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Abstract
A class of inverse identification problems constrained by variational inequal-
ities is studied with respect to its shape differentiability. The specific problem
appearing in failure analysis describes elastic bodies with a breaking line sub-
ject to simplified adhesive contact conditions between its faces. Based on the
Lagrange multiplier approach and smooth Lavrentiev penalization, a semi-
analytic formula for the shape gradient of the Lagrangian linearized on the
solution is proved, which contains both primal and adjoint states. It is used for
the descent direction in a gradient algorithm for identification of an optimal
shape of the breaking line from boundary measurements. The theoretical res-
ult is supported by numerical simulation tests of destructive testing in 2D
configuration with and without contact.
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1. Introduction

We prove rigorously the shape gradient for a class of inverse identification problems, which
are constrained by penalty equations approximating variational inequalities (VIs). The spe-
cific problem describes identification of a breaking line in a body, where the fracture (crack)
separating the single solid into two pieces allows adhesive contact.

The main drawback of classical hypotheses of brittle fracture mechanics according to
Griffith [18] concerns infinite stresses in the vicinity of a crack which are physically incon-
sistent. Within a quasi-brittle fracture approach, there are several concepts that provide finite
stresses by assuming a plastic zone around the crack tip, or taking into account inelastic phe-
nomena at the crack faces being in contact. In [39] there is given a historical overview on
modeling of non-ideal contact beginning from Coulomb’s work on friction [10] up to the
work of Johnson–Kendall–Roberts on adhesion of elastic bodies [26], validated with exper-
iments. A comprehensive review of modern theories and experimental studies for adhesive
joints and their failure can be found in [45]. Based on observations of hydraulic fracturing
[46], Barenblatt underlied a cohesive crack model, which laid the foundation of the nonlin-
ear fracture mechanics today. In opposite to the classical stress-free crack, in the work [3] he
introduced two crucial hypotheses that crack faces close smoothly, and the normal stress is a
function of the crack opening. Two representative functions f(δ) of the material dependence
between the interaction force f and the crack opening δ according to Barenblatt’s model and
the bi-linear traction-separation law adopted in hydraulic fracturing are sketched in figure 1. A
simplified model can be derived by applying the method of asymptotic expansion with respect
to the thickness of interface adhesive layer, see e.g. [40], which asymptotic limit results in
the spring model with linear f = αδ. The corresponding potential of the surface energy at the
interface is quadratic with respect to opening. In this work we examine the case in relation to
identifiability of the adhesive crack as a part of breaking line in a body.

LetΩt denote a set of geometric variables depending on a time-parameter t, which is determ-
ined by a manifold (the breaking line) Σt with a normal vector ν t. Motivated by the applic-
ations in fracture, we consider a functional of the total energy E(u;Ωt) given over a Hilbert
space V(Ωt) as the sum of bulk and surface energies. The contact condition for the normal
opening νt · [[u]]⩾ 0 across Σt (see [27]) determines the feasible set K(Ωt)⊂ V(Ωt), which
topology implies a convex cone. For differentiable functions E , minimization of E(u;Ωt) over
u ∈ K(Ωt) yields the first order optimality condition

ut ∈ K(Ωt), 〈∂uE(ut;Ωt),u− ut〉⩾ 0 for all u ∈ K(Ωt). (1.1)

The VI (1.1) constitutes the forward problem.
The variational formulation (1.1) was employed earlier [28, 30] for the description of non-

penetrating cracks (implying that Σt has singularity at the crack tip), and supported by appro-
priate numerical methods [23, 29]. The surface energies were specified taking into account for
adhesion [15] and cohesion [32, 41], where the latter results in non-smooth and non-convex
functionals E . For non-differentiable energies, see respective hemi-VI approaches in [19, 42].
We cite [43] for the concept of the conical differential of a solution to the Signorini VI. In
[22] sensitivity estimates in shape optimization problems were investigated for a class of semi-
linear elliptic VIs based onmaterial derivatives. In [24] shape sensitivity analysis for an inverse
obstacle problem and its regularization via penalization was performed by use of geometric
properties of active and biactive sets.
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Figure 1. Sketch of dependence of interaction force f versus opening δ according to the
models by Barenblatt (left) and hydro-fracking (right).

The inverse problem consists in identification of the manifold Σt from a measurement z
given at an observation boundary ΓO

t . Using the optimization formalism [25], we minimize
the least-squares objective

minJ (ut;Ωt) =
1
2

ˆ
ΓO
t

|ut− z|2 dSx+ ρ|Σt|, (1.2)

where ut solves (1.1), and a parameter ρ> 0 implies the perimeter regularization. The VI (1.1)
is involved in the optimization as an equilibrium constraint.

We cite the optimization-based inverse problems in acoustic scattering [1, 4], electrical
tomography [8, 21], fluid mechanics [33], and free boundary problems [20]. The classical the-
ory of inverse problems and its applications in mathematical physics can be found in [35]. For
relevant tasks, see optimal control of partial differential equations (PDEs) [7], shape control of
VIs [2], and optimal object location [36]. The shape optimization approach was applied for the
inverse problem of identification of interfaces [14], geometric objects [31], inhomogeneities
[6], and breaking lines [16].

Our main goal consists in deriving optimality conditions for the equilibrium constrained
minimization (1.2) with respect to variations of the shape Σt. This implies a property of dir-
ectional differentiability. To construct a differentiable approximation of the VI (1.1), for a
regularization parameter ε> 0 and a smooth penalty βε based on the Lavrentiev regulariza-
tion (see [38]):

〈∂εuE(uεt ;Ωt),u〉 := 〈∂uE(uεt ;Ωt),u〉+
ˆ
Σt

βε(νt · [[uεt ]]) (νt · [[u]])dSx (1.3)

we introduce the penalized equilibrium equation: find uεt ∈ V(Ωt) such that

〈∂εuE(uεt ;Ωt),u〉= 0 for all u ∈ V(Ωt). (1.4)

However, the standard Lagrangian resulting from (1.2) and (1.4)

Lε(u,v;Ωt) := J (u;Ωt)−〈∂εuE(u;Ωt),v〉 (1.5)

is conjectured to be not shape-differentiable. For this reason we compute a directional deriv-
ative with respect to specific shape perturbations, which give descent directions for the shape
optimization problem. It coincides with the usual shape derivative in case of linear state
equations.

The principal difficulty concerns non-linearity of the operator ∂εuE due to the presence
of penalty term in (1.3), even for linear ∂uE . Let the second variation ∂u(∂εuE)(uεt ;Ωt) ∈
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L (V(Ωt),V(Ωt)
⋆) in (1.3) exist, be surjective with respect to uεt , and the Lagrange identity

hold at the solution:

∂u(∂
ε
uE)(uεt ;Ωt)u

ε
t = ∂εuE(uεt ;Ωt)− ∂εuE(0;Ωt), (1.6)

where V(Ωt)
⋆ denotes the dual space. Then the associated adjoint operator

[∂u(∂
ε
uE)(uεt ;Ωt)]

⋆ ∈ L (V(Ωt),V(Ωt)
⋆) can be well-defined by the formula

〈[∂u(∂εuE)(uεt ;Ωt)]
⋆v,u〉 := 〈∂u(∂εuE)(uεt ;Ωt)u,v〉 for u,v ∈ V(Ωt), (1.7)

see [5, 34, 37]. We set a corresponding Lagrangian linearized at the solution uεt as

L̃ε(0,uεt ,u,v;Ωt) := J (u;Ωt)−〈[∂u(∂εuE)(uεt ;Ωt)]
⋆v,u〉− 〈∂εuE(0;Ωt),v〉 (1.8)

which coincides with Lε(u,v;Ωt) in (1.5) as u= uεt in virtue of (1.6).
Now we formulate the saddle-point problem: find (uεt ,v

ε
t ) ∈ V(Ωt)

2 such that

L̃ε(0,uεt ,u
ε
t ,v;Ωt)⩽ L̃ε(0,uεt ,u

ε
t ,v

ε
t ;Ωt)⩽ L̃ε(0,uεt ,u,v

ε
t ;Ωt) (1.9)

for all (u,v) ∈ V(Ωt)
2. The primal inf-sup condition (the former inequality in (1.9)) follows

the equilibrium problem (1.4). The dual sup-inf condition implies the latter inequality in (1.9)
(see [12, chapter 6]). For differentiable objectives J it leads to the adjoint equation: for fixed
uεt ∈ V(Ωt), find vεt ∈ V(Ωt) such that

