetrating cracks was developed in the works by Khludnev and Kovtunenko
1], Khludnev and Sokołowski [2] and co-authors. For physical issues of fracture modeling we refer to [3], and cite [4]
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for geometrical description of crack-tip/ crack-front singularities. Physical consistency will allow contact between the
opposite crack faces, that imposes a condition of non-penetration on the jump of crack displacement. The non-penetration
approach was extended for dissipative contact phenomena at the crack owing to friction [5], cohesion [6], and the limiting
small strain [7]. Recent studies treat a class of variational problems for anti-cracks and inclusions (see [8–10]). In the
current paper we formulate and study well-posedness for a new class of poroelastic problems with non-penetrating cracks.

For numerical solution, the nonlinear complementarity problem (NLCP) formulation of the problem is presented,
hich is useful for primal–dual active set strategies based on a semi-smooth Newton method (see [11]). Taking into
ccount frictional and adhesive contact phenomena at the crack, an Uzawa type projection algorithm was suggested
n [12]. To avoid interpenetration between the crack faces, a poroelastic model was investigated numerically in [13] by
tilizing a penalty. In comparison, the semi-smooth Newton method is advantageous because obeys a super-linear rate
f convergence. Alternatively to the sharp interface formulation, a phase-field approximation of cracks was developed
y Amor et al. [14], Borden et al. [15]. We note that advantages and disadvantages of these approaches are well-known
rom numerical tests presented e.g. in the cited works. However, practical simulations coupling solid and fluid models
re rather involved (see [16]).
The theory of poroelasticity was established well by Biot [17], Terzaghi [18] and further developed by Barenblatt et al.

19], Coussy [20], Meirmanov [21], and others. We refer to [22,23] for modeling of a two-phase medium consisted of solid
hase and pores with interfacial jumps, and cite [24] for multi-scale analysis of related interface problems. Our model is
otivated by application to hydraulic fractures in oil and gas well-bores that is a challenging issue in modern geophysical

echnologies. We utilize the mathematical formulation of poroelastic constitutive relations from [25,26], by this accounting
or positive and negative pressure phases in fracturing fluid during pumping cycle. The unilateral contact conditions are
mposed which guarantee a non-negative width between fracture walls. It is worth noting the fact that the fracture width/
perture is used to compute the fracture permeability (as a quadratic function) and the fracture transmissivity (as a cubic
unction). This means that coefficients describing conduction properties of fractures might become negative for a negative
racture aperture. Thus, the unilateral setting is advantageous compared to other models without this constraint.

From a mathematical point of view, the poroelastic constitutive equations are similar to those for models in thermoe-
asticity. The problem of thermoelastic contact was solved first in [27] and then extended to nonpenetrating cracks in
hermoelastic plates by Hoffmann and Khludnev [28], Hömberg and Khludnev [29]. In a fixed point approach, applying a
ompactness argument to successive problems for the temperature when the elastic field is known and vice versa, only
he initial condition for the heat equation was allowed to prescribe a-priori, and the initial elastic state can be derived
rom the time-limit of the quasi-static equilibrium equation. Moreover, the coefficient of thermal expansion should be
ssumed sufficiently small. Our approach by semi-discretization solves the problem in a general form, when both the
nitial temperature and the elastic field are given arbitrarily, thus including the earlier formulation as a particular case.

The current paper is organized as follows. In Section 2, the coupled elliptic–parabolic system describing poroelastic
roblem with a fluid-driven crack is introduced, and non-penetration conditions for the crack are stated in Section 2.1. In
ection 3 we endow the model with a variational formulation and establish its well-posedness based on Rothe’s method
f semi-discretization in time. The rigorous proof is presented in Section 3.1 supported by a-priori estimates.

. Problem modeling

We start with geometric description of a poroelastic medium containing inside a fluid-driven crack.
In the Euclidean space of spatial points x = (x1, . . . , xd) ∈ Rd, d = 2, 3, let Ω be a domain with the Lipschitz continuous

boundary ∂Ω and outward normal vector n = (n1, . . . , nd). Let ∂Ω = ΓD ∪ ΓN. We assume an oriented manifold of
co-dimension one Σ which splits Ω into two sub-domains Ω± with Lipschitz continuous boundaries ∂Ω± such that

∂Ω+
∩ ∂Ω−

= Σ, Ω = Ω+
∪ Ω−

∪ Σ . (2.1)

The normal vector n at Σ is chosen outward to Ω−, thus inward to Ω+. A part Γc of the interface with two faces Γ ±
c

and its complement to Ω are defined as

Γc ⊂ Σ, Γ +

c ⊂ Σ+, Γ −

c ⊂ Σ−, Ωc = Ω \ Γc. (2.2)

hysically, Γc is associated with the crack (fracture filled with a Newtonian fluid), whereas the complement Ωc represents
a reservoir filled of solid phase and pores saturated with the same fluid. In time t ∈ [0, T ], T > 0, this determines the
ime–space geometry as follows (see 2d illustration in Fig. 1):

