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a b s t r a c t 

The Boussinesq problem, namely the indentation of a flat-ended cylindrical punch into a 

viscoelastic half-space is studied. We assume a linear viscoelastic model wherein the lin- 

earized strain is expressed as a function of the stress. However, this expression is not in- 

vertible, which makes the problem very interesting. Based on the Papkovich–Neuber rep- 

resentation in potential theory and using the Fourier–Bessel transform for axisymmetric 

bodies, an analytical solution of the resulting time-dependent integral equation is con- 

structed. Consequently, distribution of the displacement and the stress fields in the half 

space with respect to time is obtained in the closed form. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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1. Introduction 

Indentation is probably one of the most often used experimental procedures to determine the material properties of a

body. Unlike other experimental procedures that are global and provide an average value of the material moduli, indenta-

tion can be used to determine the material moduli locally. Thus, in inhomogeneous materials, indentation can be used to

determine how the material properties vary over the body. Nano-indentation can also be used to determine the properties

of very small bodies, and studying the problem of indentation is essential when one is concerned with determining the

material properties of inhomogeneous bodies. 

In this study, we are interested in analyzing the problem of the response of a linear viscoelastic body when it is

subject to indentation. With regard to linear viscoelasticity one can express the stress in terms of the history of strain or

vice-versa. However, the constitutive relations that are used are invariably invertible. The constitutive relation that we
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consider expresses the linearized strain in terms of the history of the stress, an interesting feature of the constitutive

relation being that it cannot be inverted to express the stress as a function of the strain. We have purposely chosen such a

model. Providing an expression of the strain in terms of the history of the stress is in keeping with causality as force/stress

is the cause and the deformation/strain is the effect. Moreover, such an approach can be viewed as a simplification of more

general implicit constitutive relations wherein the one has an implicit relationship between the stress and the strain (see

Rajagopal, 2003 ). 

Boltzmann (1874) was the first to introduce an integral model to describe linear viscoelastic response. Based on the linear

viscoelastic model Lockett (1972) introduced nonlinear models wherein stress is expressed as a nonlinear function of strain

or the strain as a nonlinear function of the stress. Earlier, Green and Rivlin (1957) and Green, Rivlin, and Spencer (1959) had

introduced nonlinear models to describe the response of viscoelasticity, but these models are not amenable to analysis.

In view of this, Fung (1981) introduced a quasilinear viscoelastic model, however in his model the stress was given as a

function of the history of the strain. Muliana, Rajagopal, and Wineman (2013) developed quasilinear viscoelastic models

wherein the strain is function of the history of the stress. The model that we study can be viewed as a linearization of

a model belonging to the class of viscoelastic models introduced by Muliana et al. (2013) wherein the linearized strain is

expressed as a nonlinear function of the history of the stress. 

It is well known that solution of problems in linear viscoelasticity can be obtained by appealing to a correspondence

principle between the solutions in linearized elasticity and linear viscoelasticity. However, for the correspondence principle

to be applicable certain conditions with regard to the deformation and the loading have to be satisfied. Wineman and

Rajagopal (20 0 0) provide several examples where the correspondence principle fails. The problem under consideration is

an example where one cannot appeal to the correspondence principle. Thus, we have to study the governing equations

for the viscoelastic solid that we are indenting without appealing to the correspondence principle. Finally it is necessary

to remark that while the solution that we seek are time dependent, we are not considering inertial effects. Thus, we are

only interested in solving the balance of linear momentum in the absence of inertial effects. The time dependence of the

solutions is a consequence of the material under consideration being viscoelastic. 

In this paper we consider the response for the linearized viscoelastic model which takes the following integral form for

time t > 0 

ε (t) = K (0) F ( T (t)) + 

∫ t 

0 

K 

′ (t − s ) F (T (s )) ds , (1)

where F is the compliance tensor. The positive kernel K that appears in the Volterra convolution operator in (1) is usually

assumed to be given by the exponential sum 

K(t) = K(0) + 

N ∑ 

n =1 

K n 

(
1 − e −t/τn 

)
, K 

′ (t) = 

N ∑ 

n =1 

K n 

τn 
e −t/τn (2) 

with parameters K(0) , K 1 , . . . , K N , τ1 , . . . τN ≥ 0 , that characterize the generalized creep. If K ( t ) ≡ 1, then (1) reduces to the

classical Hooke’s law 

ε = FT . (3) 

In general, the representation (1) cannot be inverted even being linear in T . If N = 1 and K(0) = 0 in (2) , then K 

′′ (t) =
−K 

′ (t) /τ1 and K 

′ (0) = K 1 /τ1 , on differentiating (1) with respect to t we derive the linearized Kelvin–Voigt model 

ε + τ1 ˙ ε = K 1 FT , (4) 

where dot stands for the time derivative. For relevant studies of the Kelvin–Voigt model (see Bulíček, Málek, and Ra-

jagopal (2012) , Erbay and Ş engül (2015) and Itou, Kovtunenko, and Rajagopal (2018) ). 

