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1. Introduction

Problems with cracks belong to an area of common interests of math-
ematicians and mechanical engineers and are of great importance in
application in fracture mechanics. From a mathematical point of view
one principal difficulty of crack problems lies in the non-regular char-
acter of boundaries caused by the presence of a crack within a domain.
This fact leads to a reduced regularity of the solution in the domain
with a crack.

Classical crack problems are formulated as linear problems. This al-
lows interpenetration between crack faces which is unacceptable from a
physical point of view. In the present work we avoid such an inconsis-
tency by the use of a non-penetration condition that is imposed at the
crack faces. This results in a model based on a variational inequality
that was already suggested in e.g. (Khludnev and Sokolowski 1999),
(Khludnev and Kovtunenko 2000). On the discrete level the variational
inequality can be reformulated as a classical linear complementarity
problem (Cottle, Pang and Stone 1992).
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In (Kovtunenko 2003) the numerical realization of the nonlinear
crack problem with non-penetration was realized with the help of an
iteration method applied to a penalized formulation of the variational
inequality. Based on a variational (weak) formulation of the problem
and a particular finite element discretization, in the present paper we
propose and test a primal-dual active set method which turns out to
significantly improve upon the earlier method. In fact, numerical tests
show that the primal-dual active set strategy determines the exact so-
lution of the discretized model in only a few iterations. Decreasing the
mesh-size results in a moderate increase of the required number of it-
erations. Our weak formulation takes into account singularities which
appear near crack tips. In the examples presented here we consider
regular as well as singular solutions when the opening and shifting of
the crack faces occur near its tips.

While several authors considered numerical methods for linear crack
problems, see (Kuhn 1988), (Hsiao, Schnack and Wendland 1999),
(Bach, Nazarov and Wendland 2000) and other works, the literature
on numerical methods for nonlinear models is quite scarce (Guz and
Zozulya 2001). We tested the method that we propose for the cases of
symmetric as well as non-symmetric body forces, and for a wide range
of different Lamé constants. For general results on variational inequal-
ities, we refer to (Glowinski 1984), (Glowinski, Lions and Tremolieres
1981), (Hlavaček, Haslinger and Nečas 1984), for example. The primal-
dual active set method is closely related to semi-smooth Newton meth-
ods, see (Hintermüller, Ito and Kunisch 2002), (Ito and Kunisch 2000),
(Ito and Kunisch 2002).

The general idea of primal-dual methods is related to the fact that
the primal and dual variables are used in an independent fashion. In
fact, starting with some primal and dual initial guesses, both variables
are updated independently in the course of an iterative process. The
advantage of this update procedure can be argued as follows: As noted
earlier one way of recasting the variational inequality formulation of
the crack problem on the discrete level is given by a transformation
into a linear complementarity problem. The latter problem class al-
lows to introduce the active (or coincidence) set at the solution of the
problem and its complement, the inactive set. In the context of crack
problems, we consider the jump of the displacements across the crack
as a condition depending on the primal variable, i.e., the displacement,
and we consider the stress at the crack as the dual variable. This du-
ality relation becomes evident by studying the weak formulation of the
crack problem (12) (see (21) for the discretized version). The active set
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at the solution is defined as the set of points where the jump in the dis-
placement is zero across the crack. The inactive set is its complement
along the crack. While on the active set the stresses are non-negative,
we have that the jump is positive on the inactive set. This behavior
again reflects the duality between the primal and dual variables and
makes visible that both quantities (primal and dual) influence the lo-
cation of the active and inactive sets at the solution. The advantage
of a primal-dual procedure lies in the fact that, according to the latter
observation, it makes use of the primal and the dual variables indepen-
dently to find the active and inactive sets at the solution. Moreover, in
degenerate cases, e.g. where the jump is close to zero on the inactive
set, the dual variable (the stresses) can help to accurately locate the
active and inactive sets and, hence, the solution. In this situation, it
is known that pure primal methods (like e.g. penalty methods; see
Section 5) may start to chatter for large penalty parameters. This
chattering is typically influenced by the limited accuracy in computer
calculations.

The structure of the paper is as follows. In Section 2 we state the
2D-Lamé problem for a domain with a crack and non-penetration con-
dition. This model is discretized in Section 3 and the active set al-
gorithm is proposed. Section 4 is devoted to the convergence analysis
of the method. In Section 5 we briefly explain the iterative penalty
method which is used for comparison to the proposed method. Finally
Section 6 is devoted to a description of the numerical tests.

2. The crack problem with non-penetration

Let Ω ⊂ R2 be a bounded domain with the Lipschitz continuous
boundary Γ, which consists of disjoint nonempty sets ΓD, ΓN , and
ΓS. We assume that the rectilinear crack Γl of length l > 0 is located
on the x1-axis and either lies inside the domain Ω or that it meets the
boundary with one of its endpoints. In the latter case it is assumed that
the angles between Γ and Γl are non-zero, and that ΓN ∩ Γl = ∅. The
positive Γ+

l and negative Γ−l faces of the crack are the limit of points
x = (x1, x2) ∈ R2 with x2 > 0 and x2 < 0 as x2 → 0, respectively. We
consider Ωl = Ω \ Γl as the domain with a crack.

As model we employ the plane-stress Lamé equation of an isotropic
solid occupying the domain Ωl in every cross-section x3 = const. Hence-
forth the standard tensor notation common in solid mechanics and
the summation convention for repeated indices i, j ∈ {1, 2} are used.
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For the two-component displacement vector u = (u1(x), u2(x)), with
x ∈ R2, the symmetric tensor of stresses is given as follows:

σ11(u) = 2µu1,1 + λ div u, σ22(u) = 2µu2,2 + λ div u,(1a)

σ12(u) = σ21(u) = µ(u1,2 + u2,1), div u = u1,1 + u2,2,(1b)

with the Lamé constants

(2) µ =
E

2(1 + ν)
, λ =

2νµ

1− 2ν
,

where E > 0 and ν ∈ (0, 0.5). For a given load g = (g1, g2) ∈ L2(ΓN)2,
we first recall the following linear elasticity model consisting of the
Lamé equations:

(3) −µ∆ui − (λ + µ)(div u),i = 0, i = 1, 2, in Ωl,

with Dirichlet boundary conditions:

(4) u1 = u2 = 0 on ΓD,

and Neumann-type boundary conditions:

σij(u)νj = 0, i = 1, 2, on ΓS,(5a)

σij(u)νj = gi, i = 1, 2, on ΓN ,(5b)

where ν = (ν1, ν2) denotes the outward normal vector at Γ.
Following the classical fracture mechanics concept, we have to state

the linear boundary conditions of the stress-free crack faces, i.e.