ΩT
c = (0, T ) × Ωc, ∂ΩT

= (0, T ) × ∂Ω, Γ T
γ = (0, T ) × Γγ , γ ∈ {c,D,N}. (2.3)

A poroelastic medium occupying ΩT
c according to (2.1)–(2.3) is described by the solid phase displacement u =

(u1, . . . , ud)(t, x) and the pore pressure p(t, x), which are governed by the poroelastic relations following [25,26].
For the linear elastic solid phase, the second-order d-by-d symmetric tensor of linearized strain ε = {εij}

d
i,j=1(t, x) is

defined by the symmetric gradient of the displacement vector as

εij(u) =
1(∂ui

+
∂uj

)
, i, j = 1, . . . , d. (2.4)
2 ∂xj ∂xi
2
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Fig. 1. The example geometry for a poroelastic medium with a crack in 2d.

he second-order symmetric tensor of Cauchy stress σ = {σij}
d
i,j=1(t, x) is given corresponding to the matrix multiplication

of the strain

σ = Aε(u) + τ0 (2.5)

ubjected to a prestress τ0
= {τ 0

ij }
d
i,j=1(x), by the fourth-order symmetric tensor of elastic coefficients A = {Aijkl}

d
i,j,k,l=1(x)

such that

Aijkl = Ajikl = Aklij, i, j, k, l = 1, . . . , d.

Accounting for the pore pressure, the effective stress is introduced as

τ = σ − αpI, (2.6)

where constant α ∈ (0, 1] is the Biot coefficient, and I ∈ Rd×d is the identity tensor. Omitting inertia terms, the quasi-static
equilibrium equation reads

− (divτ)i := −

d∑
j=1

∂τij

∂xj
= 0, i = 1, . . . , d, in ΩT

c . (2.7)

The fluid content in pores ζ (t, x) is described by the Fick’s diffusion law

∂ζ

∂t
= −divq := −

d∑
i=1

∂qi
∂xi

in ΩT
c , (2.8)

ith the flow velocity q = (q1, . . . , qd)(t, x) subjected to the Darcy flow

q = −κ∇p := −κ

( ∂p
∂x1

, . . . ,
∂p
∂xd

)
, (2.9)

ith κ = kr/ηr, where kr(x) is the permeability and constant ηr stands for the effective viscosity such that

0 < κ ≤ κ(x) ≤ κ.

The system is completed with the constitutive law connecting p, ζ and the dilatation trε as

Sp = ζ − αtrε(u), trε(u) := divu, (2.10)

here constant S > 0 is the storativity.
The poroelastic Eqs. (2.4)–(2.10) are endowed with initial conditions

u(0) = u0, p(0) = p0 in Ωc (2.11)

or the undrained state given by u0
= (u0

1, . . . , u
0
d)(x) and p0(x), and by mixed boundary conditions prescribed on the

uter boundary

u = 0 on Γ T
D , τn = g on Γ T

N , p = p∞ on ∂ΩT (2.12)

or the given traction g = (g1, . . . , gd)(t, x) and pressure p∞(t, x), which conform (2.11) at t = 0. At the boundary we
decompose the displacement and the effective boundary stress vectors into its normal and tangential components:

u = (u · n)n +
(
u − (u · n)n

)
, τn = (τn · n)n +

(
τn − (τn · n)n

)
,

3
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where τn = (
∑d

j=1 τ1jnj, . . . ,
∑d

j=1 τdjnj) implies the matrix–vector multiplication, and dot stands for the scalar product
of vectors, thus u ·n =

∑d
i=1 uini, τn ·n =

∑d
i,j=1 τijninj. Across the crack, the unknowns are discontinuous in general and

allow jumps:

[[u]] := u|Γ +
c

− u|Γ −
c

, [[τ]] := τ|Γ +
c

− τ|Γ −
c

, [[p]] := p|Γ +
c

− p|Γ −
c

.

e suggest no effective tangential stress at the crack faces

τn − (τn · n)n = 0 on (0, T ) × Γ ±

c , (2.13)

and continuity of the fluid pressure over the fracture wall

p = p±

f on (0, T ) × Γ ±

c (2.14)

for known fluid pressure on the opposite fracture walls p+

f (t, x) and p−

f (t, x), which can be different and coincide at the
crack tip/ crack front. To calculate pf in the fracture, we refer to the approach based on lubrication theory equations for
aperture (see [30]).

Let us remark that in numerical simulations as well as theoretical analysis in the cited literature, symmetry of the
problem with respect to the direct crack Γc is often assumed for simplicity. In this case, we do not need to consider the
opposite faces, rather to set

p−

f = −p+

f , u|Γ −
c

= −u|Γ +
c

, τ|Γ −
c

= −τ|Γ +
c

, p|Γ −
c

= −p|Γ +
c

here and in the following formula.