The constitutive model (1) is a specific case of the more general class of nonlinear viscoelastic models when we sub-

stitute FT with a nonlinear relationship F(T ) . In the context of quasi-linear viscoelasticity, such models were investigated

with respect to well-posedness in Itou, Kovtunenko, and Rajagopal (2019a) . For related issues of nonlinear relationships

F(T ) within the context of limiting small strain ‖ ε ‖ ≤ M , we refer the reader to Itou, Kovtunenko, and Rajagopal (2017) ,

Itou, Kovtunenko, and Rajagopal (2019b) and Kulvait, Málek, and Rajagopal (2019) . 

Within the context of contact mechanics, an important subclass of the problems adjacent to cracks subject to

non-penetration was developed by Khludnev and Kovtunenko (20 0 0) , and Khludnev and Sokołowski (1997) . Itou and

Tani (2011) studied the problem of cracks in a linear viscoelastic body, and Hintermüller, Kovtunenko, and Kunisch (2009) ,

Itou, Kovtunenko, and Tani (2011) , Khludnev and Shcherbakov (2018) , Lazarev and Rudoy (2014) studied the problem of a

non-penetrating crack within the context of the linearized elastic relationship. 

In the current paper, we study the linearized viscoelastic model (1) with respect to time dependent contact indenta-

tion by a rigid punch. The indentation test on viscoelastic materials has technological importance because of the ubiquitous

use of inhomogeneous materials such as composites and inhomogeneous polymeric bodies. For instance, the identification

of viscoelastic properties of bitumen is determined by indentation tests (see in Jäger, Lackner, & Eberhardsteiner, 2007 ).

For the theory of the surface loading of a half-space we refer the reader to Argatov and Mishuris (2018) , Galin (2008) ,

Popov and Heß (2015) , Selvadurai (2001) and others. This is closely related to the Boussinesq problem (see Boussinesq, 1885 )
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Fig. 1. The geometric configuration of a flat-punch indentation problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consisting in finding the deformation of a half-space subject to a concentrated load applied at the origin on its plane bound-

ary and perpendicular to it. We study the deformation of a viscoelastic half-space under normal indentation of a flat-ended

cylindrical punch, then pass to the limit as the punch radius tends to zero thus solving the Boussinesq problem. 

The indentation problem is formulated as follows. For spatial points x = (x 1 , x 2 , x 3 ) in the half space { x 3 ≥ 0} and time

t ≥ 0, find the displacement vector u (t, x ) = (u 1 , u 2 , u 3 ) and the symmetric stress tensor T (t, x ) = { T i j } 3 i, j=1 
which solve the

equilibrium equations neglecting body forces and inertial effects 

3 ∑ 

j=1 

T i j, j (t, x ) = 0 , i = 1 , 2 , 3 , (5)

(where the index j after comma means the partial derivative with respect to x j ) and the constitutive relation for the vis-

coelastic body (1) takes the form 

ε [ u (t, x )] = K(0) FT (t, x ) + 

∫ t 

0 

K 

′ (t − s ) FT (s, x ) ds, (6)

where ε [ u ] = { ε i j [ u ] } 3 
i, j=1 

is the linearized strain with the entries 

ε i j [ u (t, x )] := 

1 

2 

(
u i, j + u j,i 

)
(t, x ) , i, j = 1 , 2 , 3 . (7)

At infinity the following asymptotic condition is assumed, 

u (t, x ) → 0 as | x | → ∞ . (8)

At the plane boundary { x 3 = 0 } the cylindrical punch with the flat end of radius h > 0 is indented perpendicularly with a

given normal force F ( t ) ≥ 0 such that 

F (t) = −
∫ 
| (x 1 ,x 2 ) | <h 

T 33 (t, x 1 , x 2 , 0) d x 1 d x 2 . (9)

Neglecting sliding and the effects of friction, the contact conditions at x 3 = 0 consist in the tangential stress-free conditions

T 13 (t, x 1 , x 2 , 0) = T 23 (t, x 1 , x 2 , 0) = 0 , (10)

and the complementary conditions 

u 3 (t, x 1 , x 2 , 0) = D (t) , T 33 (t, x 1 , x 2 , 0) ≤ 0 , for | (x 1 , x 2 ) | < h, (11)

u 3 (t, x 1 , x 2 , 0) ≥ 0 , T 33 (t, x 1 , x 2 , 0) = 0 , for | (x 1 , x 2 ) | > h, (12)

with the unknown indentation depth D ( t ) ≥ 0 to be found. 