(6) ∓σ12(u) = ∓σ22(u) = 0 on Γ±l .

The weak formulation of the linear crack problem (3)–(6) is given by:

(7) u ∈ H̃1(Ωl),

∫

Ωl

σij(u)vi,j =

∫

ΓN

givi for all v ∈ H̃1(Ωl),

where

(8) H̃1(Ωl) = {u = (u1, u2) ∈ H1(Ωl)
2 : u1 = u2 = 0 on ΓD}.

This linear model does not exclude interpenetration between the
crack faces Γ±l , which is unacceptable from the physical point of view.
To correct the model, (6) is replaced by non-penetration conditions be-
tween the crack faces, see (Khludnev and Kovtunenko 2000), as follows:

∓ σ12(u) = 0 on Γ±l ,(9a)

[[σ22(u)]] = 0, σ22(u) ≤ 0, [[u2]] ≥ 0, σ22(u)[[u2]] = 0 on Γl.(9b)
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Here the doubled brackets [[ · ]] designate the jump across the crack Γl,
i.e. [[u2]] = u2|Γ+

l
− u2|Γ−l and [[σ22(u)]] = σ22(u)|Γ+

l
− σ22(u)|Γ−l .

To express the resulting model in a function space formulation we define
the convex closed set of admissible displacements with non-penetration
by

(10) Kl = {u = (u1, u2) ∈ H̃1(Ωl) : [[u2]] ≥ 0 on Γl}.
The variational formulation of the nonlinear crack problem (3)–(5), (9)
is then given by:

(11) u ∈ Kl,

∫

Ωl

σij(u)(v − u)i,j ≥
∫

ΓN

gi(v − u)i for all v ∈ Kl.

Due to the Korn inequality and the assumption that a Dirichlet con-
dition (4) holds on part of the boundary the quadratic form on the
left-hand side of (11) is uniformly positive. Therefore, there exists a
unique solution u of the variational inequality (11). We can rewrite (11)
also as the following complementarity system where we use 〈·, ·〉00 =
〈·, ·〉

H
1/2
00 (Γl)?,H

1/2
00 (Γl)

:

u ∈ Kl, σ ∈ [H
1/2
00 (Γl)

?]2,(12a)
∫

Ωl

σij(u)vi,j + 〈σi, [[vi]]〉00 =

∫

ΓN

givi for all v ∈ H̃1(Ωl),(12b)

σ1 = 0,(12c)

〈σ2, ξ − [[u2]]〉00 ≤ 0 for all ξ ∈ H
1/2
00 (Γl), ξ ≥ 0,(12d)

where, with some abuse of notation, the Lagrange multiplier σ denotes
the stress at the crack:

(13) σ = (σ1, σ2) = (σ12(u), σ22(u)) ∈ [H
1/2
00 (Γl)

?]2.

Here H
1/2
00 (Γl)

? is the dual space to the space H
1/2
00 (Γl) of functions

from the H1/2-class on the crack Γl, which admit the continuation by
zero onto any closed curve. Problem (12) gives us a complete system

of boundary conditions which are fulfilled at Γl for [[u2]] ∈ H
1/2
00 (Γl)

and σ2 ∈ H
1/2
00 (Γl)

? in the sense of these dual spaces. If the regularity
property u ∈ H2(Ωl)

2 holds, then σ2 ∈ H1/2(Γl) and the statements
in (9) are satisfied in the almost everywhere sense. For an analysis of
variational inequalities of the types (11) and (12) in crack mechanics,
see (Khludnev and Kovtunenko 2000).
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3. Discretization and primal-dual algorithm

To realize problems (7), respectively (11) or (12), numerically we
introduce basis functions {ek}N

k=1 in H1(Ωl) with ek = 0 on ΓD and
define

(14) HN
l = {u = ((U1)kek, (U2)ses) : U ∈ R2N , 1 ≤ k, s ≤ N},

HN
l ⊂ H̃1(Ωl), where N ∈ N depends on the mesh-size of discretization

and where we used the summation convention over repeated indices 1 ≤
k, s ≤ N . Restriction of (7) onto HN

l results in the finite-dimensional
linear problem:

u ∈ HN
l ,(15a)

∫

Ωl

σij(u)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N}.(15b)

To guarantee existence of a solution to (15) we assume the positive
definiteness of the stiffness matrix with respect to the basis {ek}N

k=1:

(16)

∫

Ωl

σij(u)ui,j > 0 for all 0 6= u = ((U1)kek, (U2)ses) ∈ HN
l .

Let us discretize (11), or equivalently (12), next. In order to express
the jump condition [[u2]] ≥ 0 in an efficient manner in terms of the
coefficients U2 we assume that the basis functions with [[ek]] 6= 0 on
Γl can be separated uniquely into pairs (ek+ , ek−), with (k+, k−) ∈ C,
where

(17) C = {(k+, k−) : k± ∈ {1, ..., N}, ek+ 6= 0 on Γ+
l , ek− 6= 0 on Γ−l },

supp ek± ∩ Ω∓ = ∅ with Ω∓ = {(x1, x2) ∈ Ω : ∓x2 > 0}, and that the
following property which allows to characterize the jump condition in
terms of the coefficients is satisfied:

(18) U ∈ RN , [[Ukek]] ≥ 0 ⇐⇒ Uk+−Uk− ≥ 0 for all (k+, k−) ∈ C.

By the uniqueness of the pairs (k+, k−) we mean that every index k+

meets only one index k− and vice versa. Moreover, we assume that
ΓN ∩ ek± = ∅ for (k+, k−) ∈ C. Subsequently we will frequently use
the notation {1, . . . , N} \C indicating indices which are in {1, . . . , N}
but do not occur as first or second component index of any pair in C.
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A finite element space for which (18) is satisfied is specified in Section
7. Based on (18) the variational inequality (11) can be expressed as

u ∈ HN
l , (U2)k+ − (U2)k− ≥ 0 for (k+, k−) ∈ C,(19a)

∫

Ωl

σij(u)(v − u)i,j ≥
∫

ΓN

gi(v − u)i(19b)

for all v = ((V1)kek, (V2)ses) ∈ HN
l with (V2)k+ − (V2)k− ≥ 0.

