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Abstract. A constrained variational problem for a composite
with an interface crack subject to non-penetration conditions is
considered. The composite consisting of two homogeneous or-
thotropic materials is described with respect to an in-plane de-
formation. The model is spatial, and we do not assume that it can
be split into independent in-plane and anti-plane states. Based on
the above model, we then describe a quasi-static delamination of
the composite with a crack following the Griffith fracture criterion.
This leads to a time-evolution problem for the (global) optimiza-
tion of the total potential energy with respect to the crack length.
Using a semi-smooth Newton algorithm, numerical experiments
for an interface crack under mode-3 loading are presented and an-
alyzed with respect to the half-angle β characterizing the coupling.

1. Introduction

A mathematical formulation of crack problems can be given within
the framework of elasticity theory [20]. To gain some insight into the 3-
dimensional situation, the standard approach is to simplify the elastic-
ity model by splitting it into two 2-dimensional in-plane and anti-plane
models. This, however, leads to a loss of information concerning the
3-dimensional nature of the system. Motivated by this drawback, we
introduce an intermediate 2.5-dimensional model instead of the split-
ting approach. Our model is a spatial one since it takes into account
all 3 components of the displacement vector, and still it is formulated
in a 2-dimensional domain.
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2 M. HINTERMÜLLER∗, V.A. KOVTUNENKO¦, AND K. KUNISCH∗

For the construction of the 2.5-dimensional model we consider a ho-
mogeneous orthotropic material with a vertical plane of elastic sym-
metry rotated with an angle β to a reference coordinate system. We
compose two pieces of such a material along the interface given by the
plane x2 = 0 such that the corresponding angles in the upper and lower
half-spaces are β and −β, respectively. For the formulation of elastic-
ity models in composite laminates see [21]. We further assume that a
crack is situated on part of the interface. Applying the assumption of
plain deformation at x3 = const, then due to the rotation, this results
in a spatial model.

In our numerical experiments we observe 3-dimensional effects: mix-
ing of crack modes (mode-1 with mode-3), and contact between oppo-
site crack surfaces. They occur under pure mode-3 loading, which is
ruled out for the in-plane and anti-plane models. Due to the latter phe-
nomenon we are required to consider (unilaterally) constrained crack
problems with non-penetration conditions as suggested in [12, 13]. The
corresponding variational formulation provides the appropriate state
space for the crack problem which has a singularity at the crack tip.

We investigate the geometric and physical features of the compos-
ite model by numerical experiments. For this purpose a semi-smooth
Newton technique is adapted to constrained crack problems. Under
suitable assumptions, semi-smoothness concepts will allow a locally
super-linear convergence rate of the Newton iterates. For the problems
under consideration semi-smooth Newton methods are equivalent to
primal-dual active-set algorithms [7, 11]. They are an efficient tool for
the numerical treatment of constrained variational problems. In nu-
merical experiments, global and monotone convergence was observed,
which is supported by the a posteriori analysis in [8]. For a class of
variational problems subject to boundary-constraints, in [9] we applied
an argument based on perturbation of M-matrices guaranteeing these
convergence properties. Returning to the continuous setting of the
problem, a penalization technique was utilized in [10] to obtain an ap-
proximate Lagrange multiplier, which enjoys extra Lp-regularity. For
the numerical treatment of curvilinear cracks we refer to [19, 23], where
extended finite element techniques are used.

One of the principal questions in fracture mechanics and structure
design is to describe the stability properties of a solid with a crack and
to predict its growth. By the Griffith fracture hypothesis the propaga-
tion of a crack is determined by the energy release rate at the crack tip,
which cannot exceed a given physical parameter (see [3, 22]). A large
number of papers investigated quasi-static growth of cracks in elastic
media; see, e.g., [20, 6, 1, 16]. We argue that the energy release rate
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is the shape derivative of the potential energy functional with respect
to variations of the crack tip. In [12, 13] methods of shape sensitivity
analysis were adopted to crack problems with non-penetration condi-
tions to provide a formula for the shape derivative. This includes the
Griffith formula as a specific case.

We observe that the Griffith fracture criterion provides a necessary
optimality condition for a local minimum (if it exists) of the total po-
tential energy, which is defined as the sum of the potential and the
surface energy. On the other hand, global optimization problems re-
quire minimization over all admissible crack shapes (see [5, 2]). For
strictly convex cost functionals these two concepts coincide. In fracture
mechanics this corresponds to stable crack propagation (progressive).
The case of unstable (or brutal) crack growth is related to non-convex
cost functionals. It was noticed in [5] that for brutal growth the Grif-
fith fracture law (as a local criterion) predicts a critical loading for the
initiation of crack propagation larger than that needed by the global
optimization approach. This fact is observed in our numerical tests,
too. By the global formulation of the optimization problem, not only
continuous solutions for the stable crack propagation but also solu-
tions with jumps and discontinuous velocities of the propagation are
obtained.

