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The mathematical model of a crack with non-penetration conditions is considered in the framework of
3D elasticity. The spatial crack problem is investigated with respect to its numerical realization in the
context of constrained optimization. Specifically, for homogeneous isotropic solids with planar cracks, a
Papkovich–Neuber-based representation is adopted. It allows to employ a primal–dual active set strategy
with an unconditional global and monotone convergence property. The iterates turn out to be primally
feasible. Illustrative numerical examples are presented.
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1. Motivation and introduction

In the framework of 3D elasticity theory, we consider a mathematical model of cracks constrained
by non-penetration conditions, which allow the contact of opposite crack faces, but not their penetra-
tion. Properties of well-posedness for such problems were studied in terms of variational methods by
Khludnev & Sokolowski(1999) andKhludnev & Kovtunenko(2000). In the present paper, we investi-
gate a numerical approach to the constrained crack problems. Our considerations focus on 3D homoge-
neous isotropic solids with planar cracks. For 3D aspects of fracture mechanics, we refer to the classic
concepts as presented byCherepanov(1979), Geubelle & Rice(1995) andMorozov & Petrov(2000)
and to their numerical treatment byAliabadi & Rooke(1992) andStavroulakis(2001).

Before starting with a detailed description, let us present a few illustrative examples motivating, on
one hand, the consideration of non-penetration conditions for a crack and, on the other hand, the need
of a fully 3D formulation. With respect to the latter aspect, in the present context we point out that
we cannot expect a physically meaningful decoupling of the model into independent planar states, in
general. Further, the assumption of stress-free crack faces is not applicable due to the specific loading
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and the spatial nature of the problems under consideration. Indeed, contact of crack faces is possible
and gives rise to a non-zero normal stress (the contact force) at the crack faces. In the following, we
illustrate these facts by means of numerical examples.

We consider the following rectangular geometry of a solid with a crack in the unit cube{0 < x1 < 1,
0 < x2 < 1, |x3| < 0.5}. The solid is clamped atx1 = 1 and it is loaded by a traction force applied
uniformly at the marked part of the boundary; see Fig.1(a). Assuming the condition of mutual non-
penetration for vertical displacements (along thex3-axis) between the opposite surfaces of the crack in
the{x3 = 0}-plane, we compute a numerical solution of the elasticity problem. We find a contact zone of
the crack surfaces which is indicated in black in Fig.1(b). Following the standard terminology adopted
in constrained optimization, this zone is referred to as the ‘active set’. The components of displacements
and stresses at both crack surfaces are depicted, respectively, in Fig.2. This example clearly illustrates
the known influence of the boundary atx2 = 0 andx2 = 1 that restricts the applicability of planar
models.

In the following examples 2 and 3, we keep the above geometry of the solid with crack and change
the loading only. The configuration of Example 2 is shown in Fig.3(a). The solution of the corresponding
elasticity problem is depicted in a componentwise fashion in Fig.4. We can see in Fig.3(b) that the active
(contact) zone is split into two separate sets, which exhibit no symmetry. Hence, planar models cannot
be applied here.

Note that, due to the symmetry of the solid and the loading with respect to the{x3 = 0}-plane,
these two examples have zero jumps of tangential displacements across the crack (see the 1- and 2-
components ofu in Figs2 and4) and a non-negative jump (opening) of the vertical displacement (i.e.
the 3-component in Figs2 and4), thus implying a mode-1 state of the crack.

The last example illustrated in Fig.5(a) deals with the case of the absence of a symmetry with respect
to the{x3 = 0}-plane. As a consequence, in Fig.6 we can clearly see the appearance of a mixed state of
mode-1, mode-2 and mode-3 of the crack, i.e. non-zero jumps for all displacement components across
the crack. The active (contact) set forms an axis-symmetric region with respect to the{x2 = 0.5, x3 =
0}-axis in Fig.5(b).

In the classical fracture mechanics context, one of the most intriguing aspects is to determine the
stress intensity factors in three spatial dimensions. For its various theoretical and numerical concepts,
we refer toNikishkov & Atluri (1987), Kachanov & Karapetian(1997) andGoszet al. (1998). The
stress intensity factors(K1, K2, K3) will help us to compare the obtained numerical results with the
ones derived for the linearized model assuming stress-free crack faces. For this reason we adopt an

FIG. 1. Example 1: geometry and loading in the crack problem.
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FIG. 2. Example 1: displacement and stress at the crack.

