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DIRECTIONAL DIFFERENTIABILITY FOR SHAPE OPTIMIZATION

WITH VARIATIONAL INEQUALITIES AS CONSTRAINTS

Victor A. Kovtunenko1,2,* and Karl Kunisch3,4

Abstract. For equilibrium constrained optimization problems subject to nonlinear state equations,
the property of directional differentiability with respect to a parameter is studied. An abstract class
of parameter dependent shape optimization problems is investigated with penalty constraints linked
to variational inequalities. Based on the Lagrange multiplier approach, on smooth penalties due to
Lavrentiev regularization, and on adjoint operators, a shape derivative is obtained. The explicit formula
provides a descent direction for the gradient algorithm identifying the shape of the breaking-line from
a boundary measurement. A numerical example is presented for a nonlinear Poisson problem modeling
Barenblatt’s surface energies and non-penetrating cracks.
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1. Introduction

In this paper we prove a directional derivative of parameter-dependent objective functions for a class of
nonlinear equilibrium constraints. In particular, the penalty constraint linked to variational inequalities (VI) is
investigated within Lavrentiev’s regularization. The problem describes the identification of a breaking line with
contact and cohesion in the frame of quasi-brittle fracture and destructive physical analysis (DPA).

The research belongs to the fields of optimal control, shape and topology optimization [4, 37]. For optimal
control of VI we cite [1, 33], for quasi- and hemi-VI see [12, 34, 39], and for optimal control of cracks we
refer to [15, 24, 28]. In order to find an optimal shape, we generalize the optimization approach for semi-
linear equilibrium equations from [7, 22] by adopting results on directional differentiability of Lagrangians. The
main difficulty here concerns nonlinearity of state equations. Whereas in [22] we considered a specific problem
with cohesion representing the semi-linear state equation, the current contribution presents a solid theoretical
background to the same problem class. In our earlier works, the shape derivative was obtained for free-boundary
problems of Bernoulli type [8], nonlinear crack problems [19, 20] and Barenblatt’s cracks in plane setting [22],
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inverse problems of shape identification [21] and breaking-line identification [6], for the Stokes flow [25] and the
nonlinear Stokes–Forchheimer flow [7].

The classical theory of state-constrained optimization problems deals with linear equations, typically, given
by partial differential equations [29, 38]. In our consideration we study state constraints, given by variational
inequalities and their penalization. The challenge consists in the fact that the latter are not Fréchet differentiable
(see [30, 35]). As a consequence, the directional derivative of Lagrangians and related shape differentiability fails.
For the concept of the conical differential of a solution of the Signorini variational inequality, see [36]. Sensitivity
estimates in shape optimization problems for a class of semi-linear elliptic variational inequalities based on
material derivatives were investigated in [9]. Shape sensitivity analysis for an inverse obstacle problem and its
regularization via penalization was performed in [13] utilizing geometric properties of active and biactive sets.
We suggest a novel approximation for the shape derivative along specifically linearized directions and based on
generalized adjoint techniques (see [31, 32]). In particular cases, our approach is closely related to the method
of averaged adjoints developed by [26]. We compute a directional derivative with respect to specific shape
perturbations, which give descent directions for the shape optimization problem. It coincides with the usual
shape derivative in case of linear state equations.

Our research addresses the following features:

(i) Optimization subject to nonlinear and nonsmooth equilibrium constraints. Within the Lagrange multiplier
approach (see [14]), in Section 2 we consider a convex objective function J with a nonlinear equation as
constraint. The linearized Lagrangian L is well-posed when using the associated adjoint operator provided in
Lemma 2.2.

(ii) Penalty optimization linked to variational inequalities (VI). In order to treat VI, in Section 3 we extend
L to a penalized Lagrangian Lε for ε > 0 (see Lem. 3.2), thus reducing the variational inequalities to case (i).
Using adjoints we derive necessary and sufficient optimality conditions for a saddle-point problem providing the
optimal value l(ε).

(iii) Directional differentiability. We consider optimal values of objective and Lagrange functions j(ε, s) =
l(ε, s) depending on a parameter s > 0. Following the concepts in [3, 4], the directional derivative ∂+j(0) at
ε = 0 is obtained in Theorem 2.6, and in Theorem 3.3 it is extended to ∂+j(ε, 0) by using a differentiable
Lavrentiev’s ε-regularization [27].

(iv) Limit as ε → 0+. Taking the limit as the penalty parameter ε → 0+, in Theorem 3.4 we derive the
reference variational inequality, its adjoint equation, as well as primal and adjoint variables that are the
Lagrange multipliers for inequality constraints. However, a limit directional derivative fails since the VIs are
not differentiable.

(v) Shape derivative. In Section 4 we introduce states depending on a family of geometries Ωt parameterized
by t. The diffeomorphic perturbations Ωt+s are defined by a kinematic velocity Λ (see e.g. [10, 23]). They are
used to characterize the shape derivative using the bijection property of the function spaces V (Ωt+s) 7→ V (Ωt).

(vi) Application to non-penetrating Barenblatt’s cracks. We apply shape perturbations to the nonlinear crack
problem (4.11) under non-penetration [16, 17] in the anti-plane setting (see [11]). Beyond the classic Griffith’s
brittle fracture, Barenblatt’s cohesion (see [2, 18]) allows crack faces to close smoothly and determines a-priori
unknown cracks by those points where opening occurs along a breaking line Σt.

(vii) Hadamard formula and descent directions. In Theorem 4.3 we specify the shape derivative for the
nonlinear Poisson problem described in (vi), and express it by a Hadamard formula over the moving boundary
in Theorem 4.4. This formula provides kinematic velocities Λ for a descent direction ∂+j(ε, 0) < 0 within a
gradient method.

(viii) Identification of breaking lines. Finally, in Section 5 we present a numerical simulation of the gradient
descent algorithm for the inverse problem of identification of the breaking line Σt, which minimizes the objective
J of least-square misfit from a boundary observation. We report that the faces need to be open for identification
within DPA.
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2. Directional differentiability of Lagrangians for equilibrium
constraints

In separable Banach spaces V and X, let a linear operator M : V 7→ X map the space of states u ∈ V to
observations z ∈ X. We consider an abstract objective function dependent on a positive parameter s ∈ I :=
[0, s0), s0 > 0:

J (s, z) : I ×X 7→ R. (2.1)

Next we introduce our state constraint. Let the continuous function E(s, u) : I × V 7→ R be the energy
functional. For every fixed s we assume that its is differentiable, i.e.

(E1) E possesses the Gateaux derivative E ′(s, u) ∈ V ? such that

〈E ′(s, u), v〉 = lim
r→0

E(s, u+ rv)− E(s, u)

r
for u, v ∈ V , s ∈ I.

Here and in what follows the brackets 〈 · , · 〉 stands for the duality pairing between V and its dual space V ?.

We define the reference state as a solution u0 ∈ V at s = 0 to the equilibrium equation expressed in the
variational form:

〈E ′(0, u0), v〉 = 0 for all v ∈ V . (2.2)

The variational equation (2.2) constitutes the optimality condition for the minimum

E(0, u0) = min
u∈V
E(0, u). (2.3)

Lemma 2.1. Let assumption (E1) and the following hold:

(E2) E ′ at s = 0 is coercive: there exist a > 0 and f ∈ V ? such that

〈E ′(0, u), u〉 ≥ a‖u‖2V − 〈f, u〉 for u ∈ V ;

(E3) [u 7→ E ′(0, u)] : V 7→ V ? is weak-to-weak continuous: if uk ⇀ u0 weakly in V as k →∞, then E ′(0, uk) ⇀
E ′(0, u0) ?-weakly in V ?.

Then there exists a solution u0 ∈ V to (2.2).

Proof. We introduce a Galerkin approximation of (2.2) by nonlinear equations in subspaces V n ⊂ V of finite
dimension n ∈ N as follows

〈E ′(0, un), vn〉 = 0 for all vn ∈ V n.

Since the strong and weak convergences coincide in finite-dimensional spaces, under the coercivity and continuity
assumptions (E2) and (E3) solutions un ∈ V n exist according to the Brouwer fixed point theorem, see e.g. [5].
The solutions are uniformly bounded in V due to (E2). Hence there exists a weakly convergent subsequence
unk and an accumulation point u0 ∈ V . Taking the limit as nk →∞ due to (E3) the assertion of the theorem
follows.

Induced by the state equation (2.2), we have the optimal value

j(0) = J (0,Mu0) for u0 ∈ V solving E ′(0, u0) = 0. (2.4)
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Our aim is to extend the state-constrained optimization (2.4) to a well-posed optimal value function j : I ⊂
R 7→ R in such a way that it has a directional derivative at s = 0:

∂+j(0) = lim
s→0+

j(s)− j(0)

s
(one sided derivative). (2.5)

Further we linearize the mapping u 7→ E ′ around the reference solution u0 to (2.2) and use a Lagrange
multiplier method [14]. For this task we employ for fixed (s, u0) ∈ I × V an ‘associated to adjoint’ operator
(E ′)?(s, u0) ∈ L (V, V ?), which is defined by means of the Lagrange identity (see [32], Chap. 1):

〈(E ′)?(s, u0)v, u0〉 = 〈E ′(s, u0)− E ′(s, 0), v〉 for v ∈ V , s ∈ I. (2.6)

Lemma 2.2. If the following assumption holds:

(E?1) the second Gateaux derivative E ′′(s, ru0) ∈ L (V, V ?) exists:

〈E ′′(s, ru0)w, v〉 = lim
ξ→0

〈E ′(s, ru0 + ξw)− E ′(s, ru0)

ξ
, v
〉
, v, w ∈ V ,

for s ∈ I, and r 7→ E ′′(s, ru0) is continuous for r ∈ [0, 1],

then an associated to adjoint operator in (2.6) is given by

〈(E ′)?(s, u0)v, w〉 :=

∫ 1

0

〈E ′′(s, ru0)w, v〉 dr. (2.7)

Proof. From the Newton–Leibniz axiom we have

〈E ′(s, u0), v〉 = 〈E ′(s, 0), v〉+

∫ 1

0

〈E ′′(s, ru0)u0, v〉 dr. (2.8)

Inserting w = u0 into (2.7) and using (2.8) implies (2.6).

