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JOSÉ RODRIGO GONZÁLEZ GRANADA1, VICTOR A. KOVTUNENKO2,3,∗

1Department of Mathematics, Universidad Tecnológica de Pereira, 660003 Pereira, Colombia
2Institute for Mathematics and Scientific Computing,

Karl-Franzens University of Graz, NAWI Graz, Heinrichstr.36, 8010 Graz, Austria
3Lavrentyev Institute of Hydrodynamics,

Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract. For a generalized Brinkman–Forchheimer’s equation under divergence-free and mixed bound-
ary conditions, the stationary equilibrium problem and the inverse problem of shape optimal control are
considered. For a convex, geometry-dependent objective function, the equilibrium-constrained optimiza-
tion is treated with the help of an adjoint state within the Lagrange approach. The shape differentiability
of a Lagrangian with respect to linearized shape perturbations is derived in the analytic form by the ve-
locity method. A Hadamard representation of the shape derivative using boundary integrals is derived.
Its applications to path-independent integrals and to the gradient descent method are illustrated.
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1. INTRODUCTION

The current paper is devoted to the shape differentiablity of geometry-dependent objective
functions, as they are considered in shape optimal control. The optimal value objective is sub-
ject to the nonlinear equilibrium described by generalized Brinkman–Forchheimer’s equation
under the incompressibility and mixed Dirichlet–Neumann boundary conditions. The nonlinear
boundary value problem describes the single-phase fluid flow in a porous medium [1]. The topic
under consideration belongs to the fields of shape optimization, optimal control and inverse
problems. These problems are ill-posed, since objectives have typically many local minima
when perturbing equilibrium. Therefore, our theoretical result is of practical importance since
it provides robust numerical methods of iterative optimization, namely, the shape derivative for
the gradient descent method.

We cite textbooks [2, 3] for the general theory of shape optimization, [4] for mathematical
programs with equilibrium constraints (MPEC), and [5, 6, 7] for parameter identification in
(hemi-) variational inequalities. For numerical treatment of optimal control problems, we refer
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to [8, 9, 10]. For relevant applications in mathematical physics, we refer to [11, 12, 13, 14].
The shape derivative is important since it determines the optimality condition with respect to
geometry perturbations. An abstract formalism of directional differentiability for saddle-point
optimal value functions was established in [15] by using adjoints states within the Lagrange
approach. Further extensions to shape differentiability were done in [2], and to constrained PDE
models in [16, 17, 18] and other works. With the help of the Lagrange approach, previously
we derived the shape derivative for nonpenetrating cracks [19, 20, 21, 22]. It was employed
for fracture analysis by Griffith’s formula and optimal control of cracks [23, 24, 25, 26], for
breaking-line identification under equilibrium constraints [27]. In this respect, the model under
consideration can be interpreted within the incompressible elasticity in solid mechanics.

In the context of fluid mechanics described by Stokes and Navier–Stokes equations, we refer
to [28] for the mathematical theory of incompressible flows, to [29, 30] for flows in porous
media, and in thin layers in [31]. See the related results on optimal control of fluids [32], on free
boundary problems [33], and on the coefficient identification based on least squares [34, 35].
The shape optimization approach for compressible Navier–Stokes equations was developed in
[36]. Recently, we studied the shape differentiability of objectives subject to the divergence-free
(incompressible) equilibrium described by Stokes [37] and Brinkman equations [38]. The both
models are liner ones. In the current paper we investigate generalized Brinkman–Forchheimer’s
model implying a semilinear elliptic equation, see the well-posedness analysis [39, 40, 41] and
the integral potential method [42].

The main difficulty concerns the nonlinearity of equilibrium equations, which does not allow
to apply the standard Lagrange approach. For this reason, we linearize the perturbed Lagrangian
at the reference (unperturbed) state. For the respective theory employing associated to adjoint
operators we refer the readers to [43]. With its help we prove rigorously the shape derivative
of the optimal value objective subject to Brinkman–Forchheimer’s state equation and using its
adjoint state. The analytical expression of the shape derivative and the respective Hadamard
representation are obtained, which are advantageous for the gradient descent algorithm solving
the inverse problem of shape optimal control.

In Section 2, we establish well-posedness of the forward Brinkman–Forchheimer problem
in Theorem 2.1 and formulate the inverse problem. In Section 3, an equivalent saddle-point
formulation using the adjoint state is given in Theorem 3.1. Based on Lemmas 4.1 and 4.2,
the main Theorem 4.1 on the shape derivative of the Lagrangian with respect to linearized
perturbations is proved in Section 4. In Section 5, the Hadamard formula is established in
Theorem 5.1, its application to path-independent integrals is presented in Corollaries 5.1 and
5.2, and to a descent direction in Corollary 5.3.

2. FORWARD AND INVERSE NONLINEAR BRINKMAN–FORCHHEIMER’S PROBLEMS

For a family of parameter-dependent Lipschitz domains, we provide results on existence of
variational solutions to the Brinkman–Forchheimer equation. Thereafter, an optimal control
problem is introduced where the control is given by the parameter that describes geometric
domains on which the equilibrium equation is solved.

We start with a family of parameter-dependent geometries in a bounded hold-all set D:

[t 7→Ωt ] : (t0, t1) 7→ D, D⊂ Rd, d = 2,3. (2.1)
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For every fixed kinematic parameter t, let a domain Ωt in (2.1) have the Lipschitz boundary ∂Ωt
with the unit normal vector nt = (nt

1, . . . ,n
t
d)
> outward to Ωt . The upper script > swaps between

rows and columns. We assume that ∂Ωt consists of nonempty, disjoint parts ΓD
t and ΓN

t .
Given stationary force f (x) = ( f1, . . . , fd)

> ∈ H1(D)d , we consider generalized (with re-
spect to a growth exponent m) Brinkman–Forchheimer’s equation under the mixed Dirichlet–
Neumann boundary conditions: find a flow velocity vector ut(x) = (ut

1, . . . ,u
t
d)
> and a pressure

pt(x) satisfying the following relations:

−µ∆ut +α|ut |m−2ut +∇pt = f , div(ut) = 0 in Ωt , (2.2a)

ε(ut) :=
1
2
(
∇ut +(∇ut)>

)
, (2.2b)

ut = 0 on Γ
D
t , −2µε(ut)nt + ptnt = 0 on Γ

N
t . (2.2c)

This system describes steady, slow flows of fluids through porous media. In (2.2a), the former
equation comes from the balance of linear momentum (see [39, 41]), and the latter one implies
incompressibility condition. Here the fluid viscosity µ > 0, the drag coefficient α ≥ 0, and
the growth exponent m > 1 guarantees well-posedness (see Theorem 2.1). In particular cases,
m = 3 implies the classic, quadratic Forchheimer law, whereas the drag term reduces to the
linear Darcy law when m = 2. For other than (2.2c) boundary conditions we refer to [35, 40].