In the finite-dimensional case, the stress σ at the crack Γl can be defined
by setting

〈σi, ek±〉 = (Σi)k± , i = 1, 2,(20a)

(Σi)k± = ∓
∫

Ωl

σij(u)(ek±),j for (k+, k−) ∈ C.(20b)

In view of (18) and (20) problem (12) together with relations (9) re-
stricted onto HN

l imply that

u ∈ HN
l ,(21a)

∫

Ωl

σij(u)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N} \ C,(21b)

∫

Ωl

σij(u)(ek±),j ± (Σi)k± = 0, i = 1, 2, for (k+, k−) ∈ C,(21c)

(Σ1)k± = 0, (Σ2)k+ − (Σ2)k− = 0,(21d)

(Σ2)k± ≤ 0, (U2)k+ − (U2)k− ≥ 0, for (k+, k−) ∈ C.(21e)

((U2)k+ − (U2)k−)(Σ2)k± = 0(21f)

The unique solvability of (19) or equivalently (21) follows from (16).
Let us note that u is the solution of problem (11) if and only if u is

the solution to the minimization problem

(22) min
u∈Kl

{1

2

∫

Ωl

σij(u)ui,j −
∫

ΓN

giui

}
.

Moreover, σ2 in (12) can be interpreted as the Lagrange multiplier
associated to the constraint [[u2]] ≥ 0 on Γl. It is instructive to establish
the relationship between the discrete stresses on Γl and the Lagrange
multiplier associated to [[Ukek]] ≥ 0 for the discretized problem. For
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this purpose we consider (22) with u restricted to Kl ∩HN
l and realize

the inequality constraint by utilizing a Lagrangian multiplier Λ ∈ R|C|,
where |C| denotes the cardinality of pairs in C. This leads to the
Lagrangian

L(u, Λ) =
1

2

∫

Ωl

σij(u)ui,j −
∫

ΓN

giui

+
∑

(k+,k−)∈C

Λs((k+,k−))((U2)k+ − (U2)k−),

(23)

with (u, Λ) ∈ HN
l × R|C| and s((k+, k−)) the component of the mul-

tiplier vector associated with (U2)k+ − (U2)k− ≥ 0. Stationarity of
the Lagrangian implies system (21), and the relationship between the
discrete stress Σ2 and the Lagrange parameter Λ is given by

(24) Λs((k+,k−)) = (Σ2)k± = ∓
∫

Ωl

σ2j(u)(ek±),j for (k+, k−) ∈ C.

To prepare the description of the algorithm we introduce the active
and inactive sets related to the constraint [[u2]] ≥ 0 at the solution
u ∈ HN

l to (21) with corresponding Lagrange multiplier Σ2 (cf. (20)).
Let α > 0 be an arbitrarily fixed constant, and define the subsets of
active and inactive indices in C according to

A = {(k+, k−) ∈ C : (U2)k+ − (U2)k− + α(Σ2)k± < 0},(25a)

I = {(k+, k−) ∈ C : (U2)k+ − (U2)k− + α(Σ2)k± ≥ 0}.(25b)

Then the complementarity system (21) can be equivalently expressed
by

u ∈ HN
l ,(26a)

∫

Ωl

σij(u)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N} \ C,(26b)

∫

Ωl

σij(u)(ek±),j ± (Σi)k± = 0, i = 1, 2, for (k+, k−) ∈ C,(26c)

(Σ1)k± = 0 for (k+, k−) ∈ C,(26d)

(Σ2)k+ − (Σ2)k− = 0, (Σ2)k± < 0 for (k+, k−) ∈ A,(26e)

(U2)k+ − (U2)k− ≥ 0, (Σ2)k± = 0 for (k+, k−) ∈ I.(26f)
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The primal-dual active set strategy is an iterative algorithm based on
(26). Starting from an initialization u0, Σ0 the algorithm consists of
a prediction step for the active/inactive set structure of C and an
equation solving step for a linear auxiliary problem.

Algorithm A (non-symmetric case)

(0) Choose u0, Σ0; set n = 1.
(1) The discrete crack indices C are decomposed according to

(27) An−1 = {(k+, k−) ∈ C : (Un−1
2 )k+ − (Un−1

2 )k− +α(Σn−1
2 )k± < 0},

(28) In−1 = {(k+, k−) ∈ C : (Un−1
2 )k+ − (Un−1

2 )k− + α(Σn−1
2 )k± ≥ 0}.

(2) If n ≥ 2 and An−1 = An−2 then STOP; else go to step 3.
(3) Solve for un ∈ HN

l :
∫

Ωl

σij(u
n)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N} \ C,(29a)

∫

Ωl

σij(u
n)(ek±),j ± (Σn

i )k± = 0, i = 1, 2, for (k+, k−) ∈ C,(29b)

(Σn
1 )k± = 0 for (k+, k−) ∈ C,(29c)

(Un
2 )k+ − (Un

2 )k− = 0 for (k+, k−) ∈ An−1(29d)

(Σn
2 )k+ − (Σn

2 )k− = 0 for (k+, k−) ∈ An−1,(29e)

(Σn
2 )k± = 0 for (k+, k−) ∈ In−1.(29f)

(4) Set n = n + 1 and go to step 1.

For our calculations we used Σ0 = 0 and u0 as the coordinate vector
representing the solution to the linear crack problem (15).

Note that system (29) is equivalent to the first order optimality con-
ditions for the strongly convex minimization problem

(30) min
v∈EN

l

{
1

2

∫

Ωl

σij(u)ui,j −
∫

ΓN

giui

}
,

with

(31) EN
l := {v ∈ HN

l : Vk+ − Vk− = 0 for all (k+, k−) ∈ An−1}.
Since (30) admits a unique solution, system (29) is uniquely solvable.
Numerically, the following technique may be used when solving (30).
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One can combine the basis functions across Γl according to

(32) en−1
k =

{
ek+ in Ω+

l

ek− in Ω−
l

for (k+, k−) ∈ An−1

to determine the unknown parameters (Un
2 )k = (Un

2 )k+ = (Un
2 )k− and

(Σn
2 )k = (Σn

2 )k+ = (Σn
2 )k− on the active set An−1. Hence, whenever

the stiffness matrix obtained from this modification is positive definite,
then the corresponding modification of (29) with (32) admits a unique
solution.