〈∂uJ (uεt ;Ωt)− [∂u(∂
ε
uE)(uεt ;Ωt)]

⋆vεt ,v〉= 0 forallv ∈ V(Ωt). (1.10)

Based on the concept of directional differentiability [9, 11] we look for a shape gradient of
the objective linked to the Lagrangian:

∂tJ (uεt ;Ωt) = ∂tL̃ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) (1.11)

since the identity J (uεt ;Ωt) = L̃ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) is attained in (1.8) at the saddle point. Then

negative sign ∂tJ (uεt ;Ωt)< 0 provides a descent direction for minimization (1.2). Using a
Hadamard representation of the shape gradient at Σt, which is performed with the help of the
saddle point (uεt ,v

ε
t ) and kinematic velocity Λ as

∂tJ (uεt ;Ωt) =

ˆ
Σt

Λ · D(uεt ,u
ε
t )dSx, (1.12)

the negative sign is achieved by the choice Λ =−kD(uεt ,u
ε
t ) with a free factor k> 0. Then an

iterative algorithm can be constructed, which subsequently updates the current manifoldΣt by
Σt+Λ.

Recently, the shape gradient in (1.6)–(1.12) was obtained for semi-linear equilibrium
equations due to the turbulent flow [17] and cohesive contact [32] phenomena. In the present
work we apply the shape optimization algorithm to inverse problems identifying a breaking-
line subject to adhesive contact and examine it by numerical simulation.

2. Solid with a breaking-line subject to contact with adhesion

LetΩ⊂ Rd, where dimensions d= 2 or d= 3 are physically relevant, be a hold-all domainwith
Lipschitz boundary ∂Ω and normal vector nt = ((nt)1, . . . ,(nt)d) outward to Ω. The domain
Ω= Ω+

t ∪Ω−
t ∪Σt is assumed being broken by a manifold Σt into two variable sub-domains

Ω±
t depending on the time-parameter t ∈ (t0, t1), t0 < t1. It has Lipschitz boundaries ∂Ω

±
t with

outward normal vectors n±t coinciding with nt at ∂Ω, and n
−
t =−n+t =: νt at the breaking

line Σt = ∂Ω+
t ∩ ∂Ω−

t . By this, the outer boundary is split into two variable parts ∂Ω= ΓD
t ∪

ΓN
t , and ΓD

t ∩ΓN
t = ∅. The conditions ΓD

t ∩ ∂Ω+
t 6= ∅ and ΓD

t ∩ ∂Ω−
t 6= ∅ are required for the

4



Inverse Problems 39 (2023) 084004 V A Kovtunenko

Figure 2. An example configuration of the variable geometry Ωt in 2D.

Korn–Poincaré inequality (2.4). Let an observation boundary ΓO
t ⊂ ΓN

t . We assume that these
geometric properties are preserved for all t ∈ (t0, t1) under shape perturbations specified below.

We define a parameter-dependent set of geometric objectsΩt = (ΓD
t ,Γ

N
t ,Γ

O
t ,Σt) describing

the broken domain Ω \Σt =Ω+
t ∪Ω−

t , which includes the Dirichlet, Neumann, observation
boundaries, and the breaking line (manifold in 3D), respectively. An example geometry of Ωt

is sketched in figure 2 in 2D.
For fixed t, we consider a linear elastic body occupying the broken domain Ω \Σt. The

displacement vector u(x) = (u1, . . . ,ud) at points x= (x1, . . . ,xd) has discontinuity across Σt

with the jump [[u]] = u|Σt∩∂Ω+
t
− u|Σt∩∂Ω−

t
. We decompose [[u]] at the interface into the normal

component νt · [[u]] and the tangential vector [[u]]τt such that

[[u]] = (νt · [[u]])νt+ [[u]]τt , νt · [[u]]⩾ 0 on Σt, (2.1)

where the latter inequality guarantees non-penetration, see [27]. Using (2.1) we prescribe adhe-
sion at Σt with the help of quadratic surface energy (see [15, 42]):

S([[u]];Σt) =
α

2

ˆ
Σt

{∣∣[[u]]τt∣∣2 +(νt · [[u]])2
}
dSx, α⩾ 0. (2.2)

The symmetric tensors of linearized strain ϵ= (ϵij)
d
i,j=1 and Cauchy stress σ = (σij)

d
i,j=1 are

given by the symmetric gradient and Hooke’s law:

ϵ(u) =
1
2
(∇u+∇u⊤), σ(u) = Cϵ(u), (2.3)

where the gradient∇u= (∂ui/∂xj)di,j=1, the transposition
⊤ swaps columns for rows. A fourth

order tensor of elastic coefficients C(x) ∈W1,∞(Ω)d×d×d×d is symmetric: Cijkl = Cjikl = Cklij
for i, j,k, l= 1, . . . ,d, and positive definite. The scalar product of tensors in (2.3) satisfies the
Korn–Poincaré inequality: there exists KKP > 0 such thatˆ

Ω\Σt

σ(u) · ϵ(u)dx⩾ KKP‖u‖2H1(Ω\Σt)d
foru ∈ V(Ωt) (2.4)

over the Sobolev space accounting for the Dirichlet boundary condition:

V(Ωt) = {u ∈ H1(Ω+
t )

d ∩H1(Ω−
t )

d| u= 0 on ΓD
t }. (2.5)

For a boundary force g= (g1, . . . ,gd) ∈ H1(∂Ω)d, we introduce the bulk energy

B(u;Ωt) =
1
2

ˆ
Ω\Σt

σ(u) · ϵ(u)dx−
ˆ
ΓN
t

g · udSx. (2.6)

5
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The feasible set corresponding to the constraint in (2.1) due to contact reads

K(Ωt) = {u ∈ V(Ωt)| νt · [[u]]⩾ 0 on Σt}, (2.7)

and its topology implies a convex and closed cone.

Theorem 1 (Solvability of the adhesive contact problem). There exists a unique solution
ut ∈ K(Ωt) to the constrained minimization problem:

E(ut;Ωt) = min
u∈K(Ωt)

E(u;Ωt) := B(u;Ωt)+S([[u]];Σt), (2.8)

where the total energy E is composed according to (2.2) and (2.6) as the sum

E(u;Ωt) =
1
2

ˆ
Ω\Σt

σ(u) · ϵ(u)dx−
ˆ
ΓN
t

g · udSx+
α

2

ˆ
Σt

∣∣[[u]]∣∣2 dSx. (2.9)

The solution satisfies a first-order optimality condition in the form of VI:

〈∂uE(ut;Ωt),u− ut〉

:=

ˆ
Ω\Σt

σ(ut) · ϵ(u− ut)dx+α

ˆ
Σt

{
[[ut]]τt · [[u− ut]]τt

+(νt · [[ut]]) (νt · [[u− ut]])
}
dSx−

ˆ
ΓN
t

g · (u− ut)dSx ⩾ 0 (2.10)

for all u ∈ K(Ωt). The H2-smooth solution satisfies the boundary value problem:

divσ(ut) = 0 in Ω \Σt, (2.11a)

ut = 0 on ΓD
t , (2.11b)

σ(ut)n= g on ΓN
t , (2.11c)

[[σ(ut)νt]] = 0 on Σt, (2.11d)

(σ(ut)νt)τt = α[[ut]]τt on Σt, (2.11e)

νt · [[ut]]⩾ 0, νt · (σ(ut)νt)⩽ α(νt · [[ut]]), (2.11f )

(νt · [[ut]])
{
νt · (σ(ut)νt)−α(νt · [[ut]])

}
= 0 on Σt

decomposing the normal stress σ(ut)νt =
(
νt · (σ(ut)νt)

)
νt+(σ(ut)νt)τt according to (2.1).

Proof. Indeed, applying standard variational arguments to the quadratic functional in (2.9)
implies the VI (2.10). Its operator ∂uE builds a continuous bilinear form in V(Ωt)

2, which is
coercive by the virtue of Korn–Poincaré inequality (2.4). Then a unique minimizer is argued
by the Lions–Stampacchia theorem.