Based on Lemma 2.2, a linearized Lagrange function L : I × V 3 7→ R is well defined for u, v ∈ V as follows

L(s, u0, u, v) := J (s,Mu)− 〈(E ′)?(s, u0)v, u〉 − 〈E ′(s, 0), v〉. (2.9)

For the Lagrangian L we consider the saddle-point (minimax) problem:

L(s, u0, us, v) ≤ L(s, u0, us, vs) ≤ L(s, u0, u, vs) (2.10)

for all (u, v) ∈ V 2. Following [3], we introduce the optimal values:

ls := sup
v∈V

inf
u∈V
L(s, u0, u, v) ≤ inf

u∈V
sup
v∈V
L(s, u0, u, v) =: ls

and the corresponding solution sets:

Ks := {u ∈ V | sup
v∈V
L(s, u0, u, v) = ls}, (2.11)

Ks := {v ∈ V | inf
u∈V
L(s, u0, u, v) = ls},
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which determine a multi-valued function [s⇒ Ks ×Ks] : I ⇒ V 2. Later we shall prove that these sets are not
empty.

Lemma 2.3. Let (E1)–(E3), (E?1) and the following assumptions hold

(J1) J possesses a Gateaux derivative J ′(s, z) ∈ X? such that

〈J ′(s, z), ξ〉X?,X = lim
r→0

J (s, z + rξ)− J (s, z)

r
for z, ξ ∈ X, s ∈ I,

where 〈 · , · 〉X?,X is the duality pairing between X and its dual space X?;

(J2) the objective functional is convex:

〈J ′(s, ξ), z − ξ〉X?,X ≤ J (s, z)− J (s, ξ) for z, ξ ∈ X, s ∈ I;

(E?2) the associated to adjoint operator is symmetric:

〈(E ′)?(s, u0)v, u〉 = 〈(E ′)?(s, u0)u, v〉 for u, v ∈ V , s ∈ I;

(E?3) (E ′)?(s, u0) is coercive uniformly with respect to s: there exist a? > 0 and f? ∈ V ? such that

〈(E ′)?(s, u0)u, u〉 ≥ a?‖u‖2V − 〈f?, u〉 for u ∈ V , s ∈ I.

Then for every s ∈ I there exists a state us ∈ V solving the equation:

〈(E ′)?(s, u0)v, us〉+ 〈E ′(s, 0), v〉 = 0 for all v ∈ V , (2.12)

and an adjoint state vs ∈ V satisfying the adjoint equation:

〈(E ′)?(s, u0)vs, u〉 = 〈J ′(s,Mus),Mu〉X?,X for all u ∈ V . (2.13)

The pair (us, vs) ∈ Ks ×Ks is a saddle point satisfying

l(s) := ls = L(s, u0, us, vs) = ls, s ∈ I. (2.14)

If f? = 0 in (E?3), then the saddle-point is unique.

The proof of Lemma 2.3 is given in Appendix A.
We note that u0 from Lemma (2.1) is a solution to the s-dependent equation (2.12) at s = 0. The latter also

coincides with the reference equation (2.2) due to the Lagrange identity (2.6).
The next lemma establishes a sequential semi-continuity property for the solution set Ks ×Ks as s→ 0+.

Lemma 2.4. Let (E1)–(E3), (E?1)–(E?3), (J1), (J2) and the following assumptions hold true:

(E4) E ′(s, 0) is bounded: there exist a > 0 such that

‖E ′(s, 0)‖V ? ≤ a for s ∈ I;

(E5) s 7→ E ′(s, 0) is continuous from the right at u = 0 as s→ 0+;
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(J3) J ′(s,Mus) on solutions is bounded: there exist aJ > 0 such that

‖J ′(s,Mus)‖X? ≤ aJ ‖us‖V for us ∈ Ks, s ∈ I;

(J4) s 7→ J ′(s,Mus) on solutions us ∈ Ks is continuous as s→ 0+;

(E?4) (E ′)?(s, u0) is bounded: there exist a? > 0 such that

‖(E ′)?(s, u0)‖ ≤ a? for s ∈ I;

(E?5) s 7→ (E ′)?(s, u0) is continuous as s→ 0+.

Then there exist sk → 0+, a subsequence of saddle points (usk , vsk) ∈ Ksk ×Ksk and (u0, v0) ∈ K0 ×K0 such
that

(usk , vsk)→ (u0, v0) strongly in V 2 as k →∞. (2.15)

The proof of Lemma 2.4 is technical and is presented in Appendix B. In the last lemma of this section
directional differentiability of Lagrangians [3, 4] is recalled.

Lemma 2.5. Let the set of saddle points (us, vs) ∈ Ks×Ks satisfying (2.14) be nonempty for each s ∈ I; assume
that a subsequence (usk , vsk) ∈ Ksk ×Ksk and an accumulation point (u0, v0) ∈ K0 ×K0 exist satisfying strong
convergence (2.15) as sk → 0+. If the following holds:

(L1) There exists a partial derivative ∂L/∂s : I ×V 3 7→ R of the Lagrangian L with respect to the first argument
at r ∈ I such that

lim inf
r,sk→0+

∂L
∂s

(r, u0, usk , v0) ≥ ∂L
∂s

(0, u0, u0, v0) for all v0 ∈ K0,

lim sup
r,sk→0+

∂L
∂s

(r, u0, u0, vsk) ≤ ∂L
∂s

(0, u0, u0, v0) for all u0 ∈ K0,

then for the optimal value function j : I 7→ R defined as

j(s) := J (s,Mus) for us ∈ V solving (2.12), (2.16)

the directional derivative ∂+j(0) in (2.5) exists. It is equal to a directional derivative ∂+l(0) for the optimal
value function l : I 7→ R from (2.14) and is expressed by the partial derivative ∂L/∂s as follows

∂+j(0) = ∂+l(0) := lim
sk→0+

l(sk)− l(0)

sk
=
∂L
∂s

(0, u0, u0, v0). (2.17)

The proof of Lemma 2.5 follows [4], Chapter 10, Theorem 5.1.
Based on Lemmas 2.1–2.5 we state the main theorem of this section.

Theorem 2.6. Under assumptions (E1)–(E5), (J1)–(J4), (E?1)–(E?5), (L1) there exists the directional deriva-
tive ∂+j(0) = ∂+l(0) in (2.17), where (u0, v0) ∈ K0×K0 ∈ V 2 is a saddle point solving the reference variational
equation (2.2) and the adjoint (2.13) at s = 0:

〈(E ′)?(0, u0)v0, u〉 = 〈J ′(0,Mu0),Mu〉X?,X for all u ∈ V . (2.18)
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Proof. From assumptions (E1)–(E3), (J1), (J2), (E?1)–(E?3) and Lemmas 2.1–2.3 it follows that the set of
saddle points (us, vs) ∈ Ks×Ks satisfying (2.14) is nonempty. Together with assumptions (E4), (E5), (J3), (J4),
(E?4), (E?5) Lemma 2.4 guarantees the existence of a subsequence (usk , vsk) ∈ Ksk ×Ksk and an accumulation
point (u0, v0) ∈ K0×K0 satisfying the strong convergence (2.15) as sk → 0+. Utilizing (L1) Lemma 2.5 implies
the assertion of the theorem.

In the following section we extend the directional differentiability result of Theorem 2.6 to a penalty-
constrained optimization motivated by variational inequalities.

3. Directional differentiability of Lagrangians
due to penalty constraints

Let H be another Banach space with an order relation denoted by ‘≥’. We introduce a parameter-dependent
family of linear operators B(s) ∈ L (V,H) with s ∈ I, and the associated inequality constraints

B(s)u ≥ 0. (3.1)

As a canonical example we may consider a trace operator. Using the decomposition ζ = [ζ]+− [ζ]− into positive
[ζ]+ = max(0, ζ) and negative [ζ]− = −min(0, ζ) parts, inequality (3.1) is equivalent to

[B(s)u]− = 0. (3.2)

Compared to (2.3), the constrained problem at s = 0:

E(0, u0) = min
u∈V, [B(0)u]−=0

E(0, u) (3.3)

leads to the variational inequality: find u0 ∈ V , [B(0)u0]− = 0 such that

〈E ′(0, u0), v − u0〉 ≥ 0 for all v ∈ V , [B(0)v]− = 0. (3.4)

In order to bring (3.4) in equality form akin (2.2), we regularize it by a penalty approximation.
For a small penalization parameter ε ∈ (0, ε0), ε0 > 0, we define the penalty as a map βε(s, ζ) : I ×H 7→ H?

into the dual space H?. For the constraint [ζ]− = 0 according to (3.2), the standard penalty function βε(0, ζ) =
−[ζ]−/ε ≤ 0 forces the compliance condition βε(0, ζ)ζ = ([ζ]−)2/ε. However, the min-based penalty function is
not differentiable (see As. (L3)). Therefore, we introduce a Lavrentiev relaxation [27] satisfying:

(B1) there exist β, β1 ≥ 0 such that for ζ ∈ H, ε ∈ (0, ε0):

‖[ζ]−‖2H
ε

− εβ ≤ 〈βε(0, ζ), ζ〉H?,H , βε(0, ζ) ≤ εβ1, (3.5)

where 〈 · , · 〉H?,H denotes the duality pairing between H and H?.

For example, a smooth ε-mollification of the minimum function

βε(0, ζ) =


ζ/ε for ζ < −ε
− exp

(
2(ζ + ε)/(ζ − ε)

)
for − ε ≤ ζ < ε

0 for ζ ≥ ε
(3.6)

is depicted in Figure 1 together with its derivative. It satisfies (B1) with β = −βε(0, 0) = exp(−2) and β1 = 0.
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ζ
−ε ε

−1

βε(0)

ζ−ε ε

1
ε

β′
ε(0)

Figure 1. Example graphics of ζ 7→ βε, β
′
ε for fixed ε.

This leads to the penalized problem: find uε0 ∈ V such that

〈E ′(0, uε0), v〉+ 〈βε(0, B(0)uε0), B(0)v〉H?,H = 0 for all v ∈ V . (3.7)

Lemma 3.1. Let the asymptotic condition (B1) hold. If

(B2) [ζ 7→ βε(0, ζ)] : H 7→ H? is sequentially weak-to-weak continuous,

then there exists a solution uε0 ∈ V to (3.7).

Proof. The operator of problem (3.7) is coercive due to assumption (E2) and the lower bound in (3.5). It is
weakly continuous due to (E3) and (B2). The proof of Lemma 2.1 can be adapted to guarantee existence of a
solution.