Well-posedness properties for time-evolution problems with cracks
were analyzed in [4, 5]. In the present work we apply the global formu-
lation of the optimization problem to a rectilinear crack and utilize it
on a set of critical points derived in a constructive way from the Grif-
fith fracture law. Note that the delamination process suggests a pre-
defined path (along the interface) of the crack time-evolutions, which
was confirmed experimentally [14]. This problem is solved numerically
to describe the delamination of composite materials with an interface
crack under quasi-static linear loading.

2. Constrained crack problems for a composite

In this section we formulate a model with respect to an in-plane de-
formation for two identical homogeneous orthotropic materials, which
are composed at a planar interface with the angle of 2β between their
vertical planes of elastic symmetry and which have a crack along a part
of their interface.

2.1. Modelling of composite materials in plane deformation.
Consider a homogeneous orthotropic material with planes of elastic
symmetry corresponding to the (x′1, x

′
2, x

′
3)-axes. First, we compose

the identical materials with respect to a reference coordinate system
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(x1, x2, x3) in the following way. In the ”upper” half-space R3
+ =

{x1, x2 ≥ 0, x3} the (x′1, x
′
2, x

′
3)-axes are rotated in the anti-clockwise

direction to (x1, x2, x3) with respect to the common x′2 = x2-axis by the
angle β between x′3 and x3. The angle β ∈ [−π/2, π/2] is arbitrarily
fixed. In the ”lower” half-space R3

− = {x1, x2 ≤ 0, x3} the (x′1, x
′
2, x

′
3)-

axes are rotated to (x1, x2, x3) with respect to x′2 = x2 in the opposite
direction by the same angle. The materials are assumed to be joined
along the plane x2 = 0.

For a displacement vector u = (u1, u2, u3)
>(x) (at a point x =

(x1, x2, x3)
> ∈ R3) in the composite material

u = u+ in R3
+, u = u− in R3

−,

we introduce a strain tensor ε = {εij} according to the linear Cauchy
law and a 3× 3 symmetric tensor of stress σ = {σij} as

(2.1) σ(u) = σβ(u+) in R3
+, σ(u) = σ−β(u−) in R3

−.

Here and throughout we utilize the standard tensor notation common in
linear elasticity and the summation convention for the repeated indices
i, j = 1, 2, 3.

Second, we apply the assumption of plane deformation at every cross-
section x3 = const, which means that all three components of the
displacement vector u do not depend on x3. Hence ε33 = 0 and the
strain tensor takes the particular form

ε11(u) = u1,1, ε22(u) = u2,2, ε12(u) = 0.5(u1,2 + u2,1),

ε13(u) = 0.5u3,1, ε23(u) = 0.5u3,2.
(2.2)

In R3
+, the relevant components of the stress tensor (2.1) satisfy the

following constitutive relations involving a non-symmetric matrix:

(2.3)




σβ
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σβ
22

σβ
12

σβ
23

σβ
13
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Cβ
11 Cβ
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where 9 elasticity coefficients depending on β (except for C22) have the
form (see [18]):

Cβ
11 = C ′

33 sin4 β + 2(C ′
13 + 2C ′

66) sin2 β cos2 β + C ′
11 cos4 β,

Cβ
66 = C ′

66 + (C ′
33 + C ′

11 − 2C ′
13 − 4C ′

66) sin2 β cos2 β,

Cβ
16 =

[
C ′

11 cos2 β − C ′
33 sin2 β − (C ′

13 + 2C ′
66)(cos2 β − sin2 β)

]

× sin β cos β,

Cβ
44 = C ′

44 cos2 β + C ′
55 sin2 β,

Cβ
55 = C ′

44 sin2 β + C ′
55 cos2 β,

Cβ
45 = (C ′

44 − C ′
55) sin β cos β,

Cβ
12 = C ′

23 sin2 β + C ′
12 cos2 β,

Cβ
26 = (C ′

12 − C ′
23) sin β cos β,

C22 = C ′
22.