For the derivation of boundary-value problem (2.11a)–(2.11f ), see the variational theory
and method treating non-penetration conditions in [27, section 1.4]. The relations (2.11a)
describe equilibrium, (2.11b)—clamping, (2.11c)—boundary traction, (2.11d)—continuity of
stress, (2.11e)—tangential stress, and two lines in (2.11f ) are the complementarity conditions
for the normal stress due to contact.
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Figure 3. Lavrentiev penalty function βε, its derivatives β ′
ε and β ′ ′

ε .

For the penalty parameter ε ∈ (0,ε0), ε0 > 0, we approximate the VI (2.10) using smooth
Lavrentiev penalization. For example, let a C1-smooth penalty function βε(s) be given by
mollification of the standard penalty min(0,s)/ε as

βε(s) =


s/ε for s<−ε
−exp

(
2(s+ ε)/(s− ε)

)
for− ε⩽ s< ε

0 for s⩾ ε

(2.12)

which is depicted in figure 3 together with the first and second derivatives.

Lemma 1 (Properties of the penalty). The penalty function in (2.12) βε ⩽ 0 is concave and
increases monotonically, the derivative β ′

ε ⩾ 0 and decreases monotonically, the second deriv-
ative β ′ ′

ε ⩽ 0. It satisfies the following uniform estimates

−1⩽ βε(s)−
min(0,s)

ε
⩽ 0, 0⩽ β ′

ε(s)⩽
1
ε
, (2.13)

the relaxed complementarity and compliance conditions, respectively:

βε(s)max(0,s)⩾−ε, −βε(s)min(0,s)⩽−min2(0,s)
ε

. (2.14)

Proof. The properties (2.13) can be checked straightforwardly.
To verify the former inequality in (2.14), multiplying (2.12) by max(0,s) we deduce that

βε(s)max(0,s) = 0 for s⩾ ε. Using βε(s)⩾min(0,s)/ε− 1 from the first estimate in (2.13),
the lower bound βε(s)max(0,s)⩾−ε holds for 0⩽ s< ε.

By the similar arguments,−βε(s)min(0,s) =−min2(0,s)/ε for s<−ε and s⩾ 0 in (2.12).
The second estimate βε(s)⩽min(0,s)/ε in (2.13), after multiplication with −min(0,s) leads
to the upper bound −βε(s)min(0,s)⩽−min2(0,s)/ε for −ε⩽ s< 0. This proves the latter
inequality in (2.14).

From lemma 1 we deduce solvability for the ε-penalized problem.

Theorem 2 (Solvability of the Lavrentiev penalization). There exists a unique solution uεt ∈
V(Ωt) to the penalty problem:

〈∂εuE(uεt ;Ωt),u〉 :=
ˆ
Ω\Σt

σ(uεt ) · ϵ(u)dx+
ˆ
Σt

{
α[[uεt ]]τt · [[u]]τt

+ [α id+βε](νt · [[uεt ]]) (νt · [[u]])
}
dSx−

ˆ
ΓN
t

g · udSx = 0 (2.15)
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for all u ∈ V(Ωt), where the identity transformation id(s) = s. The H2-smooth solution satisfies
the following boundary value problem:

divσ(uεt ) = 0 in Ω \Σt, (2.16a)

uεt = 0 on ΓD
t , (2.16b)

σ(uεt )n= g on ΓN
t , (2.16c)

[[σ(uεt )νt]] = 0 on Σt, (2.16d)

(σ(uεt )νt)τt = α[[uεt ]]τt on Σt, (2.16e)

νt · (σ(uεt )νt) = α(νt · [[uεt ]])+βε(νt · [[uεt ]]) on Σt. (2.16f )

Proof. Since s=max(0,s)+min(0,s), inequalities (2.14) give βε(s)s⩾ (min(0,s))2/ε− ε.
Using the Cauchy–Schwarz, Korn–Poincaré (2.4), and the trace inequality

‖u‖L2(∂Ω±
t )d ⩽ ‖u‖H1/2(∂Ω±

t )d ⩽ Ktr‖u‖H1(Ω±
t )d for u ∈ H1(Ω±

t )
d (2.17)

such that ‖[[u]]‖L2(Σt)d ⩽
√
2Ktr‖u‖H1(Ω±

t )d , the operator in (2.15) satisfies

〈∂εuE(uεt ;Ωt),u
ε
t 〉⩾ KKP‖uεt |2H1(Ω\Σt)d

+α‖[[uεt ]]‖2L2(Σt)d

−Ktr
(
ε
√
2|Σt|+ ‖g‖L2(ΓN

t )
d

)
‖uεt ‖H1(Ω\Σt)d , (2.18)

thus, it is coercive. The penalty βε is uniformly continuous preserving L2-convergence, then
operator ∂εuE is weakly continuous: if un ⇀ ut weakly inH1(Ω \Σt)

d as n→∞ (hence un → ut
strongly in L2(∂Ω∪Σ±

t )
d by compactness), then 〈∂εuE(un;Ωt),u〉 → 〈∂εuE(ut;Ωt),u〉 for u ∈

V(Ωt). Therefore, applying a Galerkin approximation and the Brouwer fixed point theorem
(see [13]) justifies a solution to the variational problem (2.15). The uniqueness due to the strict
monotony, and the boundary value formulation (2.16a)–(2.16f ) can be derived in a standard
way.

Next we consider the inverse identification problem.

3. Inverse problem and shape gradient for the linearized Lagrangian

For a given observation z ∈ H1(∂Ω)d, we consider the least-squares objective in (1.2):

J (uεt ;Ωt) =
1
2

ˆ
ΓO
t

|uεt − z|2 dSx+ ρ|Σt|, (3.1)

where uεt solves the penalty equation (2.15). From the fundamental theorem of calculus, the
following representation holds for continuous β ′

ε:

βε(νt · [[uεt ]]) =
ˆ 1

0
β ′
ε(νt · [[ruεt ]]) (νt · [[uεt ]])dr+βε(0). (3.2)

We introduce a quadratic Lagrangian linearized according to (3.2) around the solution uεt to
penalty equation (2.15) as follows (see [32]):

8
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L̃ε(0,uεt ,u,v;Ωt) :=
1
2

ˆ
ΓO
t

|u− z|2 dSx+ ρ|Σt|

−
ˆ
Ω\Σt

σ(u) · ϵ(v)dx+
ˆ
ΓN
t

g · vdSx−
ˆ
Σt

{
α[[u]]τt · [[v]]τt

+
[
ανt · [[u]] +

ˆ 1

0
β ′
ε(νt · [[ruεt ]]) (νt · [[u]])dr+βε(0)

]
(νt · [[v]])

}
dSx (3.3)

The corresponding saddle point problem reads: find (uεt ,v
ε
t ) ∈ V(Ωt)

2 such that

L̃ε(0,uεt ,u
ε
t ,v;Ωt)⩽ L̃ε(0,uεt ,u

ε
t ,v

ε
t ;Ωt)⩽ L̃ε(0,uεt ,u,v

ε
t ;Ωt) (3.4)

for all (u,v) ∈ V(Ωt)
2. According to (3.2) the optimal value of L̃ε at the saddle point

L̃ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) =

1
2

ˆ
ΓO
t

|uεt − z|2 dSx+ ρ|Σt| −
ˆ
Ω\Σt

σ(uεt ) · ϵ(vεt )dx

−
ˆ
Σt

{
α[[uεt ]]τt · [[uεt ]]τt + [α id+βε](νt · [[uεt ]]) (νt · [[uεt ]])

}
dSx

+

ˆ
ΓN
t

g · vεt dSx

due to (2.15) coincides with the objective (3.1):

L̃ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) = J (uεt ;Ωt). (3.5)

Theorem 3 (Solvability of the saddle-point problem). There exists the unique saddle-point
(uεt ,v

ε
t ) ∈ V(Ωt)

2 in (3.4), which primal component uεt solves (2.15). The dual component v
ε
t

is a solution to the adjoint equation:

〈Aε(u
ε
t )v,v

ε
t 〉 :=

ˆ
Ω\Σt

σ(v) · ϵ(vεt )dx+
ˆ
Σt

{
α[[v]]τt · [[vεt ]]τt +

[
ανt · [[v]]

+

ˆ 1

0
β ′
ε(νt · [[ruεt ]]) (νt · [[v]])dr

]
(νt · [[vεt ]])