Due to the axisymmetric structure of the problem, relations (5) –(12) can be rewritten in the cylindrical coordinates

r = | (x 1 , x 2 ) | , θ = arctan (x 2 /x 1 ) , z = x 3 , and these relations depend on t, r and z , but not on θ . The geometric configuration

determined by u z ( t, r , 0) and T zz ( t, r , 0) at the boundary z = 0 for fixed t is portrayed in Fig. 1 . 

It is worth recalling that we cannot invert the implicit relationship (6) and substitute the stress T into the balance

Eq. (5) as it is usually done when solving indentation problems expressed by explicit linear relations (i.e., when T is ex-

pressed in the terms of ε [ u ]). Therefore, in order to construct a solution to the indentation problem (5) –(12) in the closed

form, we rely on the following arguments. 

We introduce an auxiliary vector v (t, x ) = (v 1 , v 2 , v 3 ) and rewrite the response (6) equivalently as 

ε [ v (t, x )] = FT (t, x ) , (13)

u (t, x ) = K(0) v (t, x ) + 

∫ t 

K 

′ (t − s ) v (s, x ) ds =: I t [ v ( · , x )] , (14)

0 
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where the tensor ε [ v ] = { ε i j [ v ] } 3 i, j=1 
is defined through 

ε i j [ v (t, x )] := 

1 

2 

(
v i, j + v j,i 

)
(t, x ) , i, j = 1 , 2 , 3 . (15)

Indeed, if the Eq. (14) holds, then applying ε [ ·] to both sides we can interchange ε and the integral Volterra operator I t and

with the help of (13) to derive (6) . The converse holds true up to a rigid motion, which vanishes due to the condition at

infinity (8) . We also note that the variable v is redundant and it can be eliminated after solving the problem. 

2. Theoretical considerations 

In the following we assume that the compliance tensor F describes isotropic materials within the relationship (3) such

that (13) reads 

ε [ v ] = 

1 + ν

E 
T − ν

E 
tr (T ) I , (16) 

where E and ν are Young’s modulus and Poisson’s ratio, I is the identity tensor, the trace tr (T ) = T 11 + T 22 + T 33 . Inverting

Hooke’s law (16) as 

T = 2 με [ v ] + λtr (ε [ v ]) I (17)

for the Lamé parameters λ = Eν/ ((1 − 2 ν)(1 + ν)) and μ = E/ (2(1 + ν)) , and substituting (17) into the balance Eq. (5) to-

gether with the definition (15) of the linearized strain tensor leads to the homogeneous Lamé equation for v 

μ�v + (λ + μ) ∇[ div (v )] = 0 , (18) 

with the Laplacian � = ∂ 2 /∂ x 2 1 + ∂ 2 /∂ x 2 2 + ∂ 2 /∂ x 2 3 , the gradient vector ∇ = (∂ /∂ x 1 , ∂ /∂ x 2 , ∂ /∂ x 3 ) , and the divergence

div (v ) = tr [ ∇v] . In this case, we can apply to (18) the representation of Papkovich (1932) and Neuber (1934) for the so-

lution in the form 

v = 4(1 − ν) ψ − ∇[ x · ψ + φ] , (19) 

which is determined by four arbitrary harmonic potentials φ and ψ = (ψ 1 , ψ 2 , ψ 3 ) satisfying �ψ = �φ = 0 when no body

forces are present. The stress tensor in (17) satisfies the following relation (see Lurie, 2005 , Section 4.1.4) 

T = 2 μ
(
4(1 − ν) ε [ ψ] + 2 νdiv (ψ) I − ∇ ∇ [ x · ψ + φ] 

)
, (20) 

with the Hessian matrix of second-order derivatives ∇∇ = { ∂ 2 / (∂ x i ∂ x j ) } 3 i, j=1 
. 

In the cylindrical coordinate system ( r, θ , z ) such that 

x = (r, 0 , z) �(θ ) , �(θ ) = 

( 

cos θ − sin θ 0 

sin θ cos θ 0 

0 0 1 

) 

, (21) 

multiplying (19) with the rotation matrix �( θ ) we get 

(v r , v θ , v z ) := v�(θ ) = 4(1 − ν)(ψ r , ψ θ , ψ z ) − ∇�(θ )[ rψ r + zψ z + φ] , (22)

where ∇�(θ ) = (∂ /∂ r, 1 /r∂ /∂ θ, ∂ /∂ z) , for arbitrary potentials ( ψ r , ψ θ , ψ z ) := ψ�( θ ) satisfying 

