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The mathematical model of a crack with non-penetration conditions is considered in the framework of
3D elasticity. The spatial crack problem is investigated with respect to its numerical realization in the
context of constrained optimization. Specifically, for homogeneous isotropic solids with planar cracks, a
Papkovich—Neuber-based representation is adopted. It allows to employ a primal-dual active set strategy
with an unconditional global and monotone convergence property. The iterates turn out to be primally
feasible. lllustrative numerical examples are presented.
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1. Motivation and introduction

In the framework of 3D elasticity theory, we consider a mathematical model of cracks constrained
by non-penetration conditions, which allow the contact of opposite crack faces, but not their penetra-
tion. Properties of well-posedness for such problems were studied in terms of variational methods by
Khludnev & Sokolowski(1999 andKhludnev & Kovtunenka2000. In the present paper, we investi-

gate a numerical approach to the constrained crack problems. Our considerations focus on 3D homoge-
neous isotropic solids with planar cracks. For 3D aspects of fracture mechanics, we refer to the classic
concepts as presented Bherepano(1979, Geubelle & Rice(1995 andMorozov & Petrov(2000

and to their numerical treatment Byiabadi & Rooke(1992 andStavroulakig2002).

Before starting with a detailed description, let us present a few illustrative examples motivating, on
one hand, the consideration of non-penetration conditions for a crack and, on the other hand, the need
of a fully 3D formulation. With respect to the latter aspect, in the present context we point out that
we cannot expect a physically meaningful decoupling of the model into independent planar states, in
general. Further, the assumption of stress-free crack faces is not applicable due to the specific loading
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and the spatial nature of the problems under consideration. Indeed, contact of crack faces is possible
and gives rise to a non-zero normal stress (the contact force) at the crack faces. In the following, we
illustrate these facts by means of numerical examples.

We consider the following rectangular geometry of a solid with a crack in the unit{@ubex; < 1,

0 < x2 < 1,|x3] < 0.5}. The solid is clamped at; = 1 and it is loaded by a traction force applied
uniformly at the marked part of the boundary; see Hi@). Assuming the condition of mutual non-
penetration for vertical displacements (along xheaxis) between the opposite surfaces of the crack in
the{xz = O}-plane, we compute a numerical solution of the elasticity problem. We find a contact zone of
the crack surfaces which is indicated in black in Hi(h). Following the standard terminology adopted

in constrained optimization, this zone is referred to as the ‘active set’. The components of displacements
and stresses at both crack surfaces are depicted, respectively, &1 Higs example clearly illustrates

the known influence of the boundary @t = 0 andx, = 1 that restricts the applicability of planar
models.

In the following examples 2 and 3, we keep the above geometry of the solid with crack and change
the loading only. The configuration of Example 2 is shown in B{g). The solution of the corresponding
elasticity problem is depicted in a componentwise fashion in4&igle can see in Fig(b) that the active
(contact) zone is split into two separate sets, which exhibit no symmetry. Hence, planar models cannot
be applied here.

Note that, due to the symmetry of the solid and the loading with respect tf(xthe- 0}-plane,
these two examples have zero jumps of tangential displacements across the crack (see the 1- and 2-
components ofi in Figs2 and4) and a non-negative jump (opening) of the vertical displacement (i.e.
the 3-component in Figgd and4), thus implying a mode-1 state of the crack.

The last example illustrated in Fig(a) deals with the case of the absence of a symmetry with respect
to the{xz = O}-plane. As a consequence, in Figwe can clearly see the appearance of a mixed state of
mode-1, mode-2 and mode-3 of the crack, i.e. non-zero jumps for all displacement components across
the crack. The active (contact) set forms an axis-symmetric region with respect{te the0.5, x3 =
0}-axis in Fig.5(b).