}
dSx =

ˆ
ΓO
t

v · (uεt − z)dSx (3.6)

for all v ∈ V(Ωt). The H2-smooth solution satisfies the boundary value problem:

divσ(vεt ) = 0 in Ω \Σt, (3.7a)

vεt = 0 on ΓD
t , (3.7b)

σ(vεt )n= 0 on ΓN
t \ΓO

t , (3.7c)

σ(vεt )n= uεt − z on ΓO
t , (3.7d)

[[σ(vεt )νt]] = 0 on Σt, (3.7e)

(σ(vεt )νt)τt = α[[vεt ]]τt on Σt, (3.7f )

νt · (σ(vεt )νt) = ανt · [[vεt ]] +
ˆ 1

0
β ′
ε(νt · [[ruεt ]])(νt · [[vεt ]])dr on Σt. (3.7g)

Proof. The Lagrangian function L̃ε from (3.3) is quadratic and convex in u, and linear
in v. Therefore, the first order optimality condition for the former inequality in (3.4) is
expressed using (3.2) by the primal variational equation (2.15), and by the adjoint variational
equation (3.6) for the latter inequality in (3.4). The unique solution uεt to (2.15) was proven in

9
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theorem 2. For fixed uεt , the bilinear form Aε(uεt ) in the left-hand side of (3.6) is bounded and
coercive by virtue of the Korn–Poincaré inequality (2.4) and β ′

ε ⩾ 0 in lemma 1, hence (3.6)
has a unique solution by the Lax–Milgram theorem. The boundary value formulation (3.7a)–
(3.7g) follows straightforwardly.

Next, the saddle-point problem (3.4) is perturbed by the velocity method [44]. We introduce
the coordinate transformation y= ϕs(x) and its inverse x= ϕ−1

s (y), where

ϕs,ϕ
−1
s ∈ C1([t0 − t1, t1 − t0];W

1,∞(Ω))d. (3.8)

For fixed t ∈ (t0, t1) and variable s ∈ I := [t0, t1]− t, we suppose a diffeomorphism

ϕs : Ωt 7→ Ωt+s, x 7→ y, ϕ−1
s : Ωt+s 7→ Ωt, y 7→ x, (3.9)

which transforms the broken domain Ω \Σt to Ω \Σt+s by means of a perturbed geometry
Ωt+s = (ΓD

t+s,Γ
N
t+s,Γ

O
t+s,Σt+s). A kinematic velocity can be determined from (3.8) in the

implicit way as

Λ(t+ s,y) := d
dsϕs(ϕ

−1
s (y)). (3.10)

Conversely, let the kinematic velocity be given explicitly

Λ = (Λ1, . . . ,Λd)(t,x) ∈ C([t0, t1];W1,∞(Ω))d (3.11)

preserving the hold-all domain Ω under the condition n ·Λ = 0 on ∂Ω. It determines the
flows (3.8) as solutions ϕs = ((ϕs)1, . . . ,(ϕs)d) to the non-autonomous ODE system

d
ds
ϕs = Λ(t+ s,ϕs) for s ∈ I, ϕs = x at s= 0, (3.12)

and ϕ−1
s (y) = ((ϕ−1

s )1, . . . ,(ϕ
−1
s )d) to the transport equation

∂

∂s
ϕ−1
s +(∇yϕ

−1
s )Λ|t+s = 0 in I×Ω, ϕ−1

s = y at s= 0, (3.13)

see [30], where the notation Λ|t+s = Λ(t+ s,y) is used. Here and thereafter we assume that all
relations (3.8)–(3.13) hold true.

Based on (3.8) and (3.9) we suggest the property:
(T1) Bijection holds between the function spaces

u 7→ u ◦ϕ−1
s : V(Ωt) 7→ V(Ωt+s), ũ 7→ ũ ◦ϕs : V(Ωt+s) 7→ V(Ωt). (3.14)

As the consequence of (T1), for (ũ, ṽ) ∈ V(Ωt+s)
2 the perturbed Lagrangian in (3.3) is well

defined after transformation to the reference geometry Ωt by setting

L̃ε(s,uεt , ũ ◦ϕs, ṽ ◦ϕs;Ωt) := L̃ε(0,uεt ◦ϕ−1
s , ũ, ṽ;Ωt+s). (3.15)

Applying the coordinate transformation (3.9) we calculate it in the explicit form

L̃ε(s,uεt ,u,v;Ωt) =
1
2

ˆ
ΓO
t

|u− z ◦ϕs|2ωb
s dSx+ ρ

ˆ
Σt

ωb
s dSx (3.16)

−
ˆ
Ω\Σt

(
(C ◦ϕs)E(∇ϕ−1

s ◦ϕs,u) ·E(∇ϕ−1
s ◦ϕs,v)

)
ωd
s dx

+

ˆ
ΓN
t

(g ◦ϕs) · vωb
s dSx−

ˆ
Σt

{
α[[u]]τ̃t+s · [[v]]τ̃t+s +

[
αν̃t+s · [[u]]

+

ˆ 1

0
β ′
ε(ν̃t+s · [[ruεt ]]) (ν̃t+s · [[u]])dr+βε(0)

]
(ν̃t+s · [[v]])

}
ωb
s dSx

10



Inverse Problems 39 (2023) 084004 V A Kovtunenko

for (u,v) ∈ V(Ωt)
2, see [30, 32], where the Jacobian determinants are

ωd
s := det(∇ϕs) in Ω \Σt, ωb

s := |(∇ϕ−⊤
s ◦ϕs)n±t |ωd

s at ∂Ω
±
t . (3.17)

Here the following decomposition at Σt was used akin to (2.1):

[[u]] = (ν̃t+s · [[u]]) ν̃t+s+ [[u]]τ̃t+s , ν̃t+s := νt+s ◦ϕs, (3.18)

and the generalized strain for which E(I,u) = ϵ(u) according to (2.3):

E(M,u) :=
1
2
(M⊤∇u+∇u⊤M), M ∈ Rd×d (3.19)

appears in view of the chain rule∇yũ= (∇ϕ−T
s ◦ϕs)∇(ũ ◦ϕs).

(T2) Partial derivative of L̃ε from (3.16) in the first argument exists as s→ 0:

L̃ε(s,uεt ,u,v;Ωt) = L̃ε(0,uεt ,u,v;Ωt)+ s ∂
∂s L̃

ε(0,uεt ,u,v;Ωt)+ o(|s|) (3.20)

given by the explicit representation, which is continuous in τ :

∂
∂s L̃

ε(τ,uεt ,u,v;Ωt) = ρ

ˆ
Σt

divτtΛ|t+τdSx (3.21)

+

ˆ
ΓO
t

(1
2
divτtΛ|t+τ |u− z|2 −∇zΛ|t+τ · (u− z)

)
dSx

+

ˆ
Ω\Σt

I(Ω \Σt+τ )dx+
ˆ
ΓN
t

(
divτtΛ|t+τg+∇gΛ|t+τ

)
· vdSx

−
ˆ
Σt

{
α[[u]]∇τtΛ|t+τ

· [[v]]τtdr+α[[u]]τt ·
(
divτtΛ|t+τ [[v]]τt + [[v]]∇τtΛ|t+τ

)
+
(ˆ 1

0
β ′
ε(νt · [[ruεt ]]) (νt · [[u]])dr+βε(0)

)(
(divτtΛ|t+τνt

+∇νtΛ|t+τ ) · [[v]]
)
+

ˆ 1

0
β ′
ε(νt · [[ruεt ]])

(
∇νtΛ|t+τ · [[u]]

)
(νt · [[v]])dr

}
dSx.

Here the notation

I(Ω \Σt+τ ) := −
(
divΛ|t+τC+∇CΛ|t+τ

)
ϵ(u) · ϵ(v)

+σ(u) ·E(∇Λ|t+τ ,v)+σ(v) ·E(∇Λ|t+τ ,u),

the tangential divergence divτtΛ = divΛ− (∇Λn±t ) · n±t at ∂Ω±
t , and

[[u]]∇τtΛ :=−(νt · [[u]])∇νtΛ− (∇νtΛ · [[u]])νt, (3.22)

∇νtΛ :=
(
(∇Λνt) · νt

)
νt−∇Λ⊤νt at Σt.