Following Lemma 2.2 we assume that

(B?1) the Gateaux derivative β′ε(s, rB(0)uε0) ∈ L (H,H?) at B(0)uε0 exists:

〈β′ε(s, rB(0)uε0)η, ζ〉H?,H = lim
ξ→0

〈βε(s, rB(0)uε0 + ξη)− βε(s, rB(0)uε0)

ξ
, ζ
〉
H?,H

for ζ, η ∈ H, and the mapping r 7→ β′ε(s, rB(0)uε0) is continuous for r ∈ [0, 1], where s ∈ I.

Then the adjoint β?ε (s,B(0)uε0) ∈ L (H,H?) exists, it is given by

〈β?ε (s,B(0)uε0)ζ, η〉H?,H :=

∫ 1

0

〈β′ε(s, rB(0)uε0)η, ζ〉H?,H dr, (3.8)

and satisfies the Lagrange identity for ζ ∈ H, s ∈ I:

〈β?ε (s,B(0)uε0)ζ,B(0)uε0〉H?,H = 〈βε(s,B(0)uε0)− βε(s, 0), ζ〉H?,H . (3.9)

Using (3.7) and (3.9) we modify (2.9) with a penalized Lagrange function Lε : I × V 3 7→ R expressed by

Lε(s, uε0, u, v) := L(s, uε0, u, v)− 〈βε(s, 0), B(s)v〉H?,H

− 〈β?ε (s,B(0)uε0)B(s)v,B(s)u〉H?,H for u, v ∈ V . (3.10)

The penalized saddle-point problem reads: find (uεs, v
ε
s) ∈ V 2 such that

Lε(s, uε0, uεs, v) ≤ Lε(s, uε0, uεs, vεs) ≤ Lε(s, uε0, u, vεs) (3.11)
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for all test functions (u, v) ∈ V 2. The optimal values and solution sets in (2.11) are

lεs := sup
v∈V

inf
u∈V
Lε(s, uε0, u, v) ≤ inf

u∈V
sup
v∈V
Lε(s, uε0, u, v) =: lsε,

Ks
ε := {u ∈ V | sup

v∈V
Lε(s, uε0, u, v) = lsε}, (3.12)

Kε
s := {v ∈ V | inf

u∈V
Lε(s, uε0, u, v) = lεs}.

We establish results for (3.12) analogous to those of Lemmas 2.3 and 2.4.

Lemma 3.2. Let (E1)–(E5), (J1)–(J4), (E?1)–(E?5), (B1), (B2), (B?1) with uε0 replacing u0, and the following
assumptions hold true:

(B3) B(s) is bounded: 0 < b ≤ ‖B(s)‖ ≤ b for s ∈ I;

(B4) s 7→ B(s) is continuous for s ∈ I;

(B5) βε(s, 0) is bounded: there exist bε > 0 such that

‖βε(s, 0)‖H? ≤ bε for s ∈ I;

(B6) s 7→ βε(s, 0) is continuous as s→ 0+;

(B?2) β?ε (s,B(0)uε0) is symmetric:

〈β?ε (s,B(0)uε0)ζ, η〉H?,H = 〈β?ε (s,B(0)uε0)η, ζ〉H?,H for ζ, η ∈ H, s ∈ I;

(B?3) there exist b? > 0 and f?b ∈ H? such that with a? from (E?3):

〈β?ε (s,B(0)uε0)ζ, ζ〉H?,H ≥
b? − a?
b2

‖ζ‖2H − 〈f?b , ζ〉H?,H for ζ ∈ H, s ∈ I.

(B?4) β?ε (s,B(0)uε0) is bounded: there exist b
?

ε ≥ 0 such that

‖β?ε (s,B(0)uε0)‖ ≤ b?ε for s ∈ I;

(B?5) s 7→ β?ε (s,B(0)uε0) is continuous for s ∈ I.

Then for every s ∈ I there exist a state uεs ∈ V solving the equation:

〈(E ′)?(s, uε0)v, uεs〉+ 〈β?ε
(
s,B(0)uε0

)
B(s)v,B(s)uεs〉H?,H

+ 〈E ′(s, 0), v〉+ 〈βε(s, 0), B(s)v〉H?,H = 0 for all v ∈ V , (3.13)

and an adjoint state vεs ∈ V satisfying the adjoint equation:

〈(E ′)?(s, uε0)vεs , u〉 + 〈β?ε
(
s,B(0)uε0

)
B(s)vεs , B(s)u〉H?,H = 〈J ′(s,Muεs),Mu〉X?,X for all u ∈ V . (3.14)

The pair (uεs, v
ε
s) ∈ Ks

ε ×Kε
s is a saddle point satisfying

l(ε, s) := lεs = Lε(s, uε0, uεs, vεs) = lsε, s ∈ I. (3.15)
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If f? = 0 in (E?3) and f?b = 0 in (B?3), then the saddle-point is unique.
Moreover, there exists a subsequence sk → 0+ with associated saddle points (uεsk , v

ε
sk

) ∈ Ksk
ε × Kε

sk
, and

(uε0, v
ε
0) ∈ K0 ×K0 such that

(uεsk , v
ε
sk

)→ (uε0, v
ε
0) strongly in V 2 as k →∞. (3.16)

The proof of Lemma 3.2 is technical and presented in Appendix C.
For illustration, we note that the derivative β′ε(0, ζ) of the mollified minimum function from (3.6) satisfies

(3.8). It fulfills the symmetry assumption (B?2). Since β?ε (0, ζ) ≥ 0, the lower bound in (B?3) holds trivially

with b? = a? and f?b = 0. The upper bound b
?

ε in (B?4) has the order 1/ε in this case.
Below we state a theorem on differentiability of Lε.

Theorem 3.3. Let (E1)–(E5), (J1)–(J4), (E?1)–(E?5), (B1)–B(6), (B?1)–(B?5), (L1), and the two following
assumptions hold:

(L2) B is differentiable such that d
dsB ∈ C(I,L (V,H));

(L3) there exists the derivative d
dsβ

?
ε (s,B(0)uε0) ∈ C(I,L (H,H?)).

The directional derivative of the optimal value function j : (0, ε0)× I 7→ R defined by

j(ε, s) := J (s,Muεs) for uεs ∈ V solving (3.13), (3.17)

and the associated Lagrangian function l : (0, ε0)× I 7→ R from (3.15) satisfy

∂+j(ε, 0) = ∂+l(ε, 0) =
∂Lε
∂s

(0, uε0, u
ε
0, v

ε
0). (3.18)

Here the partial derivative is given by

∂Lε
∂s

(s, uε0, u, v) :=
∂L
∂s

(s, uε0, u, v)

−
〈 d

ds
β?ε (s,B(0)uε0)B(s)v,B(s)u

〉
H?,H

−
〈
β?ε (s,B(0)uε0)

d

ds
B(s)u,B(s)v

〉
H?,H

−
〈
β?ε (s,B(0)uε0)B(s)u,

d

ds
B(s)v

〉
H?,H

. (3.19)

The saddle point (uε0, v
ε
0) ∈ K0

ε ×Kε
0 solves the penalty problem (3.7) and the adjoint equation (3.14) at s = 0:

〈(E ′)?(0, uε0)vε0, u〉 + 〈β?ε (0, B(0)uε0)B(0)vε0, B(0)u〉H?,H = 〈J ′(0,Muε0),Mu〉X?,X for all u ∈ V . (3.20)

Proof. The differentiability assumptions (L1)–(L3) together with the continuity in (B4), (B?5) imply the
existence of the partial derivative of Lε in (3.19) with respect to s ∈ I and its semi-continuity properties:

lim inf
r,sk→0+

∂Lε
∂s

(r, uε0, u
ε
sk
, vε0) ≥ ∂Lε

∂s
(0, uε0, u

ε
0, v

ε
0) for all vε0 ∈ Kε

0 ,

lim sup
r,sk→0+

∂Lε
∂s

(r, uε0, u
ε
0, v

ε
sk

) ≤ ∂Lε
∂s

(0, uε0, u
ε
0, v

ε
0) for all uε0 ∈ K0

ε .
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Therefore, utilizing Lemma 3.2 and proceeding as in Lemma 2.5 we obtain formula (3.18) for the directional
derivative. Taking the limit s → 0+ in (3.13) and using (3.9) we arrived at (3.7). The adjoint equation (3.20)
follows from (3.14). The proof is complete.

Next we analyze the limit as ε→ 0+. For this task we employ the Lagrangian L from (2.9) at s = 0.

Theorem 3.4. Let (E1)–(E5), (J1)–(J4), (E?1)–(E?5), (B1)–(B6), (B?1)–(B?5) and the following assump-
tions hold:

(B7) B(0) is a compact operator;

(B8) there exits a Banach space H̃ ⊂ H such that B(0) : V 7→ H̃ is surjective: for each ζ ∈ H̃ there exists u ∈ V
with B(0)u = ζ;

(J5) u 7→ J ′(0,Mu) is sequentially weak-to-weak continuous from V to X?;

(E?6) u 7→ (E ′)?(0, u) : V 7→ L (V, V ?) is sequentially weak-to-weak continuous.

Then there exists a quadruple (u0, λ0, v0, µ0) ∈ (V × H̃?)2, where H̃? is the dual space to H̃ from (B8) with the
duality pairing 〈 · , · 〉H̃?,H̃ , which satisfies the primal problem:

L(0, u0, u0, v)− 〈λ0, B(0)v〉H̃?,H̃ ≤ L(0, u0, u0, v0)− 〈λ0, B(0)v0〉H̃?,H̃ for all v ∈ V, (3.21)

the adjoint problem:

L(0, u0, u0, v0)− 〈µ0, B(0)u0〉H̃?,H̃ ≤ L(0, u0, u, v0)− 〈µ0, B(0)u〉H̃?,H̃ for all u ∈ V, (3.22)

the complementarity relations:

[B(0)u0]− = 0, [λ0]+ = 0, 〈λ0, B(0)u0〉H̃?,H̃ = 0, (3.23)

and the compatibility condition

〈λ0 − βε(0, 0), B(0)v0〉H̃?,H̃ = 〈µ0, B(0)u0〉H̃?,H̃ , (3.24)

where βε(0, 0) = − exp(−2) in (3.6).
Moreover, u0 satisfies [B(0)u0]− = 0 and the variational inequality (3.4). Together with the Lagrange

multiplier λ0 it solves

〈E ′(0, u0), v〉+ 〈λ0, B(0)v〉H̃?,H̃ = 0 for all v ∈ V . (3.25)

The adjoint v0 solves the variational equation for all u ∈ V :

〈(E ′)?(0, u0)v0, u〉+ 〈µ0, B(0)u〉H̃?,H̃ = 〈J ′(0,Mu0),Mu〉X?,X (3.26)

for µ0 obtained as an accumulation point in the following limit:

β?εk(0, B(0)uεk0 )B(0)vεk0 ⇀ µ0 ?-weakly in H̃? as k →∞. (3.27)

According to (3.21)–(3.24), the optimal value functions in (3.17) and (3.15) at ε = 0 are

j(0, 0) = l(0, 0) = L(0, u0, u0, v0)− 〈λ0, B(0)v0〉H̃?,H̃ . (3.28)
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Figure 2. An example geometry Ωt in 2D.