(2.4)

The coefficients subscribed with ”prime” are related to the rotated
coordinate system (x′1, x

′
2, x

′
3):

C ′
11 = θ

( 1

E2

− ν2
32

E3

)
, C ′

12 = θ
(ν21

E2

+
ν31ν32

E3

)
,

C ′
13 = θ

(ν31 + ν21ν32

E2

)
, C ′

22 = θ
( 1

E1

− ν2
31

E3

)
,

C ′
23 = θ

(ν32

E1

+
ν21ν31

E2

)
, C ′

33 = θ
E3

E2

( 1

E1

− ν2
21

E2

)
,

C ′
44 = G21, C ′

55 = G32, C ′
66 = G31,

1

θ
=

( 1

E2

− ν2
32

E3

)( 1

E1

− ν2
31

E3

)
−

(ν21

E2

+
ν31ν32

E3

)2

,

(2.5)

with the material parameters

E1, E2, E3, ν21, ν32, ν31, G21, G32, G31.

The elasticity coefficients obey the following symmetry properties:

C−β
11 = Cβ

11, C−β
12 = Cβ

12, C−β
44 = Cβ

44, C−β
55 = Cβ

55, C−β
66 = Cβ

66,

C−β
16 = −Cβ

16, C−β
26 = −Cβ

26, C−β
45 = −Cβ

45.
(2.6)

Note that if β = 0 or β = ±π/2 then we have Cβ
16 = Cβ

26 = Cβ
45 = 0 and

(2.2), (2.3) are split into two independent states, namely the in-plane
state for (u1, u2)

> and the anti-plane state for u3. If β 6= 0,±π/2 then
we have a spatial model.
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The substitution of (2.2) into (2.3) allows us to rewrite the consti-
tutive law in the symmetric form:

σβ
11(u) = Cβ

11u1,1 + Cβ
12u2,2 + Cβ

16u3,1,

σβ
22(u) = Cβ

12u1,1 + C22u2,2 + Cβ
26u3,1,

σβ
12(u) = Cβ

44(u1,2 + u2,1) + Cβ
45u3,2,

σβ
23(u) = Cβ

45(u1,2 + u2,1) + Cβ
55u3,2,

σβ
13(u) = Cβ

16u1,1 + Cβ
26u2,2 + Cβ

66u3,1.

(2.7)

In R3
− the above relations hold true if we exchange β with −β ac-

cording to (2.1).

2.2. Equilibrium problem for the interface crack with non-
penetration conditions. Consider the composite of two elastic or-
thotropic materials joined along the plane x2 = 0, which was described
in Section 2.1. Assume that in each cross-section with x3 = const
the solid occupies a domain Ω ⊂ R2 consisting of two sub-domains
Ω+ ⊂ R2

+ and Ω− ⊂ R2
− with the interface Σ located on the line x2 = 0.

Let Ω be bounded by the Lipschitz boundary ∂Ω = ΓN ∪ ΓD with an
outward normal vector n = (n1, n2)

>, where ΓD 6= ∅. We suppose that
the crack ΓC is a part of the interface Σ and define the domain with
the crack as ΩC = Ω \ ΓC . Its boundary ∂ΩC is the union of ΓN , ΓD,
and the crack surfaces Γ±C .

To prevent mutual inter-penetrations between the opposite crack sur-
faces Γ+

C and Γ−C we impose a non-negativity condition on the jump of
the displacement normal to the crack (u2-component), see [12]. Let
g = (g1, g2, g3)

> represent a surface traction given at ΓN , and, without
loss of generality, assume that the volume force is zero. Further, the
solid is assumed to be fixed at ΓD. The problem of equilibrium of the
composite with a crack is finally described by the following non-linear
(at ΓC) relations:

−σ1α,α(u) = −σ2α,α(u) = −σ3α,α(u) = 0 in ΩC ,

σ12(u) = σ23(u) = 0 on Γ±C ,

[[σ22(u)]] = 0, [[u2]] ≥ 0, σ22(u) ≤ 0, σ22(u)[[u2]] = 0 on ΓC ,

[[u1]] = [[u2]] = [[u3]] = 0,

[[σ12(u)]] = [[σ22(u)]] = [[σ23(u)]] = 0
on Σ \ ΓC ,

σ1α(u)nα = g1, σ2α(u)nα = g2, σ3α(u)nα = g3 on ΓN ,

u1 = u2 = u3 = 0 on ΓD,

(2.8)
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where the summation convention over repeated indices α = 1, 2 is used.
Here [[u]] = u+ − u− and [[σ(u)]] = σβ(u+)− σ−β(u−) denote the jumps
across the interface.