In the classical fracture mechanics context, one of the most intriguing aspects is to determine the
stress intensity factors in three spatial dimensions. For its various theoretical and numerical concepts,
we refer toNikishkov & Atluri (1987, Kachanov & Karapetiaif1997) and Goszet al. (1998. The
stress intensity factoreKq, K2, K3) will help us to compare the obtained numerical results with the
ones derived for the linearized model assuming stress-free crack faces. For this reason we adopt an
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FIG. 1. Example 1: geometry and loading in the crack problem.
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FIG. 2. Example 1: displacement and stress at the crack.
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FiG. 3. Example 2: geometry and loading in the crack problem.

approximate formula, se@isilino & Aliabadi (1999, which is useful in engineering practice:

E
(K1, Kz, Kg) = m\/g([ugl, [ui]. (@ - D). (1.1)

The jumps(l[u?]l, |[u2]|, |[ug]|) of the displacement components are evaluated at a distelmeleind the
crack front. The material parametdesandv stand for the Young’s modulus and the Poisson ratio.

When the loading is chosen such that it prevents self-penetration of crack faces, validation of our
numerical tools was given ikovtunenko(2006h. The results were compared with an exact 3D solution
which obeys the known square-root singularities. The example configuration of the present paper forces
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FIG. 4. Example 2: displacement and stress at the crack.
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FiG. 5. Example 3: geometry and loading in the crack problem.

contact between the crack faces. As a consequence, the difference between models occurs when we take
into account non-penetration conditions or ignore them in the model.

First, the result of numerical calculation of the stress intensity factors by forruilpi¢ depicted
in Fig. 7 for the geometry and the loading given in Examples 1 and 2. Siu?} E 0and |[.|2]| =0
along the crack front, theKo = K3 = 0 in these examples. Hence, only the non-Z€iois shown.
In Fig. 7(a), K1 is calculated for the constrained crack model which prevents self-penetration. Respec-
tively, in Fig. 7(b) K1 is given for the linearized model admitting penetration of the crack faces. The neg-
ative stress intensity factd€, in Fig. 7(b) implies self-penetration of crack faces which is inconsistent
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FIG. 6. Example 3: displacement and stress at the crack.
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FIG. 7. The non-zero stress intensity fackor (MPa,/m) at the crack front in Examples 1 and 2.

physically. It can be seen that due to the prescribed compression loading, the observed error of the lin-
earized setting of the crack problem is tremendous in Example 1. The quidatitiong the crack front
in Example 2 is depicted in Fig/(c) for both models simultaneously. The dashed line corresponds to
the model with penetration, whereas the solid line reflects the model without penetration. The figure
shows the significant difference between the curves which implies that the assumption of stress-free
crack faces is too coarse in this case.

Secondly, in the mixed-mode state of Example 3, all three stress intensity fa€tork,, K3) are
non-zero, and they are depicted in F&.While two of them,K, and K3, visually coincide for the
linearized and the constrained setting of the crack problem, the differentg fattains a relative error
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FiG. 8. The mixed-mode stress intensity factérg, Ko andK3 (MPa,/m) at the crack front in Example 3.

of 47%. Even if we cut off the negative valueskf at zero, an error of 21% remains for the linearized
setting.

Itis interesting to note that the difference of the stress intensity factors occurs olly &msociated
to the constrained component of the solution of the crack problem.

For computing a solution of crack problems with non-penetration conditions, we apply the so-called
‘primal—dual active set strategy’, which is based on a semi-smooth differentiability property of the
operator of the problem (settp & Kunisch, 2003 Hintermilller et al, 2003. It is a very efficient
tool to solve constrained optimization problems. The reason lies in the fact that a primal state variable
(displacement) and a dual state variable (normal stress) are used simultaneously to determine an active
(contact) set properly, even in cases when the two variables are close to zero. Compared to, e.g. purely
primal approaches which are basedwnonly, our primal-dual technique is numerically more stable.

In fact, it typically avoids possible chattering phenomena of the algorithm due to primal degeneracy,
i.e. very flat transitions of the jump of the displacement across the crack into the active set. In the
present paper, we investigate global convergence properties of this strategy based on a Papkovich—
Neuber representation in 3D elasticity.