The proof of Theorem 3.4 is technical and it is presented in Appendix D.
It is worth noting that we cannot pass to the limit as ε→ 0+ in the derivative β′ε of the penalty, since it is

unbounded in general, see Figure 1. This would be needed for β?ε which enters into ∂Lε/∂s in (3.18).

4. Shape derivative for breaking-line identification

Now we turn to a model problem for a nonlinear Poisson equation. We derive a shape derivative suitable for
shape optimization in the problem of breaking-line identification from a boundary measurement.

Let

[t 7→ Ωt] : (t0, t1) 7→ D ⊂ R2 (4.1)

be a parameter dependent family of domains contained in the hold-all domain D. For some fixed t ∈ (t0, t1)
we refer to Ωt as the reference domain. We assume that Ωt = Ω+

t ∪ Ω−t ∪ Σt is split into two variable sub-
domains Ω±t with Lipschitz boundaries ∂Ω±t and outward normal vectors n±t . The sub-domains are separated
by a one-dimensional breaking line

[t 7→ Σt] : (t0, t1) 7→ DΣ ⊂ D (4.2)

with the chosen normal direction νt = n−t = −n+
t (see Fig. 2).

Let the outer boundary be split into two variable parts without intersection ∂Ωt = ΓD
t ∪ΓN

t , and the outward
normal vector nt be such that n±t = nt at ∂Ωt. The condition ΓD

t ∩ ∂Ω±t 6= ∅ on the Dirichlet boundary is
assumed to guarantee the Poincaré inequality in Ω±t . A part of the Neumann boundary ΓO

t ⊂ ΓN
t builds the

observation boundary. Further we introduce

[t 7→ (ΓD
t ,Γ

N
t ,Γ

O
t )] : (t0, t1) 7→ DD ×DN ×DO ⊂ D3. (4.3)

We adopt the formalism from Sections 2 and 3 to the geometry-dependent spaces of functions

V (Ωt) := {u ∈ H1(Ω±t )| u = 0 on ΓD
t }, X(Ωt) := L2(ΓO

t ), H(Ωt) := L2(Σt), H̃(Ωt) := H1/2(Σt). (4.4)

The observation operator M : V (Ωt) 7→ L2(ΓO
t ) maps to the boundary traces on ΓO

t . The restriction operator
B : V (Ωt) 7→ L2(Σt) is independent of s and describes a jump across the breaking line Σt subject to the
non-penetration condition (see motivation in [11]):

u|Σt∩∂Ω+
t
− u|Σt∩∂Ω−

t
=: [[u]] ≥ 0. (4.5)
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κ

ζ

−Kc

Kc α(0)

−κ κ
ζ

Kα1

α′(0)
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ζ

−Kα2

Kα2

α′′(0)

Figure 3. Example graphics of α, α′, α′′ as δ = κ/2.

This allows possible contact between the faces when [[u]] = 0 in (4.5).
Here we take into account the dissipative interaction phenomenon of cohesion (see [2, 18]) described by a

surface energy density α(s, ζ). The following conditions are imposed:

[
(s, ζ) 7→ α, α′, α′′,

∂α′

∂s
,
∂α′′

∂s

]
∈ C(I × R), (4.6)

and the existence of Kα1 > 0, Kα2 > 0 such that:

|α′(s, ζ)| ≤ Kα1, |α′′(s, ζ)| ≤ Kα2. (4.7)

For example, a mollification of the function (Kc/κ) min(κ, |ζ|) as

α(0, ζ) = Kc



−1 for ζ < −κ− δ
δ
κ exp

(
2 ζ+κ−δζ+κ+δ

)
− 1 for − κ− δ ≤ ζ < −κ+ δ

ζ/κ for − κ+ δ ≤ ζ < κ− δ
1− δ

κ exp
(
2 ζ−κ+δ
ζ−κ−δ

)
for κ− δ ≤ ζ < κ+ δ

1 for ζ ≥ κ+ δ

(4.8)

where 0 < δ < κ, κ > 0, and Kc > 0 is the fracture toughness parameter. The function from (4.8) is depicted
in Figure 3.

Let the Lame parameter µL > 0 and the traction force g ∈ H1(DN), ensuring that g ∈ L2(ΓN
t ) on Lipschitz

curves ΓN
t ⊂ DN, be given. The bulk and the surface energies together constitute the total potential energy

E(0) : V (Ωt) 7→ R:

E(0, u; Ωt) :=
µL

2

∫
Ω±

t

|∇u|2 dx−
∫

ΓN
t

gudSx +

∫
Σt

α(0, [[u]]) dSx. (4.9)

We calculate the Gateaux derivative E ′(0) : V (Ωt) 7→ V (Ωt)
? at u:

〈E ′(0, u; Ωt), v〉 = µL

∫
Ω±

t

∇u>∇v dx−
∫

ΓN
t

gv dSx +

∫
Σt

α′(0, [[u]])[[v]] dSx, (4.10)

where > denotes the transpose. The constrained optimization (3.3) leads to the variational inequality (3.4),
which takes the form: find ut ∈ V (Ωt), [[ut]]

− = 0 on Σt, such that
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µL

∫
Ω±

t

∇u>t ∇(v − ut) dx +

∫
Σt

α′(0, [[ut]])[[v − ut]] dSx

≥
∫

ΓN
t

g(v − ut) dSx for all v ∈ V (Ωt), [[v]]− = 0 on Σt. (4.11)

Lemma 4.1. There exists a solution to the variational inequality (4.11). It satisfies the linear complementarity
problem:

−µL∆ut = 0 in Ω±t ; ut = 0 on ΓD
t ; µLn

>
t ∇ut = g on ΓN

t ;

ν>t [[∇ut]] = 0,
[
µLν

>
t ∇ut − α′(0, [[ut]])

]+
= 0,

[[ut]]
− = 0, [[ut]]

(
µLν

>
t ∇ut − α′(0, [[ut]])

)
= 0 on Σt. (4.12)

The solution is unique for convex α (hence, monotone α′).

Proof. For u ∈ V (Ωt) we recall the Poincaré inequality:∫
Ω±

t

|∇u|2 dx ≥ KP‖u‖2H1(Ω±
t )
, KP > 0, (4.13)

and the trace inequality:

‖u‖L2(∂Ω±
t ) ≤ ‖u‖H1/2(∂Ω±

t ) ≤ Ktr‖u‖H1(Ω±
t ), Ktr > 0, (4.14)

both uniform in t ∈ (t0, t1). Using the bound Kα1 > 0 in (4.7) and (4.13), (4.14) we can estimate 〈E ′(0, u; Ωt), u〉
in (4.10) from below and conclude the coercivity property (E2). The weak-to-weak continuity (E3) for E ′(0, u)
holds due to the continuity of α′ assumed in (4.6).

Therefore, by Lemma 3.1 there exists a solution uεt ∈ V (Ωt) to the penalty equation (see (3.7)) in the form:

µL

∫
Ω±

t

∇(uεt )
>∇v dx +

∫
Σt

[α′ + βε](0, [[u
ε
t ]])[[v]] dSx =

∫
ΓN
t

gv dSx (4.15)

for all v ∈ V (Ωt). It satisfies the mixed boundary value problem:

−µL∆uεt = 0 in Ω±t ; uεt = 0 on ΓD
t ; µLn

>
t ∇uεt = g on ΓN

t ;

ν>t [[∇uεt ]] = 0, µLν
>
t ∇uεt = [α′ + βε](0, [[u

ε
t ]]) on Σt. (4.16)

By the compactness argument used in the proof of Theorem 3.4 we get an accumulation point such that uεkt ⇀ ut
weakly in V (Ωt) as εk → 0, which solves the variational inequality (4.11). The derivation of relations (4.12) is
standard, see e.g [16], Chapter 1.

Let z ∈ H1(DO) be given, providing an observation z ∈ L2(ΓO
t ) on Lipschitz curves ΓO

t ⊂ DO from (4.3).
We aim at the shape optimization problem for identification of an unknown breaking line from the observation:
find Σ∗ as the solution to

min
Σt⊂DΣ

{
j(0, 0) = J(0, ut; Ωt) :=

1

2

∫
ΓO
t

(ut − z)2 dSx + ρ|Σt| with ut satisfying (4.11)
}
, (4.17)

where J represents J from (2.4), and ρ ≥ 0 stands for the reason of perimeter regularization.
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Lemma 4.2. Let the observation z be feasible, this means:

Ω∗ = Ω±∗ ∪ Σ∗ ⊂ D, Σ∗ ⊂ DΣ, (ΓD
∗ ,Γ

N
∗ ,Γ

O
∗ ) ∈ DD ×DN ×DO,

and z ∈ V (Ω∗), [[z]]− = 0 on Σ∗ are such that

µL

∫
Ω±

∗

∇z>∇(v − z) dx +

∫
Σ∗

α′(0, [[z]])[[v − z]] dSx

≥
∫

ΓN
∗

g(v − z) dSx for all v ∈ V (Ω∗), [[v]]− = 0 on Σ∗. (4.18)

If ρ = 0, then there exists a solution to the shape optimization problem (4.17). In general, the solution is
non-unique.

Proof. The trivial minimum in (4.17) is evidently attained at the argument Σt = Σ∗ when ut = z and ρ = 0.
We construct a counter-example to uniqueness. Assume Σ∗ solves (4.17) and z satisfies (4.18). Let the active

part of the breaking line Σa∗ ⊂ Σ∗, where the equality [[z]] = 0 holds (i.e. contact happens), be nonempty.
Then z ∈ V (Ω̃∗) satisfies (4.18) in Ω̃∗ = Ω̃±∗ ∪ Σ̃∗ for an arbitrary regular interface Σ̃∗ ⊂ DΣ that coincides
with Σ∗ along Σ∗ \ Σa∗. In this case, both Σ̃∗ and Σ∗ solve (4.17). This situation is observed in the numerical
experiment.