We introduce the cone of admissible displacements which accounts
for all the boundary conditions imposed on u in (2.8) as

K(ΩC) = {u ∈ H(ΩC) : [[u2]] ≥ 0 on ΓC} with

H(ΩC) = {u ∈ H1(ΩC)3 : u = 0 on ΓD}.
For given g ∈ L2(ΓN)3 the potential energy of the composite with a
crack is defined by

(2.9) Π(u) =
1

2

∫

ΩC

σij(u)εij(u) dx−
∫

ΓN

giui ds.

The weak solution u ∈ K(ΩC) to the equilibrium problem (2.8) is
defined as the solution to the constrained minimization problem

(2.10) minimize Π(v) over v ∈ K(ΩC).

The optimality condition to (2.10) is expressed by the variational in-
equality

(2.11)

∫

ΩC

σij(u)εij(v − u) dx ≥
∫

ΓN

gi(v − u)i ds for all v ∈ K(ΩC).

For unique solvability of (2.10) (or, equivalently (2.11)) uniform pos-
itivity of the quadratic term is needed, i.e., the existence of an angle β
and a constant c0(β) > 0 such that

(2.12)

∫

ΩC

σij(u)εij(u) dx ≥ c0(β)‖u‖2
H(ΩC) for every u ∈ H(ΩC)

holds. If the 5×5-matrix in (2.7) has the minimal eigenvalue λmin(β) >
0 for some β, in this case, a Korn-type argument implies (2.12).

3. Delamination of the composite via optimization

To describe the delamination between Ω+ and Ω− in the model in-
troduced in Section 2, we fix the length l0 of an initial crack at t = 0
and look for its ”time”-evolution l(t) ≥ l0 with respect to a (loading)
parameter t > 0. With one crack tip fixed, the length-parameter l(t)
determines the position of the second crack tip at t ≥ 0.

In a natural way we arrive at a one-parameter optimization problem.
At every time-step t, the global setting consists of the minimization of
an a priori given cost functional T (l) (the total potential energy) over
all admissible crack lengths l ≥ l0. This formulation requires to solve
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(2.10) with the crack ΓC of length l to obtain T (l). Employing the
shape (directional) derivative of the cost function at l0 provides the
local optimality condition, which coincides with the Griffith fracture
criterion. We combine these two approaches to derive a computation-
ally constructive strategy for optimization.

3.1. Reduced potential energy function and its shape deriv-
ative. For L > 0 let the crack ΓC at the interface Σ = {0 ≤ x1 ≤
L, x2 = 0} be given by the set

(3.1) ΓC = {0 < x1 < l, x2 = 0}, 0 ≤ l ≤ L.

Specifically we assume that the left crack-tip (0, 0)> is fixed on the
boundary ∂Ω and the right tip (l, 0)> is located at the interface inside
Ω. If l = L then the right end of the crack meets ∂Ω.

For the crack (3.1) a reduced potential energy function P depending
on the crack-length parameter l ∈ [0, L] is defined according to (2.9)
and (2.10):

(3.2) P (l) := Π(u) = min
v∈K(ΩC)

Π(v).

From (3.2) we deduce that P is a continuous, decreasing, and uniformly
bounded function:

(3.3) P ∈ C([0, L]), 0 ≥ P (l̄) ≥ P (l) ≥ P (L) for 0 ≤ l̄ ≤ l ≤ L.

Fix l ∈ (0, L) and let B0, B1 be such that (l, 0)> ∈ B1 ⊂ B0 ⊂ Ω.
Let χ ∈ W 1,∞(R2) be an arbitrary cut-off function with support in a
neighborhood of the crack tip, such that χ = 1 in B1 and χ = 0 outside
of B0. For the solution u of (2.10), the shape derivative P ′(l) of (3.2)
(in direction (χ, 0)>) is found to be (see [15]):

(3.4) P ′(l) =

∫

ΩC

σij(u)
(1

2
χ,1εij(u)− Eij(∇χ; u)

)
dx,

where E denotes a 3 × 3-symmetric tensor (with E33 = 0) of the gen-
eralized strain

E11(∇χ; u) = χ,1u1,1, E22(∇χ; u) = χ,2u2,1,

E12(∇χ; u) = 0.5(χ,2u1,1 + χ,1u2,1),

E23(∇χ; u) = 0.5χ,2u3,1, E13(∇χ; u) = 0.5χ,1u3,1.