Proof. As s→ 0, the following asymptotic expansion holds (see e.g. [44, chapter 2]):

z ◦ϕs = z+ s∇zΛ+ o(s), g ◦ϕs = g+ s∇gΛ+ o(s), (3.23)

C ◦ϕs = g+ s∇CΛ+ o(s), ∇ϕ−1
s ◦ϕs = I− s∇Λ+ o(s),

E(∇ϕ−1
s ◦ϕs,u) = ϵ(u)− sE(∇Λ,u)+ o(s),

ωd
s = 1+ sdivΛ+ o(s), ωb

s = 1+ sdivτtΛ+ o(s)

νt+s ◦ϕs = νt+ s∇νtΛ+ o(s), [[u]]τ̃t+s = [[u]]τt + s[[u]]∇τtΛ + o(s)

for u ∈ V(Ωt), using the equations (3.12), (3.13) and notation (3.22). Substituting (3.23) into
representations (3.16)–(3.19) of the perturbed Lagrangian follows the expansion (3.20) with
the asymptotic term ∂

∂s L̃
ε(0,uεt ,u,v;Ωt) from (3.21) at τ = 0 and Λ|t = Λ. Since Λ|t+τ and

11
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∇Λ|t+τ are continuous functions of the argument t+ τ , the partial derivative in (3.21) is con-
tinuous in the first argument τ .

We look for a perturbed saddle-point problem: find (ũεt+s, ṽ
ε
t+s) ∈ V(Ωt)

2 satisfying

L̃ε(s,uεt , ũ
ε
t+s,v;Ωt)⩽ L̃ε(s,uεt , ũ

ε
t+s, ṽ

ε
t+s;Ωt)⩽ L̃ε(s,uεt ,u, ṽ

ε
t+s;Ωt) (3.24)

for all (u,v) ∈ V(Ωt)
2. The problem coincides with (3.4) at s= 0.

(T3) Saddle point (ũεt+s, ṽ
ε
t+s) ∈ V(Ωt)

2 in (3.24) exists at s ∈ (−s0,s0)∩ I at least for small
s0 > 0, it is unique, and (ũεt , ṽ

ε
t ) = (uεt ,v

ε
t ) at s= 0.

Proof. The perturbed Lagrangian L̃ε(s) in (3.16) is quadratic and convex in u, and linear in v.
The optimality condition ∂vL̃ε(s,uεt , ũ

ε
t+s, ṽ

ε
t+s;Ωt) = 0 implies

ˆ
Ω\Σt

(
(C ◦ϕs)E(∇ϕ−1

s ◦ϕs, ũεt+s) ·E(∇ϕ−1
s ◦ϕs,u)

)
ωd
s dx (3.25)

+

ˆ
Σt

{
α[[ũεt+s]]τ̃t+s · [[u]]τ̃t+s +

[
αν̃t+s · [[ũεt+s]] +

ˆ 1

0
β ′
ε(ν̃t+s · [[ruεt ]])

× (ν̃t+s · [[ũεt+s]])dr+βε(0)
]
(ν̃t+s · [[u]])

}
ωb
s dSx =

ˆ
ΓN
t

(g ◦ϕs) · uωb
s dSx

for all u ∈ V(Ωt). Due to the asymptotic representation in (T2) and the mean value theorem,
the equation (3.25) can be expressed using the operator Aε from (3.6) as

〈Aε(u
ε
t )ũ

ε
t+s,u〉+

ˆ
Σt

βε(0)(νt · [[u]])dSx =
ˆ
ΓN
t

g · udSx+ sRv(α
v
s , ũ

ε
t+s,u) (3.26)

with weight αvs ∈ (0,s) and bounded bilinear residual Rv : V(Ωt)
2 7→ R. The operator Aε(uεt )

is coercive and weakly continuous. By the Brouwer fixed point theorem, for ε small enough
the variational equation (3.26) has a unique solution ũεt+s ∈ V(Ωt).

The other optimality condition ∂uL̃ε(s,uεt , ũ
ε
t+s, ṽ

ε
t+s;Ωt) = 0 has the form

ˆ
Ω\Σt

(
(C ◦ϕs)E(∇ϕ−1

s ◦ϕs,v) ·E(∇ϕ−1
s ◦ϕs, ṽεt+s)

)
ωd
s dx (3.27)

+

ˆ
Σt

{
α[[ṽεt+s]]τ̃t+s · [[v]]τ̃t+s +

[
αν̃t+s · [[ṽεt+s]] +

ˆ 1

0
β ′
ε(ν̃t+s · [[ruεt ]])

× (ν̃t+s · [[ṽεt+s]])dr
]
(ν̃t+s · [[v]])

}
ωb
s dSx =

ˆ
ΓO
t

v · (ũεt+s− z ◦ϕs)ωb
s dSx

for all v ∈ V(Ωt), which admits the asymptotic decomposition as

〈Aε(u
ε
t )v, ṽ

ε
t+s〉=

ˆ
ΓO
t

v · (ũεt+s− z)dSx+ sRu(α
u
s ,v, ṽ

ε
t+s) (3.28)

with weight αus ∈ (0,s) and bounded bilinear residual Ru : V(Ωt)
2 7→ R. Its unique solution

ṽεt+s ∈ V(Ωt) is guaranteed at least for small s. This finishes the proof.

(T4) Strongly convergent subsequence for k→∞ exists such that

(ũεt+sk , ṽ
ε
t+sk)→ (uεt ,v

ε
t ) strongly in V(Ωt)

2as sk → 0. (3.29)

12
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Proof. The proof is split into the three steps: uniform estimate, weak convergence, and strong
convergence.

Uniform estimate.We test the primal equation (3.25) with u= ũεt+s and use (3.26):ˆ
Ω\Σt

σ(ũεt+s) · ϵ(ũεt+s)dx+
ˆ
Σt

{
α
∣∣[[ũεt+s]]∣∣2 (3.30)

+

ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr

(
νt · [[ũεt+s]]

)2
+βε(0)(νt · [[ũεt+s]])

}
dSx

=

ˆ
ΓN
t

g · ũεt+s dSx+ sRv(α
v
s , ũ

ε
t+s, ũ

ε
t+s),

then apply the Cauchy–Schwarz, Korn–Poincaré (2.4) and trace (2.17) inequalities. By the
virtue of β ′

ε ⩾ 0 and βε(0) =−exp(−2) in (2.12), it follows the estimate:

(KKP −C1|s|)‖ũεt+s‖H1(Ω\Σt)d +α‖[[ũεt+s]]‖L2(Σt)d (3.31)

⩽ Ktr
(
‖g‖L2(ΓN

t )
d −βε(0)

√
2|Σt|

)
+C1|s|, C1 > 0,

which is uniform in ε and |s|⩽ s0 for s0 > 0 sufficiently small.
Similarly, the adjoint equation (3.27) tested with v= ṽεt+s and (3.28) givesˆ

Ω\Σt

σ(ṽεt+s) · ϵ(ṽεt+s)dx+
ˆ
Σt

{
α
∣∣[[ṽεt+s]]∣∣2 +ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr (3.32)

×
(
νt · [[ṽεt+s]]

)2}
dSx =

ˆ
ΓO
t

ṽεt+s · (ũεt+s− z)dSx+ sRu(α
u
s , ṽ

ε
t+s, ṽ

ε
t+s)

which follows the uniform bound:

(KKP −C2|s|)‖ṽεt+s‖H1(Ω\Σt)d +α‖[[ṽεt+s]]‖L2(Σt)d (3.33)

⩽ Ktr‖ũεt+s− z‖L2(ΓO
t )

d +C2|s|, C2 > 0.

For small s0 < KKP/min(C1,C2) the estimates (3.32) and (3.33) together provide

‖ũεt+s‖H1(Ω\Σt)d + ‖ṽεt+s‖H1(Ω\Σt)d ⩽ K, K⩾ 0, |s|⩽ s0. (3.34)

Weak convergence. From the uniform estimate (3.34) we conclude with a subsequence sk → 0
as k→∞ and a weak accumulation point (ũεt , ṽ

ε
t ) ∈ V(Ωt)

2 such that

(ũεt+sk , ṽ
ε
t+sk)⇀ (ũεt , ṽ

ε
t ) weakly in H1(Ω \Σt)

2d,H1/2(∂Ω±
t )

2d. (3.35)

By the compactness of embedding for the space of of boundary traces it follows

(ũεt+sk , ṽ
ε
t+sk)→ (ũεt , ṽ

ε
t ) strongly inL2(∂Ω±

t )
2d assk → 0. (3.36)

Taking the limit as k→∞ in (3.26) and (3.28) for s= sk, based on the convergences (3.35)
and (3.36), uniform continuity of β ′

ε, and identity (3.2), we arrive at the variational
equations (2.15) and (3.6), thus, (ũεt , ṽ

ε
t ) = (uεt ,v

ε
t ).