From a general point of view, the principal difficulty of a convergence analysis of the primal-dual
algorithm concerns here the absence of a maximum principle for vector-valued coupled systems. There-
fore, we utilize asymptotic arguments based on a ‘Papkovich—Neuber representation’ of the 8D Lam
equations via harmonic potentials, which obey the required maximum principle. Let us briefly recall the
main formulas; se&oldstein & Entov(1994) for details. For the vector-valued Lanequation in the
spacex € R3}, e.g.

—uAvV— (g + AH)V(divv) =1, (1.2)
the solution can be represented as
1 K w4+ A
= v - —Vxw - = 1.3
V=V oo X y—-9), « 207 (1.3)
by the functionsy = (y1, w2, w3) and¢ satisfying
—Ay =f, —Ap=x'f. (1.4)

Hereu > 0 andi > 0 denote the Lai parameters anfdis a volume force. Fof = 0 and with the
particular choice

Ya=uk—DUs (@ =12, wz=puk+DUs, ¢=puk—1x'U
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in (1.4), whereU satisfies
AU=0, divU=0 (e.gU=V®, Ad=0), (1.5)
the representatiorl(3) reads as
vg =k — DUy —kX3aUz 4 (@ =1,2), v3=Uz—rX3U3z3. (1.6)

The relations 1.6) imply a decoupling of the third components of the variables from1, v2) at the
{x3 = O}-plane:

v3 =Usz, 033(V) :=2uv33+ Adivv=2uxU3z3 atxz=0. a.7)

As a consequence of 5 and (L.7), positivity/negativity properties ofz and a33(v) are determined
from the following Hopf (strong) maximum principle for the harmonic functids

The derivativdJz 3 (hencesss(v)) is strictly negative/positive at the maximum/minimumuy (hence
v3) at the boundary.

Employing these well-known constructions we are able to define a primal—dual active set strategy
with an unconditional global and monotone convergence property in Set®ection3 is devoted to
computational features of our numerical algorithm for the examples presented at the beginning of this
section.

We remark that a purely primal numerical method for constrained crack problems is presented in
Zozulya & Menshykoy2003. For advanced discretization techniques, we refer to the meshless finite-
element methods modelling 3D cracks as developef8ulgumaret al. (2000 and to the adaptive finite
elements in contact problems bl et al. (2000.

2. Continuous setting of the problem
2.1 The mixed boundary-value formulation of a constrained crack problem

Let Ic be a planar crack posed on the plgmg = 0} and located inside a domaid c R3 with the
boundaryo Q2 = I'. The crackic is assumed to be an open set in the plgrae= 0}. For the vector
u = (ug, Uz, uz) T (x) of displacements of a point = (X1, X2, x3) T € R3, we introduce the standard
tensors of 3D elasticity for the stress and strain as

aij (U) = 2ueij (u) + Agjdivu,

(2.1)
gij(u) =05 j +uji) (,]=2123),

with the Lané parameterg and . For a given load = (f1, fo, f3) T (x), we consider the following
problem of an equilibrium inQc = Q \ I¢ of a solid with the crack subject to ‘non-penetration
conditions’ written in the strong form:

—pAu— (u+ AHV(divu)y =f in Qc, (2.2a)
u=0 on/r, (2.2b)

o13(U) = o23(U) =0 onlg, (2.2¢)

[us] >0, o33(u) <0, o33u)[us] =0 onlIg, (2.2d)

with the jump Jus] = U3|1-C+ - U3|1-C— across the crack surfacégt.
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The weak formulation 0fZ.2) as a variational inequality, i.e.

/aij (Wejj (v—u)dx > / fio —u)jds forallveK,
Qc Qc

where

K ={ve HY(Qc)®:v=00nT, [vs] > 0onIc},

provides us with the generalized solutiobne K to (2.2). The solution satisfies the complementarity
conditions 2.2d in the weak form:

[us] >0 onitc, (o33(u),[vza—us]). <O forallve K.