2.1. Non-penetration conditions

In the normal direction, the standard boundary condition is

τn · n = −p±

f on (0, T ) × Γ ±

c . (2.15)

For few heuristic approaches generalizing (2.15) within unilateral conditions we cite [31,32]. In our approach, to prevent
penetration between the opposite crack faces [[u]] ·n < 0, the unilateral contact conditions are set in the complementarity
form (see [1]):

(τn · n + pf)|(0,T )×Γ
+
c

= (τn · n + pf)|(0,T )×Γ
−
c

=: τn · n + pf ≤ 0,

[[u]] · n ≥ 0, ([[u]] · n)(τn · n + pf) = 0 on (0, T ) × Γ ±

c , (2.16)

eminding that pf|Γ ±
c

= p±

f . Physically, relations (2.16) imply a compressive contact stress, thus confining the pressure
t which the hydraulic fracture closes. It is worth noting that (2.16) implies (2.15) as a particular case when the crack is
ully open, i.e. [[u]] · n > 0.

Reducing variables τ, σ, ζ , q from the system, the governing Eqs. (2.5)–(2.10) turn into the following two equations
or unknown u and p:

− div(Aε(u) + τ0) + α∇p = 0 in ΩT
c , (2.17)

∂

∂t

(
Sp + αtrε(u)

)
− div(κ∇p) = 0 in ΩT

c (2.18)

endowed with initial conditions (2.11). Using calculation at the boundary

τn = σn − αpn, τn · n = σn · n − αp, τn − (τn · n)n = σn − (σn · n)n,

he boundary conditions (2.12)–(2.14) and (2.16) reduce to

u = 0 on Γ T
D , σ(u)n − αpn = g on Γ T

N , p = p∞ on ∂ΩT , (2.19)

σ(u)n − (σ(u)n · n)n = 0, p = p±

f on (0, T ) × Γ ±

c , (2.20)

[[σ(u)n · n + (1 − α)pf]] = 0, σ(u)n · n + (1 − α)pf ≤ 0,
[[u]] · n ≥ 0, ([[u]] · n)

(
σ(u)n · n + (1 − α)pf

)
= 0 on (0, T ) × Γ ±

c . (2.21)

where we use in (2.19)–(2.21) the notation σ(u) := Aε(u) + τ0 for short.
We note that the complementarity conditions (2.21) can be represented equivalently by splitting Γ T

c into a coincidence
set CT where contact occurs

[[u]] · n = 0, σ(u)n · n + (1 − α)p ≤ 0 on CT , (2.22)
f

4
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and its complement Γ T
c \ CT as follows

[[u]] · n > 0, σ(u)n · n + (1 − α)pf = 0 on Γ T
c \ CT . (2.23)

ince CT is unknown a-priori, relations (2.22) and (2.23) imply a free boundary condition. On the other hand, (2.21) can
e expressed with the help of nonlinear complementarity problem (NLCP) functions, e.g. min-based function, as

min
{
0, σ(u)n · n + (1 − α)pf + c[[u]] · n

}
= σ(u)n · n + (1 − α)pf on Γ T

c (2.24)

or arbitrary constant c > 0. The nonlinear equation (2.24) is equivalent to

[[u]] · n = 0 on AT
= {(t, x) ∈ Γ T

c |
(
σ(u)n · n + (1 − α)pf + c[[u]] · n

)
(t, x) < 0} (2.25)

ver the active set AT , where the constraint is active, and

σ(u)n · n = 0 on IT
= {(t, x) ∈ Γ T

c |
(
σ(u)n · n + (1 − α)pf + c[[u]] · n

)
(t, x) ≥ 0} (2.26)

ver its complementary inactive set IT
= Γ T

c \AT . The mixed formulation (2.25) and (2.26) is advantageous for numerical
mplementation of solution strategies, see the semi-smooth Newton method and its primal–dual active set realization
n [11].

To provide well-posedness analysis of the coupled system (2.17)–(2.21), we present the following important observa-
ions.

• Formally, the governing Eqs. (2.17) and (2.18) coincide with the thermoelastic equations when p stands for
temperature.

• From the point of view of partial differential equations, the system (2.17) and (2.18) is degenerate since of
elliptic–parabolic type.

In this sense, from the literature on thermoelasticity there are known existence results, which utilize the pseudo-
onotone theory over a compact feasible set (see [27] and [1, Section 3.3]). They justify a variational solution to problem

3.1) and (3.2), however, restricted to small Biot coefficients α. For arbitrary α, differentiating the elliptic equation (2.17)
ith respect to time, it turns into a pure parabolic problem. Its solvability is provided by applying the theory of accretive
perators for implicit evolution equations (see [33,34]). However, the parabolic problem is not well conforming to the
nilateral conditions (2.21). Instead, in our approach we apply to the parabolic equation (2.18) a discrete integration
ith respect to time and reduce the system to a pure elliptic problem. Following the Rothe method for the incremental

ormulation as described in [35, Section 8.2], we prove well-posedness of the poroelastic problem.
In Section 3 we endow the problem with a variational formulation and state the existence result. Section 3.1 is devoted

o the rigorous proof of existence theorem and obtaining a-priori estimates.