Under the penalty approach from Section 3 we approximate (4.17) by a differentiable constraint following
Theorem 3.3: for ε ∈ (0, ε0) find Σ∗ ⊂ DΣ such that

min
Σt⊂DΣ

{
j(ε, 0) = J(0, uεt ; Ωt) with uεt solving (4.15)

}
. (4.19)

Aiming to solve (4.19) by a gradient method, we look for a descent direction ∂+j(ε, 0) < 0 from Theorem 3.3.
This requires to express the perturbation j(ε, s) for s ∈ I in a geometry-independent form.

For this task we employ the velocity method based on coordinate transformations. Let I have the end-point
s0 ≤ t1 − t, and let us fix a kinematic flow and its inverse

[(s, x) 7→ φs], [(s, y) 7→ φ−1
s ] ∈ C1(t0 − t1, t1 − t0;W 1,∞(D)2)2. (4.20)

This defines an associateed coordinate transformation y = φs(x) and its inverse x = φ−1
s (y). We suppose that

the mapping introduced in (4.1)–(4.3) forms a diffeomorphism:

x 7→ φs : (Ωt,Σt,Γ
D
t ,Γ

N
t ,Γ

O
t ) 7→ (Ωt+s,Σt+s,Γ

D
t+s,Γ

N
t+s,Γ

O
t+s). (4.21)

Then the kinematic velocity Λ(t, x) ∈ C([t0, t1];W 1,∞(D)2) can be defined from (4.20) by the formula

Λ(t+ s, y) :=
dφs
ds

(φ−1
s (y)). (4.22)

If a velocity vector is given explicitly

Λ = (Λ1,Λ2)(t, x) ∈ C([t0, t1];W 1,∞(D))2, Λ|∂D = 0, (4.23)
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preserving the hold-all domain D, it determines the flows in (4.20) as solution vector φs = ((φs)1, (φs)2) to the
non-autonomous ODE system

d

ds
φs = Λ(t+ s, φs) for s ∈ I, φs = x as s = 0, (4.24)

and φ−1
s (y) = ((φ−1

s )1, (φ
−1
s )2) to the transport equation

∂

∂s
φ−1
s + (∇yφ−1

s )Λ|t+s = 0 in I ×D, φ−1
s = y as s = 0. (4.25)

In (4.25) we utilize the second order tensor ∇yφ−1
s = (∂(φ−1

s )i/∂yj)
2
i,j=1, and Λ|t+s = Λ(t+ s, y). For validation

of (4.20)–(4.25) see [10, 23].
The diffeomorphism (4.21) preserves the bijectivity between the function spaces in (4.4):

[u 7→ u ◦ φ−1
s ] :

(
V (Ωt), L

2(ΓO
t ), L2(Σt), H

1/2(Σt)
)
7→
(
V (Ωt+s), L

2(ΓO
t+s), L

2(Σt+s), H
1/2(Σt+s)

)
. (4.26)

With the help of (4.26) we transform the perturbed objective J(0, ũ; Ωt+s) from (4.19) for ũ ∈ V (Ωt+s) such
that

J(0, u ◦ φ−1
s ; Ωt+s) = J(s, u; Ωt) :=

1

2

∫
ΓO
t

(u− z ◦ φs)2 ωsdSx + ρ

∫
Σt

ωsdSx, (4.27)

where ωs will be defined later. Based on the second derivative in the identity (see (2.6)):

∫ 1

0

α′′(0, [[ruεt ]])[[u
ε
t ]] dr = α′(0, [[uεt ]])− α′(0, 0), (4.28)

we linearize at the solution uεt the perturbed state operator in (4.10):

〈E ′(0, u ◦ φ−1
s ; Ωt+s), v ◦ φ−1

s 〉 ∼ 〈(E ′)?(s, uεt )v, u〉+ 〈E ′(s, 0), v〉, (4.29)
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where the terms are

〈(E ′)?(s, uεt )v, u〉 := µL

∫
Ω±

t

([∇φ−>s ◦ φs]u)>[∇φ−>s ◦ φs]v Jsdx

+

∫
Σt

∫ 1

0

α′′(0, [[ruεt ]]) dr[[u]][[v]]ωsdSx,

〈E ′(s, 0), v〉 := −
∫

ΓN
t

(g ◦ φs)v ωsdSx +

∫
Σt

α′(0, 0)[[v]]ωsdSx. (4.30)

In (4.27) and (4.30) we use the chain rule

∇y(u ◦ φ−1
s ) = (∇φ−Ts ◦ φs)∇u, (4.31)

and the Jacobian in the domain and at the boundary:

Js := det(∇φs) in Ω±t , ωs := |(∇φ−>s ◦ φs)n±t |Js at ∂Ω±t , (4.32)

for more details, see e.g. [19, 20, 25].
Similarly, using the following identity analogous to (4.28):∫ 1

0

β′ε(0, [[ru
ε
t ]])[[u

ε
t ]] dr = βε(0, [[u

ε
t ]])− βε(0, 0), (4.33)

we perturb the penalty term in (4.15) linearized at uεt such that

〈βε(s, [[u ◦ φ−1
s ]]), [[v ◦ φ−1

s ]]〉L2(Σt+s) ∼ 〈β?ε (s, [[uεt ]])[[v]], [[u]]〉L2(Σt)

+ 〈βε(s, 0), [[v]]〉L2(Σt) :=

∫
Σt

(∫ 1

0

β′ε(0, [[ru
ε
t ]])[[u]] dr + βε(0, 0)

)
[[v]]ωsdSx. (4.34)

Combining formulas (4.27)–(4.34) we get a perturbed Lagrange function in (3.10) expressed by the integrals

Lε(s, uεt , u, v) =
1

2

∫
ΓO
t

(u− z ◦ φs)2 ωsdSx + ρ

∫
Σt

ωsdSx

− µL

∫
Ω±

t

([∇φ−>s ◦ φs]u)>[∇φ−>s ◦ φs]v Jsdx +

∫
ΓN
t

(g ◦ φs)v ωsdSx

−
∫

Σt

(∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]])[[u]] dr + [α′ + βε](0, 0)

)
[[v]]ωsdSx. (4.35)

Next we present a formula for the shape derivative.

Theorem 4.3. Let the bound Kα2 > 0 in (4.7) be sufficiently small such that

a? := µLKP − 2Kα2K
2
tr > 0, (4.36)

where KP and Ktr are the constants from the Poincaré and the trace estimates (4.13) and (4.14). Then the
directional derivative of Lε exists and is given by the formula
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∂+j(ε, 0) =
∂Lε
∂s

(0, uεt , u
ε
t , v

ε
t ) =

∫
ΓO
t

(1

2
divτtΛ (uεt − z)2

− Λ>∇z(uεt − z)
)

dSx − µL

∫
Ω±

t

(∇uεt )>(divΛ−∇Λ−∇Λ>)∇vεt dx

+

∫
ΓN
t

(divτtΛ g + Λ>∇g)vεt dSx +

∫
Σt

divτtΛ
(
ρ− [α′ + βε](0, [[u

ε
t ]])[[v

ε
t ]]
)

dSx, (4.37)

where the tangential divergence is defined as

divτtΛ := divΛ− (n±t )>∇Λn±t at ∂Ω±t . (4.38)

The saddle point (uεt , v
ε
t ) ∈ V (Ωt)

2 solves the penalty equation (4.15) and the adjoint equation:

µL

∫
Ω±

t

∇u>∇vεt dx +

∫
Σt

∫ 1

0

[α′′+ β′ε](0, [[ru
ε
t ]])[[v

ε
t ]][[u]] drdSx =

∫
ΓO
t

(uεt − z)udSx for all u ∈ V (Ωt), (4.39)

for which the mixed boundary value formulation is given by:

−µL∆vεt = 0 in Ω±t ; vεt = 0 on ΓD
t ;

µLn
>
t ∇vεt = uεt − z on ΓO

t ; µLn
>
t ∇vεt = 0 on ΓN

t \ ΓO
t ;

ν>t [[∇vεt ]] = 0, µLν
>
t ∇vεt =

∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]])[[v

ε
t ]] dr on Σt. (4.40)

For the proof of Theorem 4.3 one checks the conditions of Theorem 3.3. It is given in Appendix E.
In the following we decompose the velocity into the normal and tangential vectors at the boundary:

Λ = ((n±t )>Λ)n±t + ((τ±t )>Λ)τ±t on ∂Ω±t , (4.41)

where τ±t is the tangential vector positively oriented to n±t .

Theorem 4.4. Let the solution of (4.15), (4.39) be smooth such that (uεt , v
ε
t ) ∈ H2(Ω±t )2. Then the shape

derivative in Theorem 4.3 satisfies an equivalent Hadamard’s representation by the boundary integrals:

∂+j(ε, 0) =

∫
ΓD
t

(n>t Λ)(n>t D1) dSx + (τ>t Λ)(τ>t [[D1]])∂ΓD
t ∩Σt

+

∫
ΓN
t

(n>t Λ)(κtD2 + n>t ∇D2) dSx + (τ>t Λ)[[D2]]∂ΓN
t ∩Σt

+

∫
Σt

(
(ν>t Λ)Dε3 + (τ>t Λ)Dε4

)
dSx + (τ>t Λ)[[Dε5]]∂Σt

+

∫
ΓO
t

(n>t Λ)(κtD6 + n>t ∇D6) dSx + (τ>t Λ)D6|∂ΓO
t
. (4.42)

The terms in (4.42) are given by

D1 := µL

(
∇uεt (n>t ∇vεt ) +∇vεt (n>t ∇uεt )

)
, D2 := gvεt ,

Dε3 := κtDε5 + µL[[(∇uεt )>∇vεt ]]− ν>t (∇pε + qε),

Dε4 := −τ>t qε, Dε5 := ρ− pε, D6 :=
1

2
(uεt − z)2, (4.43)
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where κ±t := divτtn
±
t denotes the curvature at ∂Ω±t , and we utilize the notation at Σt:

pε := [α′ + βε](0, [[u
ε
t ]]) [[vεt ]], qε := [[∇uεt ]]

(∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]]) dr − [α′′ + β′ε](0, [[u

ε
t ]])
)

[[vεt ]]. (4.44)

A descent direction ∂+j(ε, 0) < 0 in (4.42) is provided by the choice

n>t Λ = −k7(n>t D1) at ΓD
t , τ>t Λ = −k1(τ>t [[D1]]) at ∂ΓD

t ∩ Σt,

n>t Λ = −k2(κtD2 + n>t ∇D2) at ΓN
t , τ>t Λ = −k8[[D2]] at ∂ΓN

t ∩ Σt,

ν>t Λ = −k3Dε3 and τ>t Λ = −k4Dε4 at Σt, τ>t Λ = −k5[[Dε5]] at ∂Σt,

n>t Λ = −k6(κtD6 + n>t ∇D6) at ΓO
t , τ>t Λ = −k9D6 at ∂ΓO

t , (4.45)

with ki ≥ 0, i = 1, . . . , 9, and not all simultaneously equal to zero.