(3.5)

The value of −P ′(l) describes the energy release rate at the vicinity
of the crack, and it is independent of χ. In fact, let us integrate by
parts (3.4) in ΩC \ B1, using (2.8) and χ = 1 in B1. For an outward
normal vector b = (b1, b2)

> at ∂B1, an equivalent representation of the
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shape derivative by the integral over a closed contour ∂B1 (see [15]) is
obtained:

(3.6) P ′(l) =

∫

∂B1

σij(u)
(1

2
b1εij(u)− Eij(b; u)

)
ds

with b1 and b2 replacing χ,1 and χ,2 in (3.5). For β = 0 and u3 = const
formula (3.6) coincides with the path-independent Cherepanov-Rice
integral, which is well-known in fracture mechanics.

From (3.4) and (3.3) we can conclude that

(3.7) P ′ ∈ C(0, L), P ′(l) ≤ 0.

Let us notice the general fact that for unilaterally constrained crack
problems the second derivatives P ′′ is set-valued.

3.2. Evolutionary problem of optimization. We assume that the
loading depends in a linear way on a parameter t ≥ 0:

(3.8) g(t) = tg.

In view of the multiplicative property of the static problem (2.11) it
follows that u(t) = tu is a solution of the quasi-static problem: Find
u(t) ∈ K(ΩC) such that∫

ΩC

σij(u(t))εij(v − u(t)) dx ≥ t

∫

ΓN

gi(v − u(t))i ds

for all v ∈ K(ΩC).

(3.9)

We arrive at the reduced potential energy function which is quadratic
in t:

(3.10) P (l)(t) = t2P (l), P ′(l)(t) = t2P ′(l).

In addition to the potential energy let us introduce the surface energy
distributed uniformly at the crack faces Γ±C ,

(3.11) S(l) :=
(∫

Γ+
C

+

∫

Γ−C

)1

2
γ ds = γ l,

where γ > 0 expresses the material parameter of fracture toughness.
The total potential energy T is defined as the sum of P from (3.10)
and S from (3.11):

(3.12) T (l)(t) := P (l)(t) + S(l) = t2P (l) + γl.

Let an initial crack with l0 ∈ (0, L) be fixed at t = 0. To determine
an actual state l(t) of the crack for t > 0 following the principle of
virtual work, we have to minimize the total potential energy over all
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admissible cracks. The standard assumption of brittle fracture does
not allow the crack to disappear. In this way, from (3.12) we arrive
at an optimization problem at every ”time” t subject to a constraint
l ≥ l0:

(3.13) minimize γl + t2P (l) over l ∈ [l0, L].

Due to the linearity of S(l) and (3.3), the function T (l) is bounded and
uniformly continuous in [0, L]. Hence there exists a global minimizer
l(t) ∈ [l0, L] for (3.13) satisfying

(3.14) γl(t) + t2P (l(t)) ≤ γl + t2P (l) for all l ∈ [l0, L], t ≥ 0.

It can be verified (see [5]) that the necessary and sufficient conditions
for (3.14) are given by the system:

(3.15a) l(0) = l0,

(3.15b) l(t) ≥ l(s) for t > s,

(3.15c) γl(t) + t2P (l(t)) ≤ γl + t2P (l) for all l ≥ l−(t),

(3.15d) γl(t) + t2P (l(t)) ≤ γl(s) + t2P (l(s)) for all s ≤ t.

Here, we use the notation l−(t) = lims→t l(s) for s < t, and analogously
l+(t) = lims→t l(s) for s > t. In fact, the initial condition at t = 0
implies (3.15a), the model of brittle fracture requires that l(t) should
be an increasing function of t as written in (3.15b), and (3.15c)–(3.15d)
follow directly from (3.14). In view of (3.7), the differentiability of P
and (3.15c) lead to the necessary optimality condition

(3.16) γ + t2P ′(l(t)) ≥ 0.

It is important to note that (3.15d) holds true in the case where l is
continuous as well as in the case of a jump l+(t) 6= l−(t). The jump
can be characterized by

(3.17) γ[l+(t)− l−(t)] + t2[P (l+(t))− P (l−(t))] = 0.

Alternatively, if l(t) were a uniformly continuous function, then l+(t) =
l−(t) in (3.17) and the Griffith law of fracture would be satisfied:

l(0) = l0,

l′(t) ≥ 0, γ + t2P ′(l(t)) ≥ 0, l′(t)
(
γ + t2P ′(l(t))

)
= 0, t ≥ 0.

(3.18)

Using non-positivity of P ′ we define

(3.19) G(t, l) := t−
√

γ/(−P ′(l)), P ′(l) 6= 0
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and get the set of critical points for (3.13):

(3.20) Mt =





L,
l0 if G(t, l0) ≤ 0 or P ′(l0) = 0,
l if G(t, l) = 0 and l ≥ l(s) for s ≤ t.