. Variational theory

Let v = (v1, . . . , vd)(t, x) be a smooth test function such that v = 0 on Γ T
D and [[v]] · n ≥ 0 on Γ T

c . We multiply the
quilibrium equation (2.17) by v−u, integrate it by parts over Ωc, use the notation of strain (2.4) and div(v−u) = trε(v−u)
uch that

0 = −

∫
Ωc

(
div(Aε(u) + τ0) − α∇p

)
· (v − u) dx

=

∫
Ωc

(
(Aε(u) + τ0) · ε(v − u) − αp trε(v − u)

)
dx −

∫
∂Ωc

(σ(u)n − αpn) · (v − u) dSx,

here dot denotes the scalar product of tensors, in particular ε(u) · ε(v) =
∑d

i,j=1 εij(u)εij(v). From boundary conditions
2.19)–(2.21) we obtain∫

∂Ωc

(σ(u)n − αpn) · (v − u) dSx =

∫
ΓN

(σ(u)n − αpn) · (v − u) dSx

−

∫
Γc

[[
(
σ(u)n − (σ(u)n · n)n + (σ(u)n · n − αpf)n

)
· (v − u)]] dSx.

ntegrating the result over time provides us with the variational inequality∫
ΩT

c

(
(Aε(u) + τ0) · ε(v − u) − αp trε(v − u)

)
dxdt ≥

∫
Γ T
N

g · (v − u) dSxdt +

∫
Γ T
c

[[pf(v − u)]] · n dSxdt. (3.1)

For a smooth test function q(t, x) such that q = 0 on ∂ΩT
∪ ((0, T )×Γ ±

c ), multiplying the diffusion equation (2.18) by
and integrating it by parts over ΩT

c with respect to the spatial divergence operator, we derive the variational equation∫ ( ∂ (
Sp + αtrε(u)

)
q + κ∇p · ∇q

)
dxdt = 0. (3.2)
ΩT
c

∂t
5
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Now we give a function setting of the problem. Further Rd×d
sym denotes d-by-d symmetric tensors. Let the initial data be

given in Lebesgue spaces:

τ0
∈ L2(Ωc;Rd×d

sym ), u0
∈ L2(Ωc;Rd), p0 ∈ L2(Ωc;R),

and the boundary data be expressed in Bochner–Lebesgue spaces:

g ∈ H1(0, T ; L2(ΓN;Rd)).

Also we assume existence of such a function

pr(t, x) ∈ H1(0, T ;H1(Ωc;R))

that is conforming to the data in the reservoir:

pr(0) = p0 in Ωc, pr = p∞ on ∂ΩT , pr = p±

f on (0, T ) × Γ ±

c . (3.3)

The function pr implies an extension into the cracked domain of the initial and boundary data prescribed by (3.3). It has a
non-zero jump across Γ T

c except for the crack tip/ crack front, and can be specified, e.g., as a solution to a heat equation
in ΩT

c under these data.
Applying Korn and Poincaré inequalities, the elasticity coefficients are assumed to be elliptic and bounded: there exists

0 < a ≤ a such that∫
Ωc

Aε(u) · ε(u) dx ≥ a∥u∥
2
H1(Ωc)

for u = 0 on ΓD,⏐⏐⏐ ∫
Ωc

Aε(u) · ε(v) dx
⏐⏐⏐ ≤ a∥u∥H1(Ωc)∥v∥H1(Ωc). (3.4)

he trace inequality is used expressed in the form

∥u∥
2
L2(∂Ω∪Γ

+
c ∪Γ

−
c )

≤ Ktr∥u∥
2
H1(Ωc)

, Ktr > 0. (3.5)

The set of trial functions subjected to initial conditions (2.11), boundary conditions in (2.19), (2.20), and the non-
penetration condition in (2.21) builds the convex closed cone

Ktrial =
{
u ∈ H1(0, T ;H1(Ωc;Rd)), p ∈ H1(0, T ; L2(Ωc;R)) ∩ L2(0, T ;H1(Ωc;R))|

u(0) = u0, p(0) = p0 in Ωc, u = 0 on Γ T
D , p = p∞ on ∂ΩT ,

[[u]] · n ≥ 0 on Γ T
c , p = p±

f on (0, T ) × Γ ±

c

}
.

Whereas the corresponding test functions satisfy homogeneous boundary conditions and the non-penetration within the
set:

Ktest =
{
v ∈ L2(0, T ;H1(Ωc;Rd)), q ∈ L2(0, T ;H1

0 (Ωc;R))|

v = 0 on Γ T
D , [[v]] · n ≥ 0 on Γ T

c

}
.