�(r,θ ,z) ψ r − 1 

r 2 
ψ r − 2 

r 2 
ψ θ,θ = 0 , �(r,θ ,z) ψ z = 0 , 

�(r,θ ,z) ψ θ − 1 

r 2 
ψ θ + 

2 

r 2 
ψ r,θ = 0 , �(r,θ ,z) φ = 0 , (23) 

with the Laplacian in cylindrical coordinates �(r,θ ,z) = ∂ 2 /∂ r 2 + 1 /r∂ /∂ r + 1 /r 2 ∂ 2 /∂ θ2 + ∂ 2 /∂ z 2 . The stress tensor in cylin-

drical coordinates can be obtained by using the formula �(−θ ) T�(θ ) applied to (20) . The boundary conditions (9) –(12)

imply the respective relations (40) and (45) –(47) written below. 

Due to the axisymmetric structure of the problem, relations (21) –(23) do not depend on θ , and they are reduced to two

unknown potentials ψ z and φ (see Lurie, 2005 , Section 4.1.12) satisfying according to (23) the following equations 

ψ z,rr + 

1 

r 
ψ z,r + ψ z,zz = 0 , φ,rr + 

1 

r 
φ,r + φ,zz = 0 . (24)

After setting ψ r = ψ θ ≡ 0 in (22) we have 

v r = −zψ z,r − φ,r , v θ = 0 , v z = (3 − 4 ν) ψ z − zψ z,z − φ,z , (25)

and from (20) the formula for the stresses is derived (compare with Korsunsky, 1995; Zhou & Gao, 2013 ) 



H. Itou, V.A. Kovtunenko and K.R. Rajagopal / International Journal of Engineering Science 151 (2020) 103272 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T rr = 2 μ(−zψ z,rr + 2 νψ z,z − φ,rr ) , T θθ = 2 μ
(
− z 

r 
ψ z,r + 2 νψ z,z − 1 

r 
φ,r 

)
, 

T rz = 2 μ( (1 − 2 ν) ψ z,r − zψ z,rz − φ,rz ) , T rθ = 0 , 

T zz = 2 μ( 2(1 − ν) ψ z,z − zψ z,zz − φ,zz ) , T θz = 0 . (26)

We apply to Eq. (24) the Fourier–Bessel (also called Hanckel) transform using the Bessel function J m 

of order m = 0 , 1 ,

to obtain (see Harding & Sneddon, 1945 ) 

0 = 

∫ ∞ 

0 

(
ψ z,rr + 

1 

r 
ψ z,r + ψ z,zz 

)
J 0 (rξ ) r dr = 

(
d 2 

dz 2 
− ξ 2 

)
H 0 [ ψ z ] , (27)

which obeys the general solution decaying at the infinity according to (8) as ∫ ∞ 

0 

ψ z (t, r, z) J 0 (rξ ) r dr := H 0 [ ψ z ](ξ , z) = C(t, ξ ) e −zξ (28)

with a free factor C . Similarly, H 0 [ φ](ξ , z) = A (t, ξ ) exp (−zξ ) with a factor A . Inverting these integral equations and taking

the Laplace transform 

ψ z (t, r, z) = L [ C(t, ξ ) J 0 (rξ ) ξ ] := 

∫ ∞ 

0 

e −zξC(t, ξ ) J 0 (rξ ) ξ dξ , 

φ(t, r, z) = L [ A (t, ξ ) J 0 (rξ ) ξ ] := 

∫ ∞ 

0 

e −zξ A (t, ξ ) J 0 (rξ ) ξ dξ . (29)

For further use we note the following differentiation rules 

ψ z,r = −L [ C(t, ξ ) J 1 (rξ ) ξ 2 ] , ψ z,z = −L [ C(t, ξ ) J 0 (rξ ) ξ 2 ] , 

ψ z,rr = L 

[ 
C(t, ξ ) 

(
1 

rξ
J 1 (rξ ) − J 0 (rξ ) 

)
ξ 3 

] 
, 

ψ z,rz = L [ C(t, ξ ) J 1 (rξ ) ξ 3 ] , ψ z,zz = L [ C(t, ξ ) J 0 (rξ ) ξ 3 ] , (30)

similar results hold for φ. To reduce the number of unknown coefficients, we insert (29) and (26) into the tangential stress-

free condition (10) and use (30) to calculate 

0 = T rz (t, r, 0) = −2 μL [ ( (1 − 2 ν) C(t, ξ ) + A (t, ξ ) ξ ) J 1 (rξ ) ξ 2 ] , 

and hence 

A (t, ξ ) ξ = −(1 − 2 ν) C(t, ξ ) . (31)