The notation(, -) i stands for the duality pairing between elements of the mutual dual sphkés
andH /2 at I'¢; seeKhludnev & Kovtunenka(2000 for a detailed description of the dual spaces of
traces at the crack. In the above reference, additional ldéalegularity of the solution is established
except at the crack front. As a consequeneg(u) € H,é/cz(l“c), i.e. foranyx € Ic, X = (X1, x2) ',
there exists a neighbourhoodf) c /¢ such thabas(u) € H/2(0O(x)). In particular,c3z(u) is almost
everywhere well defined ifc.

The complementarity conditior2(2d) can therefore be expressed equivalently as mixed boundary
conditions, with equalities holding in the almost everywhere sense, as follows:

[us] =0 onA, o33(u) =0 onl := I\ A, (2.3)
where the strongly ‘active sefA C I¢ is defined by
A = {X e Itc: (Coz3(u) + [us]) (X, 0) < O}, (2.4)
wherec > 0 is an arbitrary constant. The complementary ‘inactive k&t’given by
I = {X e It (Coza(u) + [us]) (X, 0) > 0},
which also contains the weakly active set
{X € I'c: (cosa(u) + [us]) (X, 0) = 0}.

For properties of the equivalence between mixed formulations and variational inequalities, see
Kovtunenko(20063.

In the following section, a primal-dual active set strategy suggested by the mixed formulalien (
2.4) will be analysed. At each iteration level= —1, 0, ..., a problem of the type2(2a-2.2¢ will be
solved with the additional constraints thalgrrl)]l = 0 on the currently strongly active s&{™ and
o33(u™D) = 0 on the complement oA(™. Such a procedure can be very efficient numerically. Its
mathematical analysis is complicated by the fact that the solution of the intermediate prolléfs
can be less regular than the solutionf the limit problem. In factgaa(u™D) belongs toHlo_g/z(Fc)
with singularities along the boundary &(". In the previous work, regularization by penalization or
discretization was considered. After regularization, the primal-dual active set strategy, which is equiva-
lent to a semi-smooth Netwon method, is used. Its local convergence analysis followifrmmiiller
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et al. (2003 andlto & Kunisch (2003. However, a monotone global convergence property is available
only in specific cases; sédintermiiller et al. (2004 for examples.

In the present work, we investigate the primal—dual active set strategy without regularization. We
shall require, instead, an assumption on the regularity of the activeA$®tef the intermediate prob-
lems, which will allow a pointwise almost every interpretation af{["'] and 533(u™D). We shall
further rely on a formulation of the constrained crack probler®faspace by asymptotic arguments.
Using the Papkovich—Neuber representation for a solution of the mixed problem of linear elasticity in
a half-space, we prove global and monotone convergence properties of the iterates of the primal—dual
active set strategy iR3. This property is confirmed by our numerical findings in Sec8on

2.2 The primal—-dual active set strategyR?-space

In this section, we neglect the influence of the external boundiaand consider the problem on all
of R3. This relates to the situation where we concentrate on the behaviour of the sysgnm (@
neighbourhood of the crack. We investigate the following probleri@®R /¢:

—uAu— (u+)V(divu)y =f inR3\ Ig,
u(x) =0(1) as|x| - oo,
o13(U) = 0o23(U) =0 onIg,
[us] >0, o33(u) <0, az3(u)[us] =0 onic. (2.5)

Sinceos3(u) has a pointwise almost everywhere meaning in the opersethe complemantarity
condition in @.5), i.e. the last three relations, can be stated as mixed boundary conditions with respect
to the active sefA and its inactive complementin I¢:

[us] =0 onA={Xe It: (coz3(u) + [us])(X, 0) < O},
o33(u) =0 onl :=171¢\A.

We define a primal—dual active set algorithm corresponding.f).(
ALGORITHM 1

(0) ChooseAD c R?; setn = —1.
(1) Solve foru™+D:

—u AU — (4 + HVdivu™D) = inR3\ Ig,
u™ D) =o0(1) as|x| —» oo,
o13U™Y) = oo™y =0 onrg,
[u{"™P](x,00=0 forxe A™,

o33 D)%, 00=0 forxe ™ = e\ A, (2.6)
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(2) Compute the active set:
AP — (5 e It (cozau™ D) + [ui 1) (%, 0) < 0}. 2.7)

(3) If AMD = A then STOP; else set=n + 1 and go to Step 1.