The conventional notation in (2.2) stands for the gradient vector ∇ := (∂/∂x1, . . . ,∂/∂xd)
>,

the divergence div := tr(∇), the Laplace operator ∆= div(∇). The gradient of a vector is defined
as ∇ut = (∂ut

i/∂x j)
d
i, j=1, the linearized strain ε(ut) in (2.2b) is a d-by-d symmetric matrix, and

ε(ut)nt in (2.2c) implies the matrix-vector multiplication. Accounting the no-slip boundary
condition in (2.2c) (the former one) forces Sobolev’s function space for admissible velocities:

V (Ωt) := {w = (w1, . . . ,wd)
> ∈ H1(Ωt)

d| w = 0 a.e. Γ
D
t }, (2.3)

and the incompressibility condition in (2.2a) is determined well by the mapping

[w 7→ div] : V (Ωt) 7→ L2(Ωt). (2.4)

Theorem 2.1 (Well-posedness). For m ∈ (1,m0), m0 > 1, where m0 < 6 in 3d and arbitrary
m0 < ∞ in 2d, there exists a solution pair (ut , pt) ∈ V (Ωt)× L2(Ωt) =: U(Ωt) satisfying the
nonlinear Brinkman–Forchheimer problem (2.2) in a mixed variational form:∫

Ωt

(
2µε(ut) · ε(w)+α|ut |m−2(ut)>w− pt div(w)

)
dx =

∫
Ωt

f>wdx, (2.5a)

∫
Ωt

λ div(ut)dx = 0 for all (w,λ ) ∈U(Ωt), (2.5b)

where the dot in (2.5a) denotes the scalar product of second order tensors. If m ≥ 2, then the
solution pair is unique.

Proof. We can rewrite the equilibrium equation in (2.2a) equivalently with the help of equality

−µ∆ut =−µ
(
∆ut +∇div(ut)

)
=−2µ divε(ut) (2.6)

due to incompressibility and the strain tensor in (2.2b). Then the weak formulation (2.5) is
derived by multiplying equations (2.2a) with the corresponding test functions w, λ , integrating
them over Ωt , and using boundary conditions (2.2c) after integration by parts.
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The first term in (2.5a) determines a bounded, symmetric, bilinear quadratic form, which is
strongly elliptic by the Korn–Poincaré inequality:∫

Ωt

ε(w) · ε(w)dx≥ KKP‖w‖2
H1(Ωt)d for w ∈V (Ωt), KKP > 0. (2.7)

By the continuous, compact Sobolev’s embedding H1(Ωt) ⊂ Lm(Ωt) as m ∈ (1,2d/(d− 2)),
we have the uniform estimate∫

Ωt

|w|m dx≤ Km‖w‖m
H1(Ωt)d for w ∈ H1(Ωt)

d, Km > 0. (2.8)

Henceforth, applying (2.8) and the Hölder inequality, the second (nonlinear) term in (2.5a)
admits the upper bound for u,w ∈ H1(Ωt)

d:∣∣∣∫
Ωt

|u|m−2u>wdx
∣∣∣≤ ‖u‖m−1

Lm(Ωt)d‖w‖Lm(Ωt)d ≤ K1/m
m ‖u‖m−1

Lm(Ωt)d‖w‖H1(Ωt)d . (2.9)

For the third term in (2.5a), the inf-sup (LBB) condition holds since ΓN
t 6= /0 (see [28]):

sup
w∈V (Ωt),w6=0

1
‖w‖H1(Ωt)d

∫
Ωt

λ div(w)dx≥ KLBB‖λ‖L2(Ωt)
for λ ∈ L2(Ωt), KLBB > 0. (2.10)

Then the mapping in (2.4) is surjective. Further we employ fixpoint arguments [39, 41].
In subspaces V n(Ωt) = span{φ 1, . . . ,φ n} and Hn(Ωt) = span{ψ1, . . . ,ψn} of finite dimension

n ∈ N, which are spanned by orthogonal bases (φ k)k∈N ∈V (Ωt) and (ψk)k∈N ∈ L2(Ωt), we set
the conforming Galerkin approximation of (2.5) by the nonlinear equations:∫

Ωt

(
2µε(un) · ε(w)+α|un|m−2(un)>w− pn div(w)

)
dx =

∫
Ωt

f>wdx, (2.11a)

∫
Ωt

λ div(un)dx = 0 for all (w,λ ) ∈V n(Ωt)×Hn(Ωt). (2.11b)

Testing (2.11a) with w = un, and using div(un) = 0 and (2.7), we derive the upper bound

2µKKP‖un‖2
H1(Ωt)d +α

∫
Ωt

|un|m dx≤ ‖ f‖L2(Ωt)d‖un‖H1(Ωt)d ,

and subsequently we estimate

2µKKP‖un‖H1(Ωt)d ≤ ‖ f‖L2(Ωt)d =: Ku, ‖un‖m
Lm(Ωt)d ≤

K2
u

2µαKKP
. (2.12a)

Rearranging (2.11a), dividing it by the norm ‖w‖H1(Ωt)d and taking supremum over w ∈V (Ωt)
for w 6= 0, it follows from (2.9), (2.10), (2.12a) the uniform estimate

KLBB‖pn‖L2(Ωt)
≤ sup

w∈V (Ωt),w6=0

1
‖w‖H1(Ωt)d

∫
Ωt

pn div(w)dx

= sup
w∈V (Ωt),w6=0

1
‖w‖H1(Ωt)d

∫
Ωt

(
2µε(un) · ε(w)+(α|un|m−2un− f )>w

)
dx≤ 2µ‖un‖H1(Ωt)d

+αK1/m
m ‖un‖m−1

Lm(Ωt)d +‖ f‖L2(Ωt)d ≤
Ku

KKP
+(αKm)

1/m
( K2

u
2µKKP

)(m−1)/m
+Ku =: Kλ . (2.12b)
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Since the strong and weak convergence coincide on finite-dimensional spaces, according to
(2.12), the operator of the problem (2.11) is coercive and sequentially continuous in the ball

B :=
{
(w,λ ) ∈V n(Ωt)×Hn(Ωt)| ‖w‖H1(Ωt)d ≤

Ku

2µKKP
, ‖λ‖L2(Ωt)

≤ Kλ

KLBB

}
. (2.13)

Then a fixed point (un, pn) ∈V n(Ωt)×Hn(Ωt) solving (2.11) exists by Brouwer’s theorem.
From the a-priori estimates (2.12), we conclude with a subsequence of integers nk→ ∞ and

an accumulation point (ut , pt) ∈V (Ωt)×L2(Ωt) such that

(unk , pnk)⇀ (ut , pt) weakly in V (Ωt)×L2(Ωt), unk → ut strongly in Lm(Ωt)
d, (2.14)

where the strong convergence in (2.14) is due to the compact embedding H1(Ωt)⊂ Lm(Ωt). On
taking the limit as nk→ ∞ in (2.11), with the help of (2.14), we get variational problem (2.5).

The nonlinear term in (2.5a) is monotone for m≥ 2 because of the representation:

(|w|m−2w−|u|m−2u)>(w−u) =
1
2
(|w|m−2+ |u|m−2)|w−u|2+ 1

2
(|w|m−2−|u|m−2)(|w|2−|u|2),

then the velocity ut solving (2.5) is unique. In this case, the LBB condition (2.10) guarantees
the uniqueness of pressure pt . The proof is complete. �

Let a set Ot ⊂Ωt of the Hausdorff measure dµOt be either a subdomain with dµOt = dx, or an
oriented Lipschitz manifold of codimension one and the measure dµOt = dSx. The correspond-
ing restriction w ∈H1(Ot)

d , or trace w ∈H1/2(Ot)
d associating an observation is surjective for

w ∈V (Ωt). We consider an objective function based on fidelity observations:

J (w;Ot) :=
∫

Ot

γ(w)dµOt , γ(w) ∈ L1(D), for w ∈V (Ωt). (2.15)

The typical example is the least-square misfit from a measurement z∈ L2(Ot) (see [11, 13, 27]):

γ(w)(x) =
1
2

ρ(x)|w− z|2, ρ ∈C1(D), ρ ≥ 0. (2.16)

With the help of (2.15), we introduce an inverse problem of the optimal shape control.
Induced by Brinkman–Forchheimer’s flow, we aim to find an optimal shape Ω∗ ⊂D such that

min
Ωt⊂D

{
j(0) := J (ut ;Ot) for (ut , pt) ∈U(Ωt) solving (2.5)

}
. (2.17)

In order to solve (2.17) by gradient methods of numerical optimization, this needs a descent
direction such that ∂+ j(0)< 0 for a directional derivative at s = 0 (if exists):

∂+ j(0) := lim
s→0+

j(s)− j(0)
s

(one sided). (2.18)

In the following, we construct proper perturbations of problem (2.5) providing us with a differ-
entiable optimal value objective function j(s) : I 7→ R in (2.18).
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3. LINEARIZED PERTURBATIONS AND LAGRANGE SADDLE-POINT FORMULATION

The shape functional under consideration is a L2-tracking type functional, which is known
to be ill-posed. Therefore, we apply the Lagrangian approach to the equilibrium-constrained
optimal control problem, and we construct perturbations of the state linearized at the solution
ut . We begin with shape perturbations of the domain by using the velocity method.