Inserting (29) and (31) into (25) and (26) we derive the final integral representations with one unknown coefficient C ( ξ ) for

the nonzero components 

v r = L [(zξ − 1 + 2 ν) C(t, ξ ) J 1 (rξ ) ξ ] , 

v z = L [(2(1 − ν) + zξ ) C(t, ξ ) J 0 (rξ ) ξ ] , (32)

and for the nonzero components of the stress 

T rr = 2 μL 

[(
1 − 2 ν − zξ

r 
J 1 (rξ ) + (zξ − 1) J 0 (rξ ) ξ

)
C(t, ξ ) ξ

]
, 

T θθ = 2 μL 

[(
zξ − 1 + 2 ν

r 
J 1 (rξ ) − 2 νJ 0 (rξ ) ξ

)
C(t, ξ ) ξ

]
, 

T rz = −2 μL [ zC(t, ξ ) J 1 (rξ ) ξ 3 ] , T zz = −2 μL [(1 + zξ ) C(t, ξ ) J 0 (rξ ) ξ 2 ] . (33)

To treat the normal stress-free condition T zz (t, r, 0) = 0 for r > h in (12) , we represent the free factor C with the help of

the cosine Fourier transform as 

C(t, ξ ) = 

1 

2(1 − ν) ξ

∫ h 

0 

p( t) q ( l) cos ( ξ l) dl, (34)

by means of unknown functions p ( t ) and q ( l ) (see Sneddon, 1960 ). Indeed, substituting (34) into (33) , interchanging the

order of integration, using integration by parts for ξ cos (lξ ) = 

d 
dl 

sin (lξ ) and the discontinuous Weber–Schafheitlin integral

(see Abramowitz and Stegun, 1972 , 11.4.39) 

∫ ∞ 

0 

sin (lξ ) J 0 (r ξ ) dξ = 

⎧ ⎨ 

⎩ 

0 if l < r 

1 √ 

l 2 − r 2 
if l > r 

, (35)
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we calculate T zz (t, r, 0) = −2 μH 0 [ C(t, ξ ) ξ ] as 

T zz (t, r, 0) = − E 

2(1 − ν2 ) 

∫ h 

0 

p(t) q (l) 
(∫ ∞ 

0 

ξ cos (lξ ) J 0 (rξ ) dξ
)

dl 

= 

E 

2(1 − ν2 ) 

⎧ ⎨ 

⎩ 

∫ h 

r 

p(t) q ′ (l) √ 

l 2 − r 2 
dl − p(t) q (h ) √ 

h 

2 − r 2 
if r < h 

0 if r > h 

. (36) 

Inserting (34) into (32) and using the other discontinuous Weber–Schafheitlin integral 

∫ ∞ 

0 

cos (lξ ) J 0 (r ξ ) dξ = 

⎧ ⎨ 

⎩ 

1 √ 

r 2 − l 2 
if l < r 

0 if l > r 

, 

we find that 

v z (t, r, 0) = 2(1 − ν) H 0 [ C(t, ξ )] = 

∫ h 

0 

p(t) q (l ) 
(∫ ∞ 

0 

cos (l ξ ) J 0 (rξ ) dξ
)

dl 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∫ r 

0 

p(t) q (l) √ 

r 2 − l 2 
dl if r < h 

∫ h 

0 

p(t) q (l) √ 

r 2 − l 2 
dl if r > h 

, (37) 

and from (14) obtain the representation for the normal displacement u z ( t, r, z ) at the boundary z = 0 as 

u z (t, r, 0) = I t 

[∫ min (r,h ) 

0 

p q (l) √ 

r 2 − l 2 
dl 

]
. (38) 

Finally, applying (38) to the normal displacement in (11) , we derive the resulting integral equation 

K(0) 

∫ r 

0 

p(t) q (l) √ 

r 2 − l 2 
dl + 

∫ t 

0 

K 

′ (t − s ) 

(∫ r 

0 

p(s ) q (l) √ 

r 2 − l 2 
dl 

)
ds = D (t) (39) 

for determining the unknowns from the given contact force due to (9) 

−2 π

∫ h 

0 

T zz (t, r, 0) r dr = F (t) . (40) 

3. The main result 

Gathering together representations of Section 2 we restate the indentation problem (5) –(12) for the flat-ended axisym-

metric punch. Given the punch radius h > 0 and the time-dependent normal force F ( t ) ≥ 0 with rate ˙ F (t) , for all radii r ≥ 0,

depths z ≥ 0, and times t ≥ 0 find the punch indentation depth D ( t, h ), displacement u r ( t, r, z ), u z ( t, r, z ), and stress T rr ( t, r,

z ), T θθ ( t, r, z ), T rz ( t, r, z ), T zz ( t, r, z ) in the viscoelastic body which satisfy: the balance equations 