Strong convergence.We test the primal variational equation (2.15) with u= uεt and apply the
identity (3.2) such that

ˆ
Ω\Σt

σ(uεt ) · ϵ(uεt )dx+
ˆ
Σt

{
α
∣∣[[uεt ]]∣∣2 +ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr (3.37)

×
(
νt · [[uεt ]]

)2
+βε(0)(νt · [[uεt ]])

}
dSx =

ˆ
ΓN
t

g · uεt dSx.

13
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After subtraction of (3.37) from the asymptotic relation (3.30), with the help of the Korn–
Poincaré inequality (2.4) we rearrange the terms as follows

KKP∥ũεt+s− uεt ∥2H1(Ω\Σt)d ⩽
ˆ
Ω\Σt

σ(ũεt+s− uεt ) · ϵ(ũεt+s− uεt )dx (3.38)

=

ˆ
ΓN
t

g · (ũεt+s− uεt )dSx− 2
ˆ
Ω\Σt

σ(ũεt+s− uεt ) · ϵ(uεt )dx

−
ˆ
Σt

{
α
(∣∣[[ũεt+s]]

∣∣2 − ∣∣[[uεt ]]∣∣2)+

ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr

×
(
(νt · [[ũεt+s]])

2 − (νt · [[uεt ]])2
)
+βε(0)(νt · [[ũεt+s− uεt ]])

}
dSx+O(|s|).

The limit in (3.38) due to (3.35) and (3.36) leads to the convergence of the norm

‖ũεt+sk − uεt ‖H1(Ω\Σt)d → 0 as sk → 0. (3.39)

Now we subtract the adjoint equation (3.6) from (3.28):

ˆ
Ω\Σt

ϵ(v) ·σ(ṽεt+s− vεt )dx=
ˆ
ΓO
t

(ũεt+s− uεt ) · vdSx−
ˆ
Σt

{
α[[ṽεt+s− vεt ]]

· [[v]] +
ˆ 1

0
β ′
ε(ν · [[ruεt ]])(ν · [[ũεt+s− vεt ]])dr

]
(ν · [[v]])

}
dSx+O(|s|). (3.40)

Then the Korn–Poincaré (2.4) and trace (2.17) inequalities together with convergences (3.35)
and (3.36) applied to (3.40) guarantees zero limit in the strong topology:

KKP‖ṽεt+sk − vεt ‖H1(Ω\Σt)d (3.41)

⩽ sup
v∈V(Ωt)

1
‖v‖H1(Ω\Σt)d

ˆ
Ω\Σt

ϵ(v) ·σ(vεt+sk − vεt )dx→ 0

as sk → 0. The proof is complete.

Based on (T1)–(T4), all assumptions in [11, chapter 10, theorem 5.1] are satisfied, thus
establishing the following theorem (see details of the proof in [33]).

Theorem 4 (Shape gradient). A shape gradient for the perturbed Lagrangian exists given by
the partial derivative ∂

∂s L̃
ε from (3.21):

lim
s→0+

1
s

(
L̃ε(s,uεt , ũ

ε
t+s, ṽ

ε
t+s;Ωt)−L̃ε(0,uεt ,u

ε
t ,v

ε
t ;Ωt)

)
(3.42)

= ∂
∂s L̃

ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt)

at the saddle-point (uεt ,v
ε
t ) ∈ V(Ωt)

2 from (3.4).

In the next theorem we calculate the specific boundary expression of ∂
∂s L̃

ε according to
the Hadamard structure of shape gradients defined on submanifolds as stated in the abstract
theorem by [34, proposition 4.3].

14
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Theorem 5 (Hadamard representation). Let the solutions of (2.15) and (3.6) be smooth
(uεt ,v

ε
t ) ∈ H2(Ω+

t )
2d ∩H2(Ω−

t )
2d. Decomposing as

Λ = (nt ·Λ)nt+Λτt , ∇= (nt ·∇)nt+∇τt , D = (nt · D)nt+Dτt (3.43)

the shape gradient in (3.42) equals to the sum of boundary integrals

∂
∂s L̃

ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) =

ˆ
ΓD
t

(τt ·Λ)τt · D1(u
ε
t ,v

ε
t )dSx (3.44)

+

ˆ
Σt

{
(τt ·Λ)τt · Dε

2(u
ε
t ,v

ε
t )+ (νt ·Λ)Dε

3(u
ε
t ,v

ε
t )
}
dSx+B,

where the term B is given in 2D by

B= (τt ·Λ)[[Dε
4(u

ε
t ,v

ε
t )]]∂Σt +(τt ·Λ)D5(u

ε
t )|∂ΓO

t
+(τt ·Λ)[[D6(v

ε
t )]]∂ΓN

t ∩Σt
(3.45)

for tangential vector τ t at the boundary, and in 3D by

B=

ˆ
∂Σt

(bt ·Λ)[[Dε
4(u

ε
t ,v

ε
t )]]dLx (3.46)

+

ˆ
∂ΓO

t

(bt ·Λ)D5(u
ε
t )dLx+

ˆ
∂ΓN

t ∩Σt

(bt ·Λ)[[D6(v
ε
t )]]dLx

for the binomial vector bt = τt× nt within moving frame. The expressions are

D1(u,v) :=∇u⊤σ(v)nt+∇v⊤σ(u)nt, Dε
2(u,v) :=−qε(u,v), (3.47)

Dε
3(u,v) := [[σ(u) · ϵ(v)]] + ρκt−κtp

ε(u,v)− νt · [∇pε + qε](u,v),

Dε
4(u,v) := ρ− pε(u,v), D5(u) :=

1
2
|u− z|2, D6(v) := g · v,

with the curvature κt = divτtνt and notation

pε(u,v) := α[[u]] · [[v]] +βε(νt · [[u]]) (νt · [[v]]), (3.48)

qε(u,v) :=∇(νt · [[u]])⊤
(ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr−β ′

ε(νt · [[uεt ]])
)
(νt · [[v]]).

Proof. We integrate by parts over domain Ω \Σt the integrand I(Ω \Σt) from (3.21) at τ = 0.
Using the assumption nt ·Λ = 0 at ∂Ω, notationD1 from (3.47), boundary conditions (2.16b)–
(2.16f ) and (3.7b)–(3.7g) it follows that

ˆ
Ω\Σt

I(Ω \Σt)dx=
ˆ
Σt

Λ ·
{
νt[[σ(u

ε
t ) · ϵ(vεt )]] (3.49)

− [[∇vεt ]]⊤
(
α[[uεt ]] +βε(νt · [[uεt ]])νt

)
− [[∇uεt ]]⊤

(
α[[uεt ]] · [[vεt ]]

+

ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr(νt · [[vεt ]])νt

)}
dSx+

ˆ
ΓO
t

Λ ·∇(uεt )
⊤(uεt − z)dSx

+

ˆ
ΓN
t

Λ ·∇(vεt )
⊤gdSx+

ˆ
ΓD
t

Λ · D1(u
ε
t ,v

ε
t )dSx.

After substitution of (3.49) into (3.21), the integrand at Σt is gathered as follows
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IΣt := − divτtΛ
{
α[[uεt ]] · [[vεt ]] +βε(νt · [[uεt ]]) (νt · [[vεt ]])

}
(3.50)

+Λ ·
{
νt[[σ(u

ε
t ) · ϵ(vεt )]]−

(
[[∇vεt ]]⊤ − (νt · [[vεt ]])∇ν⊤t

)
α[[uεt ]]τt

−
(
[[∇vεt ]]⊤νt+∇ν⊤t [[vεt ]]

)
[α id+βε](νt · [[uεt ]])

−
(
[[∇uεt ]]⊤ − (νt · [[uεt ]])∇ν⊤t

)
α[[vεt ]]τt

−
(
[[∇uεt ]]⊤νt+∇ν⊤t [[uεt ]]

)(
α+

ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr

)
(νt · [[vεt ]])

}
.

