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DIRECTIONAL DIFFERENTIABILITY FOR SHAPE OPTIMIZATION
WITH VARIATIONAL INEQUALITIES AS CONSTRAINTS

VIcTOR A. KOVTUNENKO!?*® AND KARL KuNiscu®*

Abstract. For equilibrium constrained optimization problems subject to nonlinear state equations,
the property of directional differentiability with respect to a parameter is studied. An abstract class
of parameter dependent shape optimization problems is investigated with penalty constraints linked
to variational inequalities. Based on the Lagrange multiplier approach, on smooth penalties due to
Lavrentiev regularization, and on adjoint operators, a shape derivative is obtained. The explicit formula
provides a descent direction for the gradient algorithm identifying the shape of the breaking-line from
a boundary measurement. A numerical example is presented for a nonlinear Poisson problem modeling
Barenblatt’s surface energies and non-penetrating cracks.
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1. INTRODUCTION

In this paper we prove a directional derivative of parameter-dependent objective functions for a class of
nonlinear equilibrium constraints. In particular, the penalty constraint linked to variational inequalities (VI) is
investigated within Lavrentiev’s regularization. The problem describes the identification of a breaking line with
contact and cohesion in the frame of quasi-brittle fracture and destructive physical analysis (DPA).

The research belongs to the fields of optimal control, shape and topology optimization [4, 37]. For optimal
control of VI we cite [1, 33], for quasi- and hemi-VI see [12, 34, 39], and for optimal control of cracks we
refer to [15, 24, 28]. In order to find an optimal shape, we generalize the optimization approach for semi-
linear equilibrium equations from [7, 22] by adopting results on directional differentiability of Lagrangians. The
main difficulty here concerns nonlinearity of state equations. Whereas in [22] we considered a specific problem
with cohesion representing the semi-linear state equation, the current contribution presents a solid theoretical
background to the same problem class. In our earlier works, the shape derivative was obtained for free-boundary
problems of Bernoulli type [8], nonlinear crack problems [19, 20] and Barenblatt’s cracks in plane setting [22],
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inverse problems of shape identification [21] and breaking-line identification [6], for the Stokes flow [25] and the
nonlinear Stokes—Forchheimer flow [7].

The classical theory of state-constrained optimization problems deals with linear equations, typically, given
by partial differential equations [29, 38]. In our consideration we study state constraints, given by variational
inequalities and their penalization. The challenge consists in the fact that the latter are not Fréchet differentiable
(see [30, 35]). As a consequence, the directional derivative of Lagrangians and related shape differentiability fails.
For the concept of the conical differential of a solution of the Signorini variational inequality, see [36]. Sensitivity
estimates in shape optimization problems for a class of semi-linear elliptic variational inequalities based on
material derivatives were investigated in [9]. Shape sensitivity analysis for an inverse obstacle problem and its
regularization via penalization was performed in [13] utilizing geometric properties of active and biactive sets.
We suggest a novel approximation for the shape derivative along specifically linearized directions and based on
generalized adjoint techniques (see [31, 32]). In particular cases, our approach is closely related to the method
of averaged adjoints developed by [26]. We compute a directional derivative with respect to specific shape
perturbations, which give descent directions for the shape optimization problem. It coincides with the usual
shape derivative in case of linear state equations.

Our research addresses the following features:

(i) Optimization subject to nonlinear and nonsmooth equilibrium constraints. Within the Lagrange multiplier
approach (see [14]), in Section 2 we consider a convex objective function J with a nonlinear equation as
constraint. The linearized Lagrangian £ is well-posed when using the associated adjoint operator provided in
Lemma 2.2.

(i) Penalty optimization linked to variational inequalities (VI). In order to treat VI, in Section 3 we extend
L to a penalized Lagrangian £° for £ > 0 (see Lem. 3.2), thus reducing the variational inequalities to case (i).
Using adjoints we derive necessary and sufficient optimality conditions for a saddle-point problem providing the
optimal value (¢).

(iii) Directional differentiability. We consider optimal values of objective and Lagrange functions j(e,s) =
I(g,s) depending on a parameter s > 0. Following the concepts in [3, 4], the directional derivative 9;;(0) at
¢ = 0 is obtained in Theorem 2.6, and in Theorem 3.3 it is extended to 0;j(e,0) by using a differentiable
Lavrentiev’s e-regularization [27].

(iv) Limit as ¢ — 0. Taking the limit as the penalty parameter ¢ — 0T, in Theorem 3.4 we derive the
reference variational inequality, its adjoint equation, as well as primal and adjoint variables that are the
Lagrange multipliers for inequality constraints. However, a limit directional derivative fails since the VIs are
not differentiable.

(v) Shape derivative. In Section 4 we introduce states depending on a family of geometries §2; parameterized
by t. The diffeomorphic perturbations Qs are defined by a kinematic velocity A (see e.g. [10, 23]). They are
used to characterize the shape derivative using the bijection property of the function spaces V(Qs15) — V().

(vi) Application to non-penetrating Barenblatt’s cracks. We apply shape perturbations to the nonlinear crack
problem (4.11) under non-penetration [16, 17] in the anti-plane setting (see [11]). Beyond the classic Griffith’s
brittle fracture, Barenblatt’s cohesion (see [2, 18]) allows crack faces to close smoothly and determines a-priori
unknown cracks by those points where opening occurs along a breaking line ;.

(vii) Hadamard formula and descent directions. In Theorem 4.3 we specify the shape derivative for the
nonlinear Poisson problem described in (vi), and express it by a Hadamard formula over the moving boundary
in Theorem 4.4. This formula provides kinematic velocities A for a descent direction 9;j(g,0) < 0 within a
gradient method.

(viii) Identification of breaking lines. Finally, in Section 5 we present a numerical simulation of the gradient
descent algorithm for the inverse problem of identification of the breaking line 3J;, which minimizes the objective
J of least-square misfit from a boundary observation. We report that the faces need to be open for identification
within DPA.
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2. DIRECTIONAL DIFFERENTIABILITY OF LAGRANGIANS FOR EQUILIBRIUM
CONSTRAINTS

In separable Banach spaces V' and X, let a linear operator M : V +— X map the space of states u € V to
observations z € X. We consider an abstract objective function dependent on a positive parameter s € I :=
[0, s0), so > 0:

J(s,2): I x X —R. (2.1)

Next we introduce our state constraint. Let the continuous function £(s,u) : I x V — R be the energy
functional. For every fixed s we assume that its is differentiable, i.e.

(E1) € possesses the Gateaux derivative £'(s,u) € V* such that

E(s,u+1v) —E(s,u

(&' (s,u),v) = lim (s,utr0) = E(s,u)

r—0 r

for u,v eV, s eI

Here and in what follows the brackets (-, -) stands for the duality pairing between V" and its dual space V*.

We define the reference state as a solution uy € V at s = 0 to the equilibrium equation expressed in the
variational form:

(E'(0,up),v) =0 forallveV. (2.2)
The variational equation (2.2) constitutes the optimality condition for the minimum

E(0,up) = umei‘r/lé'(o,u). (2.3)

Lemma 2.1. Let assumption (E1) and the following hold:
(E2) & at s =0 is coercive: there exist a > 0 and f € V* such that

(5/(07u),u> = Q”UH%/ —(f,u) forueV;

(E3) [urs E'(0,u)] : V = V* is weak-to-weak continuous: if u¥ — ug weakly in V as k — oo, then (0, u*) —
E'(0,ug) *x-weakly in V*.

Then there exists a solution ug € V' to (2.2).
Proof. We introduce a Galerkin approximation of (2.2) by nonlinear equations in subspaces V" C V of finite
dimension n € N as follows

(E'(0,u™),v™) =0 forall v € V™.