For small perturbation parameters s ∈ I := [0,s0), s0 ∈ (0, t1− t), kinematic flows

[(s,x) 7→ φs], [(s,y) 7→ φ
−1
s ] ∈C1(I;W 1,∞(D))d (3.1)

associate a coordinate transformation y = φs(x) and its inverse x = φ−1
s (y) satisfying the iden-

tities [φ−1
s ◦φs](x) = x and [φs ◦φ−1

s ](y) = y. We suppose that it forms a diffeomorphism:

x 7→ φs : (Ωt ,Γ
D
t ,Γ

N
t ,Ot) 7→ (Ωt+s,Γ

D
t+s,Γ

N
t+s,Ot+s). (3.2)

The kinematic velocity Λ(t,x) ∈C([t0, t1];W 1,∞(D))d is supposed from (3.1) by the formula

Λ(t + s,y) := d
dsφs(φ

−1
s (y)). (3.3)

Conversely, given explicitly a kinematic velocity vector-field

Λ = (Λ1, . . . ,Λd)
>(t,x) ∈C([t0, t1];W 1,∞(D))d, Λ|∂D = 0, (3.4)

where the last condition preservs the hold-all domain D, it determines the flows in (3.1) as a
solution vector φs = ((φs)1, . . . ,(φs)d)

> to the non-autonomous ODE system (see [16, 22]):

d
ds

φs = Λ(t + s,φs) for s ∈ I, φs = x as s = 0, (3.5a)

and φ−1
s (y) = ((φ−1

s )1, . . . ,(φ
−1
s )d)

> to the transport equation:

∂

∂ s
φ
−1
s +(∇yφ

−1
s )Λ|t+s = 0 in I×D, φ

−1
s = y as s = 0. (3.5b)

In (3.5b) the second order tensor ∇yφ−1
s = (∂ (φ−1

s )i/∂y j)
d
i, j=1, and notation Λ|t+s = Λ(t+s,y).

The diffeomorphism (3.2) provides bijectivity between the function spaces:

[w 7→ w◦φ
−1
s ] :

(
V (Ωt),L2(Ωt),L1(Ot)

)
7→
(
V (Ωt+s),L2(Ωt+s),L1(Ot+s)

)
. (3.6)

With the help of (3.6), we transform the perturbed objective J (w̃;Ot+s) =
∫

Ot+s
γ(w̃)dµOt+s

given according to (2.15) by γ(w̃) for functions w̃ ∈V (Ωt+s) such that

γ(w◦φ
−1
s )(φs(x)) =: γ̃s(w)(x), J (w◦φ

−1
s ;Ot+s) =: J̃ (s,w;Ot) =

∫
Ot

γ̃s(w)ωsdµOt . (3.7)

Here dµOt = dx follows ωs = ωd
s in (3.7), and ωs = ωb

s for dµOt = dSx. Due to the chain rule

∇yw̃ = (∇φ
−>
s ◦φs)∇(w̃◦φs) for w̃ ∈V (Ωt+s), (3.8)

the Jacobian determinants in domain and at the boundary are

ω
d
s := det(∇φs) in Ωt , ω

b
s := |(∇φ

−>
s ◦φs)nt |ωd

s at ∂Ωt (3.9)

with the transpose of the inverse −>. However, the state equation (2.5a) is nonlinear. Therefore,
to define well an adjoint state (see [43]), after transformation we linearize the resulting relations
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using |w|m−2w ∼ |ut |m−2w at the solution ut . In doing so, we look for functions (ũt+s, p̃t+s) ∈
U(Ωt) which solve perturbed Brinkman–Forchheimer equations in the linearized form:∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ũt+s) ·E(∇φ

−>
s ◦φs,w)+α|ut |m−2(ũt+s)>w

− p̃t+s tr((∇φ
−>
s ◦φs)∇w)

)
ω

d
s dx =

∫
Ωt

( f ◦φs)
>wω

d
s dx, (3.10a)

∫
Ωt

λ tr((∇φ
−>
s ◦φs)∇ũt+s)ωd

s dx = 0 for all (w,λ ) ∈U(Ωt). (3.10b)

For the derivation, we have used (3.8) and the generalized strain tensor (compare to (2.2b)):

E(M,w) :=
1
2
(M∇w+∇w>M>) ∈ Rd×d for M ∈ Rd×d , w ∈V (Ωt), (3.11)

such that E(I,w) = ε(w) for the d-by-d identity matrix I. For more details, see [20, 21, 37].
According to (2.17), the perturbed optimal value objective function is introduced as

j(s) := J̃ (s, ũt+s;Ot) for (ũt+s, p̃t+s) ∈U(Ωt) solving (3.10). (3.12)

Following the Lagrange approach, we combine together formulas (3.7), (3.10) within the lin-
earized perturbed Lagrangian L̃ : I×V (Ωt)×U(Ωt)

2 7→ R as

L̃ (s,ut ,u, p,v,q;Ωt) := J̃ (s,u;Ot)−
∫

Ωt

(
2µE(∇φ

−>
s ◦φs,u) ·E(∇φ

−>
s ◦φs,v)

+(α|ut |m−2u− ( f ◦φs))
>v− p tr((∇φ

−>
s ◦φs)∇v)−q tr((∇φ

−>
s ◦φs)∇u)

)
ω

d
s dx. (3.13)

Then the optimal value in (3.12) can be expressed as j(s)= l(s) with the help of the saddle-point
(minimax) problem: find a solution quadruple (ũt+s, p̃t+s, ṽt+s, q̃t+s) ∈U(Ωt)

2 such that

L̃ (s,ut , ũt+s, p̃t+s,v,q;Ωt)≤ L̃ (s,ut , ũt+s, p̃t+s, ṽt+s, q̃t+s;Ωt) =: l(s)

≤ L̃ (s,ut ,u, p, ṽt+s, q̃t+s;Ωt) for all (u, p,v,q) ∈U(Ωt)
2. (3.14)

Following the formalism of [15], we introduce the optimal values:

ls := sup
(v,q)∈U(Ωt)

inf
(u,p)∈U(Ωt)

L̃ (s,ut ,u, p,v,q)

≤ inf
(u,p)∈U(Ωt)

sup
(v,q)∈U(Ωt)

L̃ (s,ut ,u, p,v,q) =: ls (3.15a)

and the corresponding solution sets:

Ks := {(u, p) ∈U(Ωt)| sup
(v,q)∈U(Ωt)

L̃ (s,ut ,u, p,v,q) = ls}, (3.15b)

Ks := {(v,q) ∈U(Ωt)| inf
(u,p)∈U(Ωt)

L̃ (s,ut ,u, p,v,q) = ls}, (3.15c)

which determine a multi-valued function [s ⇒ Ks×Ks] : I ⇒U(Ωt)
2.