FIG. 3. Example 2: geometry and loading in the crack problem.

approximate formula, seeCisilino & Aliabadi (1999), which is useful in engineering practice:

(K1, K2, K3) =
E

4(1− ν2)

√
π

2h
([[uh

3]] , [[uh
1]] , (1− ν)[[uh

2]]). (1.1)

The jumps([[uh
1]] , [[uh

2]] , [[uh
3]]) of the displacement components are evaluated at a distanceh behind the

crack front. The material parametersE andν stand for the Young’s modulus and the Poisson ratio.
When the loading is chosen such that it prevents self-penetration of crack faces, validation of our

numerical tools was given inKovtunenko(2006b). The results were compared with an exact 3D solution
which obeys the known square-root singularities. The example configuration of the present paper forces
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FIG. 4. Example 2: displacement and stress at the crack.

FIG. 5. Example 3: geometry and loading in the crack problem.

contact between the crack faces. As a consequence, the difference between models occurs when we take
into account non-penetration conditions or ignore them in the model.

First, the result of numerical calculation of the stress intensity factors by formula (1.1) is depicted
in Fig. 7 for the geometry and the loading given in Examples 1 and 2. Since [[uh

1]] = 0 and [[uh
2]] = 0

along the crack front, thenK2 = K3 = 0 in these examples. Hence, only the non-zeroK1 is shown.
In Fig. 7(a), K1 is calculated for the constrained crack model which prevents self-penetration. Respec-
tively, in Fig.7(b) K1 is given for the linearized model admitting penetration of the crack faces. The neg-
ative stress intensity factorK1 in Fig. 7(b) implies self-penetration of crack faces which is inconsistent
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FIG. 6. Example 3: displacement and stress at the crack.

FIG. 7. The non-zero stress intensity factorK1 (MPa
√

m) at the crack front in Examples 1 and 2.

physically. It can be seen that due to the prescribed compression loading, the observed error of the lin-
earized setting of the crack problem is tremendous in Example 1. The quantityK1 along the crack front
in Example 2 is depicted in Fig.7(c) for both models simultaneously. The dashed line corresponds to
the model with penetration, whereas the solid line reflects the model without penetration. The figure
shows the significant difference between the curves which implies that the assumption of stress-free
crack faces is too coarse in this case.

Secondly, in the mixed-mode state of Example 3, all three stress intensity factors(K1, K2, K3) are
non-zero, and they are depicted in Fig.8. While two of them,K2 and K3, visually coincide for the
linearized and the constrained setting of the crack problem, the difference forK1 attains a relative error
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FIG. 8. The mixed-mode stress intensity factorsK1, K2 andK3 (MPa
√

m) at the crack front in Example 3.

of 47%. Even if we cut off the negative values ofK1 at zero, an error of 21% remains for the linearized
setting.

It is interesting to note that the difference of the stress intensity factors occurs only forK1 associated
to the constrained component of the solution of the crack problem.

For computing a solution of crack problems with non-penetration conditions, we apply the so-called
‘primal–dual active set strategy’, which is based on a semi-smooth differentiability property of the
operator of the problem (see,Ito & Kunisch, 2003; Hintermüller et al., 2003). It is a very efficient
tool to solve constrained optimization problems. The reason lies in the fact that a primal state variable
(displacement) and a dual state variable (normal stress) are used simultaneously to determine an active
(contact) set properly, even in cases when the two variables are close to zero. Compared to, e.g. purely
primal approaches which are based onu only, our primal–dual technique is numerically more stable.
In fact, it typically avoids possible chattering phenomena of the algorithm due to primal degeneracy,
i.e. very flat transitions of the jump of the displacement across the crack into the active set. In the
present paper, we investigate global convergence properties of this strategy based on a Papkovich–
Neuber representation in 3D elasticity.

From a general point of view, the principal difficulty of a convergence analysis of the primal–dual
algorithm concerns here the absence of a maximum principle for vector-valued coupled systems. There-
fore, we utilize asymptotic arguments based on a ‘Papkovich–Neuber representation’ of the 3D Lamé
equations via harmonic potentials, which obey the required maximum principle. Let us briefly recall the
main formulas; seeGoldstein & Entov(1994) for details. For the vector-valued Lamé equation in the
space{x ∈ R3}, e.g.