The stopping rule in step 2 of Algorithm A is motivated by the
following considerations. For (k+, k−) ∈ An−2 we have (Un−1

2 )k+ −
(Un−1

2 )k− = 0, and for (k+, k−) ∈ In−2 we obtain (Σn−1
2 )k± = 0. Hence,

if we assume that An−1 = An−2, then, by (Un−1
2 )k+ − (Un−1

2 )k− =
0, we infer (Σn−1

2 )k± < 0 for all (k+, k−) ∈ An−2. Analogously, for
(k+, k−) ∈ In−2 we obtain (Un−1

2 )k+ − (Un−1
2 )k− ≥ 0. Combining this

with the system in step 3 yields that the iterate upon termination of
the algorithm satisfies (26), i.e. it is the solution of the discrete crack
problem.

These considerations concerning the stopping rule immediately imply
that whenever the primal iterates {un} converge, then–by step 3–{Σn}
converge. Moreover, due to the fact that there are only a finite number
of pairs of active and inactive sets (An, In), there exists an iteration
n∗ < +∞ with An∗−1 = An∗ and un∗ , Σn∗ satisfying the optimality
system (26). Hence, the algorithm terminates finitely at the solution
of the problem.

Finally, let us comment on the choice of α when determining the
active/inactive sets. First note that α > 0 is fixed for all iterations.
Our convergence result, Theorem 4.2, in the next section contains no
restriction on the choice of α > 0. Numerically, however, we observe
that Algorithm A performs best when α is chosen rather small, i.e.
α ∈ [10−4, 10−2]× (max U0/max Σ0).

4. Analysis of the active set method

In Section 6 our numerical results will demonstrate an extremely
high efficiency of the proposed method to solve the crack problem with
non-penetration condition. In all cases that we tested we obtained
convergence in a small number of steps. Nevertheless, as common for
active set methods, it is difficult to provide a stringent convergence
proof. In (Hintermüller et al. 2002) we related active set methods to
semi-smooth Newton methods which in turn allows to argue superlinear
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convergence if the initialization is sufficiently close to the solution of
(26). This result can be applied in the present situation.

Theorem 4.1. Let (u, Σ) denote the solution of (26). If (u0, Σ0) is
sufficiently close to (u, Σ), then the sequence {(un, Σn)} generated by
Algorithm A converges to (u, Σ) at a locally superlinear rate.

For the proof we refer to (Hintermüller et al. 2002, Theorem 1.2).
Here we shall analyze another aspect, too. In the numerical tests we
observed that for a wide choice of different initializations the first iter-
ation provides a feasible iterate, and that the iterates remain feasible
thereafter. Moreover the convergence is monotone in the sense that
A0 ⊃ A1 ⊃ ... ⊃ An = A with A the active set defined in (25) corre-
sponding to the solution u of (26). We henceforth aim for providing
sufficient conditions which guarantee this monotone behavior.

Let the coordinates of u be ordered such that

(33) U = ((U1)1, (U2)1, (U1)2, (U2)2, . . . , (U1)N , (U2)N)

and denote by L the (2N × 2N) system matrix of problem (29), con-
sisting of the following (2× 2) submatrices:

(34) Lks =




∫
Ωl

(κek,1es,1 + µek,2es,2)
∫
Ωl

(λek,2es,1 + µek,1es,2)
∫
Ωl

(λek,1es,2 + µek,2es,1)
∫
Ωl

(µek,1es,1 + κek,2es,2)




for k, s = 1, ..., N , where κ = 2µ + λ. We split L into block matrices
according to basis functions which intersect with the crack (indicated
by subscripts B) and the others which do not (with subscripts D), i.e.
we introduce:

{(LDD)ks = Lks : k, s ∈ {1, ..., N} \ C},(35a)

{(LDB)ks = Lks : k ∈ {1, ..., N} \ C, s = s± for (s+, s−) ∈ C},(35b)

{(LBD)ks = Lks : k = k± for (k+, k−) ∈ C, s ∈ {1, ..., N} \ C},(35c)

{(LBB)ks = Lks : k = k±, s = s± for (k+, k−), (s+, s−) ∈ C}.(35d)

Then equations (29a) and (29b) can be expressed as

(36)

(
LDD LDB

LBD LBB

)(
Un

D

Un
B

)
+

(
0
Sn

B

)
=

(
GD

0

)
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with

Sn
B = (Sn

1 , Sn
2 )B = {±((Σn

1 )k± , (Σn
2 )k±) for (k+, k−) ∈ C},(37a)

GD = (G1, G2)D,(37b)

(Gi)k =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, . . . , N} \ C.(37c)

Computing the Schur complement for (36) we obtain an equation for
variables on the boundary Γl only:

(38) (LBB − LBDL−1
DDLDB)Un

B + Sn
B = −LBDL−1

DDGD.

It consists of 4|C| equations.
Let us introduce the notation dUn

B = Un
B−Un−1

B and dSn
B = Sn

B−Sn−1
B

for the difference of displacements and stresses at iteration levels n and
n− 1. From equation (38) we obtain

(39) dUn
B = −(LBB − LBDL−1

DDLDB)−1dSn
B.

We recall that (Σn
1 )k± = (Σn−1

1 )k± = 0 for all (k+, k−) ∈ C. Therefore,
the even equations in system (39) give us 2|C| relations between the
second components (dUn

2 )B and (dSn
2 )B. In matrix form this can be

expressed as

(dUn
2 )B = −R (dSn

2 )B,(40a)

R = {((LBB − LBDL−1
DDLDB)−1

)
ks

: k, s are even }.(40b)

Finally, we split (dUn
2 )B = ((dUn

2 )B+ , (dUn
2 )B−), where

(41) (dUn
2 )B± = {(Un

2 − Un−1
2 )k : k = k± for (k+, k−) ∈ C}.