Theorem 3.1. There exists a unique pair (u, p) ∈ Ktrial solving the variational inequality (3.1) and the variational
equation (3.2) for all test functions (v, q) ∈ Ktest. The a-priori estimates hold for the time derivatives:

a
4

∂u
∂t

2

L2(0,T ;H1(Ωc))
+ S

∂p
∂t

2

L2(ΩT
c )

≤
κ

2
∥∇p0∥2

L2(Ωc)
+

2Ktr

a

∑
±

∂p±

f

∂t

2

L2(0,T ;L2(Γ ±
c ))

+
Ktr

a

∂g
∂t

2

L2(Γ T
N )

+
α2d
a

∂pr
∂t

2

L2(ΩT
c )

+
κT
2

∂∇pr
∂t

2

L2(ΩT
c )

, (3.6)
6
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and for the solution pair:

a∥u∥
2
C(0,T ;H1(Ωc))

+ S∥p∥2
C(0,T ;L2(Ωc))

+ κ∥∇p∥2
L2(ΩT

c )

≤ 2
∑
±

∥p±

f ∥
2
L2(0,T ;L2(Γ ±

c ))
+ ∥g∥

2
L2(Γ T

N )
+ T∥τ0

∥
2
L2(Ωc)

+ a∥u0
∥
2
H1(Ωc)

+ S∥p0∥2
L2(Ωc)

+ (α + S)∥pr∥2
L2(ΩT

c )
+ κ∥∇pr∥2

L2(ΩT
c )

+ S
∂p

∂t

2

L2(ΩT
c )

+ (1 + αd + 2Ktr)
∂u

∂t

2

L2(0,T ;H1(Ωc))
, (3.7)

here the constant a, a and Ktr are from inequalities (3.4) and (3.5).

3.1. Proof of Theorem 3.1

In the proof we approximate (3.1) and (3.2) by an incremental problem using Rothe’s semi-discretization in time, and
then pass it to the limit as the time step decreases.

For integer N and time step δ = T/N > 0, we set the equidistant mesh points

t0 = 0, t1 = δ, . . . , tk = kδ, . . . , tN = Nδ = T .

The final time T is fixed, and δ → 0 when N → ∞. At the moment we fix N , thus δ. Since the data from the Sobolev
space H1(0, T ) are continuous in time, it holds

(pr)δk := pr(tk) ∈ H1(Ωc;R), (p±

f )
δ
k := p±

f (tk) ∈ L2(Γ ±

c ;R),
gδ
k := g(tk) ∈ L2(ΓN;Rd), (p∞)δk := p∞(tk) ∈ L2(∂Ω;R) for k = 1, . . . ,N.

We initialize uδ
0(x) = u0, pδ

0(x) = p0 according to initial conditions (2.11), and look for unknown uδ
k(x), p

δ
k(x) for

k = 1, . . . ,N . Semi-discretizing by finite differences in time the reference variational relations (3.1) and (3.2), for pr
satisfying (3.3) and the feasible set

K =
{
v ∈ H1(Ωc;Rd)| v = 0 on ΓD, [[v]] · n ≥ 0 on Γc

}
,

functions uδ
k ∈ K and pδ

k − (pr)δk ∈ H1
0 (Ωc;R) solve the recursion relations∫

Ωc

(
Aε(uδ

k) · ε(v − uδ
k) − αpδ

ktrε(v − uδ
k)

)
dx ≥

∫
Ωc

τ0
· ε(v − uδ

k) dx

+

∫
ΓN

gδ
k · (v − uδ

k) dSx +

∫
Γc

[[(pf)δk(v − uδ
k)]] · n dSx, (3.8)

∫
Ωc

(
(Spδ

k + αtrε(uδ
k))q + δκ∇pδ

k · ∇q
)
dx =

∫
Ωc

(Spδ
k−1 + αtrε(uδ

k−1))q dx (3.9)

or all test functions v ∈ K and q ∈ H1
0 (Ωc;R).

xistence of incremental solution. The left-hand side of (3.8) and (3.9) after summation establishes a bilinear form in
1(Ωc;Rd) × H1(Ωc;R):∫

Ωc

(
Aε(uδ

k) · ε(v) − αpδ
ktrε(v) + (Spδ

k + αtrε(uδ
k))q + δκ∇pδ

k · ∇q
)
dx.

t is bounded and coercive, when substitute v = uδ
k and q = pδ

k here∫
Ωc

(
Aε(uδ

k) · ε(uδ
k) + S(pδ

k)
2
+ δκ|∇pδ

k|
2) dx ≥ a∥uδ

k∥
2
H1(Ωc)

+ S∥pδ
k∥

2
L2(Ωc)

+ δκ∥∇pδ
k∥

2
L2(Ωc)

(3.10)

such that the terms involving trε are shortened, due to the assumption on elasticity coefficients (3.4) and recalling
0 < κ ≤ κ(x) ≤ κ . Therefore, by the Lions–Stampacchia theorem the unique solution to (3.8) and (3.9) exists for every
k = 1, . . . ,N .
7
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a

a

T

Uniform estimate of time derivatives. Inserting v = uδ
k−1 ∈ K into (3.8):∫

Ωc

(
Aε(uδ

k) · ε(uδ
k−1 − uδ

k) − αpδ
ktrε(u

δ
k−1 − uδ

k)
)
dx ≥

∫
Ωc

τ0
· ε(uδ

k−1 − uδ
k) dx

+

∫
ΓN

gδ
k · (uδ

k−1 − uδ
k) dSx +

∫
Γc

[[(pf)δk(u
δ
k−1 − uδ

k)]] · n dSx, (3.11)