Theorem 3.1. Let ut be a solution to (2.5), and the following assumptions hold:
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• u 7→ J̃ is continuous and has a Gâteaux derivative J̃ ′ ∈V (Ωt)
? such that

〈J̃ ′(s,u;Ot),w〉Ωt :=
∫

Ot

〈γ̃ ′s(u),w〉ωsdµOt , 〈γ̃ ′s(u),w〉 := lim
r→0

γ̃s(u+ rw)− γ̃s(u)
r

, (3.16a)

where 〈 · , · 〉Ωt denotes the duality pairing between V (Ωt) and its dual space V (Ωt)
?;

• the objective J̃ is convex such that

〈J̃ ′(s,u;Ot),w−u〉Ωt ≤ J̃ (s,w;Ot)−J̃ (s,u;Ot) for u,w ∈V (Ωt), s ∈ I. (3.16b)

Then, for every s ∈ I, there exists a state (ũt+s, p̃t+s) ∈U(Ωt) solving primal system (3.10),
and an adjoint state (ṽt+s, q̃t+s) ∈U(Ωt) satisfying the adjoint system:∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ṽt+s) ·E(∇φ

−>
s ◦φs,w)+α|ut |m−2(ṽt+s)>w

− q̃t+s tr((∇φ
−>
s ◦φs)∇w)

)
ω

d
s dx =

∫
Ot

〈γ̃ ′s(ũt+s),w〉ωsdµOt , (3.17a)∫
Ωt

λ tr((∇φ
−>
s ◦φs)∇ṽt+s)ωd

s dx = 0 for all (w,λ ) ∈U(Ωt). (3.17b)

The quadruple (ũt+s, p̃t+s, ṽt+s, q̃t+s) ∈ Ks×Ks implies a saddle point satisfying

l(s) = ls = L̃ (s,ut , ũt+s, p̃t+s, ṽt+s, q̃t+s;Ωt) = ls for s ∈ I. (3.18)

For every ut solving (2.5), the saddle-point is unique.

Proof. We introduce an auxiliary, quadratic functional E ? : I×V (Ωt)
2 7→ R defined by

E ?(s,ut ,w) :=
1
2

∫
Ωt

(
2µ‖E(∇φ

−>
s ◦φs,w)‖2

F +α|ut |m−2|w|2
)
ω

d
s dx for w ∈V (Ωt), (3.19)

where ‖ · ‖F stands for Frobenius’ matrix norm. It is weakly lower semi-continuous, coercive,
and Gâteaux-differentiable. Adding linear terms to E ? in (3.19), these properties provide an
argument (ũt+s, p̃t+s) ∈U(Ωt) of the minimum:

min
(v,q)∈U(Ωt)

{
E ?(s,ut ,v)−

∫
Ωt

(
q tr((∇φ

−>
s ◦φs)∇v)− ( f ◦φs)

>v
)
ω

d
s dx
}
.

Similarly, using the Gâteaux derivative from (3.16a), there exists an argument (ṽt+s, q̃t+s) ∈
U(Ωt) of the minimum:

min
(u,p)∈U(Ωt)

{
E ?(s,ut ,u)−

∫
Ωt

p tr((∇φ
−>
s ◦φs)∇u)ω

d
s dx−〈J̃ ′(s, ũt+s;Ot),u〉Ωt

}
.

Inserting the expression (3.13) into (3.14), the maximization problem

J̃ (s, ũt+s;Ot)−
∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ũt+s) ·E(∇φ

−>
s ◦φs,v)

+(α|ut |m−2ũt+s− ( f ◦φs))
>v− p̃t+s tr((∇φ

−>
s ◦φs)∇v)−q tr((∇φ

−>
s ◦φs)∇ũt+s)

)
ω

d
s dx

≤ J̃ (s, ũt+s;Ot)−
∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ũt+s) ·E(∇φ

−>
s ◦φs, ṽt+s)

+(|ut |m−2ũt+s−( f ◦φs))
>ṽt+s− p̃t+s tr((∇φ

−>
s ◦φs)∇ṽt+s)− q̃t+s tr((∇φ

−>
s ◦φs)∇ũt+s)

)
ω

d
s dx

after shortening J̃ (s, ũt+s;Ot), tested with v = ṽt+s±w and q = q̃t+s± λ implies equations
(3.10). Conversely, relations (3.10) satisfies the former inequality in (3.14) as the equality.
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On the other side, the minimization problem (the latter inequality in (3.14)) reads:

J̃ (s, ũt+s;Ot)−
∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ũt+s) ·E(∇φ

−>
s ◦φs, ṽt+s)

+(α|ut |m−2ũt+s− ( f ◦φs))
>ṽt+s− p̃t+s tr((∇φ

−>
s ◦φs)∇ṽt+s)

− q̃t+s tr((∇φ
−>
s ◦φs)∇ũt+s)

)
ω

d
s dx

≤ J̃ (s,u;Ot)−
∫

Ωt

(
2µE(∇φ

−>
s ◦φs,u) ·E(∇φ

−>
s ◦φs, ṽt+s)

+(|ut |m−2u− ( f ◦φs))
>ṽt+s− p tr((∇φ

−>
s ◦φs)∇ṽt+s)− q̃t+s tr((∇φ

−>
s ◦φs)∇ũt+s)

)
ω

d
s dx.

After shortening the term −q̃t+s tr((∇φ−>s ◦φs)∇ũt+s), substituting here u = ũt+s± rw and p =
p̃t+s±λ , dividing by r and passing r→ 0, by the differentiability of J̃ assumed in (3.16a), this
leads to the variational equations (3.17). Conversely, the necessary optimality condition (3.17)
is sufficient for the minimization in (3.14) provided by the convexity assumption (3.16b). The
uniqueness for (3.10), (3.17) is standard.

The definition (3.15) justifies that the saddle-point (ũt+s, p̃t+s, ṽt+s, q̃t+s) belongs to the solu-
tion set Ks×Ks and satisfies equations in (3.18), which completes the proof. �

Based on the identity (3.18), in the next section, we find the shape derivative in (2.18).

4. SHAPE DIFFERENTIABILITY OF THE LAGRANGIAN

Using the Lagrangian approach, as the main result we prove the differentiability of the shape
functional with respect to the linearized perturbation given by the parameter t + s at fixed t,
when s→ 0+. We start with two auxiliary lemmas.

Lemma 4.1. Under the conditions in Theorem 3.1, let the following assumption hold:

• the function s 7→ γ̃s from (3.7) is continuously differentiable in I with the derivative

∂ γ̃s

∂ s
(Λ|t+s,w) := lim

r→0

γ̃s+r(w)− γ̃s(w)
r

for w ∈V (Ωt), s ∈ I. (4.1)

Then, the asymptotic expansions as s→ 0+ in the first argument of the objective J̃ in (3.7) and
the Lagrange function L̃ from (3.13) take place:

J̃ (s,u;Ωt) = J (0,u;Ωt)+ s
∂J̃

∂ s
(rs,u;Ωt), r ∈ [0,1], (4.2a)

L̃ (s,ut ,u, p,v,q;Ωt) = L (0,u,ut , p,v,q;Ωt)+ s
∂L̃

∂ s
(rs,ut ,u, p,v,q;Ωt), (4.2b)

for (u, p,v,q) ∈U(Ωt)
2. The partial derivatives ∂J̃ /∂ s : I×V (Ωt) 7→ R and ∂L̃ /∂ s : I×