T rr,r + T rz,z + 

1 

r 
(T rr − T θθ ) = 0 , T rz,r + T zz,z + 

1 

r 
T rz = 0 ; (41)

the constitutive equations 

ε rr = 

1 

E 
I t [ T rr − ν(T θθ + T zz ) ] , ε θθ = 

1 

E 
I t [ T θθ − ν(T rr + T zz ) ] , 

ε zz = 

1 

E 
I t [ T zz − ν(T rr + T θθ ) ] ε rz = 

1 + ν

E 
I t [ T rz ] ; (42) 

the linearized strain equations 

ε rr = u r,r , ε θθ = 

1 

r 
u r , ε zz = u z,z , ε rz = 

1 

2 

(u r,z + u z,r ) ; (43)

and the asymptotic condition at infinity 

u r , u z → 0 as 
√ 

r 2 + z 2 → ∞ . (44) 

As z = 0 , the normal stress T zz fulfills (40) , and the following boundary conditions hold: the tangential stress-free condition

T rz (t, r, 0) = 0 (45) 
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and the complementary contact conditions 

u z (t, r, 0) = D (t , h ) , T zz (t , r, 0) ≤ 0 , for r < h, (46)

u z (t, r, 0) ≥ 0 , T zz (t, r, 0) = 0 , for r > h. (47)

Theorem 1 (Flat-punch indentation) . The flat-punch indentation problem (40) –(47) has the solution expressed in the analytical

form as follows: the indentation depth is given by 

D (t, h ) = 

1 

2 hM 

I t [ F ] , M := 

E 

1 − ν2 
; (48)

the displacement is given by 

u r = 

D (h ) 

π(1 − ν) 

(
−(1 − 2 ν) J 1 0 (h ) + zJ 1 1 (h ) 

)
, 

u z = 

D (h ) 

π(1 − ν) 

(
2(1 − ν) J 0 0 (h ) + zJ 0 1 (h ) 

)
; (49)

and the stress is given by 

T rr = 

F 

2 πh 

(
1 − 2 ν

r 
J 1 0 (h ) − J 0 1 (h ) − z 

r 
J 1 1 (h ) + zJ 0 2 (h ) 

)
, 

T rz = − F 

2 πh 

zJ 1 2 (h ) , T zz = − F 

2 πh 

(
J 0 1 (h ) + zJ 0 2 (h ) 

)
, 

T θθ = 

F 

2 πh 

(
−1 − 2 ν

r 
J 1 0 (h ) − 2 νJ 0 1 (h ) + 

z 

r 
J 1 1 (h ) 

)
. (50)

The integrals J m 

n (h ) for integer m, n ≥ 0 are defined by the imaginary part of the mth-order Hanckel transform 

J m 

n (h, r, z) := Im 

∫ ∞ 

0 

e −(z−ıh ) ξ ξ n −1 J m 

(rξ ) dξ (ı 2 = −1) (51)

which is calculated analytically for (50) as 

J 0 0 (h ) = arcsin 

2 h √ 

(r + h ) 2 + z 2 + 

√ 

(r − h ) 2 + z 2 
, (52a)

J 1 0 (h ) = Im 

r 

z − ıh + 

√ 

r 2 + (z − ıh ) 2 
, J 0 1 (h ) = Im 

1 √ 

r 2 + (z − ıh ) 2 
, 

J 1 1 (h ) = Im 

r √ 

r 2 + (z − ıh ) 2 
(

z − ıh + 

√ 

r 2 + (z − ıh ) 2 
) , 

J 0 2 (h ) = Im 

z − ıh (
r 2 + (z − ıh ) 2 

)3 / 2 
, J 1 2 (h ) = Im 

r (
r 2 + (z − ıh ) 2 

)3 / 2 
. (52b)

The proof of Theorem 1 is given in Appendix A . 

The computed solutions (49) and (50) for an example indentation problem are depicted versus ( r, z )-coordinates in Fig. 2 .

Here the material parameters are ν = 0 . 5 and rather small E = 1 MPa that is typical for soft materials. The flat-ended

punch of radius h = 1 mm is indented with the constant loading rate ˙ F = 10 N/s subject to the relations 

F (t) = 

˙ F t, I t [ F ] = 

∫ t 

0 

e −(t−s ) F (s ) ds = 

˙ F (t − 1 + e −t ) , (53)

such that after t = 1 s the indentation depth D ( t, h ) ≈ 1.38 mm. In Fig. 2 we can observe the boundary behavior of the

solution at z = 0 , and the discontinuous stress at the punch end-point (r, z) = (h, 0) . 