In the following, we rely on the assumption which guarantees that the iterafies"t) are defined
almost everywhere idic. This, in turn, will be implied by an assumption that at each iteration level the
interface between strongly activé™ and inactivel (™ sets is sufficiently regular so thegz(u™?)

1/2
Hir? (A™).

LEMMA 2.1 Foralln = —1,0, ..., we assume thaA®™ = (J; A", whereA™ =A ™ c R2 are
pairwise disjoint sets of mea&™) # 0 fori = 1, ..., oo and meagA”) = 0in R. If the respective
boundaries oﬂi(") N I'c are sufficiently smooth far= 1, ..., oo, then the normal stresss(u™tD) is

defined pointwise almost everywhere/ai.

The assertion of Lemma2.1 follows directly from standart results on the local smoothness of the
solution to mixed boundary-value problems.

The stopping rule of Algorithmi is justified by the following considerations. If we assume that
AM — A then from .7) we inferoza(u™D) < 0 at AMD and ] > 0 atl ™+, This,
together with the conditions oR(6) at /¢, proves that the iteratas"*D and A™D satisfy @.5) if
Algorithm 1 terminates in Step 3. In numerical experiments with properly chosen discretization, the
algorithm typically terminates wittA™ = AM+D _|f this was not the case, termination conditions
based on residual must be used.

To investigate the behaviour of Algorithfy first we introduce the concept of feasibility. We call
the iterateu™+1) of (2.6) feasible’ if [ul' "] > 0 is satisfied af . Second, we utilize a Papkovich—
Neuber representation of the Laroperator with the help of harmonic functions, which allow us to rely
on a Hopf maximum principle. It enables us to state feasibility and a resulting monotonicity property of
the iteration process.

LEMMA 2.2 If an iterateu™ of (2.6) is feasible, them ™tV is feasible, too, and
[u™] > [u’] on I, (2.8a)

A c A, (2.8b)

Proof. Let us denote by = u™D —u®™. If [u{"] > 0 at /%, then the definition oA™ according to
(2.7) and the boundary conditions &t according to 2.6) imply that [iz] = 0 atA™ and

p = o33(l) = —oz3u™) <0 atl™.
The difference of iterate(6) for n + 1 andn reads as

—u AU = (u+)Vdivi) =0 inR3\ I,
u(x) =o(1) as|x| — oo,

o13(0) = 023(@) =0 onIlg,



A NUMERICAL APPROACH TO CRACKS WITH CONTACT IN 3D 335
[03] (X, 0) =0 forxe AM™,
033(0)(X, 0) = p(X) forx eI ™. (2.9)
Forx e Ri = {(X, x3) € R3: x3 > 0}, we determine the functions

va(X) = Ua (X, X3) + Ua (X, —X3) (@ =1,2),

(2.10)
03(X) = U3(X, X3) — U3(X, —X3),
which satisfy the following relations at the boundéxrg = 0}:
v3(%,0) = [U3] (X, 0), 033(V)(X, 0) = 2033(0)(X, 0) forx € R2. (2.11)

With the help of .10 and @.11), we can rewriteZ.9) for the functionv = (v1, v2, v3) " in Ri as
— pAV— (u+ A)V(divv) =0 inR3,
v(x) = 0(1) as|x| — oo,
013(V) = 023(V) =0 on{xz =0}, (2.12)
03(%,00=0 forxeR?\ 1M,
(2uvz s+ Adivv)(X,0) = 2p(x) forx e I,

where we used.1). The known ‘Papkovich—Neuber representation’ of the mixed boundary-value prob-
lem (2.12) in a half-space expresse the form

vg = (k — DU, —xx3Us, (o =1,2),
(2.13)

A
27 7)

by three harmonic potentials = (U1, U, U3) T (x) such thatAU = 0 and divU = 0. Asx3 = 0 from
(2.13), it follows that