−µ1v− (µ+ λ)∇(div v) = f , (1.2)

the solution can be represented as

v=
1

µ
ψψψ −

κ

2µ
∇(x>ψψψ − φ), κ =

µ+ λ

2µ+ λ
(1.3)

by the functionsψψψ = (ψ1, ψ2, ψ3) andφ satisfying

−1ψψψ = f , −1φ = x>f . (1.4)

Hereµ > 0 andλ > 0 denote the Laḿe parameters andf is a volume force. Forf = 0 and with the
particular choice

ψα = µ(κ − 1)Uα (α = 1, 2), ψ3 = µ(κ + 1)U3, φ = µ(κ − 1)x>U
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in (1.4), whereU satisfies

1U = 0, div U = 0 (e.g.U = ∇Φ, 1Φ = 0), (1.5)

the representation (1.3) reads as

vα = (κ − 1)Uα − κx3U3,α (α = 1, 2), v3 = U3− κx3U3,3. (1.6)

The relations (1.6) imply a decoupling of the third componentsv3 of the variables from(v1, v2) at the
{x3 = 0}-plane:

v3 = U3, σ33(v) := 2µv3,3+ λdiv v= 2µκU3,3 at x3 = 0. (1.7)

As a consequence of (1.5) and (1.7), positivity/negativity properties ofv3 andσ33(v) are determined
from the following Hopf (strong) maximum principle for the harmonic functionU3:

The derivativeU3,3 (henceσ33(v)) is strictly negative/positive at the maximum/minimum ofU3 (hence
v3) at the boundary.

Employing these well-known constructions we are able to define a primal–dual active set strategy
with an unconditional global and monotone convergence property in Section2. Section3 is devoted to
computational features of our numerical algorithm for the examples presented at the beginning of this
section.

We remark that a purely primal numerical method for constrained crack problems is presented in
Zozulya & Menshykov(2003). For advanced discretization techniques, we refer to the meshless finite-
element methods modelling 3D cracks as developed bySukumaret al. (2000) and to the adaptive finite
elements in contact problems byHu et al. (2000).

2. Continuous setting of the problem

2.1 The mixed boundary-value formulation of a constrained crack problem

Let ΓC be a planar crack posed on the plane{x3 = 0} and located inside a domainΩ ⊂ R3 with the
boundary∂Ω = Γ . The crackΓC is assumed to be an open set in the plane{x3 = 0}. For the vector
u = (u1, u2, u3)

>(x) of displacements of a pointx = (x1, x2, x3)
> ∈ R3, we introduce the standard

tensors of 3D elasticity for the stress and strain as

σi j (u) = 2µεi j (u)+ λδi j div u,

εi j (u) = 0.5(ui, j + u j,i ) (i, j = 1, 2, 3),
(2.1)

with the Laḿe parametersµ andλ. For a given loadf = ( f1, f2, f3)>(x), we consider the following
problem of an equilibrium inΩC = Ω \ ΓC of a solid with the crack subject to ‘non-penetration
conditions’ written in the strong form:

−µ1u− (µ+ λ)∇(div u) = f in ΩC, (2.2a)

u = 0 onΓ, (2.2b)

σ13(u) = σ23(u) = 0 onΓ ±C , (2.2c)

[[u3]] > 0, σ33(u) 6 0, σ33(u)[[u3]] = 0 onΓC, (2.2d)

with the jump [[u3]] = u3|Γ +C
− u3|Γ −C

across the crack surfacesΓ ±C .
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The weak formulation of (2.2) as a variational inequality, i.e.
∫

ΩC

σi j (u)εi j (v− u)dx >
∫

ΩC

fi (v − u)i ds for all v ∈ K ,

where

K = {v ∈ H1(ΩC)
3: v= 0 onΓ, [[v3]] > 0 onΓC},

provides us with the generalized solutionu ∈ K to (2.2). The solution satisfies the complementarity
conditions (2.2d) in the weak form:

[[u3]] > 0 onΓC, 〈σ33(u), [[v3− u3]]〉ΓC 6 0 for all v ∈ K .

The notation〈·, ·〉ΓC stands for the duality pairing between elements of the mutual dual spacesH1/2

and H−1/2 atΓC; seeKhludnev & Kovtunenko(2000) for a detailed description of the dual spaces of
traces at the crack. In the above reference, additional localH2-regularity of the solution is established
except at the crack front. As a consequence,σ33(u) ∈ H1/2

loc (ΓC), i.e. for anyx̄ ∈ ΓC, x̄ = (x1, x2)
>,

there exists a neighbourhood O(x̄) ⊂ ΓC such thatσ33(u) ∈ H1/2(O(x̄)). In particular,σ33(u) is almost
everywhere well defined inΓC.