nd v = uδ
k ∈ K into (3.8) at t = tk−1:∫

Ωc

(
Aε(uδ

k−1) · ε(uδ
k − uδ

k−1) − αpδ
k−1trε(u

δ
k − uδ

k−1)
)
dx ≥

∫
Ωc

τ0
· ε(uδ

k − uδ
k−1) dx

+

∫
ΓN

gδ
k−1 · (uδ

k − uδ
k−1) dSx +

∫
Γc

[[(pf)δk−1(u
δ
k − uδ

k−1)]] · n dSx,

fter its summation and division by δ2 yields the inequality∫
Ωc

{
Aε

(uδ
k − uδ

k−1

δ

)
· ε

(uδ
k − uδ

k−1

δ

)
− α

pδ
k − pδ

k−1

δ
trε

(uδ
k − uδ

k−1

δ

)}
dx

≤ I1 + I2, (3.12)

where the integrals I1 and I2 are defined as follows

I1 :=

∫
Γc

[[ (pf)δk − (pf)δk−1

δ

uδ
k − uδ

k−1

δ

]]
· n dSx,

I2 :=

∫
ΓN

gδ
k − gδ

k−1

δ
·
uδ
k − uδ

k−1

δ
dSx.

Dividing (3.9) by δ2 and testing it with q = pδ
k − pδ

k−1 − (pr)δk + (pr)δk−1 ∈ H1
0 (Ωc;R) we have∫

Ωc

{[
S
pδ
k − pδ

k−1

δ
+ αtrε

(uδ
k − uδ

k−1

δ

)]pδ
k − pδ

k−1 − (pr)δk + (pr)δk−1

δ

+κ∇pδ
k · ∇

pδ
k − pδ

k−1 − (pr)δk + (pr)δk−1

δ

}
dx = 0. (3.13)

he sum of (3.12) and (3.13) after shortening the term α(pδ
k − pδ

k−1)/δ · trε((uδ
k −uδ

k−1)/δ) and using the lower bound akin
to (3.10) gives the inequality

a
uδ

k − uδ
k−1

δ

2

H1(Ωc)
+ S

pδ
k − pδ

k−1

δ

2

L2(Ωc)
+

1
δ
∥
√

κ∇pδ
k∥

2
L2(Ωc)

≤ I1 + I2 + I3 + I4, (3.14)

where the integrals I3 and I4 are

I3 :=

∫
Ωc

αtrε
(uδ

k − uδ
k−1

δ

) (pr)δk − (pr)δk−1

δ
dx,

I4 :=

∫
Ωc

(κ

δ
∇pδ

k · ∇pδ
k−1 + κ∇pδ

k · ∇
(pr)δk − (pr)δk−1

δ

)
dx.

Applying weighted Young’s and the trace (3.5) inequalities we estimate

|I1| ≤

∑
±

 (p±

f )
δ
k − (p±

f )
δ
k−1

δ


L2(Γ ±

c )

(uδ
k − uδ

k−1

δ

)±

· n

L2(Γ ±

c )

≤
a
4

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+

2Ktr

a

∑
±

 (p±

f )
δ
k − (p±

f )
δ
k−1

δ

2

L2(Γ ±
c )

,

|I2| ≤
a
4

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+

Ktr

a

gδ
k − gδ

k−1

δ

2

L2(ΓN)
,

and using tr2ε(u) ≤ dε(u) · ε(u) = d
∑d

i,j=1(∂ui/∂xj)2 we proceed

|I3| ≤
auδ

k − uδ
k−1

2
+

α2d (pr)δk − (pr)δk−1
2

,

4 δ H1(Ωc) a δ L2(Ωc)

8
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w

t

|I4| ≤
1
2δ

∥
√

κ∇pδ
k∥

2
L2(Ωc)

+
1
2δ

∥
√

κ∇pδ
k−1∥

2
L2(Ωc)

+
1

2δN
∥
√

κ∇pδ
k∥

2
L2(Ωc)

+
δN
2

√
κ∇

(pr)δk − (pr)δk−1

δ

2

L2(Ωc)
,

where δN = T . Inserting these estimates into (3.14), gathering the same terms, and taking the maximum over k ∈ [1,N]

for the third term in the upper bound of |I4| gives us

a
4

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+ S

pδ
k − pδ

k−1

δ

2

L2(Ωc)
+

1
2δ

∥
√

κ∇pδ
k∥

2
L2(Ωc)

≤
1
2δ

∥
√

κ∇pδ
k−1∥

2
L2(Ωc)

+
1

2δN
max
k∈[1,N]

∥
√

κ∇pδ
k∥

2
L2(Ωc)

+ Rδ
k (3.15)

ith the notation for short

Rδ
k :=

2Ktr

a

∑
±

 (p±

f )
δ
k − (p±

f )
δ
k−1

δ

2

L2(Γ ±
c )