V (Ωt)×U(Ωt)
2 7→ R in (4.2) are continuous functions given analytically by

∂J̃

∂ s
(s,u;Ωt) :=

∫
Ot

(
divOt Λ|t+sγ̃s(u)+

∂ γ̃s

∂ s
(Λ|t+s,u)

)
dµOt , (4.3a)
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where the notation divOt Λ= divΛ when ωs =ωd
s , and implies the tangential divergence divOt Λ=

divΛ− (∇Λnt)>nt when ωs = ωb
s according to (3.9), whereas ∂L̃ /∂ s is given by

∂L̃

∂ s
(s,ut ,u, p,v,q;Ωt) :=

∂J̃

∂ s
(s,u;Ωt)−

∫
Ωt

(
divΛ|t+sα|ut |m−2u>v

+2µ
(
divΛ|t+sε(u) · ε(v)− ε(u) ·E(∇Λ|>t+s,v)− ε(v) ·E(∇Λ|>t+s,u)

)
− (divΛ|t+s f +∇ f Λ|t+s)

>v+ p tr(∇Λ|>t+s∇v)+q tr(∇Λ|>t+s∇u)
)

dx. (4.3b)

Proof. Since s 7→ L̃ is continuously differentiable, by the mean value theorem, there exists
r ∈ [0,1] such that the asymptotic representation (4.2) holds. We substitute into (3.7), (3.13) the
expansion φs = x+ sΛ|t+rs as s→ 0 according to (3.3) and (3.5). Together with (4.1), it follows
for u ∈V (Ωt) that (see [3, Chapter 2]):

f ◦φs = f + sΛ|>t+rs∇ f , ∇φ
−1
s ◦φs = I− s∇Λ|t+rs, γ̃s(u) = γ(u)+ s

∂ γ̃s

∂ s
(Λ|t+rs,u),

ω
d
s = 1+ sdivΛ|t+rs, ω

b
s = 1+ s(divΛ|t+rs− (∇Λ|t+rsnt)>nt). (4.4)

Thus, we derive the partial derivatives ∂J̃ /∂ s and ∂L̃ /∂ s. This proves the assertion. �

The next lemma establishes a sequential semi-continuity property for the solution set Ks×Ks.

Lemma 4.2. Under the conditions in Lemma 4.1, let the following assumptions hold:
• γ̃ ′s(ũ

t+s) from (3.16a) on the solutions ũt+s to (3.10) is bounded:

‖γ̃ ′s(ũt+s)‖V (Ωt)? ≤ Kγ , Kγ ≥ 0; (4.5a)

• s 7→ J̃ ′(s, ũt+s;Ot) on the solutions is continuous as s→ 0+ in the sense:

if ũt+s ⇀ ut weakly in V (Ωt), then γ̃
′
s(ũ

t+s)→ γ̃
′
0(u

t) ?-strongly in V (Ωt)
?. (4.5b)

Then there exists a subsequence sk of saddle-points in (3.18) such that as sk→ 0+:

(ũt+sk , p̃t+sk , ṽ
t+sk , q̃t+sk)→ (ut , pt ,vt ,qt) strongly in U(Ωt)

2, (4.6)

where (ut , pt) ∈U(Ωt) solves the unperturbed Brinkman–Forchheimer problem (2.5). Its ad-
joint state (vt ,qt) ∈U(Ωt) satisfies the adjoint system:∫

Ωt

(
2µε(vt) · ε(w)+α|ut |m−2(vt)>w−qt div(w)

)
dx =

∫
Ot

〈γ̃ ′0(ut),w〉dµOt , (4.7a)∫
Ωt

λ div(vt)dx = 0 for all (w,λ ) ∈U(Ωt), (4.7b)

which describes the following governing relations:

−µ∆vt +α|ut |m−2vt +∇qt = 1Ot∩Ωt γ̃
′
0(u

t), div(vt) = 0 in Ωt , (4.8a)

ε(vt) :=
1
2
(
∇vt +(∇vt)>

)
, (4.8b)

vt = 0 on Γ
D
t , −2µε(vt)nt +qtnt = 1Ot∩ΓN

t
γ̃
′
0(u

t) on Γ
N
t , (4.8c)

where the indicator function of a set A is 1A(x) = 1 if x ∈ A, and zero otherwise.

Proof. We split the proof into weak and strong convergences.
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Weak convergence. We expand the perturbed equation (3.10a) with the help of (4.4) and use the
Cauchy–Schwarz inequality to derive for w ∈V (Ωt) that∣∣∣∫

Ωt

(
2µε(ũt+s) · ε(w)+α|ut |m−2(ũt+s)>wω

d
s − p̃t+s div(w)− f>w

)
dx
∣∣∣

≤ sC0
(
1+‖p̃t+s‖L2(Ωt)

+‖ũt+s‖H1(Ωt)d
)
‖w‖H1(Ωt)d , C0 > 0. (4.9)

The perturbed incompressibility condition tr((∇φ−>s ◦φs)∇ũt+s)ωd
s = 0 in (3.10b) implies that

div(ũt+s) = O(s∇ũt+s). Therefore, testing (4.9) with w = ũt+s, using α|ut |m−2|ũt+s|2ωd
s ≥ 0

due to ωd
s ≥ 0 for small s, and the Korn–Poincaré inequality (2.7) proceeds with C1 ≥C0:

‖ũt+s‖H1(Ωt)d ≤
1

2µKKP

(
‖ f‖L2(Ωt)d + sC1(1+‖p̃t+s‖L2(Ωt)

)
)
=: Cu > 0. (4.10a)

For the pressure, (3.10a) builds a linear bounded functional in V (Ωt)
?. From (4.10a) and as-

ymptotic formulas (4.4) as s→ 0+, we estimate the following expression from above∣∣∣∫
Ωt

p̃t+s tr((∇φ
−>
s ◦φs)∇w)ωd

s dx
∣∣∣

=
∣∣∣∫

Ωt

(
2µE(∇φ

−>
s ◦φs, ũt+s) ·E(∇φ

−>
s ◦φs,w)+(α|ut |m−2ũt+s− f ◦φs)

>w
)
ω

d
s dx

∣∣∣
≤C2

(
2µCu +αK3‖ut‖H1(Ωt)dCu +‖ f‖L2(Ωt)d

)
‖w‖H1(Ωt)d ,

where constant C2 > 0, and the Hölder estimate with K3 from (2.8) when m = 3 was used:∣∣∣∫
Ωt

|ut |m−2(ũt+s)>wdx
∣∣∣≤ K3‖ut‖H1(Ωt)d‖ũt+s‖H1(Ωt)d‖w‖H1(Ωt)d . (4.10b)

Dividing it by the norm ‖w‖H1(Ωt)d and accounting for the linear dependence of Cu on sp̃t+s in
(4.10a) provide the uniform in s ∈ I upper bound:

1
‖w‖H1(Ωt)d

∣∣∣∫
Ωt

p̃t+s div(w)dx
∣∣∣≤C3 + sC4‖ p̃t+s‖L2(Ωt)

, C3,C4 > 0.