The proof of Theorem 4.4 is based on integration by parts and is presented in Appendix F. The expression
(4.42) is important for gradient-based iterative techniques.

5. Numerical simulation

We set a piecewise-linear breaking line Σ∗ ⊂ DΣ to be identified:

DΣ = {x1 ∈ (0, 1), x2 = ψ(x1) ∈ (0, 0.5)},Σ∗ := {x1 ∈ (0, 1), ψ∗(x1) = max(0.2, (x1 − 1)/3 + 0.4)}, (5.1)

which breaks the rectangle Ω = (0, 1) × (0, 0.5) into two parts Ω±∗ . Let the boundary ∂Ω be split into fixed
Dirichlet and Neumann parts:

ΓD
∗ = {x1 ∈ {0, 1}, x2 ∈ (0, 0.5)},ΓN

∗ = {x1 ∈ (0, 1), x2 ∈ {0, 0.5}}, (5.2)

see the illustration of the geometry in Figure 2. We choose for the Young’s modulus EY = 73000 (mPa) and
Poisson’s ratio νP = 0.34, the Lamé parameter µL = EY/(2(1 + νP)) ≈ 27239, and the linear traction force

g(x) = µL(1− 1.68x1)(4x2 − 1). (5.3)

Then there exists a solution z ∈ H1(Ω±∗ ) such that z = 0 on ΓD
∗ , [[z]]− = 0 on Σ∗, which satisfies the variational

equation (4.18) according to Lemma 4.1. Let the observation boundary be ΓO
∗ = ΓN

∗ .
Now we discretize the problem. For Σt ⊂ DΣ breaking Ω into Ω±t , let Ω±t,h be a triangulation of mesh size

h > 0 of Ω±t , which is compatible at the interface Σt,h := Σt ∩ ∂Ω1
t,h = Σt ∩ ∂Ω2

t,h. At Σt,h the cohesion function

α(0, ζ) is set as in (4.8) with Kc = 10−3 (mPa·m), κ = 10−2 (m). For small δ and h we rely on the discretization
αh(0, ζ) such that

αh =
Kc

κ
min(κ, |ζ|), α′h =

Kc

κ
ind{|ζ| < κ}. (5.4)

After piecewise-linear FE discretization of the problem on a grid of mesh size h = 10−2 according to (5.1)–
(5.4), we solve the variational equation (4.18) by a primal-dual active set (PDAS) iterative algorithm developed
in [12]. The numerical solution zh obtained after 3 iterations with zero residual is plotted in Figure 4 (b). In
plot (a) we depict the computational grid Ω±t,h, the traction force g at ΓN

∗ , the cohesion (where [[zh]] < κ) and
contact (where [[zh]] = 0) parts of Σ∗, which are marked in the triangles adjacent to the interface.
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Figure 4. Reference configuration (a); true solution zh (b).

According to the proof given in Lemma 4.1 we approximate the variational inequality (4.11) by the penalty
equation (4.15). For small ε and h, the penalty operator from (3.6) is discretized as

βε,h(0, ζ) =
1

ε
min(0, ζ), β′ε,h(0, ζ) =

1

ε
ind{ζ < 0}. (5.5)

Let Vt,h(Ωt,h) be a conforming piecewise-linear FE-space such that

Vt,h(Ωt,h) ⊂ V (Ωt,h) = {u ∈ H1(Ω±t,h)| u = 0 on ΓD
∗ }.

The discrete penalty equation (4.15) determines uεt,h ∈ Vt,h(Ωt,h) such that∫
Ω±

t,h

(∇uεt,h)>∇vh dx +

∫
Σt,h

[α′h + βε,h](0, [[uεt,h]])[[vh]] dSx =

∫
ΓN
∗

gvh dSx, (5.6)

and ignoring the singularity of α′h the discrete adjoint equation (4.39) reads: find vεt,h ∈ Vt,h(Ωt,h) such that∫
Ω±

t,h

(∇uh)>∇vεt,h dx +

∫
Σt,h

β′ε,h(0, [[uεt,h]])[[uh]] dSx =

∫
ΓN
∗

(uεt,h − zh)uh dSx for all uh, vh ∈ Vt,h(Ωt,h). (5.7)

After solving problems (5.6) and (5.7), according to Theorem 4.4 we calculate Dε3 at the moving boundary
Σt,h, and D1 at Σt,h ∩ ΓD

∗ , where ρ = 1/µL is set. By the virtue of (5.4), (5.5) here qε,h = 0 and

pε,h = [α′h + βε,h](0, [[uεt,h]]) [[vεt,h]],

∇pε,h = [[∇vεt,h]][α′h+βε,h](0, [[uεt,h]])+ [[∇uεt,h]]β′ε,h(0, [[uεt,h]])[[vεt,h]].

(5.8)

Since ΓD
∗ and ΓN

∗ = ΓO
∗ are fixed in the identification problem, the normal velocity n>t Λ = 0 at ∂Ω when

k2 = k6 = k7 = 0 in (4.45). The tangential velocity is set τ>t Λ = 0 at Σt by means of k4 = k5 = k8 = k9 = 0.
Therefore, we get a descent direction when Λ1,H = 0 and

Λ2,H =
k3√
h

(2x1 − 1)[[D1,h]]2 at Σt,h ∩ ΓD
∗ ,Λ2,H = −k3Dε3,h at Σt,h \ ΓD

∗ . (5.9)
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Figure 5. Iterations Σ(n) (a); misfit ratio versus n (b).

The scaling k3 = 0.1h/‖Λ2,H‖C(Σt,h) is chosen, and the weight k1 = k3/
√
h at ΓD

∗ was found empirically in

[6]. We point out that the discrete velocity ΛH at the interface Σt is defined on a coarser grid of size H > 0,
compared to the mesh size h of the problem.

We summarize the optimization algorithm for breaking line identification.

Algorithm 5.1.

(0) Initialize constant grid function ψ
(0)
H = 0.25 at points sH ∈ [0, 1] and the linear interpolate Σ(0) = {x1 ∈

(0, 1), x2 = ψ
(0)
H (x1)}; set n = 0.

(1) Set the interface Σt,h = Σ(n) and triangulate Ω±t,h; find solutions uεt,h, vεt,h to the discrete equations (5.6),
(5.7).

(2) Calculate a velocity Λ2,H from (5.8) and (5.9); update the values

ψ
(n+1)
H = ψ

(n)
H + Λ2,H at the points sH ∈ [0, 1]; (5.10)

from linear interpolant ψ
(n+1)
H determine the piecewise-linear segment Σ(n+1) = {x1 ∈ (0, 1), x2 =

ψ
(n+1)
H (x1)}.

(3) Until a stopping rule is reached, set n = n+ 1 and go to Step (1).

For 11 equidistant points sH with H = 0.1, the numerical result of Algorithm 5.1 after #n = 200 iterations
(the stopping rule) is depicted in Figure 5. The penalty parameter ε = 10−10 was taken. In plot (a) the selected
iterations n = 0, 10, 20, 40, 100, 200 of Σ(n) according to (5.10) are drawn in Ω in comparison with the true
interface Σ∗ (the thick solid line). In plot (b) of Figure 5 we plot the ratio J (n)/J (0) of the objective optimal
values recalled here to be

J (n)(uεt,h; Ω±t,h) =
1

2

∫
ΓO
∗

(uεt,h − zh)2 dSx + ρ|Σ(n)|, (5.11)

and the shape ratio ‖ψ(n) − ψ∗‖C([0,1])/‖ψ(0) − ψ∗‖C([0,1]). The computed misfit ratios attain as minimum 12%
and 88%, respectively.

From the simulation we conclude the following feature. In Figure 5 (a) it can be observed that the left part
of curve Σ∗, where no contact occurs (see Fig. 4 (a)), is recovered well by the identification Algorithm 5.1,
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Figure 6. Reference configuration (a); true solution zh (b).
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Figure 7. Iterations Σ(n) (a); misfit ratio versus n (b).

whereas the right part of interface, where contact occurs, the initialization Σ(0) is almost unchanged during the
iterations.

To remedy the hidden part of Σ∗, we apply to the same configuration a traction force which is more stretching
than that in (5.3):

g(x) = µL(1− 1.55x1)(4x2 − 1). (5.12)

As the result, the whole Σ∗ is open without contact, however, the cohesion occurs at the interface as shown in
Figure 6.

In this case, the result of Algorithm 5.1 for n ∈ {0, . . . , 400} is depicted in Figure 7. The objective ratio
attains the minimum 0, 4%, and the shape error ratio 25%. We observe in Figure 7 (a) that the whole curve Σ∗
is recovered well compared to the previous case of contacting faces.

On the basis of our numerical simulation, we conclude that the breaking line identification algorithm is
consistent with the setup of destructive physical analysis (DPA).
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Appendix A. Proof of Lemma 2.3

Let us define the quadratic functional E? : I × V 2 7→ R by

E?(s, u0, v) :=
1

2
〈(E ′)?(s, u0)v, v〉 for v ∈ V . (A.1)

It is weakly lower semi-continuous and coercive due to (E?3), Gateaux-differentiable by (E?2), and (E?)′(s, u0) =
(E ′)?(s, u0). Adding to E? in (A.1) the linear term 〈E ′(s, 0), v〉, the above properties provide an argument us ∈ V
of the minimum:

min
v∈V

{
E?(s, u0, v) + 〈E ′(s, 0), v〉

}
, (A.2)

with an optimality condition in the form of the variational equation (2.12). Similarly, using (J1), there exists a
minimizer vs ∈ V of the problem:

min
u∈V

{
E?(s, u0, u)− 〈J ′(s,Mus),Mu〉X?,X

}
, (A.3)

resulting in the adjoint equation (2.13). The uniqueness in (2.12) and (2.13) under the coercivity assumption
(E?3) if f? = 0 follows in a standard way.