Since the strong and weak convergences coincide in finite-dimensional spaces, under the coercivity and continuity
assumptions (E2) and (E3) solutions u™ € V™ exist according to the Brouwer fixed point theorem, see e.g. [5].
The solutions are uniformly bounded in V' due to (E2). Hence there exists a weakly convergent subsequence
u" and an accumulation point uy € V. Taking the limit as ny — oo due to (E3) the assertion of the theorem
follows. H

Induced by the state equation (2.2), we have the optimal value

7(0) = J(0, Mug) for up € V solving £'(0,ug) = 0. (2.4)
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Our aim is to extend the state-constrained optimization (2.4) to a well-posed optimal value function j : I C
R — R in such a way that it has a directional derivative at s = 0:

2.(0) =t 25 =3(O)

(one sided derivative). (2.5)
s—0+ S

Further we linearize the mapping u — &’ around the reference solution ug to (2.2) and use a Lagrange
multiplier method [14]. For this task we employ for fixed (s,ug) € I x V an ‘associated to adjoint’ operator
(E)*(s,up) € ZL(V,V*), which is defined by means of the Lagrange identity (see [32], Chap. 1):

((E)* (8, u0)v,u0) = (E'(s,up) — E'(8,0),v) forveV,sel. (2.6)

Lemma 2.2. If the following assumption holds:
(E*1) the second Gateaux derivative £ (s,rug) € L(V,V*) exists:

E'(s,rug + Ew) — &' (s, rup)

<€//(5,TUQ)7~U,’U> = %1£1}J< ¢ ,1}>, v,weV,
forsel, andr— E"(s,rug) is continuous for r € [0, 1],
then an associated to adjoint operator in (2.6) is given by
1
(&) (s,up)v, w) ::/ (E" (s, rup)w, v) dr. (2.7)
0
Proof. From the Newton—Leibniz axiom we have
1
(&' (s,u0),v) = (£'(5,0),v) —|—/ (E" (s, TU0)Ug, V) dr. (2.8)
0
Inserting w = ug into (2.7) and using (2.8) implies (2.6). O

Based on Lemma 2.2, a linearized Lagrange function £ : I x V3 — R is well defined for u,v € V as follows
L(s,up,u,v) := T (s, Mu) — ((E)*(s,u0)v,u) — (£'(s,0),v). (2.9)
For the Lagrangian £ we consider the saddle-point (minimaz) problem:
L(s,ug, us,v) < L8, u0,us,vs) < L(8, ug, U, Vs) (2.10)
for all (u,v) € V2. Following [3], we introduce the optimal values:

ls := sup inf L(s,up,u,v) < inf sup L(s,ug,u,v) =:1°
veV ueV ueV veV

and the corresponding solution sets:
K?®:={u e V] sup L(s,ug,u,v) =1°}, (2.11)
veV

Ks:={veV| Jrel‘f/ﬁ(s,u(),u, v) =},
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which determine a multi-valued function [s = K* x K] : I = V2. Later we shall prove that these sets are not
empty.

Lemma 2.3. Let (E1)-(E3), (E*1) and the following assumptions hold
(J1) T possesses a Gateauzr derivative J'(s,z) € X* such that

(T (5,2), ) e x = lim T2 HTE) = T (5:2)

r—0 r

forz, e X, sel,

where (-, Y x+ x 1s the duality pairing between X and its dual space X*;

(J2) the objective functional is convex:

<j/(8,§)72—£>x*7)( SJ(S?Z)_j(Sag) fOT’Z,fEX, SEI,

(E*2) the associated to adjoint operator is symmetric:

((EN*(s,u0)v,u) = ((EN*(s,up)u,v) foru,v eV, sel,

(E*3) (E")*(s,up) is coercive uniformly with respect to s: there exist a* > 0 and f* € V* such that

(&) (s, uo)u,w) = al|ullyy — (f*,u) forueV,sel.

Then for every s € I there exists a state us € V' solving the equation:
((E)* (s, u0)v,us) + (£'(5,0),v) =0 forallveV, (2.12)
and an adjoint state vs € V' satisfying the adjoint equation:
(EN*(syuo)vs,u) = (T (s, Mus), Mu)x» x for allu € V. (2.13)
The pair (us,vs) € K® x Ky is a saddle point satisfying
I(s) :=1s = L(s,up,us,vs) =1°, sel. (2.14)

If f* =0 in (E*3), then the saddle-point is unique.

The proof of Lemma 2.3 is given in Appendix A.

We note that ug from Lemma (2.1) is a solution to the s-dependent equation (2.12) at s = 0. The latter also
coincides with the reference equation (2.2) due to the Lagrange identity (2.6).

The next lemma establishes a sequential semi-continuity property for the solution set K* x K, as s — 0F.

Lemma 2.4. Let (E1)-(E3), (E*1)-(E*3), (J1), (J2) and the following assumptions hold true:
(E4) E'(s,0) is bounded: there exist @ > 0 such that

1€ (s,0)[|v+ <@ forsel;

(E5) s — &'(s,0) is continuous from the right at u =0 as s — 0T;
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(J3) T’ (s, Mus) on solutions is bounded: there exist a; > 0 such that

| T’ (s, Mus)||x+ < aglluslly forus € K*, s € I;

(J4) s — T (s, Mus) on solutions us € K* is continuous as s — 07 ;

(E*4) (E£')*(s,up) is bounded: there exist @* > 0 such that

I(EN*(s,uo)|| <@ forsel;

(E*5) s — (E")*(s,up) is continuous as s — 0F.
Then there exist s, — 0T, a subsequence of saddle points (us, ,vs,) € K x K, and (ug,vp) € K° x Kq such
that
(s, ,vs,,) — (uo,v0) strongly in V? as k — occ. (2.15)
The proof of Lemma 2.4 is technical and is presented in Appendix B. In the last lemma of this section
directional differentiability of Lagrangians [3, 4] is recalled.

Lemma 2.5. Let the set of saddle points (us,vs) € K° x Ky satisfying (2.14) be nonempty for each s € I; assume
that a subsequence (us, ,vs,) € K x K, and an accumulation point (ug,vo) € K° x Kq ezist satisfying strong
convergence (2.15) as s — 07. If the following holds:

(L1) There exists a partial derivative 0L/0s : I x V3 +— R of the Lagrangian L with respect to the first argument
at r € I such that

},ISI?*I}%E %(n anuskavO) > g(O,UO,Uo, UO) fOT all Vg € KOa

oL L
lim sup — (7, ug, U, Vs, ) < —— (0, ug, ug,vo) for all up € K°,
r,sp—0t 08 Js

then for the optimal value function j : I — R defined as
J(8):=T(s,Mus) forus €V solving (2.12), (2.16)

the directional derivative 0,5(0) in (2.5) ewists. It is equal to a directional derivative 041(0) for the optimal
value function l: I — R from (2.14) and is expressed by the partial derivative OL/0s as follows

. s I(sx) —1(0) oL
04+7(0) = 041(0) := Sjgré+ O g(o,uo,umvo). (2.17)

The proof of Lemma 2.5 follows [4], Chapter 10, Theorem 5.1.
Based on Lemmas 2.1-2.5 we state the main theorem of this section.

Theorem 2.6. Under assumptions (E1)-(E5), (J1)-(J4), (E*1)-(E*5), (L1) there exists the directional deriva-
tive 045(0) = 0,1(0) in (2.17), where (ug,vy) € K° x Ko € V? is a saddle point solving the reference variational
equation (2.2) and the adjoint (2.13) at s = 0:

((EN*(0,up)vo, u) = (T (0, Mug), Mu)x+ x for allu € V. (2.18)
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Proof. From assumptions (E1)-(E3), (J1), (J2), (E*1)-(E*3) and Lemmas 2.1-2.3 it follows that the set of
saddle points (us, vs) € K° x K satisfying (2.14) is nonempty. Together with assumptions (E4), (E5), (J3), (J4),
(E*4), (E*5) Lemma 2.4 guarantees the existence of a subsequence (us, , vs, ) € K*F x K, and an accumulation
point (ug,v9) € K° x K satisfying the strong convergence (2.15) as s — 0. Utilizing (L1) Lemma 2.5 implies
the assertion of the theorem. O

In the following section we extend the directional differentiability result of Theorem 2.6 to a penalty-

constrained optimization motivated by variational inequalities.

3. DIRECTIONAL DIFFERENTIABILITY OF LAGRANGIANS
DUE TO PENALTY CONSTRAINTS

Let H be another Banach space with an order relation denoted by ‘>’. We introduce a parameter-dependent
family of linear operators B(s) € Z(V, H) with s € I, and the associated inequality constraints

B(s)u > 0. (3.1)

As a canonical example we may consider a trace operator. Using the decomposition ¢ = [¢]* — [¢]™ into positive
[¢]* = max(0,¢) and negative [(]” = —min(0, () parts, inequality (3.1) is equivalent to

[B(s)u]~ =0. (3.2)

Compared to (2.3), the constrained problem at s = 0:

£(0,up) = i £(0, 3.3
(0, uo) ey, (0,u) (3.3)

leads to the variational inequality: find ug € V', [B(0)ug]™ = 0 such that
(E'(0,up),v —up) >0 forallveV, [B(0)] =0. (3.4)

In order to bring (3.4) in equality form akin (2.2), we regularize it by a penalty approximation.