Henceforth, for small s0 < KLBB/C4, it follows from the LBB condition (2.10) that

‖ p̃t+s‖L2(Ωt)
≤ C3

KLBB− s0C4
=: Cp > 0. (4.10c)

For adjoint problem (3.17), due to ωd
s ≤ Kω , Kω ≥ 1, and the assumption (4.5a) such that∫

Ot

〈γ̃ ′s(ũt+s),w〉dµOt ≤ ‖γ̃
′
s(ũ

t+s)‖V (Ωt)?‖w‖H1(Ωt)d ≤ Kγ‖w‖H1(Ωt)d ,

similarly to (4.10a) and (4.10c), we derive the uniform estimates for ṽt+s and q̃t+s:

‖ṽt+s‖H1(Ωt)d ≤
1

2µKKP

(
KγKω + s0C5(1+‖q̃t+s‖L2(Ωt)

)
)
=: Cv, ‖q̃t+s‖L2(Ωt)

≤Cq, (4.10d)

with constant C5,Cv,Cq > 0. Based on (4.10) and the compact embedding H1(Ωt) ⊂ Lm(Ωt),
we have that a subsequence sk → 0+ and an accumulation point (ut , pt ,vt ,qt) ∈U(Ωt)

2 exist
with

(ũt+sk , p̃t+sk , ṽ
t+sk , q̃t+sk)⇀ (ut , pt ,vt ,qt) weakly in U(Ωt)

2,

(ũt+sk , ṽt+sk)→ (ut ,vt) strongly in Lm(Ωt)
2d. (4.11)
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On taking the limit in (3.10) and (3.17) as sk → 0, in the virtue of convergence (4.11) and the
assumption (4.5b), we arrive at unperturbed problem (2.5) and adjoint system (4.7).
Strong convergence. Using the equality |ũt+sk−ut |2 = |ũt+sk |2−|ut |2−2(ũt+sk−ut)>ut and

‖ε(ũt+sk−ut)‖2
F = ‖ε(ũt+sk)‖2

F−‖ε(ut)‖2
F−2ε(ũt+sk−ut) · ε(ut),

we subtract (2.5a) tested with w = ut from the inequality (4.9) with w = ũt+sk and use (4.10a):∫
Ωt

(
2µ‖ε(ũt+sk−ut)‖2

F +α|ut |m−2|ũt+sk−ut |2ω
d
sk

)
dx≤

∫
Ωt

(
f>(ũt+sk−ut)

−4µε(ũt+sk−ut) · ε(ut)−2α|ut |m−2(ũt+sk−ut)>ut
ω

d
sk

)
dx+ skC6, C6 > 0. (4.12)

On taking the limit superior in (4.12) as sk → 0+ due to convergences (4.11) and the Korn–
Poincaré inequality (2.7) provide the strong convergence in (4.6) by the mean of

limsup
sk→0+

‖ũt+sk−ut‖2
H1(Ωt)d ≤ 0. (4.13a)

For the pressure, we subtract (2.5a) from (4.9), and use (4.10a) and (4.10b) such that∣∣∣∫
Ωt

(
(p̃t+sk− pt)div(w)−2µε(ũt+sk−ut) · ε(w)−α|ut |m−2(ũt+sk−ut)>w

)
dx
∣∣∣

≤ skC7(1+‖p̃t+s‖L2(Ωt)
)‖w‖H1(Ωt)d , C7 ≥C0,

where the uniform boundedness of ‖ũt+s‖H1(Ωt)d from (4.10a) was used. Dividing this inequal-
ity by the norm of w, and applying (4.10c), (4.10b) and the Hölder inequality follow that∣∣∫

Ωt
(p̃t+sk− pt)div(w)dx

∣∣
‖w‖H1(Ωt)d

≤
(
2µ +αK3‖ut‖H1(Ωt)d

)
‖ũt+sk−ut‖H1(Ωt)d + skC7(1+Cp).

On taking the limit as sk→ 0+ due to (4.13a), the LBB condition (2.8) leads to the upper bound

limsup
sk→0+

‖p̃t+sk− pt‖L2(Ωt)
≤ 0. (4.13b)

For (3.17), subtracting the adjoint equation (4.7a) tested with w = vt from the perturbed one
(3.10a) tested with w = ṽt+sk , and using (4.10d), similarly to (4.12), we get∫

Ωt

(
2µ‖ε(ṽt+sk− vt)‖2

F +α|ut |m−2|ṽt+sk− vt |2ω
d
sk

)
dx

≤
∫

Ot

(
〈γ̃ ′sk

(ũt+sk)− γ̃
′
0(u

t), ṽt+sk〉+ 〈γ̃ ′0(ut), ṽt+sk− vt〉
)

dµOt

−
∫

Ωt

(
4µε(ṽt+sk− vt) · ε(vt)+2α|ut |m−2(ṽt+sk− vt)>vt

ω
d
sk

)
dx+ skC8,

where C8 > 0. Subtracting (4.7a) and (3.10a), and using (4.10),∣∣∣∫
Ωt

(q̃t+sk−qt)div(w)
∣∣∣≤ ∣∣∣∫

Ωt

(
2µε(ṽt+sk− vt) · ε(w)+α|ut |m−2(ṽt+sk− vt)>w

)
dx

+
∫

Ot

〈γ̃ ′sk
(ũt+sk)− γ̃

′
0(u

t),w〉dµOt

∣∣∣+ skC9‖w‖H1(Ωt)d , C9 > 0.

Therefore, due to (4.11) and (4.5b), we derive the uniform estimates for ṽt+s and q̃t+s:

limsup
sk→0+

‖ṽt+sk− vt‖2
H1(Ωt)d + limsup

sk→0+
‖q̃t+sk−qt‖L2(Ωt)

≤ 0, (4.13c)
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which completes the proof of Lemma 4.2. �

Below, we establish the main theorem on shape differentiability.

Theorem 4.1. Under the conditions in Lemmas 4.1 and 4.2, the shape derivative in (2.18) exists
and expressed explicitly by the partial derivative from (4.3) as follows

∂+ j(0) = ∂+l(0) := lim
s→0+

l(s)− l(0)
s

=
∂L̃

∂ s
(0,ut ,ut , pt ,vt ,qt ;Ωt), (4.14)

where (ut , pt) ∈U(Ωt) solves unperturbed Brinkman–Forchheimer problem (2.5), and its ad-
joint state (vt ,qt) ∈U(Ωt) satisfies adjoint system (4.7).

Proof. According to the identity j(s) = l(s) for s ∈ I in (3.18), we sketch the proof of the
derivative ∂+l(0) following [2, Chapter 10, Theorem 5.1].

We test with (u, p,v,q) = (ut , pt ,vt ,qt) ∈ K0×K0 the minimax inequalities (3.14) as s = sk:

L̃ (sk,ut , ũt+sk , p̃t+sk ,v
t ,qt ;Ωt)≤ L̃ (sk,ut , ũt+sk , p̃t+sk , ṽ

t+sk , q̃t+sk ;Ωt) = l(sk)

≤ L̃ (sk,ut ,ut , pt , ṽt+sk , q̃t+sk ;Ωt). (4.15)

Also we insert (u, p,v,q) = (ũt+sk , p̃t+sk , ṽ
t+sk , q̃t+sk) ∈ Ksk×Ksk into (3.14) as s = 0:

L̃ (0,ut ,ut , pt , ṽt+sk , q̃t+sk ;Ωt)≤ L̃ (0,ut ,ut , pt ,vt ,qt ;Ωt) = l(0)

≤ L̃ (0,ut , ũt+sk , p̃t+sk ,v
t ,qt ;Ωt). (4.16)

Subtracting l(0) from the left inequality (4.15) and using the right inequality (4.16), applying
the mean value theorem with αk ∈ (0,1) leads to the inequalities

l(sk)− l(0)
sk

≥
L̃ (sk,ut , ũt+sk , p̃t+sk ,v

t ,qt ;Ωt)− L̃ (0,ut , ũt+sk , p̃t+sk ,v
t ,qt ;Ωt)

sk

=
∂L̃

∂ s
(αksk,ut , ũt+sk , p̃t+sk ,v

t ,qt ;Ωt).