Further, (3.13) is equivalent to

l(0) = l0,

minimize γl + t2P (l) over l ∈ Mt for t > 0.
(3.21)

The advantage of our formulation (3.21) is related to the fact that it not
only uses function values T (l) but also the derivatives T ′(l) which gives
a more accurate account of the extrema. In the numerical realization we
find that for (3.13) a finer discretization with respect to l is necessary
to achieve the same accuracy as (3.21).

4. Numerical example

4.1. Data for numerical calculations. We choose the following sym-
metric geometry for the composite with a crack as presented in Fig-
ure 1. The domain Ω is chosen to be a square in R2 with its boundary

u
1

u
3

u
2

x

x
1

Γ
D

1

Ω
C

Σ

l

Γ
N2
−

Γ
N2
+

Γ
C
−

Γ
C
+

0.5

Γ
N1
−

Γ
N1
+

0

x
2

−0.5

g
3
+

g
2
−

g
2
+

g
3
−g

1
+

g
1
−

x
3

Figure 1. Geometry of domain ΩC .
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decomposed as follows:

ΓD = {x1 = 1, |x2| ≤ 0.5}, ΓN = Γ+
N1 ∪ Γ−N1 ∪ Γ+

N2 ∪ Γ−N2,

Γ±N1 = {x1 = 0, 0 ≤ ±x2 ≤ 0.5}, Γ±N2 = {0 < x1 < 1, x2 = ±0.5}.
We assume that the crack ΓC is of length 0 < l < L = 1. The elastic
problem (2.8) in ΩC is considered with the following boundary condi-
tions imposed on ΓN :

σ12(u) = σ22(u) = σ23(u) = 0 on Γ±N2,

−σ11(u) = g±1 , −σ12(u) = g±2 , −σ13(u) = g±3 on Γ±N1,
(4.1)

where we assume anti-symmetric loading corresponding to mode-3:

(4.2) g±3 = ∓g0, g±1 = g±2 = 0, g0 = 0.001µ ≈ 3.5376(mPa),

as illustrated in Figure 1.
We utilize the material parameters with the values from [14]:

E1 = E2 = E = 10160(mPa), E3 = 139400(mPa),

G31 = G32 = G3 = 4600(mPa), G21 =
E

2(1 + ν)
≈ 3537.6(mPa),

ν21 = ν = 0.436, ν31 = ν32 = ν3 = 0.3.

The corresponding minimal eigenvalues λmin(β) of the matrix in (2.7)
are found to be positive for β ∈ [−π/2, π/2]. They are approximately
constant with value λmin ≈ 3537.6. In this case (2.12) holds, and the
interface crack problem formulated in Section 2.2 is well-posed.

For calculations, the angle β of fibering is taken at the six points
β = 0, π/16, π/8, π/4, 3π/8, π/2 in [0, π/2]. This includes the limit
cases of the plane isotropic model with β = 0, and the plane orthotropic
model with β = π/2. Note that for β = π/4 the directions of fibering
in Ω+

C and Ω−
C are orthogonal to each other.

4.2. The discrete potential energy and its derivative. Follow-
ing a common procedure in linear elasticity we utilize linear finite-
elements on a triangular mesh constructed in ΩC , and we use a local
refinement in a neighborhood of Σ. Discretization of (2.10) results
in a quadratic programming problem subject to constraints associated
to the non-penetration condition. The numerical implementation of
the semi-smooth Newton method for computing its solution is realized
as a primal-dual active-set algorithm, which is described in details in
[8, 9, 10]. Realizing this algorithm for our example one gets the follow-
ing numerical results: the appearance of a mixed mode-1 ([[u2]] 6= 0)
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with mode-3 ([[u3]] 6= 0) crack and contact between opposite crack sur-
faces under pure mode-3 loading. This situation is related to the 3-
dimensional elasticity state and shows the advantage of the spatial
model with non-penetration conditions, in contrast to plane isotropic
(β = 0) and orthotropic (β = π/2) models.

Note that there is no contact between the crack surfaces in the re-
maining interval β ∈ (−π/2, 0). This case was investigated in [17]
for the linear setting of the problem with the condition σ22(u) = 0
describing stress-free crack faces Γ±C .