The complementarity condition (2.2d) can therefore be expressed equivalently as mixed boundary
conditions, with equalities holding in the almost everywhere sense, as follows:

[[u3]] = 0 on A, σ33(u) = 0 on I := ΓC \ A, (2.3)

where the strongly ‘active set’A ⊆ ΓC is defined by

A = {x̄ ∈ ΓC: (cσ33(u)+ [[u3]])(x̄, 0) < 0}, (2.4)

wherec > 0 is an arbitrary constant. The complementary ‘inactive set’I is given by

I = {x̄ ∈ ΓC: (cσ33(u)+ [[u3]])(x̄, 0) > 0},

which also contains the weakly active set

{x̄ ∈ ΓC: (cσ33(u)+ [[u3]])(x̄, 0) = 0}.

For properties of the equivalence between mixed formulations and variational inequalities, see
Kovtunenko(2006a).

In the following section, a primal–dual active set strategy suggested by the mixed formulation (2.3–
2.4) will be analysed. At each iteration leveln = −1, 0, . . ., a problem of the type (2.2a–2.2c) will be
solved with the additional constraints that [[u(n+1)

3 ]] = 0 on the currently strongly active setA(n) and
σ33(u(n+1)) = 0 on the complement ofA(n). Such a procedure can be very efficient numerically. Its
mathematical analysis is complicated by the fact that the solution of the intermediate problemsu(n+1)

can be less regular than the solutionu of the limit problem. In fact,σ33(u(n+1)) belongs toH−1/2
loc (ΓC)

with singularities along the boundary ofA(n). In the previous work, regularization by penalization or
discretization was considered. After regularization, the primal–dual active set strategy, which is equiva-
lent to a semi-smooth Netwon method, is used. Its local convergence analysis follows fromHintermüller
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et al. (2003) andIto & Kunisch (2003). However, a monotone global convergence property is available
only in specific cases; seeHintermüller et al. (2004) for examples.

In the present work, we investigate the primal–dual active set strategy without regularization. We
shall require, instead, an assumption on the regularity of the active setsA(n) of the intermediate prob-
lems, which will allow a pointwise almost every interpretation of [[u(n+1)

3 ]] and σ33(u(n+1)). We shall
further rely on a formulation of the constrained crack problem inR3-space by asymptotic arguments.
Using the Papkovich–Neuber representation for a solution of the mixed problem of linear elasticity in
a half-space, we prove global and monotone convergence properties of the iterates of the primal–dual
active set strategy inR3. This property is confirmed by our numerical findings in Section3.

2.2 The primal–dual active set strategy inR3-space

In this section, we neglect the influence of the external boundaryΓ and consider the problem on all
of R3. This relates to the situation where we concentrate on the behaviour of the system (2.2) in a
neighbourhood of the crack. We investigate the following problem onR3 \ ΓC:

−µ1u− (µ+ λ)∇(div u) = f in R3 \ ΓC,

u(x) = o(1) as|x| → ∞,

σ13(u) = σ23(u) = 0 onΓ ±C ,

[[u3]] > 0, σ33(u) 6 0, σ33(u)[[u3]] = 0 onΓC. (2.5)

Sinceσ33(u) has a pointwise almost everywhere meaning in the open setΓC, the complemantarity
condition in (2.5), i.e. the last three relations, can be stated as mixed boundary conditions with respect
to the active setA and its inactive complementI in ΓC:

[[u3]] = 0 on A = {x̄ ∈ ΓC: (cσ33(u)+ [[u3]])(x̄, 0) < 0},

σ33(u) = 0 on I := ΓC \ A.

We define a primal–dual active set algorithm corresponding to (2.5).

ALGORITHM 1

(0) ChooseA(−1) ⊂ R2; setn = −1.

(1) Solve foru(n+1):

−µ1u(n+1) − (µ+ λ)∇(div u(n+1)) = f in R3 \ ΓC,

u(n+1)(x) = o(1) as|x| → ∞,

σ13(u(n+1)) = σ23(u(n+1)) = 0 onΓ ±C ,

[[u(n+1)
3 ]](x̄, 0) = 0 for x̄ ∈ A(n),

σ33(u(n+1))(x̄, 0) = 0 for x̄ ∈ I (n) := ΓC \ A(n). (2.6)
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(2) Compute the active set:

A(n+1) = {x̄ ∈ ΓC: (cσ33(u(n+1))+ [[u(n+1)
3 ]])(x̄, 0) < 0}. (2.7)

(3) If A(n+1) = A(n) then STOP; else setn = n+ 1 and go to Step 1.