Indeed, inserting the explicit expression (2.9) of L into (2.10), we have the first inequality

J (s,Mus)− 〈(E ′)?(s, u0)v, us〉 − 〈E ′(s, 0), v〉 ≤ J (s,Mus)− 〈(E ′)?(s, u0)vs, us〉 − 〈E ′(s, 0), vs〉.

After cancelling J (s,Mus) and testing with v = vs ± w we obtain the variational equation (2.12). Conversely,
(2.12) satisfies the first inequality of (2.10) as equality.

On the other side, the second inequality of (2.10) after cancelling the term −〈E ′(s, 0), vs〉 reads

J (s,Mus)− 〈(E ′)?(s, u0)vs, us〉 ≤ J (s,Mu)− 〈(E ′)?(s, u0)vs, u〉.

Substituting here u = us ± rw, dividing the results with r and passing r → 0, by the virtue of differentiability
of J assumed in (J1), this leads to the variational equation (2.13). Conversely, by the convexity assumption
(J2) the necessary optimality condition (2.13) is sufficient for the minimum in the second inequality of (2.10)
provided by us.

This proves that (us, vs) ∈ V 2 is a saddle point to problem (2.10). The definition (2.11) of solution sets Ks,Ks

implies that (us, vs) ∈ Ks ×Ks and satisfies the equality (2.14). This completes the proof of Lemma 2.3.

Appendix B. Proof of Lemma 2.4

We test the primal equation (2.12) with v = us, apply the Cauchy–Schwarz inequality, the coercivity (E?3)
with u = us, and the boundedness assumption (E4) to derive the upper bound

a?‖us‖2V ≤ 〈(E ′)?(s, u0)us + f?, us〉 = 〈f? − E ′(s, 0), us〉 ≤ (a+ ‖f?‖V ?)‖us‖V . (B.1)

Testing the adjoint equation (2.13) with u = vs, from (E?3) with u = vs and (J3) it follows similarly that

a?‖vs‖2V ≤ 〈(E ′)?(s, u0)vs + f?, vs〉 = 〈J ′(s,Mus),Mvs〉X?,X

+ 〈f?, vs〉 ≤ aJ ‖us‖V ‖Mvs‖X + ‖f?‖V ?‖vs‖V . (B.2)
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We combine (B.1) and (B.2) together in the uniform in s ∈ I estimate

‖us‖V + ‖vs‖V ≤
1

a?
(a+ ‖f?‖V ?)

(
1 +

aJ
a?
‖M‖

)
+

1

a?
‖f?‖V ? . (B.3)

Then there exist sk → 0+, a subsequence of saddle points (usk , vsk) ∈ Ksk ×Ksk and an accumulation point
(u0, v0) ∈ V 2 such that

(usk , vsk) ⇀ (u0, v0) weakly in V 2 as k →∞. (B.4)

For u = usk − u0 in the coercivity inequality (E?3) we have

a?‖usk − u0‖2V ≤ 〈(E ′)?(sk, u0)(usk − u0) + f?, usk − u0〉
= 〈f? − E ′(sk, 0)− (E ′)?(sk, u0)u0, usk − u0〉 = 〈f? − E ′(sk, u0), usk − u0〉, (B.5)

where (2.12) was tested with v = usk − u0, and (2.6) and property (E?2) were used. Inserting u = vsk − v0 into
(E?3) and using (2.13) with u = vsk − v0 gives similarly

a?‖vsk − v0‖2V ≤ 〈J ′(sk,Musk),M(vsk − v0)〉X?,X + 〈f? − (E ′)?(sk, u0)v0, vsk − v0〉. (B.6)

Taking the limit as k → ∞ in (B.5) and (B.6), we get (2.15) with the help of the weak convergence in (B.4)
and the boundedness properties (E4), (J3), (E?4) of E ′, J ′, (E ′)?.

Finally, taking the limits in the primal (2.12) and adjoint (2.13) equations and using the strong convergence
(2.15) and the continuity assumptions (E5), (J4) and (E?5), this guarantees that the pair (u0, v0) solves (2.2)
(due to identity (2.6)) and (2.13) at s = 0. Therefore, (u0, v0) ∈ K0 ×K0 which ends the proof of Lemma 2.4.

Appendix C. Proof of Lemma 3.2

The modified quadratic functional E?ε : I × V 2 7→ R defined for v ∈ V by

E?ε (s, uε0, v) :=
1

2
〈(E ′)?(s, uε0)v, v〉+

1

2
〈β?ε (s,B(0)uε0)B(s)v,B(s)v〉H?,H (C.1)

is weakly lower semi-continuous and coercive due to (E?3), (B3), and (B?3). Using (E?2) and (B?2) its Gateaux
derivative is given by

〈(E?ε )′(s, uε0)u, v〉 = 〈(E ′)?(s, uε0)v, u〉+ 〈β?ε (s,B(0)uε0)B(s)u,B(s)v〉H?,H .

Consequently, the variational equation (3.13) is an optimality condition for the minimizer uεs ∈ V of the following
problem:

min
v∈V

{
E?ε (s, uε0, v) + 〈E ′(s, 0), v〉+ 〈βε(s, 0), B(s)v〉H?,H

}
, (C.2)

and the adjoint equation (3.14) provides an argument vεs ∈ V for

min
u∈V

{
E?ε (s, uε0, v)− 〈J ′(s,Muεs),Mu〉X?,X

}
. (C.3)

The uniqueness assertion is similar to Lemma 2.3 and done by coercivity.
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The left-hand side of the saddle-point formulation (3.11) is equivalent to the primal problem:

− 〈(E ′)?(s, uε0)v, uεs〉 − 〈β?ε (s,B(0)uε0)B(s)v,B(s)uεs〉H?,H

− 〈E ′(s, 0), v〉 − 〈βε(s, 0), B(s)v〉H?,H ≤ −〈(E ′)?(s, uε0)vεs , u
ε
s〉 − 〈E ′(s, 0), vεs〉

− 〈β?ε (s,B(0)uε0)B(s)vεs , B(s)uεs〉H?,H − 〈βε(s, 0), B(s)vεs〉H?,H ,

which implies equation (3.13). The right-hand side

J (s,Muεs)− 〈(E ′)?(s, uε0)vεs , u
ε
s〉 − 〈β?ε (s,B(0)uε0)B(s)vεs , B(s)uεs〉H?,H

≤ J (s,Mu)− 〈(E ′)?(s, uε0)vεs , u〉 − 〈β?ε (s,B(0)uε0)B(s)vεs , B(s)u〉H?,H

is equivalent to the adjoint equation (3.14) due to the convexity (J2). Then (uεs, v
ε
s) ∈ Ks

ε ×Kε
s satisfies the

saddle-point condition (3.15).
The proof of (3.15) is analogous to that of Lemma 2.4. By the coercivity (E?3), (B?3) and boundedness

assumptions (E4), (B3), (B5), (B?4) we derive from equation (3.13)

b?‖uεs‖2V ≤ a?‖uεs‖2V +
b? − a?
b2

‖B(s)uεs‖2H ≤ 〈(E ′)?(s, uε0)uεs + f?, uεs〉

+ 〈β?ε (s,B(0)uε0)B(s)uεs + f?b , B(s)uεs〉H?,H = 〈f? − E ′(s, 0), uεs〉
+ 〈f?b − βε(s, 0), B(s)uεs〉H?,H ≤

(
‖f?‖V ? + a+ b(‖f?b ‖H? + bε)

)
‖uεs‖V , (C.4)

and from the adjoint equation (3.14) using (J3) we get the upper bound

b?‖vεs‖2V ≤ 〈J ′(s,Muεs),Mvεs〉X?,X〈f?, vεs〉+ 〈f?b , B(s)vεs〉H?,H

≤
(
aJ ‖M‖‖uεs‖V + ‖f?‖V ? + b‖f?b ‖H?

)
‖vεs‖V . (C.5)

By the boundedness of (uεs, v
ε
s), there exists a subsequence (uεsk , v

ε
sk

) ∈ Ksk
ε ×Kε

sk
and an accumulation point

(uε0, v
ε
0) ∈ V 2 such that

(uεsk , v
ε
sk

) ⇀ (uε0, v
ε
0) weakly in V 2 as sk → 0+. (C.6)

We test equation (3.13) with v = uεsk − uε0 and in analogy to (C.4) we find using identity (2.6):

b?‖uεsk − uε0‖2V ≤ 〈(E ′)?(sk, uε0)(uεsk − uε0) + f?, uεsk − uε0〉
+ 〈β?ε (sk, B(0)uε0)B(sk)(uεsk − uε0) + f?b , B(sk)(uεsk − uε0)〉H?,H

= 〈f? − E ′(sk, uε0), uεsk − uε0〉
+ 〈f?b − βε(sk, 0)− β?ε (sk, B(0)uε0)B(sk)uε0, B(sk)(uεsk − uε0)〉H?,H . (C.7)

The adjoint equation (3.14) for u = vεsk − vε0 gives

b?‖vεsk − vε0‖2V ≤ 〈J ′(sk,Muεsk),M(vεsk − vε0)〉X?,X

+ 〈f? − (E ′)?(sk, uε0)vε0, v
ε
sk
− vε0〉+ 〈f?b − β?ε (sk, B(0)uε0)B(sk)vε0, B(sk)(vεsk − vε0)〉H?,H . (C.8)

Passing k → ∞ in (C.7) and (C.8) with the help of weak convergence in (C.6) and recalling boundedness of
B(s) (3.16) follows. The limit as s → 0+ in equations (C.7) and (C.8) due to strong convergence (3.16) and
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continuity properties (E5), (J4), (E?5), (B4), (B6) and (B?5) agrees with the solution (uε0, v
ε
0) ∈ K0

ε ×Kε
0 to

(3.7) (due to identity (3.9)) and to (3.14) at s = 0. This proves Lemma 3.2.