The reduced potential energy function P and its shape derivative are
computed from (2.9) and (3.4). For numerical calculations the cut-off
function χ in formula (3.4) is taken piecewise-linear in Ω with χ = 1
around the crack tip, χ = 0 near the external boundary ∂Ω, and sym-
metrically centered with respect to each crack tip. We approximate the
functions P and P ′ by its discrete values in nodal points l = 0, h, . . . , 1,
respectively l = h, 2h, . . . , 1 − h for P ′(l). The results are depicted in
Figure 2 for various fibering angles β = 0, π/16, π/8, π/4, 3π/8, π/2.
Here mPa stands for mega Pascal.
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0 0.5 1
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−0.6
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crack length (m)
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β=0
β=π/16
β=π/8
β=π/4
β=3π/8
β=π/2

Figure 2. Potential energy and its shape derivative.

We find regions of convexity and concavity of P and minima of P ′(l):

(4.3) P ′(l?) ≤ P ′(l) for all l,

which occur for l? ≈ 0.3 if β ∈ {0, π/2}, and for l? ≈ 0.2875 if β ∈
{π/16, π/8, π/4, 3π/8}. They are marked by dotted-lines in Figure 2.

4.3. Delamination under mode-3 loading. For numerical tests the
physical parameter γ is taken as γ = 252/2µ ≈ 0.011 (mPa·m).
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To endow the loading parameter t ≥ 0 with a physical scale we
multiply it by g0 and consider the linear loading g0t (mPa) according
to (3.8). Since P ′(l) is negative G(t, l) in (3.19) is well-defined and
g0t(l) can be obtained from

(4.4) 0 = g0G(t, l) = g0t− g0

√
γ/(−P ′(l)).

For β = π/8 this curve is shown in Figure 3 (a) and (b), respectively, by
a dashed-line. In the remainder of this section we analyze the function
T defined in (3.12) with respect to local and global minima using (3.18)
and (3.21), respectively. The curve defined in (4.4) contains all critical
points of T inside the optimization interval.
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Figure 3. Quasi-static crack growth as β = π/8.

We start with the discussion of local minima and fix an arbitrary
l0 ∈ (0, 1). Following the Griffith fracture hypothesis, a critical loading
required to start the growth of a crack of length l0 is determined from
(4.4) by

(4.5) gGriffith
cr (l0) := g0t(l0) where G(t(l0), l0) = 0.

Then the constant function l(t) = l0 is the unique solution to (3.18) as
long as G(t, l0) < 0.

Next we seek for the solution l(t) to (3.18) for t such that G(t, l0) ≥ 0.
For this purpose points l? ∈ (0, 1) of local extrema of t(l) must be
found. For our data we obtain one minimizer l? which is equivalently
characterized by

(4.6) G(t, l?) ≥ G(t, l) for all l,
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independently of t. For β = π/8 we obtain l? ≈ 0.2875, which is marked
with a dotted-line in Figure 3. The line l = l? separates G(t, l) = 0
into two branches along which l(t) is invertible. These two branches are
given by G−(t, l) = 0 for l ∈ (0, l?), and G+(t, l) = 0 for l ∈ [l?, 1). The
local solution l(t) = l0 of (3.18) meets either G−(t, l) = 0 if l0 < l?, or
G+(t, l) = 0 if l0 ≥ l?. In the latter case l(t) is an increasing function.
Therefore if l0 ∈ [l?, 1), then l(t) satisfying G+(t, l(t)) = 0 is the unique
continuous solution to (3.18) for all t. Alternatively, l(t) obtained from
G−(t, l) = 0 is a decreasing function. Hence if l0 ∈ (0, l?) then there
is no solution l(t) to (3.18), which is continuous at the points t(l0)
satisfying G(t, l0) = 0.

To explain the non-existence of a solution to (3.18) we observe that
this relation constitutes a local optimality criterion for (3.13). In our
example this results in the following: The points l? found by (4.3) and
(4.6) coincide. Thus P (l) (and hence the total energy γl + t2P (l)) is
convex along the branch G+(t, l) = 0 and concave along G−(t, l) = 0.
Hence, points l(t) located on G+(t, l) = 0 provide minima of the total
potential energy, whereas points on G−(t, l) = 0 give its local maxima.