For a small penalization parameter € € (0,eq), g9 > 0, we define the penalty as a map B:(s,{): I x H+— H*
into the dual space H*. For the constraint [(]” = 0 according to (3.2), the standard penalty function 5.(0,() =
—[¢]~ /e < 0 forces the compliance condition £.(0,¢)¢ = ([¢]7)?/e. However, the min-based penalty function is
not differentiable (see As. (L3)). Therefore, we introduce a Lavrentiev relaxation [27] satisfying:

(B1) there exist f3, ﬁl > 0 such that for ¢ € H, ¢ € (0,&9):

—12
@ - 5@ < </BE(07C)7C>H*7H7 /85(07C) < 6§1’ (35)

where (-, - ) g+ g denotes the duality pairing between H and H*.

For example, a smooth e-mollification of the minimum function

/e for ( < —¢
Be(0,0) = ¢ —exp(2(¢+¢e)/(( —¢)) for —e<(<e (3.6)
0 for ( > ¢

is depicted in Figure 1 together with its derivative. It satisfies (B1) with 8 = —£.(0,0) = exp(—2) and @1 =0.
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0 \ ¢
» \_ 2o

FIGURE 1. Example graphics of ¢ — S, 5. for fixed e.

This leads to the penalized problem: find uj € V' such that
(E(0,uf),v) + (B:(0, B(O)uf), BO)v) g+ g =0 forallve V. (3.7

Lemma 3.1. Let the asymptotic condition (B1) hold. If
(B2) [¢ — B:(0,¢)] : H— H* is sequentially weak-to-weak continuous,
then there exists a solution u§ € V to (3.7).

Proof. The operator of problem (3.7) is coercive due to assumption (E2) and the lower bound in (3.5). It is
weakly continuous due to (E3) and (B2). The proof of Lemma 2.1 can be adapted to guarantee existence of a
solution. O

Following Lemma 2.2 we assume that

(B*1) the Gateaux derivative B.(s,rB(0)u§) € L (H, H*) at B(0)u§ exists:

<Bé(8, 'I"B(O)Ug)?’], C>H*7H — %i_r)I(l)<ﬁE(8’ TB(O)Ug + gz) B BE(S’ TB(O)Ug) , C>H*’H

for ¢,n € H, and the mapping r — S.(s,rB(0)uf) is continuous for r € [0, 1], where s € I.
Then the adjoint 8% (s, B(0)ug) € £ (H, H*) exists, it is given by

(B2 (s, B(0)ug)C, mywr= 1 = /;(52(877“3(0)”5)777()11*,11 dr, (3-8)
and satisfies the Lagrange identity for ( € H, s € I:
(B2(s, B(0)ug )¢, B(0)ug) m+,r = (Be(s, B(O)ug) — B=(s,0), () < - (3.9)
Using (3.7) and (3.9) we modify (2.9) with a penalized Lagrange function L : I x V3 +— R expressed by

‘CE(Saugaua v) = £(s’u8a u,v) - <ﬁ5(8,0), B(s)v>H*,H
— (B (s, B(0)ug)B(s)v, B(s)uyg+.u  for u,v € V. (3.10)

The penalized saddle-point problem reads: find (ug,vZ) € V2 such that

L5(s,ug, us,v) < LE(s,ug, us,vs) < LE(s, ug, u, v5) (3.11)
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for all test functions (u,v) € V2. The optimal values and solution sets in (2.11) are

15 :=sup inf L£5(s,uf,u,v) < inf sup L£5(s,uf, u,v) =: 12,
veV ueV ueV yev

K :={ue V| sup LE(s,uf, u,v) =1}, (3.12)
veV

K :={veV] igéﬁs(s,ug,u, v) =15}

We establish results for (3.12) analogous to those of Lemmas 2.3 and 2.4.

Lemma 3.2. Let (E1)-(E5), (J1)-(J4), (E*1)-(E*5), (B1), (B2), (B*1) with u§ replacing ug, and the following
assumptions hold true:

(B3) B(s) is bounded: 0 < b < ||B(s)|| < b for s € I;
(B4) s — B(s) is continuous for s € I;
(B5) B:(s,0) is bounded: there exist b. > 0 such that

1B:(5,0)|lg+ < b forsel;
(B6) s+ B(s,0) is continuous as s — 07 ;
(B*2) B (s, B(0)u§) is symmetric:
(BZ(s, B(0)ug)Ss myar+.r = (BZ(s, BO)ug)n, Qm+.r - for (ne H, s el
(B*3) there exist b* > 0 and f} € H* such that with a* from (E*3):

b - a*
(92 (5. BOWEIC, et = =[Gl = (. Qs for C € H, s e .

(B*4) B (s, B(0)ud) is bounded: there exist E: > 0 such that
182 (s, BOyu§)|| <b.  for s € I

(B*5) s+ BX(s, B(0)ug) is continuous for s € I.

Then for every s € I there exist a state u$ € V solving the equation:
(&) (s,ug)v, ug) + (B2 (s, B(0)ug) B(s)v, B(s)us) mi
+(€'(5,0),v) + (B:(5,0), B(s)v)g« g =0 forallv eV, (3.13)
and an adjoint state v € V satisfying the adjoint equation:
((EN* (s, uf)vs,u) + (B2(s, BO)ug)B(s)vs, B(s)uygs.u = (J'(s, Mul), Mu)x+ x forallueV. (3.14)
The pair (us,vZ) € K2 x KZ is a saddle point satisfying

l(e,s) =15 = L(s,uf,us,v) =12, sel. (3.15)

s 7s
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If f*=0in (E*8) and ff =0 in (B*3), then the saddle-point is unique.
Moreover, there exists a subsequence s — 07 with associated saddle points (ug,,vs,) € K x K5, , and
(u§,v5) € K° x Ko such that

(us v ) — (u§,v5)  strongly in V2 as k — oo. (3.16)

Sk’ VSk

The proof of Lemma 3.2 is technical and presented in Appendix C.

For illustration, we note that the derivative 8.(0,¢) of the mollified minimum function from (3.6) satisfies
(3.8). It fulfills the symmetry assumption (B*2). Since £2(0,¢) > 0, the lower bound in (B*3) holds trivially
with b* = a¢* and f} = 0. The upper bound b, in (B*4) has the order 1/¢ in this case.

Below we state a theorem on differentiability of L£°.

Theorem 3.3. Let (E1)-(E5), (J1)-(J4), (E*1)-(E*5), (B1)-B(6), (B*1)-(B*5), (L1), and the two following
assumptions hold:

(L2) B is differentiable such that =B € C(I,£(V,H));
(L3) there exists the derivative <-B%(s, B(0)ug) € C(I, £(H, H*)).

The directional derivative of the optimal value function j : (0,¢) x I — R defined by
jle,s) = J(s,Mus) forui €V solving (3.13), (3.17)

and the associated Lagrangian function | : (0,9) x I — R from (3.15) satisfy

€

N ac € > €
0+7(g,0) = 04+1(g,0) = E(O,umuo,vo). (3.18)

Here the partial derivative is given by

oLe
—(s,uf, u,v) := =—(s,uy, u,v)

Os Os

~ %5;(3, B(0)ud) B(s)v, B(s)u) .

s

(55 BOWE) < Bls)u, B .
— (B2 (s BOYE) Bls)u, -

B(s)v) (3.19)

H*H"
The saddle point (u§,v§) € K2 x K§ solves the penalty problem (3.7) and the adjoint equation (3.14) at s = 0:

((EN*(0,uf)vg,u)y + (B2(0, B(0)ug)B(0)vy, BO)uw) g« = (J'(0,Mug), Mu)x- x forallu € V. (3.20)

Proof. The differentiability assumptions (L1)—(L3) together with the continuity in (B4), (B*5) imply the
existence of the partial derivative of £¢ in (3.19) with respect to s € I and its semi-continuity properties:

3 3 8£E € € € aﬁ € € € € €
hmi%i . (r,ug,us, ,v5) > ——(0,ug, ug,vy) for all vg € Kg,
TSk

I
Os
£ £

lim sup a—(r, ug, ug, Vs, ) < G—(O,ug,ug,vg) for all u§ € K2.
r,sp—0t OS S
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Therefore, utilizing Lemma 3.2 and proceeding as in Lemma 2.5 we obtain formula (3.18) for the directional
derivative. Taking the limit s — 0" in (3.13) and using (3.9) we arrived at (3.7). The adjoint equation (3.20)
follows from (3.14). The proof is complete. O

Next we analyze the limit as € — 07. For this task we employ the Lagrangian £ from (2.9) at s = 0.