The continuity of stresses across the crack implies that (dSn
2 )B+ =

(dSn
2 )B− = dΣn

2 , where

(42) dΣn
2 = {(Σn

2 − Σn−1
2 )k : k = k± for (k+, k−) ∈ C}.

Therefore, equation (40) can be rewritten as

(43)

(
(dUn

2 )B+

(dUn
2 )B−

)
= −

(
RB+B+ RB+B−

RB−B+ RB−B−

)(
dΣn

2

−dΣn
2

)
,

and we obtain |C| equations for the jump:

[[dUn
2 ]] = (dUn

2 )B+ − (dUn
2 )B− = −M dΣn

2 ,(44a)

M = RB+B+ −RB+B− −RB−B+ + RB−B− .(44b)
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Next the matrix M is split into blocks, which correspond to active
An−1 and inactive In−1 sets on the boundary Γl as

{(MAn−1An−1)ks = Mks : k = k±, s = s±, (k+, k−), (s+, s−) ∈ An−1},
{(MAn−1In−1)ks = Mks : k = k±, s = s±, (k+, k−) ∈ An−1, (s+, s−) ∈ In−1},
{(MIn−1An−1)ks = Mks : k = k±, s = s±, (k+, k−) ∈ In−1, (s+, s−) ∈ An−1},
{(MIn−1In−1)ks = Mks : k = k±, s = s±, (k+, k−), (s+, s−) ∈ In−1}.
With this notation equation (44) is equivalent to the following system:

(45)

(
[[dUn

2 ]]An−1

[[dUn
2 ]]In−1

)
=−

(
MAn−1An−1 MAn−1In−1

MIn−1An−1 MIn−1In−1

)(
(dΣn

2 )An−1

(dΣn
2 )In−1

)
,

which can be expressed as

(46) (dΣn
2 )An−1 =M−1

An−1An−1
[[dUn

2 ]]An−1−M−1
An−1An−1

MAn−1In−1(dΣn
2 )In−1

and

(47) [[dUn
2 ]]In−1 = Mn−1

1 [[dUn
2 ]]An−1 −Mn−1

2 (dΣn
2 )In−1 ,

where

(48) Mn−1
1 = MIn−1An−1M

−1
An−1An−1

,

(49) Mn−1
2 = MIn−1In−1 −MIn−1An−1M

−1
An−1An−1

MAn−1In−1 .

Assumption A. The elements of the Schur complements Mn−1
2 are

nonnegative for the partitioning of Γl into the active An−1 and inactive
In−1 sets for every iteration n.

We call the solution un of problem (29) feasible if (Un
2 )k+−(Un

2 )k− ≥ 0
for all (k+, k−) ∈ C.

Theorem 4.2. If Assumption A holds and the active set algorithm de-
termines a feasible solution un−1 at some iteration n− 1, then all sub-
sequent iterations are feasible and the whole sequence converges mono-
tonically to the solution of (26) in a finite number of steps.

Admittedly, these assumptions are restrictive. However, let us men-
tion that the nonnegativity of Mn−1

2 is obtained for e.g. the Shortly-
Weller discretization for rather general geometries. We observed nu-
merically that our assumptions are satisfied and they describe the be-
havior of the algorithm in practice.
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Proof. Assume that un−1 is feasible, i.e. (Un−1
2 )k+ − (Un−1

2 )k− ≥ 0 for
all (k+, k−) ∈ C. Then from the definition of active and inactive sets
we find that

An−1 = {(Un−1
2 )k+ − (Un−1

2 )k− = 0, (Σn−1
2 )k+ − (Σn−1

2 )k− = 0, (Σn−1
2 )k± < 0},

In−1 = {(Un−1
2 )k+ − (Un−1

2 )k− ≥ 0, (Σn−1
2 )k+ − (Σn−1

2 )k− = 0, (Σn−1
2 )k± ≥ 0}.

For the solution un of (29) we have

(Un
2 )k+ − (Un

2 )k− = 0 for (k+, k−) ∈ An−1,

(Σn
2 )k± = 0 for (k+, k−) ∈ In−1.

Therefore, [[dUn
2 ]]An−1 = 0, (dΣn

2 )In−1 ≤ 0. From Assumption A and
(47) we conclude [[dUn

2 ]]In−1 ≥ 0. In view of [[Un−1
2 ]]In−1 ≥ 0 we have

[[Un
2 ]]In−1 ≥ 0, and hence un and all further iterates are feasible. Mono-

tonicity now easily follows:

An = {(Un
2 )k+ − (Un

2 )k− = 0, (Σn−1
2 )k+ − (Σn−1

2 )k− = 0, (Σn
2 )k± < 0}

⊆ An−1,

In = {(Un
2 )k+ − (Un

2 )k− = 0, (Σn−1
2 )k+ − (Σn−1

2 )k− = 0, (Σn
2 )k± ≥ 0}

∪{(Un
2 )k+ − (Un

2 )k− ≥ 0, (Σn
2 )k± = 0}} ⊇ In−1.

Convergence in a finite number of iterations is a consequence of set-
theoretic monotonicity of the active sets and finite-dimensionality of
HN

l . This completes the proof. ¤
An analogous result holds true in the case of symmetric crack prob-

lems. By exploiting the symmetry the determination of An−1 and In−1

in every iteration of Algorithm A can be simplified. In Appendix A
we provide a brief discussion of the symmetric case and introduce the
primal-dual active set method for the symmetric crack problem. The
resulting algorithm is analogous to Algorithm A.

We end this section by briefly addressing the differences between
Algorithm A, resp. its symmetric analogue in Appendix A, and the
complementarity pivoting method of Lemke. The latter method is sim-
ilar to the simplex algorithm well-known from linear programming and
works with primal and dual variables. A good account for Lemke’s
method can be found in (Cottle, Pang and Stone 1992). It is well-
established as a direct solution method for contact problems; see e.g.
(Klarbring 1987) and (Raous, Chabrand, and Lebon 1988). It es-
sentially operates on the Schur complement formulation (38). While
Lemke’s method can be carried over to the symmetric crack problem in
a straight forward manner, one has to be careful in the non-symmetric



15

case. In the latter situation we do not have inequality constraints on the
displacement U2 directly rather on the jump across the crack. Typical
convergence assertions for Lemke’s method state that, under suitable
assumptions (like non-degeneracy), the method successfully terminates
after a finite number of steps (Cottle, Pang and Stone 1992, Section
4.4). This iteration number depends on the number of constrained
unknowns. However, this convergence assertion includes no rate of
convergence result as it is the case with our method. Further it is
known that for large problems Lemke’s method requires a large num-
ber of iterations. This can be attributed to the fact that a typical
cycle of Lemke’s method activates and inactivates one component of
the vectors of primal and dual unknowns. Our active set method on
the other hand has the ability to activate and inactivate whole sets of
unknowns from one iteration to the next. This behavior is responsible
for the rather small number of iterations required by our primal-dual
active set method for finding the exact solution of the discretized crack
problem.