On passing the punch radius h → 0 we get the following Boussinesq problem subject to a concentrated load: find the

displacement u r ( t, r, z ), u z ( t, r, z ) and the stress T rr ( t, r, z ), T θθ ( t, r, z ), T rz ( t, r, z ), T zz ( t, r, z ) in the viscoelastic body which

satisfy: the balance Eq. (41) ; the constitutive equations (42) ; the linearized strain (43) ; the asymptotic condition at infinity

(44) ; the tangential stress-free condition (45) and the Neumann-type boundary condition for the normal stress at z = 0 

T zz (t, r, 0) = −F (t) 

2 π

δ(r) 

r 
. (54)

The Dirac delta-function δ (Dirac measure) in (54) implies that 

δ(r) 

r 
= lim 

h → 0 

{ 

1 

h 

√ 

h 

2 − r 2 
if r < h 

0 if r > h 

, 

∫ ∞ 

0 

δ(r) dr = 1 , (55)



8 H. Itou, V.A. Kovtunenko and K.R. Rajagopal / International Journal of Engineering Science 151 (2020) 103272 

Fig. 2. The computed solution for an example indentation problem. 

 

 

 

 

such that in virtue of (54) and (55) 

−2 π

∫ ∞ 

0 

T zz (t, r, 0) r dr = F (t) . (56) 

We note that, for the indentation problem, the normal stress (40) and the relation T zz (t, r, 0) = 0 for r > h in complementary

conditions (47) together lead to the equality (56) . From Theorem 1 we derive the next result. 

Theorem 2 (Boussinesq problem) . For given F ( t ) ≥ 0, the Boussinesq problem (41) –(45) , (54) has the following analytical solu-

tion: the displacement 

u r (t) = 

I t [ F ] 

4 πμ

(
−(1 − 2 ν) J 1 0 + zJ 1 1 

)
, u z ( t) = 

I t [ F ] 

4 πμ

(
2( 1 − ν) J 0 0 + zJ 0 1 

)
; (57) 

and the stress 

T rr = 

F 

2 π

(
1 − 2 ν

r 
J 1 0 − J 0 1 −

z 

r 
J 1 1 + zJ 0 2 

)
, T rz = − F 

2 π
zJ 1 2 , 

T zz = − F 

2 π

(
J 0 1 + zJ 0 2 

)
, T θθ = 

F 

2 π

(
−1 − 2 ν

r 
J 1 0 − 2 νJ 0 1 + 

z 

r 
J 1 1 

)
. (58) 

The integrals here are defined for integer m, n ≥ 0 

J m 

n := lim 

h → 0 

1 

h 

J m 

n (h ) = 

∫ ∞ 

0 

e −zξ ξ n J m 

(rξ ) dξ (59) 

according to (51) and yield 

J 0 0 = 

1 √ 

r 2 + z 2 
, J 1 0 = 

1 

r 

(
1 − z √ 

r 2 + z 2 

)
, J 0 1 = 

z 

(r 2 + z 2 ) 3 / 2 
, 

J 1 1 = 

r 

(r 2 + z 2 ) 3 / 2 
, J 0 2 = 

2 z 2 − r 2 

(r 2 + z 2 ) 5 / 2 
, J 1 2 = 

3 rz 

(r 2 + z 2 ) 5 / 2 
. (60) 

The proof of Theorem 2 is given in Appendix B . 

The computed solutions (57) and (58) of the corresponding Boussinesq problem are depicted in Fig. 3 with the parameter

set from the previous example (see (53) ). Here we clearly observe the singular behavior of displacement and stress at the

origin r = z = 0 causing evidently numerical instabilities. 
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Fig. 3. The computed solution for an example Boussinesq problem. 

 

 

 

 

 

 

 

 

 

 

 

 

We recall that Hooke’s law (3) is provided by the identity 

I t [ F ] = F (t) , (61)

and the Kelvin–Voigt model (4) is realized for 

I t [ F ] = 

K 1 

τ1 

∫ t 

0 

e −(t−s ) /τ1 F (s ) ds, (62)

where (53) is a particular case. Thus, we obtain the following result. 

Corollary 1. The analytical formulas (48) –(50) in Theorem 1 and (57) , (58) in Theorem 2 hold true in the following cases: for

an elastic body given by Hooke’s constitutive relation when inserting (61) in these relations, and for the Kelvin–Voigt model by

substituting (62) in these relations . 