+
Ktr

a

gδ
k − gδ

k−1

δ

2

L2(ΓN)

+
α2d
a

 (pr)δk − (pr)δk−1

δ

2

L2(Ωc)
+

κT
2

∇
(pr)δk − (pr)δk−1

δ

2

L2(Ωc)
. (3.16)

After summation of (3.15) over k = 1, . . . ,m for integer m and using the telescope sum such that

a
4

m∑
k=1

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+ S

m∑
k=1

pδ
k − pδ

k−1

δ

2

L2(Ωc)
+

1
2δ

∥
√

κ∇pδ
m∥

2
L2(Ωc)

≤
1
2δ

∥
√

κ∇pδ
0∥

2
L2(Ωc)

+
m

2δN
max
k∈[1,N]

∥
√

κ∇pδ
k∥

2
L2(Ωc)

+

m∑
k=1

Rδ
k,

aking its maximum over m ∈ [1,N] and multiplying by δ concludes with

aδ
4

N∑
k=1

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+ Sδ

N∑
k=1

pδ
k − pδ

k−1

δ

2

L2(Ωc)

≤
κ

2
∥∇p0∥2

L2(Ωc)
+ δ

N∑
k=1

Rδ
k. (3.17)

Uniform estimate of solutions. We test (3.9) with q = pδ
k − (pr)δk ∈ H1

0 (Ωc;R):∫
Ωc

((
S(pδ

k − pδ
k−1) + αtrε(uδ

k − uδ
k−1)

)
(pδ

k − (pr)δk) + δκ∇pδ
k · ∇(pδ

k − (pr)δk)
)
dx = 0

and subtract (3.11) such that the term αtrε(uδ
k − uδ

k−1)p
δ
k is shortened, that results in∫

Ωc

(
Aε(uδ

k) · ε(uδ
k) + S(pδ

k)
2
+ δκ|∇pδ

k|
2) dx ≤ I5 + I6 + I7 + I8, (3.18)

where the integrals are

I5 :=

∫
Γc

[[(pf)δk(u
δ
k − uδ

k−1)]] · n dSx,

I6 :=

∫
ΓN

gδ
k · (uδ

k − uδ
k−1) dSx,

I7 :=

∫
Ωc

(
Aε(uδ

k) · ε(uδ
k−1) − τ0

· ε(uδ
k − uδ

k−1) + αtrε(uδ
k − uδ

k−1)(pr)
δ
k

)
dx,

I8 :=

∫
Ωc

(
Spδ

kp
δ
k−1 + δκ∇pδ

k · ∇(pr)δk + S(pδ
k − pδ

k−1)(pr)
δ
k

)
dx.

Applying weighted Young’s and the trace (3.5) inequalities such that

|I5| ≤
Ktrδ

2

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+ δ

∑
±

∥(p±

f )
δ
k∥

2
L2(Γ ±

c )
,

|I6| ≤
Ktrδ

2

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+

δ

2
∥gδ

k∥
2
L2(ΓN)

,

and for domain integrals it follows that

|I7| ≤
1

∫ (
Aε(uδ

k) · ε(uδ
k) + Aε(uδ

k−1) · ε(uδ
k−1)

)
dx
2 Ωc

9
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κ

a

+
δ

2
(1 + αd)

uδ
k − uδ

k−1

δ

2

H1(Ωc)
+

δ

2
∥τ0

∥
2
L2(Ωc)

+
αδ

2
∥(pr)δk∥

2
L2(Ωc)

,

|I8| ≤
S
2
∥pδ

k∥
2
L2(Ωc)

+
S
2
∥pδ

k−1∥
2
L2(Ωc)

+
δ

2
∥
√

κ∇pδ
k∥

2
L2(Ωc)

+
κδ

2
∥∇(pr)δk∥

2
L2(Ωc)

+
Sδ
2

pδ
k − pδ

k−1

δ

2

L2(Ωc)
+

Sδ
2

∥(pr)δk∥
2
L2(Ωc)

.

Inserting these estimates into (3.18) and gathering the same terms, after multiplication by 2 and remembering 0 < κ ≤

(x) ≤ κ yields∫
Ωc

Aε(uδ
k) · ε(uδ

k) dx + S∥pδ
k∥

2
L2(Ωc)

+ κδ∥∇pδ
k∥

2
L2(Ωc)

≤

∫
Ωc

Aε(uδ
k−1) · ε(uδ

k−1) dx + S∥pδ
k−1∥

2
L2(Ωc)

+ δSδ
k (3.19)

with the notation introduced for short

Sδ
k := 2

∑
±

∥(p±

f )
δ
k∥

2
L2(Γ ±

c )
+ ∥gδ

k∥
2
L2(ΓN)

+ ∥τ0
∥
2
L2(Ωc)

+ (α + S)∥(pr)δk∥
2
L2(Ωc)

+ κ∥∇(pr)δk∥
2
L2(Ωc)

+ S
pδ

k − pδ
k−1

δ

2

L2(Ωc)
+ (1 + αd + 2Ktr)

uδ
k − uδ

k−1

δ

2

H1(Ωc)
. (3.20)