Theorem 3.4. Let (E1)-(E5), (J1)-(J4), (E*1)-(E*5), (B1)-(B6), (B*1)-(B*5) and the following assump-
tions hold:

(B7) B(0) is a compact operator;

(B8) there exits a Banach space H C H such that B(0) : V — H is surjective: for each ¢ € H there exists u € V
with B(0)u = ¢;

(J5) u— J'(0, Mu) is sequentially weak-to-weak continuous from V to X*;
(E*6) urs (E)*(0,u) : V= ZL(V,V*) is sequentially weak-to-weak continuous.

Then there exists a quadruple (ug, Ao, Vo, to) € (V X ﬁ*)g, where H* is the dual space to H from (B8) with the
duality pairing (-, -)g*ﬁ, which satisfies the primal problem:

L(0,u0,u0,v) — (Ao, B0)v) g g < L(0, w0, uo,v0) — (Ao, B(0)vo) g g for allv €V, (3.21)
the adjoint problem:

L(0, ug, uo, v0) — (po, B(0)uo) g g < L£(0,u0,u,v0) — (o, BO)u) g. g for allu €V, (3.22)
the complementarity relations:
[B(0)uo]~ =0, [Ao]™ =0, (Ao, B(O)uo)z. 5 =0, (3.23)
and the compatibility condition
(Mo = B:(0,0), B(0)vo) 7+ iz = (10, B(O)wo) v 7+ (3.24)
where $:(0,0) = —exp(—2) in (3.6).

Moreover, uy satisfies [B(0)up]™ = 0 and the wvariational inequality (3.4). Together with the Lagrange
multiplier \g it solves

(€'(0,u0),v) + (X0, B(0)v) o g =0 forallv e V. (3.25)
The adjoint vy solves the variational equation for all u € V:
((€')(0, u0)v0, u} + {pt0, BOY) g = (0, Muo), Mu)x- x (3.20)
for pg obtained as an accumulation point in the following limit:
* (0, B(0)ugF)B(0)vg* — po x-weakly in H* as k — oo. (3.27)
According to (3.21)—(3.24), the optimal value functions in (3.17) and (3.15) at e =0 are

4(0,0) =1(0,0) = £(0, ug, ug, vo) — (Ao, B(0)vo) g+ - (3.28)
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FIGURE 2. An example geometry 2, in 2D.

The proof of Theorem 3.4 is technical and it is presented in Appendix D.
It is worth noting that we cannot pass to the limit as ¢ — 0% in the derivative 8. of the penalty, since it is
unbounded in general, see Figure 1. This would be needed for 8} which enters into 9£%/9s in (3.18).

4. SHAPE DERIVATIVE FOR BREAKING-LINE IDENTIFICATION

Now we turn to a model problem for a nonlinear Poisson equation. We derive a shape derivative suitable for
shape optimization in the problem of breaking-line identification from a boundary measurement.
Let

[t = Q] (to,t1) — D C R? (4.1)

be a parameter dependent family of domains contained in the hold-all domain D. For some fixed ¢ € (¢o, ;)
we refer to (); as the reference domain. We assume that €; = Q; UQ, U %, is split into two variable sub-
domains QF with Lipschitz boundaries 9QF and outward normal vectors ni. The sub-domains are separated
by a one-dimensional breaking line

[t — Zt] : (to, t1) — Dy C D (42)

with the chosen normal direction v; = n; = —n; (see Fig. 2).
Let the outer boundary be split into two variable parts without intersection 9Q; = I'P UTYN, and the outward

normal vector n; be such that nf = n, at 9. The condition I'P N JQE # () on the Dirichlet boundary is
assumed to guarantee the Poincaré inequality in QF. A part of the Neumann boundary T'® TN builds the
observation boundary. Further we introduce
[t — (TP, TN, T)] : (to,t1) = Dp x Dy x Do C D3, (4.3)
We adopt the formalism from Sections 2 and 3 to the geometry-dependent spaces of functions
V() :={uec H Q)| u=00onTP}, X(Q):=L*T2), HQ) :=L*%), H(Q):=HY*(,). (4.4)
The observation operator M : V(£2;) = L?(I'®) maps to the boundary traces on I'C. The restriction operator

B : V(Q) — L?(%;) is independent of s and describes a jump across the breaking line ¥; subject to the
non-penetration condition (see motivation in [11]):

Uy, roar — Uls,noo; = [ul 2 0. (4.5)
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KC . CY(O) Kal A KaQ
B O//(O)
. — \ S EE
“ _Kc —K a2

FIGURE 3. Example graphics of a, o/, o’ as § = k/2.

This allows possible contact between the faces when [u] = 0 in (4.5).
Here we take into account the dissipative interaction phenomenon of cohesion (see [2, 18]) described by a
surface energy density a(s, (). The following conditions are imposed:

1
[(5,0) = 0,0, %O; 8;‘ | ecuxm), (4.6)
and the existence of K,1 > 0, K42 > 0 such that:
& (5,0)] < Ka1, [ (5,0)] < Kao. (4.7)

For example, a mollification of the function (K./k)min(x,|(|) as

-1 for( < —k—19
%exp(2ci:+§) 1 for —k—0<(<—-K+9d
a(0,¢) = Kc{ ¢/r for —k+0<(<K—106 (4.8)
1—%exp(2< :+g) fork —0<( <K+
1 for(>k+46

where 0 < 0 < k, k > 0, and K. > 0 is the fracture toughness parameter. The function from (4.8) is depicted
in Figure 3.

Let the Lame parameter uy, > 0 and the traction force g € H(Dy), ensuring that g € L?(T'Y) on Lipschitz
curves I'N C Dy, be given. The bulk and the surface energies together constitute the total potential energy
E0): V() — R:

£(0, 1 Q) = ’;L/Q \vu|2dx—/FN gudSz—i—/E (0, [u]) dS.. (4.9)

We calculate the Gateaux derivative £'(0) : V() — V(2:)* at w:
(E(0,u; ), v) = g, /i Vu' Vodx — / gvdS, +/ o' (0, [u])[v] dSe, (4.10)
Q ry 3¢

where T denotes the transpose. The constrained optimization (3.3) leads to the variational inequality (3.4),
which takes the form: find u; € V(Q;), [u:]~ = 0 on X, such that
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UL /Qi Vu;rV(v—ut)dx—i—/ o/ (0, [ue])[v — ue] dS,

¢

> / g(v—ug)dS,; forallve V(Q), [v]  =0o0n 3. (4.11)
ry

Lemma 4.1. There exists a solution to the variational inequality (4.11). It satisfies the linear complementarity
problem:
—upAug = 0 in Qti; us =0 on F?; ,uLn;rVut =g on 1"?;
+
v [Vu] = 0, [uLVtTVut —a/(0, [[ut]])] =0,
fue]™ =0, Jue] (,uLVtTVut —a/(0, [[ut]])) =0 on X;. (4.12)

The solution is unique for convex o (hence, monotone o).
Proof. For u € V() we recall the Poincaré inequality:

/Qi |Vu|? dx > KpHUH?{l(Qti), Kp >0, (4.13)

t

and the trace inequality:
HuHL?(BQti) < ||UHH1/2(aQ}) < KtrHuHHl(Qtiy K >0, (4.14)

both uniform in ¢ € (o, ¢1). Using the bound K,1 > 01in (4.7) and (4.13), (4.14) we can estimate (£'(0, u; ), u)
in (4.10) from below and conclude the coercivity property (E2). The weak-to-weak continuity (E3) for £'(0,u)
holds due to the continuity of o’ assumed in (4.6).

Therefore, by Lemma 3.1 there exists a solution uf € V(€;) to the penalty equation (see (3.7)) in the form:

e\ T / c . v ) .
ML /Qti V(u5) Vvdx—i—/zt[a + B](0, [us])[v] dS. _/rtNg ds., (4.15)

for all v € V(). It satisfies the mixed boundary value problem:

—prAu; =0 in Qti; u$ =0onTP; ppn/ Vui = g on I'Y;
v [Vus] =0, pLy Vs = [o + B:](0, [uf]) on ;. (4.16)

By the compactness argument used in the proof of Theorem 3.4 we get an accumulation point such that uf® — uy
weakly in V() as e, — 0, which solves the variational inequality (4.11). The derivation of relations (4.12) is
standard, see e.g [16], Chapter 1. O

Let z € HY(Do) be given, providing an observation z € L?(T'¥) on Lipschitz curves I'® C Do from (4.3).
We aim at the shape optimization problem for identification of an unknown breaking line from the observation:
find X, as the solution to

1
min {5(0,0) = J(0,u; Q) := 7/ (ut — 2)?dS, + p|S¢|  with u; satisfying (4.11)}, (4.17)
34CDs 2 ro

where J represents J from (2.4), and p > 0 stands for the reason of perimeter regularization.
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Lemma 4.2. Let the observation z be feasible, this means:
Q. =0fux,cD, %,cDy, (I'°,TY.19) e Dpx Dy x Do,

and z € V(,), ]] =0 on X, are such that

QL /Qi V2 V(v —2)dx+ /2 o (0, [2])[v — =] dS.