Now we look for a global minimizer of the optimization problem
(3.14) represented in the form (3.21). Solving it numerically we find
continuous solutions for initial cracks of the length l0 ∈ [l?, 1), which
coincide with those obtained by the Griffith fracture law (3.18). For
β = π/8 and l0 ≈ 0.3982 the solution l(t) to (3.20), (3.21) is depicted in
Figure 3 (a) with a solid-line. For initial cracks of the length l0 ∈ (0, l?)
we derive discontinuous solutions with a jump l+ − l0 > 0 at the point
t where the jump condition (3.17) is satisfied, i.e.

gopt
cr (l0) := g0t where t satisfies

G(t, l+) = 0, and γ[l+ − l0] + t2[P (l+)− P (l0)] = 0.
(4.7)

For β = π/8 and l0 = 0.1 the solution l(t) to (3.20), (3.21) is depicted
in Figure 3 (b) with a solid-line. We find numerically that l+ ≈ 0.3982
(this value for l0 was chosen in the previous example of stable prop-
agation), gopt

cr ≈ 63 (mPa) and gGriffith
cr ≈ 69 (mPa). Here the value

of critical loading obtained by the optimization approach from (4.7) is
smaller than the one predicted by the Griffith fracture criterion (4.5).

We obtain an improved curve of critical loading by determining t(l)
from the following equation

(4.8) 0 = Gopt(t, l) :=

{
G+(t, l) for l ∈ [l?, 1),
g0t− gopt

cr (l) for l ∈ (0, l?),



16 M. HINTERMÜLLER∗, V.A. KOVTUNENKO¦, AND K. KUNISCH∗

where gopt
cr (l) is computed according to (4.7) using (3.21) and (3.20)

for all discrete length-parameters l ∈ (0, l?). For β = π/8 this curve is
depicted in Figure 3 (b) with a dash-dotted line.

The delamination of the composite with the initial crack of length
l0 ∈ (0, 1) under linear quasi-static loading g0t can be constructed
geometrically by the following algorithm.

Algorithm 1.

(0) Fix the initial crack length l0 ∈ (0, 1), find t(l0) such that
Gopt(t(l0), l0) = 0.

(1) For all t < t(l0) we have l(t) = l0 (no growth).
(2) At t = t(l0) find l(t) = max{l0, l+}, such that l+ satisfies

Gopt(t(l0), l
+) = 0 (initiation of crack growth).

(3) For all t > t(l0) find l(t) such that G+(t, l(t)) = 0 (crack
growth).

If l+ = l0 in Step 2 then the propagating crack is stable and it grows
in a continuous way. Otherwise, if l+ > l0 then the crack propagation
is unstable with the jump l+ − l0.

Next we solve Gopt(t, l) = 0 for various choices for the fibering angle
β = 0, π/16, π/8, π/4, 3π/8, π/2. The results are depicted in Figure 4,
and are compared to the solutions of G(t, l) = 0 according to the
Griffith law (4.5) indicated by dashed lines. The points l?(β) separating
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Figure 4. Curves Gopt(t, l) = 0 of critical loading.

the intervals of stable and unstable crack propagation are indicated
by dotted-lines. For every initial crack of length l0 the delamination
process can be constructed by Algorithm 1.

From Figure 4 we can report on the following features:
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• The resistance to fracture with respect to the critical mode-3
loading of the composite materials is maximal at β = π/8.

• The curves for the limit cases β = 0 and β = π/2 are close to
each other.

• In the interval [l?, 1) the crack growth is stable, otherwise it is
unstable.

Figure 4 shows clearly that gGriffith
cr (l0) → ∞ as l0 → 0. To explain

this behavior, note that the limit case l0 = 0 corresponds to the initia-
tion of cracking in a continuous solid which can not be described exactly
by the above macro-crack model. Nevertheless, from Figure 4 we may
conjecture that gopt

cr (0) < ∞, which is more consistent physically than
gGriffith
cr (0) = ∞. The other limit behavior gopt

cr (l0) = gGriffith
cr (l0) → ∞

as l0 → 1 is due to the boundary condition describing a clamped edge
at l = 1.
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terizing static and fatigue interlaminar fracture behavior of a first generation
graphite/epoxy composite, 13th Composite Materials: Testing and Design 13,
ASTM STP 1242, J.S. Hooper (Ed.), ASTM, 1997, 60–81.

[15] V.A. Kovtunenko, Invariant energy integrals for the non-linear crack problem
with possible contact of the crack surfaces, J. Appl. Maths. Mechs. 67 (2003),
99–110.

[16] V.A. Kovtunenko, Numerical simulation of the non-linear crack problem with
non-penetration, Math. Meth. Appl. Sci. 27 (2003), 163–179.

[17] V.A. Kovtunenko, Interface cracks in composite orthotropic materials and their
delamination via global shape optimization, Preprint.

[18] S.G. Lekhnitskii, Theory of Elasticity of an Anisotropic Body, Holden-Day,
San Francisco, 1963.
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