03 = U3 - KX3U3,3 (K =

03(X,0) = U3(X,0), (2uv3zz+ Adivv)(X, 0) = 2uxU33(X, 0). (2.14)
Thus, the harmonic functiods satisfies the relations
-3
AU3=0 inRZ,
Usz(X) =0(1) as|x| — oo,

Us(X,00=0 forxeR?\ 1™,
5 Lo 0
Us3(X, 0= —px) <0 forxel™; (2.15)
UK

hence,Us(X,0) > 0 for X € R? due to the ‘Hopf maximum principle’. As a consequence 2fL.{)
and @.14 we infer 2.89. The feasibility ofu™D and @.7) leads to the assertio2.8h). The proof is
completed. d

To attain the feasibility property, the initializatio — = @ in Step 0 of Algorithml is suitable, as
we shall see in the following lemma.
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LEMMA 2.3 For the iterate© satisfying
—uAu©@ — (u+ HVdivu@) =f inR3\ I,
u@x) =o(1) aslx| = oo, (2.16)
o13u?) = 523(u?) = 533u @) =0 onrz,
the next iterateiV is feasible.
Proof. Denoting byt = u® — u© with u© from (2.16), we arrive at
A = (x e I [uP](%,0) < 0},
10 = (x e Ie: [uP](%,0) > 0}

Hence, [is] > 0 atA© andp := o33(@) = 0 at1 ©. Employing the representatior.{0 and .13
again, similarly to 2.15), we arrive at

AU3=0 inR3,
Us(X) = 0(1) as|x| — oo,

Us(X,0) >0 forxeR?\ 1@,
5 Lo e |O
U33(X,00 = —pX) =0 forxe ™.
UK

Utilizing the Hopf maximum principle and assuming that there exists 1© such thatUz(Xo, 0) < 0
attains its minimum, we obtain a contradiction to the conditigrz(Xo, 0) = 0. ThereforeUs(X, 0) > 0
at1©. Thus, from .11) and .14, we derive "] > [u] > 0 at1 @ and "] =0atA®. O

Summarizing the results of Lemm&s2 and 2.3, we conclude with the following proposition on
‘global convergence’.

PROPOSITION2.1 Starting with a feasible iteraté” (n > 0), the iterates of Algorithrit are monotone,
ie.

0<[uT <[u§™™I <. <[usl onre, (2.17a)
e AM 5 AMHD 5. 5 AF, (2.17Db)

for u* and A* satisfying @.5).

Proof. For the arbitrary, feasible iteraté™ with [ul"] > 0, let us considedi = u* — u®™ with

u* fulfilling (2.5). Using the relations2(5), we derive [is] (X,0) > 0 for x € AM™ and p(X) =
033(0) (X, 0) < 0 forx e | ™, Therefore, the same arguments as used i) to (2.15 for G imply
[G3] > 0 and, thus,Z.179. Moreover,

A N1 C (x e R% [us] (%, 0) =0, [u"](%,0) > O} = 6;

otherwise, [is] < 0 would yield a contradiction. The latter fact provides us with the assed|j.
U
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3. Discretized problem and numerical examples
3.1 The primal—dual active set strategy after discretization

Here we return to the situation whef®is a bounded domain and consider in the filitelimensional
space the vectok = (X1,..., Xn)T € RN of unknowns, assembling in an appropriate way compo-
nents of the displacement vectar; (x™), uz(x™), uz(x™) " at grid pointsx™ with m = (1,..., N/3)

in the domainQ¢ with a crack. We assume that a jumpg]] across the crackc is described by differ-
encediz(x™) —uz(x¥) with x™ e 7' & andx e 17, thus forming a matrixt e RIBI*N of a full column
rank|B] < N for a set of indiced3. We also suppose that the non-penetration condition rdad% 0.
Associated with a boundary tractiars(u) at /¢, an unknown vecto¥ = (Y1,...,Yn)' € RIBI
stands for dual variables (a Lagrange multiplier). Foe RN given, after a suitable discretization of
(2.2a-2.29, (2.3) and @.4) we arrive at the linear complementarity problem

LX 4+ A4TY=F,
(AX)m=0 forallme A= {k e B: (cY + AX)x < 0}, (3.1)
Yn=0 forallme |l ={ke B:(cY + 4AX)x > 0},
with the stiffness matrik. € RN*N which is symmetric and positive definite.