*

2/ g(v—2)dS, forallveV(Q.), [v]- =0 on X,. (4.18)
l_‘N

If p = 0, then there exists a solution to the shape optimization problem (4.17). In general, the solution is
non-unique.

Proof. The trivial minimum in (4.17) is evidently attained at the argument ¥; = ¥, when u; = z and p = 0.
We construct a counter-example to uniqueness. Assume ¥, solves (4.17) and z satisfies (4.18). Let the active
part of the breaking line X§ C 3., where the equality [2] = 0 holds (i.e. contact happens), be nonempty.
Then z € V(£) satisfies (4.18) in Q, = QF UX, for an arbitrary regular interface ¥, C Dy that coincides
with ¥, along 3, \ £%. In this case, both ¥, and 3, solve (4.17). This situation is observed in the numerical
experiment. O

Under the penalty approach from Section 3 we approximate (4.17) by a differentiable constraint following
Theorem 3.3: for € € (0,¢¢) find X, C Dy such that

€. : € .
Ertrélg {ij(e,0) = J(0,uf; Q) with uf solving (4.15)}. (4.19)

Aiming to solve (4.19) by a gradient method, we look for a descent direction d;j(g,0) < 0 from Theorem 3.3.
This requires to express the perturbation j(e, s) for s € I in a geometry-independent form.

For this task we employ the velocity method based on coordinate transformations. Let I have the end-point
so <ty —t, and let us fix a kinematic flow and its inverse

[(5,2) = s, [(5,9) = @3 1] € CLtg — t1,t1 — to; WH(D)?)2. (4.20)

This defines an associateed coordinate transformation y = ¢s(z) and its inverse z = ¢;!(y). We suppose that
the mapping introduced in (4.1)—(4.3) forms a diffeomorphism:

X = (bs : (Qt7 Eta FP, Fi\ju Fto) = (Qt+57 Et+87 F?+sﬂ F?Ls? FtOJrs)' (421)
Then the kinematic velocity A(t,x) € C([to, t1]; W1>°(D)?) can be defined from (4.20) by the formula

dos

22 (67 ). (422)

At +s,y) :=
If a velocity vector is given explicitly

A = (A1, Ao)(t,x) € C([to, t1]; WH(D))?, Alsp =0, (4.23)
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preserving the hold-all domain D, it determines the flows in (4.20) as solution vector ¢s = ((¢s)1, (¢s)2) to the
non-autonomous ODE system

%(bs =A(t+s,¢95)forsel, ¢s=xzass=0, (4.24)

and ¢ (y) = ((¢5 1)1, (¢51)2) to the transport equation

0
%(bs_l + (Vy(bs_l)l\|t+s =0inI x D, (bs_l =yass=0. (4.25)

In (4.25) we utilize the second order tensor V¢ = (8(¢5')i/dy;)7 j=1, and Al 45 = A(t + s, y). For validation
of (4.20)-(4.25) see [10, 23].
The diffeomorphism (4.21) preserves the bijectivity between the function spaces in (4.4):

w s wo ¢t s (V(Q), LATP), L(S0), HY2(30)) = (V(Qups)s L2(TD ), L2 (Bers), HV(E445)). (4.26)

With the help of (4.26) we transform the perturbed objective J(0,a; Q:45) from (4.19) for @ € V(44) such
that

1
J(O,u0¢;1;9t+s) = J(s,u; Q) := 5/

ry

(u— 20 ¢s)* wedS, + p/ wgdSy, (4.27)
3¢

where w, will be defined later. Based on the second derivative in the identity (see (2.6)):

1
| e i dr = o0, 1) - '0.0), (1.29)
0
we linearize at the solution uf the perturbed state operator in (4.10):

(€(0,u0 71 Qurs) v o @7 h) ~ ((E) (s, uf)v, u) + (€(5,0),0), (4.29)
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where the terms are

(€N (s,uf)v,u) = ML/ (Vo "o dslu) [V, T o dslv Judx

Qf
+[ [ e ruarti s,

(E'(s5,0),v) := —/ (g o ¢s)vwsdS, —|—/ a'(0,0)[v] wsdS,.  (4.30)

Ty DN
In (4.27) and (4.30) we use the chain rule
Vy(uo¢gt) = (Vo T 0 ¢s)Vu, (4.31)
and the Jacobian in the domain and at the boundary:
Jo = det(Ves) in QF,  wy:=|(Vo: | o ¢ps)ni|Js at 9QF, (4.32)
for more details, see e.g. [19, 20, 25].
Similarly, using the following identity analogous to (4.28):
1
| bk ar = 500, 1uiD) = 5.0,0) (43

we perturb the penalty term in (4.15) linearized at u§ such that

(Be(s, [wo o), [v o 65 D aesiy.y ~ (B (s [uiDIv], [ul) Lo s,
+ (Bl 0) [ sy = [ ([ B0 FuiDddr + 5.0.0)) [l ndS,. (@39

Combining formulas (4.27)—(4.34) we get a perturbed Lagrange function in (3.10) expressed by the integrals

1
L5(s,uf,u,v) = 5/

ry

(1= 206,)2wydS, + p / w04dS,

P

— / (V65T 00uJu) TV T 0 gJu Judx + / (g0 ¢s)vwsdS,

N
t Ft

1
[ ([ 0+ 0. i dr + o + 6.100,0)) [ohwndS,. (2.35)
=, Mo
Next we present a formula for the shape derivative.
Theorem 4.3. Let the bound Kao > 0 in (4.7) be sufficiently small such that
a* = p, Kp — 2K 2 K2 > 0, (4.36)

where Kp and Ky, are the constants from the Poincaré and the trace estimates (4.13) and (4.14). Then the
directional derivative of L® exists and is given by the formula
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€

. oL e , € €
a+j(€70) = g(ovutvutvvt) :/

ry

— ATVz(ui — z))dSw — pL / . (Vug) " (divA — VA — VAT ) Vo dx
Qt

(%divnA (uf — 2)?

+ / (div,, A g+ ATVg)vidS, + / dive, A(p — [a + B)(0, [uf])[vf]) dSa,
ry P

t

where the tangential divergence is defined as
div,, A := divA — (nE)TVARE at 9QF.

The saddle point (u$,v5) € V(4)? solves the penalty equation (4.15) and the adjoint equation:

1
;LL/i Vu' Vs dX+/ / [ + BLI(0, [ruf]) [vi )[u] drdS, = / (uf —2)udS, for allu € V(Q),
03 =, Jo ry

for which the mized boundary value formulation is given by:

—pLAv; =0 in Qti; v; =0 on F?;

prnd Vi =u$ —z on TO;  ppn/) Voi =0 on TN\ T?;

1
l/tT [Vvi] = 0, ,uLZ/tTva = /0 [ + BL)(0, [rui])[vi] dr on ;.

For the proof of Theorem 4.3 one checks the conditions of Theorem 3.3. It is given in Appendix E.

In the following we decompose the velocity into the normal and tangential vectors at the boundary:

A= ((nF) "M + () TA)7 on 0QF,

where Tt:t is the tangential vector positively oriented to nti

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Theorem 4.4. Let the solution of (4.15), (4.39) be smooth such that (uS,vf) € H?(QF)2. Then the shape

derivative in Theorem 4.3 satisfies an equivalent Hadamard’s representation by the boundary integrals:
94 j(z,0) = /FD (ng A)(n/ D1)dS, + (7" A) (7" [D1])arpas,
+ /F ([ A) (D2 + 0] VD) dS, + (1 )[Dalarye,
v /2 (] A)D5 + (1,7 A)D3) dS, + (177 A)[ D5l s,
+ /F (n{ M)(5Ds + n/ VDs) dS,. + (7] A)Dslor-

The terms in (4.42) are given by

Dy = pr, (VU (nf Vi) + Vi (n] Vug)), D = guf,
D5 := D% + pn[(Vus) " Voi] — v (Vpe + q.),

1
Dfi=—7q., Dii=p—p., Doi=5(u —2)7

(4.42)

(4.43)
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where %ti := div,,niE denotes the curvature at O, and we utilize the notation at X, :
1
ps:=h’+64®7hﬂ)hﬂ7%:=ﬂVuﬂ(A[a”+6ﬂﬂhhuﬂ%ﬁ—{a”+ﬁﬂahkém)hﬂ- (4.44)

A descent direction 01j(e,0) < 0 in (4.42) is provided by the choice

nf A= —kr(n/D1) at TP, 7,/A=—ki (7, [D1]) at OTP N3,
n A = —ka(5tDy + 1/, VDy) at Ty, 7,/ A= —kg[Ds] at OTY Ny,
v A= —ksD§ and 7, A = —k4D5 at By, 7, A = —ks[DE] at 9%,
n) A = —ke(54Dg +n, VDg) at TO, 7,/A = —koDg at T, (4.45)

with k; >0, 1=1,...,9, and not all simultaneously equal to zero.