In the following, we rely on the assumption which guarantees that the iteratesσ33(u(n+1)) are defined
almost everywhere inΓC. This, in turn, will be implied by an assumption that at each iteration level the
interface between strongly activeA(n) and inactiveI (n) sets is sufficiently regular so thatσ33(u(n+1)) ∈
H1/2

loc (A
(n)).

LEMMA 2.1 For alln = −1, 0, . . . , we assume thatA(n) =
⋃∞

i=0 A(n)i , whereA(n)i =
◦

Ā (n)
i ⊂ R

2 are

pairwise disjoint sets of meas(A(n)i ) 6= 0 for i = 1, . . . ,∞ and meas(A(n)0 ) = 0 inR2. If the respective

boundaries ofA(n)i ∩ ΓC are sufficiently smooth fori = 1, . . . ,∞, then the normal stressσ33(u(n+1)) is
defined pointwise almost everywhere atΓC.

The assertion of Lemma2.1 follows directly from standart results on the local smoothness of the
solution to mixed boundary-value problems.

The stopping rule of Algorithm1 is justified by the following considerations. If we assume that
A(n) = A(n+1), then from (2.7) we inferσ33(u(n+1)) < 0 at A(n+1) and [[u(n+1)

3 ]] > 0 at I (n+1). This,
together with the conditions of (2.6) at ΓC, proves that the iteratesu(n+1) and A(n+1) satisfy (2.5) if
Algorithm 1 terminates in Step 3. In numerical experiments with properly chosen discretization, the
algorithm typically terminates withA(n) = A(n+1). If this was not the case, termination conditions
based on residual must be used.

To investigate the behaviour of Algorithm1, first we introduce the concept of feasibility. We call
the iterateu(n+1) of (2.6) ‘feasible’ if [[u(n+1)

3 ]] > 0 is satisfied atΓC. Second, we utilize a Papkovich–
Neuber representation of the Lamé operator with the help of harmonic functions, which allow us to rely
on a Hopf maximum principle. It enables us to state feasibility and a resulting monotonicity property of
the iteration process.

LEMMA 2.2 If an iterateu(n) of (2.6) is feasible, thenu(n+1) is feasible, too, and

[[u(n+1)
3 ]] > [[u(n)3 ]] on ΓC, (2.8a)

A(n+1) ⊆ A(n). (2.8b)

Proof. Let us denote bȳu = u(n+1) − u(n). If [[ u(n)3 ]] > 0 atΓC, then the definition ofA(n) according to
(2.7) and the boundary conditions atΓC according to (2.6) imply that [[ū3]] = 0 at A(n) and

p := σ33(ū) = −σ33(u(n)) 6 0 at I (n).

The difference of iterates (2.6) for n+ 1 andn reads as

−µ1ū− (µ+ λ)∇(div ū) = 0 in R3 \ ΓC,

ū(x) = o(1) as|x| → ∞,

σ13(ū) = σ23(ū) = 0 onΓ ±C ,
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[[ ū3]](x̄, 0) = 0 for x̄ ∈ A(n),

σ33(ū)(x̄, 0) = p(x̄) for x̄ ∈ I (n). (2.9)

For x ∈ R3
+ := {(x̄, x3) ∈ R3: x3 > 0}, we determine the functions

vα(x) = ūα(x̄, x3)+ ūα(x̄,−x3) (α = 1, 2),

v3(x) = ū3(x̄, x3)− ū3(x̄,−x3),
(2.10)

which satisfy the following relations at the boundary{x3 = 0}:

v3(x̄, 0) = [[ ū3]](x̄, 0), σ33(v)(x̄, 0) = 2σ33(ū)(x̄, 0) for x̄ ∈ R2. (2.11)

With the help of (2.10) and (2.11), we can rewrite (2.9) for the functionv= (v1, v2, v3)
> in R3

+ as

− µ1v− (µ+ λ)∇(div v) = 0 in R3
+,

v(x) = o(1) as|x| → ∞,

σ13(v) = σ23(v) = 0 on{x3 = 0},

v3(x̄, 0) = 0 for x̄ ∈ R2 \ I (n),

(2µv3,3+ λdiv v)(x̄, 0) = 2p(x̄) for x̄ ∈ I (n),

(2.12)

where we used (2.1). The known ‘Papkovich–Neuber representation’ of the mixed boundary-value prob-
lem (2.12) in a half-space expressesv in the form

vα = (κ − 1)Uα − κx3U3,α (α = 1, 2),

v3 = U3− κx3U3,3

(
κ =

µ+ λ

2µ+ λ

) (2.13)

by three harmonic potentialsU = (U1,U2,U3)
>(x) such that1U = 0 and divU = 0. As x3 = 0 from