Similar to Algorithm 1, a primal-dual active set strategy applied 81) implies the following
iteration.

ALGORITHM 2

(0) ChooseA™V c B; setn = —1.
(1) Solve for(X("D y(+Dy ¢ RN x RIBI:

Lx (M+D) + ATYy+D) F,
(AX™ ) =0 forallme A™,
YD =0 forallme 1™ :=B\AM, (3-2)

(2) Compute the active set:
AMHD — (k e B: (Y™ 4+ AXMHDy < 0). (3.3)

(3) If AOtD = AM then STOP; else set=n + 1 and go to Step 1.

In Hintermiller et al. (2004), the well-posedness of the linear proble3r} with fixed n was inves-
tigated in the general context of positive-definite matrices. Further, the locally superlinear convergence
and sufficient conditions for a global convergence to the solutiorBdj @sn increases were given.
Based on the unconditional results of Sectiyrin the following we present in details computational
features of Algorithn® applied to a homogeneous isotropic solid with a planar crack.

Note that Algorithm2 is not immediately a discrete version of AlgorithfinThis is due to the fact
that system3.2) represents a discrete version of the elasticity problem with certain setting$oand
I ™ on the bounded domai@c. However, if the far-field influence is small, then the stiffness matrix
is close to the discrete operator of the problem on the unbounded domain.
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3.2 Geometric and physical data of the problem

Let us treat Example 2 from Sectidras the basic example for this and the next sections. We consider
the unite cube? = {0 < x1 < 1,0 < X2 < 1, |x3| < 0.5} containing inside the crackc = {0 < X1 <
0.75,0 < x2 < 1, x3 = 0}. We assume that a volume lo&d= 0, that the solid occupying the domain
OQc =0\ Icisclampedatx;s = 1,0 < X2 < 1, |x3| < 0.5} and that it is loaded by a traction force at
S= StUS. The remain part of the boundary &fis assumed to be stress free. The boundary loading
is taken as

—o012(U) = =0, —o22(u) =0, o320u)=0

N (3.4)
onST={0<x1 <09 x=0,01< £x3 < 0.5}

with the constangy = 0.001x, Lamé parameters = 2vu/(1 — 2v) andu = 0.5E/(1 + v), where
v = 0.34 andE = 73000 (MPa), thug ~ 27 (MPa). In Examples 1 and 3 of Sectibrinstead of 8.4)
we had

—o013(U) =Fg9, —o11(U) = —012(u) =0

onST ={x;=0,0 < x» <1,0.1 < +x3 < 0.5}

TABLE 1 Number of unknowns N for mesh skze

Mesh sizeh 0.05 0.025 0.01(6)
No. of unknownsN 29106 211806 692106

n=0 n=1 n=2

ol
0 075 1 075 1 0 075 1

(=]
=
~
(]
-
(=)

o

0 075 1 0.75 1 0 075 1 0 075 1
X4 Xq X4 Xq

FiG. 9. IterationsA(" of the active set.
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149 -7

1583,

¥2 070 Xq X2 0 0 X4

154 - 154 4 154 -

FiG. 10. lteratesrz3(u(™) of the stress afxz = 0}.

and

—o22(U) =+0, —o12(U) = —023(u) =0

onSt ={0<x; <09,x=05F05,01 < +x3 < 0.5}.