To combine like terms, we exploit the calculus for ξ,η ∈ Rd:

Λ ·∇(ξ · η) = Λ · (∇ξ⊤η+∇η⊤ξ) = η ·∇ξΛ+ ξ ·∇ηΛ. (3.51)

With the help of (3.51), the gradient of pε from (3.48) is calculated as

∇pε(u,v) =∇([[v]]τt)
⊤α[[u]]τt +∇([[u]]τt)

⊤α[[v]]τt +
(
[[∇ṽ]]⊤νt+∇ν⊤t [[ṽ]]

)
× [α id+βε](νt · [[u]])+

(
[[∇u]]⊤νt+∇ν⊤t [[u]]

)[
α+β′

ε(νt · [[u]])
]
(νt · [[v]]),

and the integrand in (3.50) can be expressed as

IΣt =−divτtΛp
ε
c(u

ε
t ,v

ε
t )+Λ ·

{
νt[[σ(u

ε
t ) · ϵ(vεt )]]−∇pε(uεt ,vεt ) (3.52)

−∇(νt · [[uεt ]])⊤
(ˆ 1

0
β ′
ε(νt · [[ruεt ]])dr−β ′

ε(νt · [[uεt ]])
)
(νt · [[vεt ]])

}
.

Based on (3.52) we introduce the notation of qε in (3.48) and rearrange

∂
∂s L̃

ε(0,uεt ,u
ε
t ,v

ε
t ;Ωt) =

1
2

ˆ
ΓO
t

(
divτtΛ |uεt − z|2 (3.53)

+Λ ·∇(|uεt − z|2)
)
dSx+

ˆ
Σt

{
divτtΛ

(
ρ− pε(uεt ,v

ε
t )
)

+Λ ·
(
νt[[σ(u

ε
t ) · ϵ(vεt )]]− [∇pε + qε](uεt ,v

ε
t )
)}

dSx

+

ˆ
ΓN
t

(
divτtΛ(g · vεt )+Λ ·∇(g · vεt )

)
dSx+

ˆ
ΓD
t

Λ · D1(u
ε
t ,v

ε
t )dSx.

Using the tangential velocity, tangential divergence, and curvature at ∂Ω±
t :

Λτt = Λ− (n±t ·Λ)n±t , divτtΛτt = divτtΛ− (n±t ·Λ)κ±
t , κ±

t = divτtn
±
t ,

for smooth ζ integration along a boundary Γt ⊂ ∂Ω±
t is given by (see [44, (2.125)]):

ˆ
Γt

(divτtΛζ +Λ ·∇ζ)dSx =
ˆ
Γt

(nt ·Λ)(κtζ + nt ·∇ζ)dSx+P(ζ). (3.54)

In 2D, the value P(ζ) = (τt ·Λ)ζ|∂Γt and τ t is a tangential vector at ∂Γt positively oriented to

nt. In 3D, this implies P(ζ) =
ˆ
∂Γt

(bt ·Λ)ζ dLx and bt = τt× nt is a binomial vector within the

moving frame at ∂Γt. Applying (3.54) to (3.53), using decomposition in (3.43), and recalling
that vεt = 0 at ∂ΓN

t ∩ΓD
t , we conclude with (3.44)–(3.47).
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As the corollary of theorem 5, a descent direction for the perturbed Lagrangian in (3.42) is
provided by the kinematic velocity

nt ·Λ = 0 at∂Ω, Λτt =−k1D1(u
ε
t ,v

ε
t )τt at Γ

D
t , (3.55)

Λτt =−k2Dε
2(u

ε
t ,v

ε
t )τt and νt ·Λ =−k3Dε

3(u
ε
t ,v

ε
t )atΣt,

such that in 2D:

τt ·Λ =−k4[[Dε
4(u

ε
t ,v

ε
t )]]at∂Σt, τt ·Λ =−k5D5(u

ε
t )at∂Γ

O
t , (3.56)

τt ·Λ =−k6[[D6(v
ε
t )]]at∂Γ

N
t ∩Σt,

and in 3D, respectively:

bt ·Λ =−k4[[Dε
4(u

ε
t ,v

ε
t )]]at∂Σt, bt ·Λ =−k5D5(u

ε
t ) at ∂Γ

O
t , (3.57)

bt ·Λ =−k6[[D6(v
ε
t )]]at∂Γ

N
t ∩Σt,

with ki ⩾ 0, i = 1, . . . ,6, and not all simultaneously equal to zero.
Finally, it is worth noting that the limit passage as ε→ 0 is possible in the penalized

equations (2.15) and (3.6). However, we can pass to the limit neither in the Lagrangian L̃ε

in (3.3), nor in its partial derivative ∂
∂s L̃

ε in (3.21) because of the lack of continuity for the
nonlinear term β ′

ε(νt · [[uεt ]]).

4. Identification of the breaking-line subject to contact with adhesion

For a numerical example in 2D, we identify the straight line

Σ= {x1 ∈ (0,1), x2 = ψ(x1)}, ψ(x1) = 0.2x1 + 0.1, (4.1)

which breaks the rectangle Ω= (0,1)× (0,0.5) into two parts Ω±. Let ∂Ω consist of the
fixed left and right Dirichlet boundaries ΓD = {x1 ∈ {0,1}, 0< x2 < 0.5}, upper and lower
Neumann boundaries ΓN = {0< x1 < 1, x2 ∈ {0,0.5}}, see figure 2. Assuming that an iso-
tropic elastic body occupies Ω we set the Young modulus EY = 73000 (mPa) and Poisson
ratio νP = 0.34 providing the Lamé parameters µL = EY/(2(1+ νP))≈ 27239 and λL =
2µLνP/(1− 2νP)≈ 57882. For the corresponding matrix of isotropic elastic coefficients C,
the stress–strain relations are given by

σij = 2µLϵij+λL(ϵ11 + ϵ22)δij, i, j = 1,2. (4.2)

The adhesion parameter is taken α= 0.1 (mPa), and the boundary force

g1 ≡ 0, g2(x1,0.5) = (1− 1.75x1)µL, g2(x1,0) =−g2(x1,0.5). (4.3)

Reasoned by flat shapes of {Σ} we approximate the normal component νt · [[u]] by [[u]]2 :=
[[u2]], and tangential [[u]]τt = [[u]]1τt by [[u]]1 := [[u1]]. The true solution z ∈ H1(Ω \Σ)2 such that
z= 0 on ΓD and [[z]]2 ⩾ 0 on Σ satisfies the VI (2.10):ˆ

Ω\Σ
σ(z) · ϵ(u− z)dx+α

ˆ
Σ

[[z]] · [[u− z]]dSx ⩾
ˆ
ΓN

g · (u− z)dSx (4.4)

for all test functions u ∈ H1(Ω \Σ)2 such that u= 0 on ΓD and [[u]]2 ⩾ 0onΣ. After finite
element (FE) discretization onMATLAB initmesh of size h= 10−2, (4.4) is solved by a primal-
dual active set (PDAS) iterative algorithm (see [23]). We plot in figure 4 the true numerical
solution zh achieved after three iterations of PDAS. In plot (a) the grid is presented in the
current (deformed) configuration x+ z(x) for x ∈ Ω \Σ under the traction prescribed at ΓN by
g from (4.3). An open part of Σ where [[z]]2 > 0 is complementary to the contact part where
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Figure 4. The true solution zh with contact computed in current configuration (a) and
componentwise (b), (c).

[[z]]2 = 0, which marked by dark elements adjacent to Σ. In plots (b) and (c) of figure 4, two
solution components (zh)1 and (zh)2 are separately depicted in the reference configuration
x ∈ Ω \Σ.

We consider a trial breaking-line Σt ∈S from the feasible set

S := {x ∈ Ω : x1 ∈ (0,1),x2 = ψ(x1) ∈ (0,0.5), ψ ∈ C(0,1)}.

Let Vt,h be the FE-space of piecewise-linear functions such that

Vt,h ⊂ V(Ωt,h) = {u ∈ H1(Ω+
t,h)

2 ∩H1(Ω−
t,h)

2| u= 0 on ΓD}.