(2.13), it follows that

v3(x̄, 0) = U3(x̄, 0), (2µv3,3+ λdiv v)(x̄, 0) = 2µκU3,3(x̄, 0). (2.14)

Thus, the harmonic functionU3 satisfies the relations

1U3= 0 inR3
+,

U3(x)= o(1) as|x| → ∞,

U3(x̄, 0)= 0 for x̄ ∈ R2 \ I (n),

U3,3(x̄, 0)=
1

µκ
p(x̄) 6 0 for x̄ ∈ I (n); (2.15)

hence,U3(x̄, 0) > 0 for x̄ ∈ R2 due to the ‘Hopf maximum principle’. As a consequence of (2.11)
and (2.14) we infer (2.8a). The feasibility ofu(n+1) and (2.7) leads to the assertion (2.8b). The proof is
completed. �

To attain the feasibility property, the initializationA(−1) = ∅ in Step 0 of Algorithm1 is suitable, as
we shall see in the following lemma.
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LEMMA 2.3 For the iterateu(0) satisfying

− µ1u(0) − (µ+ λ)∇(div u(0)) = f in R3 \ ΓC,

u(0)(x) = o(1) as|x| → ∞,

σ13(u(0)) = σ23(u(0)) = σ33(u(0)) = 0 onΓC,

(2.16)

the next iterateu(1) is feasible.

Proof. Denoting byū = u(1) − u(0) with u(0) from (2.16), we arrive at

A(0) = {x̄ ∈ ΓC: [[u(0)3 ]](x̄, 0) < 0},

I (0) = {x̄ ∈ ΓC: [[u(0)3 ]](x̄, 0) > 0}.

Hence, [[̄u3]] > 0 at A(0) and p := σ33(ū) = 0 at I (0). Employing the representations (2.10) and (2.13)
again, similarly to (2.15), we arrive at

1U3 = 0 inR3
+,

U3(x) = o(1) as|x| → ∞,

U3(x̄, 0) > 0 for x̄ ∈ R2 \ I (0),

U3,3(x̄, 0) =
1

µκ
p(x̄) = 0 for x̄ ∈ I (0).

Utilizing the Hopf maximum principle and assuming that there existsx̄0 ∈ I (0) such thatU3(x̄0, 0) < 0
attains its minimum, we obtain a contradiction to the conditionU3,3(x̄0, 0) = 0. Therefore,U3(x̄, 0) > 0
at I (0). Thus, from (2.11) and (2.14), we derive [[u(1)3 ]] > [[u(0)3 ]] > 0 at I (0) and [[u(1)3 ]] = 0 at A(0). �

Summarizing the results of Lemmas2.2 and2.3, we conclude with the following proposition on
‘global convergence’.

PROPOSITION2.1 Starting with a feasible iterateu(n) (n > 0), the iterates of Algorithm1 are monotone,
i.e.

06 [[u(n)3 ]] 6 [[u(n+1)
3 ]] 6 · · · 6 [[u?3]] on ΓC, (2.17a)

ΓC ⊇ A(n) ⊇ A(n+1) ⊇ · · · ⊇ A?, (2.17b)

for u? andA? satisfying (2.5).

Proof. For the arbitrary, feasible iterateu(n) with [[u(n)3 ]] > 0, let us consider̄u = u? − u(n) with
u? fulfilling ( 2.5). Using the relations (2.5), we derive [[̄u3]](x̄, 0) > 0 for x̄ ∈ A(n) and p(x̄) :=
σ33(ū)(x̄, 0) 6 0 for x̄ ∈ I (n). Therefore, the same arguments as used from (2.10) to (2.15) for ū imply
[[ ū3]] > 0 and, thus, (2.17a). Moreover,

A? ∩ I (n) ⊆ {x̄ ∈ R2: [[u?3]](x̄, 0) = 0, [[u(n)3 ]](x̄, 0) > 0} = ∅;

otherwise, [[̄u3]] < 0 would yield a contradiction. The latter fact provides us with the assertion (2.17b).
�
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3. Discretized problem and numerical examples

3.1 The primal–dual active set strategy after discretization

Here we return to the situation whereΩ is a bounded domain and consider in the finiteN-dimensional
space the vectorX = (X1, . . . , XN)