For the current feasibility study, we discretize the dom@ixwith a crack by a uniform triangula-
tion and apply standard linear finite elements. Accounting double points located symmetrically at the
interface with crackO < x1 < 1,0 < X2 < 1, x3 = 0}, the numbemN of unknowns ofX for the 3D
elasticity problem3.1) is presented in Tablg in dependence of the mesh stze

To solve the matrix equatior8(2), inner loop Symmetric Successive Over Relaxation-iterations are
terminated with tol= 10710, For the determination of the active set ;13), a constant is taken in the
range of(10~2, 1072). In the case whenaY ™D 4+ AX(+D s close to zero, for computational reasons
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it can be helpful to use instead &.9)
A — (ke B: (Y™ 4 AXFDy < —4)

with smalld > 0. In our examples we used= 10~1°.

3.3 Convergence of the numerical algorithm

Now we present the results of our numerical computations obtained by Alga2ithinen solving prob-
lem (3.1) with the data from Sectio8.2 In the following,h is fixed ash = 0.01(6).

Starting withAC-D = g, the history of iterateé\("™ of the active setas = 0, ..., 7 is illustrated in
Fig. 9. Algorithm 2 was terminated in Step 3 with the same active set struélire) = AM™ atiteration
n = 7 (i.e. after nine iterates), thus reaching the exact solutonY*, A*) = (XM, Y™ AM) to the

n=0 n=1 n=2

2 00

FIG. 11. lterates [lgn)]] x 10° of the jump at{xz = 0}.
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discrete problem3.1). During the iterationA© is split into two separate subsets. In Figwe observe
monotone convergence of active sets:

IcD AL D..-D A — A(+D) . A",

which is in accordance with Propositi@nl

The history of the iterateajfg”)]l (respectiverAX(”)) of the jump of the displacements at the =
0}-plane containing the cradk: is depicted in Figl1. The corresponding stresss(u™) reconstructed
from the discrete Lagrange multiplicatéf” by means of a piecewise linear approximation is presented
in Fig. 10.

Note that, for such initializations, probler8.p) atn = 0 represents an elasticity problem in the
linear setting of stress-free crack surfaces without non-penetration conditions. Firstly, the corresponding
active setA© implies mutual interpenetration between the crack surfaces, as it can be viewedlif, Fig.
which is inconsistent physically. Second®y? differs significantly from the true active sét depicted
in the last plot of Fig9.

By refining the mesh, i.e. decreasing the mesh hizéhe numerical solutions td(1) computed
by Algorithm 2 for varioush are compared with respect to the potential energy and the active set in
Fig. 12(a,b), respectively. We observe linear convergence of the corresponding energies and that the
active sets are close to each other.

The number of iterations required to successfully terminate Algori2hspresented in Tablg.

Note that it increases moderately with decreasing

The last two facts illustrate a stable behaviour of the primal-dual active set algorithm also with

respect to the mesh refinement.

(a) energy (b) active set
1 g
x 1073
oh=005
53 oh=0025
o h =0.01(6) _
E s
S -54 <! %
E @
~ o
-55
0 0.025 0.05
mesh size (m) 0
0 0.75 1

X4
FiG. 12. Solution characteristics by decreasing

TABLE 2 Number of iterations for mesh sihe

Mesh sizeh 0.05 0.025 0.01(6)
No. of iterations 7 8 9
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4. Discussion

In this paper, a primal-dual active set strategy is proposed to numerically solve crack problems with
non-penetration conditions. We focus on 3D aspects. On the basis of this approach, we present some of
our findings in numerical experiments.

To interpret the physical implications we observe the following. The stress intensity f&ci@usd
K3 are not influenced significantly when frictionless contact occurs at the crack. On the cdfiraay)
take a negative value due to the contact implying self-penetration of crack faces. It happens often in the
engineering practice that a sm&l, < O can be ignored without essential loss of accuracy. However,
we find that the error iK1 can be rather large in the following cases: First, it is evident that the pure
compression loading gives rise to contact between the opposite crack faces. Secondly, for arbitrary
loading applied at the boundary of a finite body the compression traction at a crack cannot be neglected
in three spatial dimensions. In our examples, we demonstrate that boundary effects have a significant
influence on the stress intensity factors. Thirdly, applying the commonly adopted simplification due to
plane deformations disregards the 3D nature of contact at a crack.
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