We solve the ε-penalized forward problem (2.15): find uεt,h ∈ Vt,h such that
ˆ
Ω\Σt,h

σ(uεt,h) · ϵ(uh)dx+
ˆ
Σt,h

{
α[[uεt,h]] · [[uh]] + (βε)h

(
[[uεt,h]]2

)
[[uh]]2

}
dSx =

ˆ
ΓN
g · uh dSx (4.5)

for all uh ∈ Vt,h. By this, we disretize the penalty function βε in (2.12) as

(βε)h(s) =
1
ε
min(0,s), (β ′

ε)h(s) =
1
ε
ind{s< 0}. (4.6)

The discrete adjoint equation (3.6) consists in finding vεt,h ∈ Vt,h such thatˆ
Ω\Σt,h

σ(vh) · ϵ(vεt,h)dx+
ˆ
Σt,h

{
α[[vh]] · [[vεt,h]] (4.7)

+

ˆ 1

0
(β ′

ε)h([[ru
ε
t,h]]2)dr [[vh]]2[[v

ε
t,h]]2 dSx =

ˆ
ΓO

vh · (uεt,h− zh)dSx

for all test functions vh ∈ Vt,h.
Assuming the observation boundaryΓO = ΓN, we synthesize themeasurement zh from (4.4)

and consider the inverse problem of shape identification: find Σt such that

min
Σt∈S

J (uεt,h;Ωt) =
1
2

ˆ
ΓN

|uεt,h− zh|2 dSx+ ρ|Σt| (4.8)

where uεt,h solves (4.7). Zero minimum in (4.8) would attained at Σt =Σ and uεt,h = zh without
the contact and regularization. In this case, different meshes generated for zh and uεt,h avoid the
inverse crime.
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After solving problems (4.5) and (4.7), according to the Hadamard representation (3.44)
and (3.45) in 2D we calculate Dε

3 at the moving boundary Σt,h, and D1 at Σt,h ∩ΓD, whereas
ΓD and ΓN are fixed. From (3.47) we find the expressions

(D1)t,h = [[∇(uεt,h)
⊤σ(vεt,h)+∇(vεt,h)

⊤σ(uεt,h)]]2 at x1 = 1,

(D1)t,h =−[[∇(uεt,h)
⊤σ(vεt,h)+∇(vεt,h)

⊤σ(uεt,h)]]2 at x1 = 0,

(Dε
3)t,h = [[σ(uεt,h) · ϵ(vεt,h)]] +κt

(
ρ− pεt,h

)
− νt ·∇pεt,h

and set ρ= 1/µL. From (3.48) we have qεt,h = 0 by the virtue of (4.6), and the flat shape approx-
imation ∇νt =∇τt = 0 simplifies the gradient of pεt,h as

pεt,h = α[[uεt,h]] · [[vεt,h]] + (βε)h([[u
ε
t,h]]2) [[v

ε
t,h]]2, ∇pεt,h = [[∇vεt,h]]⊤1 α[[uεt,h]]1

+ [[∇vεt,h]]⊤2 [α id+(βε)h]([[u
ε
t,h]]2)+ [[∇uεt,h]]⊤2 (β′

ε)h([[u
ε
t,h]]2) [[v

ε
t,h]]2.

We define the discrete velocity ΛH on a coarse grid of size H> 0 at Σt. For a descent
direction, the velocity in (3.55) and (3.56) is determined by (ΛH)1 = 0 and

(ΛH)2 =−k3(Dε
3)t,h onΣt,h \ΓD, (4.9)

(ΛH)2 =−k3(Dε
3)t,h+ k1(1)

k3√
h

(
(D1)t,h

)
2
on Σt,h ∩ΓD atx1 = 1,

(ΛH)2 =−k3(Dε
3)t,h− k1(0)

k3√
h

(
(D1)t,h

)
2
on Σt,h ∩ΓD atx1 = 0,

where the scaling k3 = 0.1h/‖(ΛH)2‖C(Σt,h)
is chosen, and the weight 1/

√
h at ΓD was found

empirically in [16]. For numerical consistency of the factors k1(x1), x1 = 0,1 at Σt,h ∩ΓD in
the last two lines in (4.9), we suggest k1(1) = 1 if the contribution of

(
(D1)t,h

)
2
and −(Dε

3)t,h
has the same sign at x1 = 1, else k1(0) = 1 if the signs of −

(
(D1)t,h

)
2
and −(Dε

3)t,h are same
at x1 = 0, otherwise k1(x1) = 0.

Based on the shape gradient we suggest the identification algorithm.

Algorithm 1 (Breaking-line identification)

(0) Initialize at points sH ∈ [0,1], e.g. the middle line ψ(0)
H ≡ 0.25. Determine Σ(0) = {x1 ∈

(0,1), x2 = ψ(0)(x1)} by the linear interpolate ψ(0) of ψ(0)
H ; set n= 0.

(1) Set the breaking line Σt,h =Σ(n) and construct triangulations Ω1
t,h, Ω

2
t,h; find solutions u

ε
t,h,

vεt,h of the discrete penalty (4.5) and adjoint (4.7) equations.
(2) Calculate a velocity (ΛH)2 by formula (4.9); update the grid function

ψ
(n+1)
H = ψ

(n)
H +(ΛH)2 atpointssH ∈ [0,1]. (4.10)

From linear interpolation ψ(n+1) of ψ(n+1)
H determine the piecewise-linear segment

Σ(n+1) = {x1 ∈ (0,1), x2 = ψ(n+1)(x1)}. (4.11)

(3) If stopping criterion holds, then STOP; else set n= n+ 1 and go to Step (1).

For equidistant points sH as H= 0.1, the numerical result of Algorithm 1 stopped after
#n= 200 iterations is depicted in figure 5.
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Figure 5. Iterations of breaking line Σ(n) with contact (a), objective ratio J (n)/J (0)

(b), and shape misfit ratio R(n) (c).

Figure 6. The true solution zh without contact computed in current configuration (a) and
componentwise (b), (c).

The selected iterations n= 0,10,20,40,100,200 of Σ(n) according to (4.11) are presented
in plot (a) together with the true Σ, which is marked with the thick solid line. In plot (b)
of figure 5 we draw the ratio J (n)/J (0) of the objective function versus n ∈ [0,200]. The
computed ratio attains as minimum 0,22%. In plot (c) the shape misfit ratio

R(n) :=
‖Σ(n) −Σ‖
‖Σ(0) −Σ‖

, where ‖Σ(n) −Σ‖ := ‖ψ(n) −ψ‖C([0,1]) (4.12)

is plotted, which attains as minimum 28,73%. We note that the computation is presented for
the small penalty parameter ε= 10−10, while lager values may cause some increase of the
ratio curves after reaching the minimum.

From the simulation it can be observed in figure 5(a) that the left part of Σ without contact
is recovered well, whereas the right part of interface being in contact (see figure 4(a)) is not
approached during the iteration.

To remedy the hidden part, we apply the boundary force

g1 ≡ 0, g2(x1,0.5) = (1− 1.25x1)µL, g2(x1,0) =−g2(x1,0.5), (4.13)

which is more stretching than g in (4.3). Now the whole Σ is open as can be seen in figure 6.
The numerical result of the identification algorithm is depicted in figure 7.
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Figure 7. Iterations of breaking line Σ(n) without contact (a), objective ratio J (n)/J (0)

(b), and shape misfit ratio R(n) (c).

Here plot (a) presents the selected iterations of Σ(n), plot (b) shows the objective ratio
attaining as minimum 0,02%, and plot (c) demonstrates the shape misfit ratio R(n) from (4.12),
which decays to 0,66%. Now the whole Σ seen in figure 7 is recovered very accurate by
algorithm 1.

5. Conclusion

The paper is a part of research on directional differentiability of shape control problems sub-
jected to VIs and its applications to inverse problems in nonlinear fracture mechanics. In the
previous work [32] we developed the general theory of shape differentiability for noncovex
problems, and we applied it to the contact problem for a cohesive energy, which is non-convex
one. The new result is obtained for the surface energy, which is now convex one, but it was
not considered before in the context of inverse identification problems. From the point of view
of the theory of inverse and ill-posed problems, we have investigated how the key property of
convexity affects identifiability of a shape being under unilateral contact conditions. On the
basis of this contribution we conclude that the identification result is influenced not at first by
convexity, rather contact conditions in the complementarity form or its penalty approximation.

From our numerical simulation tests we make a conclusion that the suggested algorithm of
breaking-line identification is physically consistent with the setup of destructive physical ana-
lysis (DPA), where a defect is being opened. The DPA is widely used experimental technique
to detect the failure of a specimen.
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