On taking the limit inferior as sk→ 0+ proceeds with the lower estimate:

liminf
sk→0+

l(sk)− l(0)
sk

≥ ∂L̃

∂ s
(0,ut ,ut , pt ,vt ,qt ;Ωt). (4.17a)

On the other side, subtracting l(0) from the right inequality (4.15), and using the left inequal-
ity (4.16), the mean value theorem with weights αk ∈ (0,1) provides the upper estimate:

l(sk)− l(0)
sk

≤
L̃ (sk,ut ,ut , pt , ṽt+sk , q̃t+sk ;Ωt)− L̃ (0,ut ,ut , pt , ṽt+sk , q̃t+sk ;Ωt)

sk

=
∂L̃

∂ s
(αksk,ut ,ut ,qt , ṽt+sk , q̃t+sk ;Ωt).

This leads to the limes superior

limsup
sk→0+

l(sk)− l(0)
sk

≤ ∂L̃

∂ s
(0,ut ,ut , pt ,vt ,qt ;Ωt), (4.17b)

which together with the lower estimate (4.17a) proves the limit in (4.14). �
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5. HADAMARD FORMULA AND ITS APPLICATIONS

Provided by smooth solutions to the Brinkman–Forchheimer equation (see [44]), a Hadamard
representation of the shape derivative by boundary integrals is presented next.

Theorem 5.1. Under the conditions of Theorem 4.1, let the primal and adjoint solutions of
(2.5) and (4.7) be smooth such that (ut , pt ,vt ,qt) ∈ (H2(G)d ×H1(G))2 in G ⊂ Ωt . If the
kinematic velocity Λ is constant outside some domain Gt ⊂ G with C2,0-smooth boundary ∂Gt
and outward normal vector nt , then the shape derivative (4.14) is expressed equivalently as

∂+ j(0) = JGt (Λ)+ J∂Gt (Λ)+ JOt (Λ), JOt (Λ) :=
∫

Ot

(
divOt Λγ̃s(ut)+

∂ γ̃s

∂ s
(Λ,ut)

)
dµOt ,

JGt (Λ) :=
∫

Gt

(
Λ
>(

α(m−2)|ut |m−4ut(ut)>vt +1Ot∩Ωt γ̃
′
0(u

t)
))

dx,

J∂Gt (Λ) :=
∫

∂Gt

(
(Λ>nt)D1(ut ,ut ,vt)+Λ

>D2(ut , pt ,vt ,qt)
)

dSx. (5.1)

The scalar-valued D1 and vector-valued D2 = (D2
1 , . . . ,D

2
d )
> expressions in (5.1) are

D1(ut ,u,v) := f>v−2µε(u) · ε(v)−α|ut |m−2u>v,

D2(u, p,v,q) := ∇u>(2µε(v)nt−qnt)+∇v>(2µε(u)nt− pnt). (5.2)

Proof. Since ∇Λ = 0 in Ωt \Gt the shape derivative from Theorem 4.1 is expressed with the
help of formulas (4.3) and (4.14) as the sum ∂+ j(0) = I1 + I2 + I3 + JOt (Λ) specified below.
Integrating the terms in (4.3) by parts in Gt where the solution (ut , pt ,vt ,qt) is smooth, we have

I1 :=−
∫

Gt

(
divΛ

(
2µε(ut) · ε(vt)+α|ut |m−2(ut)>vt)

−2µε(ut) ·E(∇Λ,vt)−2µε(vt) ·E(∇Λ,ut)
))

dx

=
∫

Gt

Λ
>
(

α(m−2)|ut |m−4ut(ut)>vt +∇(ut)>
(
α|ut |m−2vt−2µ divε(vt)

)
+∇(vt)>

(
α|ut |m−2ut−2µ divε(ut)

))
dx

−
∫

∂Gt

(
(Λ>nt)

(
2µε(ut) · ε(vt)+α|ut |m−2(ut)>vt)

−2µΛ
>(

∇(ut)>ε(vt)+∇(vt)>ε(ut)
)
nt
)

dSx.

Using the incompressibility div(ut) = div(vt) = 0, we have

I2 :=−
∫

Gt

(
pt tr(∇Λ

>
∇vt)+qt tr(∇Λ

>
∇ut)

)
dx

=
∫

Gt

Λ
>(

∇(vt)>∇pt +∇(ut)>∇qt
)
dx−

∫
∂Gt

Λ
>(

∇(vt)>pt +∇(ut)>qt
)
nt dSx,

and

I3 :=
∫

Gt

(divΛ f +∇ f Λ)>vt dx.



OPTIMAL CONTROL OF THE NONLINEAR BRINKMAN–FORCHHEIMER EQUATION 257

Employing the identity div(Λ( f>vt)) = divΛ( f>vt)+Λ>∇( f>vt) and equilibrium equations
(2.2a), (4.8a), we have

I1 + I2 + I3 =
∫

Gt

(
div
(
Λ( f>vt)

)
+Λ

>(
α(m−2)|ut |m−4ut(ut)>vt +1Ot∩Ωt γ̃

′
0(u

t)
))

dx

−
∫

∂Gt

(
(Λ>nt)

(
2µε(ut) · ε(vt)+α|ut |m−2(ut)>vt)

−Λ
>(

∇(ut)>(2µε(vt)−qt)+∇(vt)>(2µε(ut)− pt)
)
nt
)

dSx

= JGt (Λ)+ J∂Gt (Λ).

The divergence theorem applied to the first term in the integral over Gt in the right-hand side
follows the formulas for JGt , D1 and D2 in (5.1) and (5.2). �

The first corollary of the Hadamard representation concerns path-independent integrals widely
used in fracture mechanics (see [19]).

Corollary 5.1. Under the conditions of Theorem 5.1, let the kinematic velocity Λ = 0 in Ot , and
either α = 0 or m = 2. Then the Hadamard formula (5.1) implies a path-independent integral

J
∂ G̃t

(Λ) = J∂Gt (Λ) :=
∫

∂Gt

(
(Λ>nt)D1(ut ,ut ,vt)+Λ

>D2(ut , pt ,vt ,qt)
)

dSx, (5.3)

which is constant over C2,0-smooth boundaries ∂ G̃t of domains G̃t such that Gt ⊂ G̃t ⊂G⊂Ωt .

Proof. The representation (5.3) is obtained straightforwardly from (5.1) when JGt (Λ)= JOt (Λ)=
0, and its constant value is provided by the uniqueness of the shape derivative in (4.14). �

We decompose vectors into orthogonal, normal and tangential components at the boundary:

Λ = (Λ>nt)nt +Λτt , D2 = ((D2)>nt)nt +D2
τt . (5.4)

Corollary 5.2. Under the conditions of Corollary 5.1, let the kinematic velocity Λ>nt = 0 at
∂Ωt . Then the path-independent integral (5.3) implies that

J∂Gt (Λ) = J∂Gt∩Ωt (Λ). (5.5)

If the solutions are smooth in the whole Ωt such that (ut , pt ,vt ,qt)∈ (H2(Ωt)
d×H1(Ωt))

2, then
J∂Ωt (Λ) = 0 for all Λ such that Λ = 0 in Ot and Λ>nt = 0 at ∂Ωt .

Proof. We split ∂Gt into the part ∂Gt ∩Ωt inside Ωt and two parts meeting either the Dirichlet
∂Gt ∩ΓD

t or the Neumann ∂Gt ∩ΓN
t boundaries, respectively. Since Λ>nt = 0 is assumed at

∂Ωt , it follows from (5.3) and (5.4) that the decomposition

J∂Gt (Λ) =
∫

∂Gt∩Ωt

(
(Λ>nt)D1(ut ,ut ,vt)+Λ

>D2(ut , pt ,vt ,qt)
)

dSx

+
∫

∂Gt∩ΓD
t

Λ
>
τt D2(ut , pt ,vt ,qt)τt dSx +

∫
∂Gt∩ΓN

t

Λ
>
τt D2(ut , pt ,vt ,qt)τt dSx.