Appendix D. Proof of Theorem 3.4

Passing sk → 0+ due to the strong convergence (3.16) we refine the estimates (C.4) as follows. Using the
lower bound in (3.5) and (E2), from (3.7) tested with v = uε0 we get:

a‖uε0‖2V +
1

ε
‖[B(0)uε0]−‖2H ≤ 〈βε(0, B(0)uε0), B(0)uε0〉H?,H

+ 〈E ′(0, uε0), uε0〉+ 〈f, uε0〉+ εβ ≤ ‖f‖V ?‖uε0‖V + εβ, (D.1)

which is uniform in ε ∈ (0, ε0). From (C.5) as sk → 0+ it follows that

b?‖vε0‖V ≤ aJ ‖M‖‖uε0‖V + ‖f?‖V ? + b‖f?b ‖H? . (D.2)

Hence, there exists a subsequence εk → 0 and a weak accumulation point (u0, v0) ∈ V 2 such that [B(0)u0]− = 0
since ‖[B(0)uεk0 ]−‖H → 0, and

(uεk0 , v
εk
0 ) ⇀ (u0, v0) weakly in V 2 as k →∞. (D.3)

Taking the limit in (3.7) due to the convergence (D.3) and (E3), according to the surjectivity in (B8) we
determine λ0 ∈ H̃? such that

lim
εk→0

〈βεk(0, B(0)uεk0 ), B(0)v〉H?,H = − lim
εk→0

〈E ′(0, uεk0 ), v〉

= −〈E ′(0, u0), v〉 =: 〈λ0, B(0)v〉H̃?,H̃ for v ∈ V . (D.4)

This implies that u0 ∈ V is a solution to the variational equation (3.25) and establishes the weak convergence

βεk(0, B(0)uεk0 ) ⇀ λ0 weakly in H̃? as k →∞. (D.5)

The space H̃ has the order relation ofH. Consequently λ0 ≤ 0 because of (3.5). In particular, 〈λ0, B(0)u0〉H̃?,H̃ ≤
0 for B(0)u0 ≥ 0. On the other hand, by virtue of assumption (B7) and (D.5) the strong convergence holds:

B(0)uεk0 → B(0)u0 strongly in H as k →∞. (D.6)

Using (3.5) and taking εk → 0 in 〈βεk(0, B(0)uεk0 ), B(0)uεk0 〉H?,H ≥ −εkβ provides the opposite inequality
〈λ0, B(0)u0〉H̃?,H̃ ≥ 0, which together ensures the complementarity relations (3.23). The variational equation
(3.25) together with (3.23) is equivalent to the variational inequality (3.4).

By the identity (2.6) at s = 0 equation (3.25) is equivalent to

〈(E ′)?(0, u0)v, u0〉+ 〈E ′(0, 0), v〉+ 〈λ0, B(0)v〉H̃?,H̃ = 0 for all v ∈ V ,

which yields the first order necessary and sufficient optimality condition for the unconstrained, primal limit
problem (3.21).

Applying (D.3) and assumptions (J5), (E?6), (B8), the limit of the adjoint equation (3.20) determines µ0 ∈ H̃?

such that

lim
εk→0

〈β?εk(0, B(0)uεk0 )B(0)vεk0 , B(0)u〉H?,H
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= lim
εk→0

〈J ′(0,Muεk0 ),Mu〉X?,X − lim
εk→0

〈(E ′)?(0, uεk0 )vεk0 , u〉

= 〈J ′(0,Mu0),Mu〉X?,X − 〈(E ′)?(0, u0)v0, u〉 =: 〈µ0, B(0)u〉H̃?,H̃ for u ∈ V . (D.7)

From (D.7) we conclude the existence of a solution v0 ∈ V to the limit adjoint equation (3.26) and the ?-weak
convergence (3.27). Applying the convergences (D.5) and (3.27) to the identity (3.9) at s = 0, in the limit the
compatibility condition (3.24) follows. Equation (3.26) is the necessary and sufficient optimality condition for
the adjoint limit problem (3.22). The proof of Theorem 3.4 is complete.

Appendix E. Proof of Theorem 4.3

Using inequalities ‖[[u]]‖2L2(Σt)
≤ 2‖u‖2

L2(∂Ω±
t )

and (4.13), (4.14) we estimate from below 〈(E ′)?(0, uεt )u, u〉 in

(4.30) as

µL

∫
Ω±

t

|∇u|2 dx+

∫
Σt

∫ 1

0

α′′(0, [[ruεt ]])[[u]]2 drdSx ≥ µLKP‖u‖2H1(Ω±
t )
−Kα2‖[[u]]‖2L2(Σt)

≥ a?‖u‖2
H1(Ω±

t )
. (E.1)

Then (4.36) provides the coercivity property (E?3) with uεt replacing u0.
As s → 0, by the mean value theorem there exists r(s) ∈ [0, 1] such that from (4.24), (4.25) it follows that

φs = x+ sΛ|t+rs and the expansions (see e.g. [37], Chap. 2):

z ◦ φs = z + sΛ|>t+rs∇z, ∇φ−1
s ◦ φs = I − s∇Λ|t+rs, Js = 1 + sdivΛ|t+rs, ωs = 1 + sdivτtΛ|t+rs (E.2)

for u ∈ V (Ωt), and divτtΛ defined in (4.38). Inserting (E.2) into the perturbed Lagrangian (4.35) we derive its
expansion in the first argument:

Lε(s, uεt , u, v; Ωt) = Lε(0, uεt , u, v; Ωt) + s
∂Lε
∂s

(rs, uεt , u, v; Ωt) (E.3)

with the partial derivative ∂Lε/∂s : I × V (Ωt)
3 7→ R in (E.3), which is a continuous function and is given by

∂Lε
∂s

(s, uεt , u, v) :=

∫
ΓO
t

(1

2
divτtΛ|t+s(u− z)2 − Λ|>t+s∇z(u− z)

)
dSx

− µL

∫
Ω±

t

(∇u)>(divΛ|t+s −∇Λ|t+s −∇Λ|>t+s)∇v dx +

∫
ΓN
t

(divτtΛ|t+sg + Λ|>t+s∇g)v dSx

+

∫
Σt

divτtΛ|t+s
{
ρ−

(∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]])[[u]] dr + [α′ + βε](0, 0)

)
[[v]]
}

dSx. (E.4)

Here we recall the identity when u = uεt :∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]])[[u

ε
t ]] dr + [α′ + βε](0, 0) = [α′ + βε](0, [[u

ε
t ]]). (E.5)

With the help of (E.1), (E.3) we check properties (E1)–(E5), (J1)–(J4), (E?1)–(E?5), (B1)–(B6), (B?1)–
(B?5), (L1)–(L3) with uεt replacing u0 in Theorem 3.3. This proves the assertion of Theorem 4.3.
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Appendix F. Proof of Theorem 4.4

We integrate by parts the domain integral from (4.37):

I(Ω±t ) := −µL

∫
Ω±

t

(∇uεt )>(divΛ−∇Λ−∇Λ>)∇vεt dx

= µL

∫
Ω±

t

(
(Λ>∇uεt )∆vεt + (Λ>∇vεt )∆uεt

)
dx

− µL

∫
∂Ω±

t

Λ>
(
n±t (∇uεt )>∇vεt −∇uεt ((n±t )>∇vεt −∇vεt ((n±t )>∇uεt

)
dSx

and since ∆uεt = ∆vεt = 0 in Ω±t :

I(Ω±t ) = µL

∫
Σt

Λ>
(
νt[[(∇uεt )>∇vεt ]]− [[∇uεt (ν>∇vεt )]]− [[∇vεt (ν>∇uεt )]]

)
dSx

+ µL

∫
ΓD
t ∪ΓN

t

Λ>
(
∇uεt (n>t ∇vεt ) +∇vεt (n>t ∇uεt )

)
dSx.

Using the boundary conditions for (uεt , v
ε
t ) from (4.16), (4.40), it follows that τ>t ∇uεt = τ>t ∇vεt = 0 at ΓD

t \ Σt.
Decomposing D1 = (n>t D1)nt + (τ>t D1)τt in (4.43) gives

I(Ω±t ) =

∫
Σt

Λ>iΣt dSx +

∫
ΓD
t

(n>t Λ)(n>t D1) dSx + (τ>t Λ)(τ>t [[D1]])∂ΓD
t ∩Σt

+

∫
ΓN
t

(Λ>∇vεt )g dSx +

∫
ΓO
t

(Λ>∇uεt )(uεt − z) dSx, (F.1)

where the integrand along Σt in (F.1) is expressed as

iΣt
:= νtµL[[(∇uεt )>∇vεt ]]− [[∇vεt ]] [α′ + βε](0, [[u

ε
t ]])

− [[∇uεt ]]
∫ 1

0

[α′′ + β′ε](0, [[ru
ε
t ]])[[v

ε
t ]] dr = νtµL[[(∇uεt )>∇vεt ]]−∇pε − qε, (F.2)

with the notation (4.44) for qε and pε. Here the gradient is given by

∇pε = [[∇vεt ]][α′ + βε](0, [[u
ε
t ]]) + [[∇uεt ]][α′′ + β′ε](0, [[u

ε
t ]])[[v

ε
t ]].

By the virtue of (4.45) and (F.2) and exploiting the calculus ∇(ξη) = ∇ξ>η +∇η>ξ we rearrange the terms in
(4.37):

∂+j(ε, 0) =
1

2

∫
ΓO
t

(
divτtΛ (uεt − z)2 + Λ>∇((uεt − z)2)

)
dSx

+

∫
Σt

(
divτtΛ (ρ− pε) + Λ>

(
νtµL[[(∇uεt )>∇vεt ]]−∇pε − qε

))
dSx

+

∫
ΓN
t

(
divτtΛ(gvεt ) + Λ>∇(gvεt )

)
dSx +

∫
ΓD
t

(n>t Λ)(n>t D1) dSx + (τ>t Λ)(τ>t [[D1]])∂ΓD
t ∩Σt

. (F.3)
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The integration along a boundary Γt ⊂ ∂Ω±t is given by the formula (see e.g. [37], (2.125)) for smooth
p ∈ H2(Ω±t ): ∫

Γt

(divτtΛ p+ Λ>∇p) dSx =

∫
Γt

(n>t Λ)(κtp+ n>t ∇p) dSx + (τ>t Λ)p|∂Γt
, (F.4)

where the curvature κt = divτtnt, the normal nt and tangential τt vectors at ∂Γt are positively oriented. Applying
(F.4) to (F.3) and decomposing the velocity (4.41), we conclude the Hadamard representation (4.42)–(4.44).

The substitution of (4.45) into (4.42) implies that ∂+j(ε, 0) < 0.
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[38] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. AMS, Providence, RI

(2010).
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