The corollary suggests that though the constitutive relation we started with is not invertible and even the domain and

boundary conditions are not appropriate for the correspondence principle to hold, we see a connection between the elastic

and viscoelastic solutions. 
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Appendix A. Proof of Theorem 1 

We start with the separation of variables in (39) rewriting it equivalently as 

I t [ p] = D (t) , 

∫ r 

0 

q (l) √ 

r 2 − l 2 
dl = 1 for r < h, (A.1)

where the Abel integral equation in (A.1) has the constant solution 

q ≡ 2 

. (A.2)

π

https://doi.org/10.13039/501100001691
https://doi.org/10.13039/501100002428
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Inserting (A.2) into (34) , straightforward integration determines the factor 

C(t, ξ ) = 

p(t) 

π(1 − ν) 

sin ( hξ ) 

ξ 2 
= 

p( t) 

π( 1 − ν) 
Im 

e ıhξ

ξ 2 
. (A.3) 

The respective Laplace transform in (30) for ψ , and for φ in accordance with formula (29) and (31) , takes the form 

ψ z,r = − p 

π(1 − ν) 
J 1 1 (h ) , φ,r = 

p(1 − 2 ν) 

π(1 − ν) 
J 1 0 (h ) , 

ψ z,z = − p 

π(1 − ν) 
J 0 1 (h ) , φ,z = 

p(1 − 2 ν) 

π(1 − ν) 
J 0 0 (h ) , 

ψ z,rr = 

p 

π(1 − ν) 

(
J 1 1 (h ) 

r 
− J 0 2 (h ) 

)
, φ,rr = 

p(1 − 2 ν) 

π(1 − ν) 

(
J 0 1 (h ) − J 1 0 (h ) 

r 

)
, 

ψ z,rz = 

p 

π(1 − ν) 
J 1 2 (h ) , φ,rz = − p(1 − 2 ν) 

π(1 − ν) 
J 1 1 (h ) , 

ψ z,zz = 

p 

π(1 − ν) 
J 0 2 (h ) , φ,zz = − p(1 − 2 ν) 

π(1 − ν) 
J 0 1 (h ) , (A.4) 

which is written with the help of the notation (51) . On substituting (A.4) into the expression (25) for v r and v z , accounting

for u r (t) = I t [ v r ] , u z (t) = I t [ v z ] according to the integral formula (14) and the first equality in (A.1) leads to the representa-

tion of u r , u z in (49) . 

At the boundary at z = 0 , substituting into (36) constant q from (A.2) with q ′ = 0 and using the notation of indentation

modulus as M in (48) implies that 

T zz (t, r, 0) = 

{ 

− p(t) M 

π
√ 

h 

2 − r 2 
if r < h 

0 if r > h 

, (A.5) 

respectively, using u z (t) = I t [ v z ] , from (37) after integration it follows that 

u z (t, r, 0) = I t [ p] 

{ 

1 if r < h 

2 

π
arcsin 

h 

r 
if r ≥ h 

, (A.6) 

which together satisfy the complementary contact conditions (46) and (47) . Inserting (A.5) into (40) we calculate 

p(t) = 

F (t) 

2 hM 

. (A.7) 

On substituting (A.4) into (26) together with (A.7) it leads to the expression of T rr , T θθ , T rz , T zz in (50) . From (A.7) and the

first equality in (A.1) we arrive at the formula for D in (48) . 

It then follows (see Watson, 1966 , p.385), that the integral in (51) for n + m > 0 can be calculated as 

J m 

n (h ) = Im 

(n − 1 − m )! (
r 2 + (z − ıh ) 2 

)n/ 2 
P 

βm 

n −1 

( 

z − ıh √ 

r 2 + (z − ıh ) 2 

) 

(A.8) 

with the help of the associated Legendre function P 
βm 

n −1 
, where the binary index β = 1 if m ≤ n − 1 , otherwise β = −1 .

For the particular indexes m ∈ {0, 1}, n ∈ {0, 1, 2} in (A.5) we gather formulas (52b) (see Gazonas and Wildman (2013) ;

Sneddon (1946) ). In the singular case m = n = 0 (such that the factorial in (A.8) does not exist), the special formula (52a) is

due to Fabrikant (1989) , Eq. (0.13). The proof is complete. �

Appendix B. Proof of Theorem 2 

With the help of (59) on taking the limit h → 0 in (49) , with D ( h ) from (48) , and taking the limit h → 0 in (50) we

obtain, respectively, the expression of the displacement (57) and of the stress (58) , compare exercise 5.12 in Fabrikant (1989) .

The formulae (60) for J m 

n are the direct consequence of the representation (59) , which can be obtained by using asymptotic

expansions in small h of the elementary functions appearing in (52). 

At the boundary, as z = 0 , from (A.5) and (A.6) , with p from (A.7) depending also on h , we derive the limit 

u z (t, r, 0) = 

I t [ F ] 

Mπ

1 

r 
, 

and we get the boundary condition (54) with the help of (55) , which completes the proof. �
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