At ΓD
t , it holds (∇ut

1)τt = . . . = (∇ut
d)τt = 0 and (∇vt

1)τt = . . . = (∇vt
d)τt = 0 due to the ho-

mogeneous Dirichlet conditions in (2.2c) and (4.8c). Henceforth, according to formula (5.2),
D2(ut , pt ,vt ,qt)τt = 0 at ΓD

t . The substitution of Neumann boundary conditions (2.2c) and
(4.8c) into D2(ut , pt ,vt ,qt) eliminates its contribution at ΓN

t . Thus, we arrive at (5.5).
If it is possible to take Gt = Ωt , then the integral in (5.5) is trivial in this case. �
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It is worth noting that, in general, the singularity happens at the intersection ΓD
t ∩ΓN

t . For
illustration, in Figure 1, we present an example geometry of the cracked domain in 2d:

Ωt = {x1 ∈ (−2,2), x2 ∈ (−1,1))}\{x1 = 0, x2 ∈ (0,1))},

Γ
D
t = ∂Ωt ∩{x2 < 0}, Γ

N
t = ∂Ωt ∩{x2 > 0}, Ot = ∂Ωt ∩{x2 = 1}.

It has three singular points: the crack tip P0 = (0,0), and P± = (±1,0) where the Dirichlet

x1
−2 0 δ 2δ 2

P− P0 P+

x2

−1

1

δ

2δ

ΓN
t

ΓD
t

Ot

Gt

FIGURE 1. Example geometry Ωt in 2d.

ΓD
t and the Neumann ΓN

t boundaries meet each other. We denote by Bδ (P) a circle of radius
δ ∈ (δ0,δ1) with 0 < δ0 < δ1 < 1/2, centered at point P.

According to the local regularity results well known for the linear elliptic problems, the
solution (ut , pt ,vt ,qt) is H2×H1×H2×H1-smooth in the domain

G = Ωt \
(
Bδ0(P0)∪Bδ0(P±)

)
.

Then admissible domains in Theorem 5.1 and its Corollary 5.1 are, e.g.,

Gt = Ωt \
(
Bδ (P0)∪Bδ (P±)

)
⊂ G

for arbitrary δ ∈ (δ0,δ1). Respectively, in Corollary 5.2, admissible velocities are Λ1(x)≡ 0,

Λ2(x) =


k0 in Bδ (P0), k± in Bδ (P±);

k0(2− |x−P0|
δ

) in B2δ (P0)\Bδ (P0), k±(2− |x−P±|
δ

) in B2δ (P±)\Bδ (P±);

0 in Ωt \
(
B2δ (P0)∪B2δ (P±)

)
;

with three arbitrary parameters k0,k± ∈ R. In this case, we have

∂Gt ∩Ωt =
(
∂Bδ (P0)∪∂Bδ (P±)

)
∩Ωt .

This geometric illustration might be helpful for further applications to singular problems.
The last corollary deals with the inverse problem of shape optimal control (2.17), and accord-

ing to (2.18) it guarantees the descent direction for optimization (see, e.g., [27]).
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Corollary 5.3. Under the conditions of Corollary 5.1, a descent direction ∂+ j(0)< 0 for (2.17)
is provided by kinematic velocities Λ such that at ∂Gt:

Λ
>nt =−k1

(
D1(ut ,ut ,vt)+D2(ut , pt ,vt ,qt)

>nt), Λτt =−k2D
2(ut , pt ,vt ,qt)τt (5.6)

with free parameters k1,k2 ≥ 0 such that k2
1 + k2

2 6= 0.

Indeed, direct substitution into (5.1) of Λ from (5.6) yields

∂+ j(0) =−
∫

∂Gt

(
k1(D1(ut ,ut ,vt)+D2(ut , pt ,vt ,qt)

>nt)2 + k2|D2(ut , pt ,vt ,qt)τt |2
)
dSx < 0.

Corollary 5.3 gives practical formulas for numerical simulation by gradient methods.

Acknowledgments
V.A. Kovtunenko was supported by the Austrian Science Fund (FWF) project P26147-N26:
PION and the European Research Council (ERC) under the European Union’s Horizon 2020
Research and Innovation Programme (advanced grant No. 668998 OCLOC). V.A.K. thanks the
Russian Foundation for Basic Research (RFBR) project 18-29-10007 for partial support.

REFERENCES

[1] P. Forchheimer, Hydraulik, Teubner, Berlin, 1930.
[2] M.C. Delfour, J.-P. Zolésio, Shape and Geometries: Metrics, Analysis, Differential Calculus, and Optimiza-

tion, SIAM, Philadelphia, 2011.
[3] J. Sokołowski, J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer,

Berlin, 1992.
[4] M. Hintermüller, T. Surowiec, First-order optimality conditions for elliptic mathematical programs with equi-

librium constraints via variational analysis, SIAM J. Optim. 21 (2011), 1561-1593.
[5] J. Gwinner, B. Jadamba, A.A. Khan, M. Sama, Identification in variational and quasi-variational inequalities,

J. Convex Anal. 25 (2018), 545-569.
[6] J. Gwinner, On two-coefficient identification in elliptic variational inequalities, Optimization 67 (2018),

1017-1030.
[7] S.D. Zeng, S. Migorski, A.A. Khan, Nonlinear quasi-hemivariational inequalities: existence and optimal

control, SIAM J. Control Optim. 59 (2021), 1246–1274.
[8] J. Gwinner, E.P. Stephan, Advanced Boundary Element Methods: Treatment of Boundary Value, Transmis-

sion and Contact Problems, Springer, Berlin, 2018.
[9] T. Apel, D. Sirch, A priori mesh grading for distributed optimal control problems, In: G. Leugering, S. Engell,

A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich, (eds.) Constrained Optimization
and Optimal Control for Partial Differential Equations, vol. 160, pp. 377–389, Springer, Basel, 2012.

[10] M. Gerdts, Optimal Control of ODEs and DAEs, De Gruyter, Berlin, 2012.
[11] F. Cakoni, V.A. Kovtunenko, Topological optimality condition for the identification of the center of an inho-

mogeneity, Inverse Probl. 34 (2018), Article ID 035009.
[12] A. Hasanov, O. Baysal, H. Itou, Identification of an unknown shear force in a cantilever Euler–Bernoulli

beam from measured boundary bending moment, J. Inv. Ill-Posed Probl. 27 (2019), 859-876.
[13] V.A. Kovtunenko, K. Kunisch, High precision identification of an object: Optimality-conditions-based con-

cept of imaging, SIAM J. Control Optim. 52 (2014), 773-796.
[14] M.M. Lavrentiev, A.V. Avdeev, M.M. Lavrentiev, Jr., V.I. Priimenko, Inverse Problems of Mathematical

Physics, de Gruyter, Berlin, 2012.
[15] R. Correa, A. Seeger, Directional derivative of a minimax function, Nonlinear Anal. 9 (1985), 834-862.
[16] M. Hintermüller, V.A. Kovtunenko, From shape variation to topology changes in constrained minimization:

a velocity method-based concept, Optimization Meth. Softw. 26 (2011), 513-532.
[17] K. Ito, K. Kunisch, G. Peichl, Variational approach to shape derivatives, ESAIM: COCV 14 (2008), 517-539.
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