5. Approximations by the penalty method

In the numerical section we compare the primal-dual active set algo-
rithm to a well-known iteration method based on a penalty formulation.
To recall this method consider for δ > 0 the penalty equations

(50)

∫

Ωl

σij(u
δ)vi,j − 1

δ

∫

Γl

[[uδ
2]]
−[[v2]] =

∫

ΓN

givi for all v ∈ H̃1(Ωl).

Here [[·]]− means the negative part of the value, i.e. [[uδ
2]]
− = max(0,−[[uδ

2]]).

The solutions uδ ∈ H̃1(Ωl) of (50) converge to the solution u of prob-
lem (11) in the H1-norm as δ → 0 (Glowinski et al. 1981). Following
(Khludnev and Kovtunenko 2000), (Kovtunenko 2003), we approxi-
mate equation (50) by the iteration penalty (IP) scheme:

(51)

∫

Ωl

σij(u
n)vi,j +

1

δ

∫

Γl

[[un
2 − un−1

2 ]][[v2]] =

∫

ΓN

givi +
1

δ

∫

Γl

[[un−1
2 ]]−[[v2]].

Convergence of the iterates un to uδ in the H1-norm was established
in (Kovtunenko 1997).
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To relate the penalized problem (50) to the active set method note
that its solutions uδ satisfy

(52) σδ
2 = σ22(u

δ) = −1

δ
[[uδ

2]]
−.

Referring to (25) the active set should be defined as the sub-set of Γl

when [[uδ
2]]+ασδ

2 < 0. Utilizing (52) the active and inactive sets for the
penalty formulation can therefore be defined according to

(53) Aδ = {[[uδ
2]] < 0 on Γl}, Iδ = {[[uδ

2]] ≥ 0 on Γl},
which implies the relation −[[uδ

2]]
− = χ(Aδ)[[uδ

2]] for the indicator func-
tion χ of the active set Aδ.

6. Numerical examples

We commence with a symmetric example and choose Ω ⊂ R2 as the
unit square,

(54) Ω = {x = (x1, x2) ∈ R2, 0 < x1 < 1, |x2| < 0.5},
and the axis of symmetry will be the interface

(55) Σ = {0 < x1 < 1, x2 = 0}.
The crack Γl is a part of the interface Σ i.e.

(56) Γl = {0 < x1 < l, x2 = 0}, 0 < l < 1,

and the domain with crack is Ωl = Ω\Γl. The boundary of the domain
Ωl is assumed to consist of the following symmetric parts:

ΓD =Γ+
D ∪ Γ−D,(57a)

Γ±D ={x1 = 0, 0.45 < ±x2 < 0.5}∪{0 ≤ x1 < 0.05, x2 = ±0.5}(57b)

under the Dirichlet boundary condition,

ΓS = Γ+
S1 ∪ Γ−S1 ∪ Γ+

S2 ∪ Γ−S2,(58a)

Γ±S1 = {x1 = 0, 0 < ±x2 < 0.45},(58b)

Γ±S2 = {0.05 < x1 < 1, x2 = ±0.5}(58c)

under the homogeneous Neumann-type boundary condition,

(59) ΓN = {x1 = 1, |x2| < 0.5}
under the loading by traction forces, and the crack faces

(60) Γ±l = {0 < x1 < l, x2 = ±0}
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as illustrated in Fig. 1.
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Figure 1. The domain Ωl with the crack Γl.

The loading applied to the solid is characterized by the piecewise-
linear function g1 given by formula:

(61) g1(x2) = −t0µ(1− 2|x2|), t0 = 5.85 · 10−3,

with max |g1| ≈ 160 (mPa), and is illustrated in Fig. 2. To define the
Lamé constants µ and λ, the following values of the material parameters
are taken: ν = 0.34, E = 7.3 · 104 (mPa).
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Figure 2. The loading model applied on Ωl.
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For our case the boundary conditions (5) take the form:

− σ11(u) = −σ12(u) = 0 on Γ±S1,(62a)

± σ12(u) = ±σ22(u) = 0 on Γ±S2,(62b)

σ11(u) = g1, σ12(u) = 0 on ΓN .(62c)

Before giving the numerical specifications let us present some of the
results with comments on the physical nature of the linear as well as the
nonlinear model in terms of stress intensity factors. For the linear crack
model (3)–(6), the numerical values of the jump [[u2]] = u2|Σ+ − u2|Σ−
across the interface Σ are depicted in Fig. 3 for the crack length l =
0.35. Here, negative values [[u2]] < 0 imply penetration between the
crack faces Γ±l . For the nonlinear crack model (3)–(5) including the
condition (7), the corresponding jump [[u2]] ≥ 0 at the interface Σ is
presented in the same Fig. 3. This jump determines two zones: opening
[[u2]] > 0, and contact [[u2]] = 0 between the crack faces. The different
zones are separated by the point x1 = 0.175 at the crack Γl. On the
other hand, in Fig. 4 we present the stress intensity factor KI for the
linear crack problem, calculated numerically for various crack lengths
l = D

40
with D = 2, ..., 38. The second stress intensity factor KII , which

belongs to the nonlinear model, satisfies KII = 0. In both cases the cor-
responding calculations were made with the help of singular functions
by the perturbation method, which is described in (Kovtunenko 2003).
This figure shows two intervals which are characterized by KI > 0
and KI < 0, respectively. The intervals are separated by the point
l∗ ≈ 0.166. Comparing the numerical results depicted in Fig. 3 and
Fig. 4, we conclude that the point x1 = 0.175 separating the open
(inactive) and contact (active) zones for the nonlinear crack model in
Fig. 3 is the point on the grid considered in Fig. 4 which is closest to
the point l∗ where KI = 0. Similar results are valid for all crack lengths
l ≥ l∗ tested.