The proof of Theorem 4.4 is based on integration by parts and is presented in Appendix F. The expression
(4.42) is important for gradient-based iterative techniques.

5. NUMERICAL SIMULATION

We set a piecewise-linear breaking line ¥, C Dy to be identified:
Dy ={x, € (0,1), 20 = ¥(z1) € (0,0.5)}, Xy := {z1 € (0,1), ¥u(x1) = max(0.2,(x; —1)/3+04)}, (5.1)

which breaks the rectangle Q = (0,1) x (0,0.5) into two parts QF. Let the boundary dQ be split into fixed
Dirichlet and Neumann parts:

'Y = {z; €{0,1}, 25 € (0,0.5)},TN = {2, € (0,1), 25 € {0,0.5}}, (5.2)

see the illustration of the geometry in Figure 2. We choose for the Young’s modulus Ey = 73000 (mPa) and
Poisson’s ratio vp = 0.34, the Lamé parameter up, = Ev/(2(1 + vp)) = 27239, and the linear traction force

g(x) = pr(1 — 1.68x1) (4 — 1). (5.3)

Then there exists a solution z € H'(QF) such that z = 0 on TP, [2]~ = 0 on ¥,, which satisfies the variational
equation (4.18) according to Lemma 4.1. Let the observation boundary be I'Q = T'Y.

Now we discretize the problem. For 3; C Dy breaking Q) into Qti, let th be a triangulation of mesh size
h > 0 of Qti, which is compatible at the interface ¥; ;, := £; N 89%& =N 6Qt2,h. At 3, ;, the cohesion function
a(0,¢) is set as in (4.8) with K, = 1073 (mPa-m), x = 1072 (m). For small § and h we rely on the discretization
ap(0,¢) such that

K, . K. .
o = =S min(s, ), af, = =< ind{|¢] < £}, (5.4)

After piecewise-linear FE discretization of the problem on a grid of mesh size h = 102 according to (5.1)—
(5.4), we solve the variational equation (4.18) by a primal-dual active set (PDAS) iterative algorithm developed
n [12]. The numerical solution zj, obtained after 3 iterations with zero residual is plotted in Figure 4 (b). In
plot (a) we depict the computational grid th, the traction force g at TN, the cohesion (where [z,] < k) and
contact (where [z;,] = 0) parts of ¥, which are marked in the triangles adjacent to the interface.
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(a) reference configuration

I cohesion
I conitact

(b) solution z(x)

FIGURE 4. Reference configuration (a); true solution zp (b).

According to the proof given in Lemma 4.1 we approximate the variational inequality (4.11) by the penalty
equation (4.15). For small € and h, the penalty operator from (3.6) is discretized as

1 . 1,
ﬁE,h(07 C) = g mll’l(07 ()7 ﬁé,h(oa C) = g md{< < O} (55)
Let Vi 1 (€Q4,) be a conforming piecewise-linear FE-space such that
Vin(Qun) CV(Qun) = {ue H(Q5,)] u=0o0nTP}.

The discrete penalty equation (4.15) determines ug ;, € V5 (€2,5) such that

I,

t.h

(Vu;h)TVvh dx + /
3t h

-+ B0, T D Eon] S = [ g dSs, (5.6
F*
and ignoring the singularity of a;j, the discrete adjoint equation (4.39) reads: find v;;, € V; 1 (,5) such that

/Qi (Vuh)Tva’h dx +/2 BL (0, [us ) [un] Sz = / (uf p, — zn)un dSy  for all up, vy € Vi n(Qn). (5.7)
t,h

“h e
After solving problems (5.6) and (5.7), according to Theorem 4.4 we calculate D§ at the moving boundary
Yin, and Dy at X, NP, where p = 1/py, is set. By the virtue of (5.4), (5.5) here g, = 0 and

Pen = [a, + Ben](0, [uf p]) [07 ]

)

Vpen = [Vi plled, + Be,n] (0, [ug ,1) + [Vug ] B2 4 (0, [ug 1105 1]
(5.8)

Since TP and TN = T'Q are fixed in the identification problem, the normal velocity n/ A = 0 at 99 when
ky = kg = k7 = 0 in (4.45). The tangential velocity is set 7,/ A = 0 at ¥; by means of ky = ks = kg = kg = 0.
Therefore, we get a descent direction when Ay g = 0 and

ks

fh(%l — D[Dyn]2 at Sy NI, Ao g = —ksD5 ), at Sy \ T (5.9)

Ao =
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(a) interface shape
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(b) misfit ratio

0.4}

0.25%

0.2

0 0.4 1

FIGURE 5. Iterations X(") (a); misfit ratio versus n (b).

The scaling k3 = 0.1h/|| A u|| o 18 chosen, and the weight ki = k3 /vVh at T was found empirically in
[6]. We point out that the discrete velocity Ap at the interface ¥; is defined on a coarser grid of size H > 0,
compared to the mesh size h of the problem.

We summarize the optimization algorithm for breaking line identification.

Algorithm 5.1.

(0) Initialize constant grid function wg) = 0.25 at points sy € [0,1] and the linear interpolate X(©) = {z; €
(0,1), 5 = ' (a1)}; set n = 0.

(1) Set the interface X; j, = (™ and triangulate Qtih; find solutions u; ;,, vf;, to the discrete equations (5.6),
(5.7).

(2) Calculate a velocity Ag g from (5.8) and (5.9); update the values

1(5“) _ gl) + As g at the points sy € [0, 1]; (5.10)
from linear interpolant ngH) determine the piecewise-linear segment ("1 = {2, € (0,1), 2o =

dip )
(3) Until a stopping rule is reached, set n =n + 1 and go to Step (1).

For 11 equidistant points sy with H = 0.1, the numerical result of Algorithm 5.1 after #n = 200 iterations
(the stopping rule) is depicted in Figure 5. The penalty parameter ¢ = 1010 was taken. In plot (a) the selected
iterations n = 0, 10, 20, 40, 100, 200 of (" according to (5.10) are drawn in © in comparison with the true
interface X, (the thick solid line). In plot (b) of Figure 5 we plot the ratio J™ /J©) of the objective optimal
values recalled here to be

n 1 n
IOt ) = 5 [ (i =) S, + oIS, (511)

and the shape ratio |[1)(™) — 7/’*||c([0,1])/||7/’(0) — Ysll¢(0,17)- The computed misfit ratios attain as minimum 12%
and 88%, respectively.

From the simulation we conclude the following feature. In Figure 5 (a) it can be observed that the left part
of curve X, where no contact occurs (see Fig. 4 (a)), is recovered well by the identification Algorithm 5.1,
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(a) reference configuration

(b) solution z(x)

FIGURE 6. Reference configuration (a); true solution z; (b).
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FIGURE 7. Iterations (") (a); misfit ratio versus n (b).

whereas the right part of interface, where contact occurs, the initialization ©(%) is almost unchanged during the
iterations.

To remedy the hidden part of 3., we apply to the same configuration a traction force which is more stretching
than that in (5.3):

g(x) = pr(1 — 1.5521) (dxy — 1). (5.12)

As the result, the whole X, is open without contact, however, the cohesion occurs at the interface as shown in
Figure 6.

In this case, the result of Algorithm 5.1 for n € {0,...,400} is depicted in Figure 7. The objective ratio
attains the minimum 0, 4%, and the shape error ratio 25%. We observe in Figure 7 (a) that the whole curve %,
is recovered well compared to the previous case of contacting faces.