> ∈ RN of unknowns, assembling in an appropriate way compo-
nents of the displacement vector(u1(xm), u2(xm), u3(xm))> at grid pointsxm with m = (1, . . . , N/3)
in the domainΩC with a crack. We assume that a jump [[u3]] across the crackΓC is described by differ-
encesu3(xm)−u3(xk) with xm ∈ Γ +C andxk ∈ Γ −C , thus forming a matrixΛΛΛ ∈ R|B|×N of a full column
rank|B| < N for a set of indicesB. We also suppose that the non-penetration condition readsΛΛΛX > 0.
Associated with a boundary tractionσ33(u) at ΓC, an unknown vectorY = (Y1, . . . ,YN)

> ∈ R|B|

stands for dual variables (a Lagrange multiplier). ForF ∈ RN given, after a suitable discretization of
(2.2a–2.2c), (2.3) and (2.4) we arrive at the linear complementarity problem

LX +ΛΛΛ>Y = F,

(ΛΛΛX)m = 0 for all m ∈ A = {k ∈ B: (cY+ΛΛΛX)k < 0},

Ym = 0 for all m ∈ I = {k ∈ B: (cY+ΛΛΛX)k > 0},

(3.1)

with the stiffness matrixL ∈ RN×N which is symmetric and positive definite.
Similar to Algorithm 1, a primal–dual active set strategy applied to (3.1) implies the following

iteration.

ALGORITHM 2

(0) ChooseA(−1) ⊂ B; setn = −1.

(1) Solve for(X(n+1),Y(n+1)) ∈ RN × R|B|:

LX(n+1) +ΛΛΛ>Y(n+1) = F,

(ΛΛΛX(n+1))m = 0 for all m ∈ A(n),

Y(n+1)
m = 0 for all m ∈ I (n) := B \ A(n). (3.2)

(2) Compute the active set:

A(n+1) = {k ∈ B: (cY(n+1) +ΛΛΛX(n+1))k < 0}. (3.3)

(3) If A(n+1) = A(n) then STOP; else setn = n+ 1 and go to Step 1.

In Hintermüller et al. (2004), the well-posedness of the linear problem (3.2) with fixedn was inves-
tigated in the general context of positive-definite matrices. Further, the locally superlinear convergence
and sufficient conditions for a global convergence to the solution of (3.1) asn increases were given.
Based on the unconditional results of Section2, in the following we present in details computational
features of Algorithm2 applied to a homogeneous isotropic solid with a planar crack.

Note that Algorithm2 is not immediately a discrete version of Algorithm1. This is due to the fact
that system (3.2) represents a discrete version of the elasticity problem with certain settings onA(n) and
I (n) on the bounded domainΩC. However, if the far-field influence is small, then the stiffness matrixL
is close to the discrete operator of the problem on the unbounded domain.
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3.2 Geometric and physical data of the problem

Let us treat Example 2 from Section1 as the basic example for this and the next sections. We consider
the unite cubeΩ = {0< x1 < 1, 0< x2 < 1, |x3| < 0.5} containing inside the crackΓC = {0< x1 <
0.75, 0 < x2 < 1, x3 = 0}. We assume that a volume loadf = 0, that the solid occupying the domain
ΩC = Ω \ ΓC is clamped at{x1 = 1, 0< x2 < 1, |x3| 6 0.5} and that it is loaded by a traction force at
S= S+ ∪ S−. The remain part of the boundary ofΩ is assumed to be stress free. The boundary loading
is taken as

− σ12(u) = −g, −σ22(u) = 0, σ32(u) = 0

on S± = {0< x1 < 0.9, x2 = 0, 0.1< ±x3 < 0.5}
(3.4)

with the constantg = 0.001µ, Lamé parametersλ = 2νµ/(1− 2ν) andµ = 0.5E/(1+ ν), where
ν = 0.34 andE = 73000 (MPa), thusg ≈ 27 (MPa). In Examples 1 and 3 of Section1, instead of (3.4)
we had

− σ13(u) = ∓g, −σ11(u) = −σ12(u) = 0

on S± = {x1 = 0, 0< x2 < 1, 0.1< ±x3 < 0.5}

TABLE 1 Number of unknowns N for mesh sizeh

Mesh sizeh 0.05 0.025 0.01(6)
No. of unknownsN 29106 211806 692106

FIG. 9. IterationsA(n) of the active set.
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FIG. 10. Iteratesσ33(u
(n)) of the stress at{x3 = 0}.

and

− σ22(u) = ±g, −σ12(u) = −σ23(u) = 0

on S± = {0< x1 < 0.9, x2 = 0.5∓ 0.5, 0.1< ±x3 < 0.5}.