Let us turn to a description of the discretization. We chose a uniform
triangular mesh T l

h of mesh-size h in the domain Ωl. For the choices
h = 0.25 and l = 0.5 this is depicted in Fig. 5. This construction
incorporates the radial structure of a possible singularity of the solution
at the crack tip (Grisvard 1991). The crack length is always chosen as
a multiple of the mesh size, i.e. l = Dh for some integer D such that
0 < l < 1. This results in double nodes along the crack Γl, as presented
in Fig. 5 for D = 2.



19

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

interface (m)

ju
m

p 
(m

)

linear problem    
non−linear problem

Figure 3. Jump [[u2]] across the interface Σ for the lin-
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Figure 4. Jump [[u2]] across the interface Σ for the non-
linear crack problem.

With respect to this triangulation the basis of piecewise-linear func-
tions {ek}N

k=1 supported on the mesh T l
h, with ek = 0 on Γ±D is con-

structed. The non-linear crack models were solved by the primal-dual
active set (AS) method with α = 10−3. In all cases that we tested
the algorithm terminated after finitely many iterations by producing
the same active/inactive set structure in two consecutive iterations and
thus found the solution of the discretized problem.

To present some of the numerical findings we define the potential
energy of the solution of problems (11) or (12) by

(63) P (u) =
1

2

∫

Ωl

σij(u)ui,j −
∫

ΓN

giui,



20

- x1

6

x2

0

1

-0.5

0.5

@
@

@
@

@
@

@@

@
@

@
@

@
@

@@

¡
¡

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡
¡

¡
¡

@
@

@
@

@
@

@@

@
@

@
@

@
@

@
@

¡
¡

¡
¡

¡
¡

¡¡

¡
¡

¡
¡

¡
¡

¡¡

s s s s s

s s s s s

s s s s s

s s s s s

s ss s s s su

Figure 5. Triangular mesh T l
h for l = 0.5 and h = 0.25.

which is equivalent to the square of the H1(Ωl)
2-norm of u. In Fig. 6 the

energy introduced above is presented for the mesh-sizes h0 = 0.05, h1 =
0.025, h2 = 0.0125, and h3 = 0.00625, for the fixed crack length l =
0.35. The results indicate a linear rate of convergence of the energy as
h → 0. The required number of iterations of the primal-dual active set
algorithm increases moderately as h decreases: the number of iterations
until successful termination is 3 for h0, 4 for h1, 5 for h2, and 7 for h3.
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Figure 6. Convergence of the potential energy P (u).

We compared the numerical results for AS with the IP method, de-
scribed in formula (51). In Fig. 6 we see coincidence of the energies
obtained by these two methods for h1. The IP method requires signifi-
cantly more iterations than the AS strategy. For the result in Fig. 6, for
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example, IP took about 50, while AS needed only 4 iterations. More-
over, AS terminated at the solution of the discretized problem. The
computational work required by IP and AS per iteration, respectively,
is comparable.

For this symmetric case the AS method does not use the basis func-
tions on the active set at the crack. This may further decrease the
number of iterations, however, as we report on below, for the non-
symmetric case the number of iterations required by AS is very small
as well.

In Fig. 7 and Fig. 8 we present the values of the iterates of AS for the
jump [[un

2 ]] and the generalized stress Σn
2 = (Σn

2 )kek at the interface Σ,
for l = 0.35 and h = 0.025, respectively. We also compare the results
for AS and IP and observe that the two methods produce the same
active and inactive sets A and I. The IP method was realized with
the stopping error ‖u0‖C(Ωl)2 · 10−5. Requiring further iterations of IP
yields no additional progress for [[u2]].
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Figure 7. The jump [[un
2 ]] as l = 0.35 under the g1 loading.

From our numerical tests we can report on the following features of
AS.

• The convergence is always monotone, i.e. A0 ⊃ A1 ⊃ ... ⊃
An = A and I0 ⊂ I1 ⊂ ... ⊂ In = I.

• Referring to the assumptions made in Section 4, we found that
in the examples M ≥ 0 and Mn−1

2 ≥ 0, n = 1, 2, ....
• We tested various feasible as well as infeasible initializations u0,

and found that the first iteration u1 was always feasible. Thus,
the assumption of Theorem 4.2 is satisfied numerically for the
tests that we performed.
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2 as l = 0.35 under the g1 loading.

• As can be seen from Tab. 1, the number of iterations for AS (un-
til successful termination) grows only moderately for decreasing
mesh-size h.

h 0.05 0.025 0.0125 0.00625
#it 3 4 5 7

Table 1. Number of iterations #it of AS for different
mesh-sizes h.

• We further tested Assumption A concerning matrix M2 for ar-
bitrary splittings and found that it is not valid in general. Neg-
ative elements can occur in M2 in cases which correspond to a
rapid oscillation of the sets A and I along the crack Γl.

• We carried out further experiments with the loading described
above but different Lamé constants λ and µ for the model. Even
for very large values of λ+µ

µ
, which strongly emphasize the prob-

lematic (div u),i part in the Lamé equation, the monotonicity
property remained valid. In Tab. 2 we report on the number of
iterations required by AS for various values for λ+µ

µ
. The results

indicate that AS is rather insensitive with respect to λ+µ
µ

.

λ+µ
µ

100 101 102 103 104

#it 5 4 5 6 6

Table 2. Number of iterations #it of AS for different
parameter values λ+µ

µ
.
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• We tested a non-symmetric problem by choosing a non-symmetric
loading

(64) g1 =

{
g1 at ΓN ∩ {x2 ≥ 0},
0 at ΓN ∩ {x2 < 0}.

Again monotone convergence of the AS method was observed.
In Fig. 7 one can see a closing of the crack faces Γ±l in a region
containing the crack tip (l, 0). From the fracture mechanics
standpoint, the stress intensity factor is KI = 0. To simulate
KI 6= 0, we tested the crack problem with the loading −g1,
which is applied in the opposite direction to the case presented
in Fig. 2. Then an opening of the crack faces Γ±l occurs near the
crack tip as presented in Fig. 9. In this case, the AS method
converges in the same number of steps as for KI = 0. The
corresponding iterates are depicted in Fig. 9 and Fig. 10.
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Figure 9. The jump [[un
2 ]] as l = 0.35 under the −g1 loading.