On the basis of our numerical simulation, we conclude that the breaking line identification algorithm is
consistent with the setup of destructive physical analysis (DPA).
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APPENDIX A. PROOF OF LEMMA 2.3
Let us define the quadratic functional £* : I x V2 — R by

E*(s,ug,v) 1= %((5’)*(5,110)11,11) forveV. (A1)

Tt is weakly lower semi-continuous and coercive due to (E*3), Gateaux-differentiable by (E*2), and (£*)' (s, ug) =
(E)*(s,up). Adding to £* in (A.1) the linear term (£'(s,0),v), the above properties provide an argument u, € V
of the minimum:

fjréi‘r/l{g*(s,uo,v) +(€'(s,0),v) }, (A.2)

with an optimality condition in the form of the variational equation (2.12). Similarly, using (J1), there exists a
minimizer vs € V of the problem:

ng‘I/l{g*(S,uO,u) — (j'(s,Mus),Mu>X*7X}, (A.3)

resulting in the adjoint equation (2.13). The uniqueness in (2.12) and (2.13) under the coercivity assumption
(E*3) if f* =0 follows in a standard way.
Indeed, inserting the explicit expression (2.9) of £ into (2.10), we have the first inequality

J (s, Mug) — ((E)*(s,u0)v,us) — (E'(5,0),v) < T (s, Mus) — ((E')*(s,u0)vs, us) — (£'(s,0),vs).

After cancelling J (s, Mus) and testing with v = vs & w we obtain the variational equation (2.12). Conversely,
(2.12) satisfies the first inequality of (2.10) as equality.
On the other side, the second inequality of (2.10) after cancelling the term —(&’(s,0),vs) reads

T (s, Mug) — ((E")*(s,u0)vs,us) < T (s, Mu) — ((E')*(s,u0)vs, u).

Substituting here u = u; &+ rw, dividing the results with r and passing » — 0, by the virtue of differentiability
of J assumed in (J1), this leads to the variational equation (2.13). Conversely, by the convexity assumption
(J2) the necessary optimality condition (2.13) is sufficient for the minimum in the second inequality of (2.10)
provided by wus.

This proves that (us,vs) € V2 is a saddle point to problem (2.10). The definition (2.11) of solution sets K*, K
implies that (us,vs) € K° x K, and satisfies the equality (2.14). This completes the proof of Lemma 2.3.

APPENDIX B. PROOF OF LEMMA 2.4

We test the primal equation (2.12) with v = ug, apply the Cauchy—Schwarz inequality, the coercivity (E*3)
with u = ug, and the boundedness assumption (E4) to derive the upper bound

a*lluslly < ((€)" (s, u0)us + f*,us) = (f* = €'(s,0),us) < @+ | f*llv+)llusllv- (B.1)

Testing the adjoint equation (2.13) with u = v, from (E*3) with u = v, and (J3) it follows similarly that

a*|losl[ < ((E)*(s,u0)vs + [, 05) = (T (5, Mus), Mug) x+ x
+ (% 0s) SagluslvlIMusllx + 1/ v+ lvsllv. (B.2)
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We combine (B.1) and (B.2) together in the uniform in s € I estimate

1 . ag 1
lus|lv + [Jvsllv < ;(aHlf IIV*)(1+C7HM||) +;||f llv+. (B.3)

Then there exist s — 0T, a subsequence of saddle points (us,,vs,) € K% x K, and an accumulation point
(ug,vp) € V2 such that

(s, , Vs, ) = (ug,vo) weakly in V2 as k — oo. (B.4)

For u = us, — ug in the coercivity inequality (E*3) we have

a*|Jug, —uoll < ((E) (ks o) (us, — uo) + f*, s, — uo)
= <f* - 5/(Sk,0) - (5/)*(3167“0)”05”% - u0> = <f* - 5/(57€7u0)7u3k - u0>7 (B'5)

where (2.12) was tested with v = u,, — ug, and (2.6) and property (E*2) were used. Inserting v = vs, — vp into
(E*3) and using (2.13) with u = vs, — v gives similarly

a*|Jvs, = woll3 < (T (s, Mus, ), M(vs, = v0))x+.x + (f* = (€')* (5%, u0)v0, Vs, — v0)- (B.6)

Taking the limit as k& — oo in (B.5) and (B.6), we get (2.15) with the help of the weak convergence in (B.4)
and the boundedness properties (E4), (J3), (E*4) of &', J', (£')*.

Finally, taking the limits in the primal (2.12) and adjoint (2.13) equations and using the strong convergence

(2.15) and the continuity assumptions (E5), (J4) and (E*5), this guarantees that the pair (ug,vg) solves (2.2)
(due to identity (2.6)) and (2.13) at s = 0. Therefore, (ug,vo) € K° x Ky which ends the proof of Lemma 2.4.

APPENDIX C. PROOF OF LEMMA 3.2
The modified quadratic functional £* : I x V2 R defined for v € V by

£ (5,05, v) = %<(5')*(s,ug)v, o) + %(BQ(S,B(O)ug)B(s)v, B(s)0)se (©.1)

is weakly lower semi-continuous and coercive due to (E*3), (B3), and (B*3). Using (E*2) and (B*2) its Gateaux
derivative is given by

(€)' (s, ug)u, v) = ((E)" (s, ug)v, u) + (BZ (s, B(0)ug) B(s)u, B(s)v)u+ u-

Consequently, the variational equation (3.13) is an optimality condition for the minimizer u¢ € V of the following
problem:

Héi‘r/l{gg(s,ug, v) + (€'(s,0),v) + (B:(s,0), B(s)v) g+, } (C.2)
v
and the adjoint equation (3.14) provides an argument v¢ € V for

ruréi‘r/l{gg(s,ug,v) — (T (s, MuS), Mu) x+ x }. (C.3)

The uniqueness assertion is similar to Lemma 2.3 and done by coercivity.
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The left-hand side of the saddle-point formulation (3.11) is equivalent to the primal problem:

— (&) (s, ug)v,ug) — (B2 (s, B(0)ug) B(s)v, B(s)ug) .
—(€'(5,0),0) = (B(5,0), B(s)v) e, < —((E)" (s, up)vs, ug) — (€'(s,0), 05)
— (B2 (s, B(0)ug) B(s)vg, B(s)ug) e, — (B(s,0), B(s)v5) b s

which implies equation (3.13). The right-hand side

T (s, Mug) = ((€")" (s, up)v5, ug) — (B2 (s, B(0)ug) B(s)vg, B(s)ug) .1
< J (s, Mu) = (&) (s, ug)v§, u) — (B2 (s, B(0)ug) B(s)v5, B(s)u) m+.

is equivalent to the adjoint equation (3.14) due to the convexity (J2). Then (ug,v%) € K2 x K¢ satisfies the
saddle-point condition (3.15).

The proof of (3.15) is analogous to that of Lemma 2.4. By the coercivity (E*3), (B*3) and boundedness
assumptions (E4), (B3), (B5), (B*4) we derive from equation (3.13)

x|, € *|,,E b* _Q* € * £\, ,E * €
b llug|l¥ < a*flugll + beHB(S)usllfH < (&) (s, ug)us + f*,us)
+ (B2 (s, B(0)ug) B(s)ug + fy, B(s)ug) =, = (f* — €'(s,0),u)

+{(fy = Be(s,0), B(s)uy it < (I llve +a+0(If5 1+ + b)) [usllv, (C.4)

and from the adjoint equation (3.14) using (J3) we get the upper bound

YISl < (T (s, Mug), Mug)xee x (f*,03) + (fy B(s)v)ae i
< @z Mkl + 1 v+ + Bl ) logllv-. - (C.5)

By the boundedness of (uf, vs

5, vs), there exists a subsequence (u§ ,v5, ) € K2* x K, and an accumulation point
(u§,v5) € V? such that

Sk USk

(us v ) — (u§,v5) weakly in V2 as s, — 0. (C.6)

Sk’ 7Sk

We test equation (3.13) with v = u_— u§ and in analogy to (C.4) we find using identity (2.6):

Vg, —uglly < ()" (ke ug) (us, — ug) + f*, ug, —uf)
+ (B2 (5w, B(0)ug) B(s) (ug,, — ug) + f, B(sk)(ug, — ug))me
= (" = &(sk,u5), ug,, — ug)

+ (ff = Be(sk, 0) = B2 (sk, B(0)ug) B(sk)ug, B(sk)(ug, —ug))ux.u- (C.7)

The adjoint equation (3.14) for u = v, — v gives

b llus, = vgllY < (T (sw Mug, ), M(vZ, — v5))x-x

Sk

+ (=€) (s ug)v, v, — v5) + (= BE (s, B(0)ug) B(sk)vg, B(sk)(vS, — vg)u=m- (C.8)

Passing k — oo in (C.7) and (C.8) with the help of weak convergence in (C.6) and recalling boundedness of
B(s) (3.16) follows. The limit as s — 0% in equations (C.7) and (C.8) due to strong convergence (3.16) and
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continuity properties (E5), (J4), (E*5), (B4), (B6) and (B*5) agrees with the solution (u§,v5) € K2 x K§ to
(3.7) (due to identity (3.9)) and to (3.14) at s = 0. This proves Lemma 3.2.