For the current feasibility study, we discretize the domainΩC with a crack by a uniform triangula-
tion and apply standard linear finite elements. Accounting double points located symmetrically at the
interface with crack{0 < x1 < 1, 0 < x2 < 1, x3 = 0}, the numberN of unknowns ofX for the 3D
elasticity problem (3.1) is presented in Table1 in dependence of the mesh sizeh.

To solve the matrix equation (3.2), inner loop Symmetric Successive Over Relaxation-iterations are
terminated with tol= 10−10. For the determination of the active set in (3.3), a constantc is taken in the
range of(10−3, 10−2). In the case whencY(n+1) +ΛΛΛX(n+1) is close to zero, for computational reasons
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it can be helpful to use instead of (3.3)

A(n+1) = {k ∈ B: (cY(n+1) +ΛΛΛX(n+1))k < −δ}

with smallδ > 0. In our examples we usedδ = 10−10.

3.3 Convergence of the numerical algorithm

Now we present the results of our numerical computations obtained by Algorithm2 when solving prob-
lem (3.1) with the data from Section3.2. In the following,h is fixed ash = 0.01(6).

Starting withA(−1) = ∅, the history of iteratesA(n) of the active set asn = 0, . . . , 7 is illustrated in
Fig.9. Algorithm2 was terminated in Step 3 with the same active set structureA(n+1) = A(n) at iteration
n = 7 (i.e. after nine iterates), thus reaching the exact solution(X?,Y?, A?) = (X(n),Y(n), A(n)) to the

FIG. 11. Iterates [[u(n)3 ]] × 105 of the jump at{x3 = 0}.
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discrete problem (3.1). During the iteration,A(0) is split into two separate subsets. In Fig.9, we observe
monotone convergence of active sets:

ΓC ⊇ A(1) ⊇ · · · ⊇ A(n) = A(n+1) := A?,

which is in accordance with Proposition2.1.
The history of the iterates [[u(n)3 ]] (respectivelyΛΛΛX(n)) of the jump of the displacements at the{x3 =

0}-plane containing the crackΓC is depicted in Fig.11. The corresponding stressσ33(u(n)) reconstructed
from the discrete Lagrange multiplicatorY(n) by means of a piecewise linear approximation is presented
in Fig. 10.

Note that, for such initializations, problem (3.2) at n = 0 represents an elasticity problem in the
linear setting of stress-free crack surfaces without non-penetration conditions. Firstly, the corresponding
active setA(0) implies mutual interpenetration between the crack surfaces, as it can be viewed in Fig.11,
which is inconsistent physically. Secondly,A(0) differs significantly from the true active setA? depicted
in the last plot of Fig.9.

By refining the mesh, i.e. decreasing the mesh sizeh, the numerical solutions to (3.1) computed
by Algorithm 2 for varioush are compared with respect to the potential energy and the active set in
Fig. 12(a,b), respectively. We observe linear convergence of the corresponding energies and that the
active sets are close to each other.

The number of iterations required to successfully terminate Algorithm2 is presented in Table2.
Note that it increases moderately with decreasingh.

The last two facts illustrate a stable behaviour of the primal–dual active set algorithm also with
respect to the mesh refinement.

FIG. 12. Solution characteristics by decreasingh.

TABLE 2 Number of iterations for mesh sizeh

Mesh sizeh 0.05 0.025 0.01(6)
No. of iterations 7 8 9
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4. Discussion

In this paper, a primal–dual active set strategy is proposed to numerically solve crack problems with
non-penetration conditions. We focus on 3D aspects. On the basis of this approach, we present some of
our findings in numerical experiments.

To interpret the physical implications we observe the following. The stress intensity factorsK2 and
K3 are not influenced significantly when frictionless contact occurs at the crack. On the contrary,K1 can
take a negative value due to the contact implying self-penetration of crack faces. It happens often in the
engineering practice that a smallK1 < 0 can be ignored without essential loss of accuracy. However,
we find that the error inK1 can be rather large in the following cases: First, it is evident that the pure
compression loading gives rise to contact between the opposite crack faces. Secondly, for arbitrary
loading applied at the boundary of a finite body the compression traction at a crack cannot be neglected
in three spatial dimensions. In our examples, we demonstrate that boundary effects have a significant
influence on the stress intensity factors. Thirdly, applying the commonly adopted simplification due to
plane deformations disregards the 3D nature of contact at a crack.
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