• We also considered the case of a non-homogeneous solid, by
bonding two isotropic materials across the interface Σ, with dif-
ferent Lamé constants µ+, λ+ and µ−, λ− in the corresponding
upper Ω+

l and lower Ω−
l domains, where Ω±

l = Ωl ∩ {±x2 > 0}.
For simplicity we took proportional constants

(65) µ± = (1± b)µ, λ± = (1± b)λ,

which implies a one-parametric dependence

(66) µ+/µ− = λ+/λ− = (1 + b)/(1− b) = bond

in the parameter bond of bonding. Note that bond = 1 de-
scribes the homogeneous, isotropic solid considered before. The
case bond 6= 1 in our example implies that both stress intensity
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Figure 10. The stress Σn
2 as l = 0.35 under the −g1 loading.

factors KI 6= 0 and KII 6= 0. For the various values of the
parameter bond tested, the monotone convergence of the non-
symmetric AS algorithm remains valid, too.

In Fig. 11 and 12 we show the displacements u1 and u2 for
both crack faces Γ±l with l = 0.35. Here we chose bond=2.
Both components of the displacements clearly reflect the non-
symmetry of the problem. In contrast to the present situation,
note that in the symmetric case we always had [[u1]] = 0.
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Figure 11. Displacements (un
1 )k± for bond = 2.

7. Conclusion

The primal-dual active set algorithm for both, symmetric and non-
symmetric crack problems with non-penetration is formulated and shown
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Figure 12. Displacements (un
2 )k± for bond = 2.

to be efficient numerically. In the finite-dimensional case, superlinear
local convergence is proved and and global convergence is obtained un-
der the positiveness assumption made on some matrix connecting the
jump of the traces and stress at the crack by the active set iteration.
This assumption implies monotonicity of the estimates of the active
set.

Our numerical tests indicate the following. In comparison with a
regularization method, the active set method requires a significantly
smaller number of iterations. The number of iterations required de-
pends only moderately on the mesh-size of the discretization.

The active sets converge monotonically independently of the initial-
ization. These assertions were tested for the closed and opened crack
faces, for the symmetric and non-symmetric loading, for the homoge-
neous and bonded isotropic materials, and for various Lamé constants.
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Appendix A. The symmetric problem

In fracture mechanics it is common to consider the symmetric crack
problem when investigating the mode-1 model of a crack. Therefore,
we formulate the primal-dual active set algorithm for this specific case.

Let the domain Ωl with its boundary and the loading g applied at
ΓN be symmetric with respect to the x1-axis. It implies the following
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structure of the solution of problem (11):

(67) u = (u1, u2) =

{
(u+

1 , u+
2 )(x1, x2) for x2 > 0,

(u+
1 ,−u+

2 )(x1, x2) for x2 < 0.

Then [[u2]] = 2u2|Γ+
l

= −2u2|Γ−l , and the non-penetration conditions

(9) at the crack implies

∓ σ12(u) = 0 on Γ±l ,(68a)

σ22(u) ≤ 0, u2 ≥ 0, σ22(u)u2 = 0 on Γ+
l ,(68b)

u2|Γ−l = −u2|Γ+
l
, σ22(u)|Γ−l = σ22(u)|Γ+

l
.(68c)

Problem (3)–(5), (9) on Ωl can be reduced onto the half-domain Ω+
l =

Ωl ∩ {x2 > 0} by setting the additional boundary conditions

(69) u2 = 0, σ12(u) = 0 on {x2 = 0} ∩ Ωl.

Next we consider the consequences for the active set algorithm. In
the finite-dimensional case we define the active and inactive sets as

A = {k+ ∈ C : (U2 + αΣ2)k+ < 0},(70a)

I = {k+ ∈ C : (U2 + αΣ2)k+ ≥ 0}.(70b)

Then (26) results in

u ∈ HN
l ,(71a)

∫

Ωl

σij(u)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N} \ C,(71b)

∫

Ωl

σij(u)(ek±),j ± (Σi)k± = 0, i = 1, 2, for (k+, k−) ∈ C,(71c)

(Σ1)k+ = 0, (U2)k+ = 0, (Σ2)k+ < 0 for k+ ∈ A,(71d)

(Σ1)k+ = 0, (U2)k+ ≥ 0, (Σ2)k+ = 0 for k+ ∈ I,(71e)

(Σi)k− = (Σi)k+ , i = 1, 2, for all (k+, k−) ∈ C,(71f)

(U1)k− = (U1)k+ , (U2)k− = −(U2)k+ for all (k+, k−) ∈ C,(71g)

and the steps of the active set algorithm reduced to:

Algorithm B (symmetric case)

(0) Choose u0, Σ0; set n = 1.
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(1) The discrete crack indices C are decomposed according to

An−1 = {k+ ∈ C : (Un−1
2 + αΣn−1

2 )k+ < 0},(72a)

In−1 = {k+ ∈ C : (Un−1
2 + αΣn−1

2 )k+ ≥ 0}.(72b)

(2) If n ≥ 2 and An−1 = An−2 then STOP; else go to step 3.
(3) Solve for un ∈ HN

l the mixed problem:∫

Ωl

σij(u
n)(ek),j =

∫

ΓN

giek, i = 1, 2, for k ∈ {1, ..., N} \ C,(73a)

∫

Ωl

σij(u
n)(ek±),j ± (Σn

i )k± = 0, i = 1, 2, for (k+, k−) ∈ C,(73b)

(Σn
1 )k± = 0 for (k+, k−) ∈ C,(73c)

(Un
2 )k+ = 0 for k+ ∈ An−1,(73d)

(Σn
2 )k+ = 0 for k+ ∈ In−1,(73e)

(Un
2 )k− = 0 on An−1, (Σn

2 )k− = 0 on In−1.(73f)

(4) Set n = n + 1 and go to 1.

Theorem 4.1 also applies in the present situation. Further, Theorem 4.2
can easily be adapted to the symmetric case. Formula (44), for exam-
ple, simplifies to

(dUn
2 )B+ = −M dΣn

2 , with(74a)

M = RB+B+ −RB+B− = −RB−B+ + RB−B− .(74b)