APPENDIX D. PROOF OF THEOREM 3.4

Passing s, — 07 due to the strong convergence (3.16) we refine the estimates (C.4) as follows. Using the
lower bound in (3.5) and (E2), from (3.7) tested with v = uf we get:

1
alluglly + ZI[BO)] " [I7 < (B-(0, B0)45), BO)ug) s,
+ (€0, u5), ug) + (f,ug) +€B < || fllv+lugllv +¢B, (D.1)

which is uniform in ¢ € (0,&¢). From (C.5) as s — 07 it follows that

Vllvgllv < aglIMlluglly + [ v +blLf [l (D.2)

Hence, there exists a subsequence ¢, — 0 and a weak accumulation point (ug, vo) € V2 such that [B(0)ug]~ =0
since |[[B(0)ug*] ||z — 0, and

(ug*, vgF) — (ug,vo) weakly in V2 as k — oo. (D.3)

Taking the limit in (3.7) due to the convergence (D.3) and (E3), according to the surjectivity in (B8) we
determine \g € H* such that

Jim (B2, (0, BO)u3), BO) s+t = — lim (€/(0,u5"), v)

= —(&'(0,up),v) =: (Mo, BO)v) . g forveV. (D.4)
This implies that ug € V' is a solution to the variational equation (3.25) and establishes the weak convergence
B, (0, B(0)us*) — Ao weakly in H* as k — oc. (D.5)

The space H has the order relation of H. Consequently Ay < 0 because of (3.5). In particular, (), B(0)uo) g g <
0 for B(0)ug > 0. On the other hand, by virtue of assumption (B7) and (D.5) the strong convergence holds:

B(0)ug® — B(0)ug strongly in H as k — oo. (D.6)

Using (3.5) and taking e, — 0 in (S, (0, B(0)uy*), B(0)ug*) g+, > —ex provides the opposite inequality
(Ao, B(0)uo) - i = 0, which together ensures the complementarity relations (3.23). The variational equation
(3.25) together with (3.23) is equivalent to the variational inequality (3.4).

By the identity (2.6) at s = 0 equation (3.25) is equivalent to

{((E)*(0,up)v,up) + (£(0,0),v) + (o, B0)v)g. g =0 forallveV,

which yields the first order necessary and sufficient optimality condition for the unconstrained, primal limit
problem (3.21). 5

Applying (D.3) and assumptions (J5), (E*6), (B8), the limit of the adjoint equation (3.20) determines pg € H*
such that

lim (B:k (0, B(0)ug*)B(0)vg*, B(O)u) g~ g

er—0
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= lim (J'(0, Mug*), Mu) x« x — lim ((E)*(0,ug*)v5*, u)

akao Ek*)O

= (J'(0, Mug), Mu)x+ x — ((£')*(0,u0)vo, u) =: (uo, B(O)u) g.  forueV. (D.7)

From (D.7) we conclude the existence of a solution vy € V' to the limit adjoint equation (3.26) and the x-weak
convergence (3.27). Applying the convergences (D.5) and (3.27) to the identity (3.9) at s = 0, in the limit the
compatibility condition (3.24) follows. Equation (3.26) is the necessary and sufficient optimality condition for
the adjoint limit problem (3.22). The proof of Theorem 3.4 is complete.

APPENDIX E. PROOF OF THEOREM 4.3

Using inequalities H[[u]]”%z(zt) < QHUHQLQ(aQti) and (4.13), (4.14) we estimate from below ((£')*(0, u$)u, u) in
(4.30) as

ﬂLj£i|Vu42dx+i/‘u/ Dl drdS, > Kol g, — KaollllBasy = @'l sy (B1)

Then (4.36) provides the coercivity property (E*3) with u§ replacing ug.
As s — 0, by the mean value theorem there exists r(s) € [0,1] such that from (4.24), (4.25) it follows that
¢s = x + $A|i4rs and the expansions (see e.g. [37], Chap. 2):

zo¢s =2+ sA[ V2, Vé;logs =1 —sVA|irs,Js = 1+ sdivA|iprs, ws =1+ sdivy,Alirs  (E2)

for w € V(Qy), and div,, A defined in (4.38). Inserting (E.2) into the perturbed Lagrangian (4.35) we derive its
expansion in the first argument:

£

L5(s,us, u,v; Q) = L5(0, ug, u,v; Q) + S

(rs,us, u,v; Q) (E.3)
with the partial derivative 9L%/ds : I x V(€)% +— R in (E.3), which is a continuous function and is given by

oLe

€ — } 1 — 2 _ T —
%(s,ut,u,v) = /F?<2d1VnA|t+s(u 2)* = Al Vz(u z))de

— /i(Vu)T(divA|t+S — VAlis — VA ) Vodx +/ (divr, Alessg + Al Vg)vdS,
Q N

r

t t

+Lgm¢w$%(éww&mmeﬂm+W+&mmMﬂm&.mm
Here we recall the identity when u = uj:
/0 [ + BJ(0, [rugD[wi] dr + [ + 5](0,0) = [’ + B](0, [ug])- (E.5)

With the help of (E.1), (E.3) we check properties (E1)-(E5), (J1)-(J4), (E*1)—(E*5), (B1)-(B6), (B*1)-
(B*5), (L1)—(L3) with u§ replacing ug in Theorem 3.3. This proves the assertion of Theorem 4.3.
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AprPENDIX F. PROOF OF THEOREM 4.4

We integrate by parts the domain integral from (4.37):

I(Qti) =L /Qi(Vuf)T(divA — VA - VAT)Vfuf dx

. /Qi (ATVu)Avs + (AT Vo) Aug)dx

t

[ AT (i (V) TV — V()T — ()T ) 08,
09

and since Aué = Av§ = 0 in QF:

() = . /

AT (mI(Vu5) T - [Vui (T V)] - Vo (v Vuf)]) aS,
¢

+ i, / AT (Vg (n] Vof) + Vs (n) Vas)) dS,.
rbury

Using the boundary conditions for (uf,v) from (4.16), (4.40), it follows that 7, Vui = 7,7 Voi = 0 at TP \ &;.
Decomposing Dy = (n] D1)ns + (1,7 D1)7 in (4.43) gives

10F) = [ ATis S, + [ )0 D2) a8, + (7 A [P Dorvir
bl rp
+/ (ATVv)gdS, +/ (ATVus)(u§ — 2)dS,, (F.1)
ry ry
where the integrand along 3; in (F.1) is expressed as

iz, == v [(Vug) TVoi] = [Voi] [ + B:)(0, [uf])
— [Vuil /Ol[a” + 80, [rusD[vil dr = vepn [(Vu) "Voi] = Vpe — e, (F-2)
with the notation (4.44) for g. and p.. Here the gradient is given by
Vpe = [Voi]le’ + B8] (0, [uf]) + [Vugla” + B0, [ug]) [vi]-
By the virtue of (4.45) and (F.2) and exploiting the calculus V(¢n) = VET7 4+ VT ¢ we rearrange the terms in

(4.37):

9, j(e,0) = %/ (dive A (4 — 2)% + ATV((uf — 2)%))dS,

ry

+ / (dive, A (p = po) + AT (v [(Ves§) V5] = Ve — ) dS,
2y

+ [ (@ve o) + ATV @u)) a8, + [ (0T A0 D) a8, + (7 A P Darprs, (P3)

D
t
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The integration along a boundary T'; C 9QF is given by the formula (see e.g. [37], (2.125)) for smooth

p € HX(QF):

/ (div.,Ap+ ATVp) dS, = / (ntTA)(%tp + n;er) ds, + (TtTA)p|6Ft, (F.4)
Ty Iy

where the curvature s, = div,, n¢, the normal n; and tangential 7, vectors at 0I'; are positively oriented. Applying

(F.

(1
2]
(3]
(4]

(5]
(6]

[7]

(8]

(9]
(10]
(11]
(12]
(13]
(14]
(15]
[16]
(17]
(18]
(19]
(20]
(21]
(22]
(23]
24]
(25]
(26]

27]

4) to (F.3) and decomposing the velocity (4.41), we conclude the Hadamard representation (4.42)—(4.44).
The substitution of (4.45) into (4.42) implies that dj(£,0) < 0.
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