We sum up (3.19) over k = 1, . . . ,m, use the telescope sum, take maximum over m ∈ [1,N], and use the lower and
upper bounds of A from (3.4), which together follows the estimate of the solution as

a max
k∈[1,N]

∥uδ
k∥

2
H1(Ωc)

+ S max
k∈[1,N]

∥pδ
k∥

2
L2(Ωc)

+ κδ

N∑
k=1

∥∇pδ
k∥

2
L2(Ωc)

≤ a∥u0
∥
2
H1(Ωc)

+ S∥p0∥2
L2(Ωc)

+ δ

N∑
k=1

Sδ
k . (3.21)

Convergence as δ → 0. We introduce interpolants: piecewise-affine

uδ(t) =
t − (k − 1)δ

δ
uδ
k +

kδ − t
δ

uδ
k−1, pδ(t) =

t − (k − 1)δ
δ

pδ
k +

kδ − t
δ

pδ
k−1

as t ∈ ((k − 1)δ, kδ], and piecewise-constant for time derivatives

∂uδ

∂t
(t) =

uδ
k − uδ

k−1

δ
,

∂pδ

∂t
(t) =

pδ
k − pδ

k−1

δ
as t ∈ ((k − 1)δ, kδ]

for k = 1, . . . ,N . The interpolants gδ(t), (p±

f )
δ(t), pδ

r (t) and their time derivatives for t ∈ (0, T ] are defined similarly. Then
formulas (3.16) and (3.17) read

a
4

∂uδ

∂t

2

L2(0,T ;H1(Ωc))
+ S

∂pδ

∂t

2

L2(ΩT
c )

≤
κ

2
∥∇p0∥2

L2(Ωc)
+

2Ktr

a

∑
±

∂(p±

f )
δ

∂t

2

L2(0,T ;L2(Γ ±
c ))

+
Ktr

a

∂gδ

∂t

2

L2(Γ T
N )

+
α2d
a

∂pδ
r

∂t

2

L2(ΩT
c )

+
κT
2

∂∇pδ
r

∂t

2

L2(ΩT
c )

, (3.22)

nd from (3.20) and (3.21) it follows

a∥uδ
∥
2
C(0,T ;H1(Ωc))

+ S∥pδ
∥
2
C(0,T ;L2(Ωc))

+ κ∥∇pδ
∥
2
L2(ΩT

c )

≤ 2
∑
±

∥(p±

f )
δ
∥
2
L2(0,T ;L2(Γ ±

c ))
+ ∥gδ

∥
2
L2(Γ T

N )
+ T∥τ0

∥
2
L2(Ωc)

+ a∥u0
∥
2
H1(Ωc)

+ S∥p0∥2
L2(Ωc)

+ (α + S)∥pδ
r∥

2
L2(ΩT

c )
+ κ∥∇pδ

r∥
2
L2(ΩT

c )
+ S

∂pδ

∂t

2

L2(ΩT
c )

+ (1 + αd + 2Ktr)
∂uδ

∂t

2

L2(0,T ;H1(Ωc))
. (3.23)

Using the convergence of interpolants (see [35, Lemma 8.7 and Remark 8.10])
10
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T

w

w

a
(

R

gδ
→ g,

∂gδ

∂t
→

∂g
∂t

, pδ
r → pr,

∂pδ
r

∂t
→

∂pr
∂t

, (p±

f )
δ
→ p±

f ,
∂(p±

f )
δ

∂t
→

∂p±

f

∂t
strongly in L2(0, T ) as δ → 0, (3.24)

from (3.22) and (3.23) we conclude with the uniform bound

∥uδ
∥
2
C(0,T ;H1(Ωc))

+ ∥pδ
∥
2
C(0,T ;L2(Ωc))

+ ∥∇pδ
∥
2
L2(ΩT

c )
+

∂uδ

∂t

2

L2(0,T ;H1(Ωc))
+

∂pδ

∂t

2

L2(ΩT
c )

≤ const.

herefore, there exists a convergent subsequence (still denoted by δ for short) and an accumulation point (u, p) such that
the convergences as δ → 0 hold

uδ
→ u weakly in H1(0, T ;H1(Ωc)), strongly in L2(0, T ; L2(ΓN ∪ Γ +

c ∪ Γ −

c )), (3.25)

here the strong convergence takes place by compactness, and

pδ
→ p weakly in H1(0, T ; L2(Ωc)) ∩ L2(0, T ;H1(Ωc)), strongly in L2(0, T ;H−1(Ωc)), (3.26)

ith the strong convergence due to Aubin–Lions lemma.
With the help of convergences (3.24)–(3.26) we pass the incremental relations (3.8) and (3.9) to the limit as δ → 0

nd get the solution (u, p) ∈ Ktrial to the variational inequality (3.1) and the variational equation (3.2). Passing (3.22) and
3.23) to the limit justifies the a-priori estimates (3.6) and (3.7). This finishes the proof of Theorem 3.1.
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