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ABSTRACT
A class of nonlinear variational problems describing incompressible
fluids and solids by stationary Stokes equations given in a planar
domain with a crack (infinitely thin flat plate in fluids) is considered.
Basedon the Fourier asymptotic analysis, general analytical solutions
are obtained in polar coordinates as the power series with respect
to the distance to the crack tip. The logarithm terms and angular
functions are accounted in the asymptotic expansion using recur-
rence relations. Then boundary conditions imposed between the
opposite crack faces in the sector of angle 2π determine admissible
exponents and parameters in the power series. For the specific con-
ditions of Dirichlet, Neumann, impermeability, non-penetration and
shear crack, the principal asymptotic terms are derived, which verify
the singular behaviour. In particular, the analytical solution answers
the questions of a square-root singularity at the crack tip and the
presence of log-oscillations of variational solutions for the Stokes
problems.
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1. Introduction

The Stokes system can describe stationary flow of incompressible fluids [1] as well as
incompressible linearly elastic solids that are subject to the divergence-free condition [2].
We refer to suitable qualitative properties of solutions given in Ref. [3] and related reg-
ularity results in Ref. [4,5] for dual strategies solving the Stokes problem. Motivated by
applications to fracture mechanics, in our study we are interested in the presence of a
crack in a reference domain (see the variational theory of crack problems in the mono-
graph by Khludnev and Kovtunenko [6]). For fluids, the discontinuity may be suitable
when simplifying aeroplane wings to infinitely thin flat plates. This research has further
important extensions to nonlinear continuummechanics [7,8], shape optimization [9–11],
overdetermined [12] and inverse problems [13].
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The main question of crack problems consists in finding a singularity at the crack tip.
The generic singularity is of power typewith respect to the distance to the crack tip andmay
contain logarithmic terms, whose presence or absence is of especial importance for engi-
neers. If we consider linear elastic boundary value problems for cracked configurations,
then we have the Williams series solution [14]. The boundary value problems analyzed in
the paper have long history. Highlighting questions related to the singularity in the vicinity
of the crack we cite [15], the respective approaches use regular and singular perturba-
tions [16–18], integral Fourier and Mellin transforms [19]. Here we focus on asymptotic
series solution for incompressible continua given in a planar domain corresponding to the
sector of angle 2π .

The crack singularities for general elliptic systems in planar domains were analyzed
in Ref. [20] in dependence of boundary conditions. Thus, the Lamé system describing
isotropic bodies with a stress-free crack (the homogeneous Neumann boundary condi-
tion) obeys the classic square-root singularity without logarithms. It is worth noting that
Stokes equations correspond to the limit case of the Lamé equations when the Poisson
ratio ν → 0.5 (hence the Lamé parameter λ → ∞). Setting ν = 0.5 in asymptotic formu-
las was suggested in Ref. [21] to get the displacement appropriate for the special case of an
incompressible body.However, in the limit state of Stokes equations under non-penetration
conditions, log-oscillations may occur for high-order asymptotic terms. In Ref. [22, Chap-
ters 5 and 6], Stokes problems in conical domains were investigated with respect to its
eigenvalues and generalized eigenvalues generated by Dirichlet and Neumann conditions.

Commonly, boundary conditions are incorporated into the operator pencil for differ-
ential equations in order to determine admissible exponents and parameters in the power
series after solving this eigenvalue problem [3,4,20,22]. This approach is highly dependent
on the specific choice of conditions imposed on the boundary. In contrast, we obtain first
a general asymptotic solution for the Stokes equations using Fourier asymptotic expansion
and recurrence relations for logarithmic terms and angular functions. Then we can spec-
ify coefficients in the power series for every kind of boundary conditions imposed between
the opposite crack faces, even for nonlinear ones. For engineers, it is important to note that
we establish: if log-oscillations occur in the power series, or not. In this way, we provide
the principal asymptotic terms for the condition of Dirichlet, Neumann, impermeability,
non-penetration and shear crack presented next.

In the domain with crack �c, let unknown displacement (velocity for fluids) vector u
and scalar pressure p satisfy the homogeneous Stokes equations:

−μ�u + ∇p = 0, divu = 0, (1)

where the shearmodulusμ = E/3 andYoung’smodulusE>0. This constitutes theCauchy
stress τ in terms of the linearized strain ε and pressure p as

τ = 2με(u)− pI, ε(u) = 1
2

(
∇u + ∇u�

)
, (2)

where I is the identity transformation. At the crack �c with a normal vector n, we can
distinguish traces of the discontinuous functions u, τ , and p across the opposite crack faces
�±
c , thus the jump:

[[u]] := u|�+
c

− u|�−
c
, [[τ ]] := τ |�+

c
− τ |�−

c
, [[p]] := p|�+

c
− p|�−

c
, (3)
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and the mean:

{{u}} := 1
2

(
u|�+

c
+ u|�−

c

)
, {{τ }} := 1

2

(
τ |�+

c
+ τ |�−

c

)
, {{p}} := 1

2

(
p|�+

c
+ p|�−

c

)
.

(4)

Using (2)–(4), we set the following boundary conditions at �c for the stick (homogeneous
Dirichlet):

[[u]] = {{u}} = 0, (5)

impermeability (mixed homogeneous Dirichlet–Neumann):

[[u · n]] = {{u · n}} = 0, [[τ − (τ · n)n]] = {{τ − (τ · n)n}} = 0, (6)

stress-free crack (homogeneous Neumann):

[[τ ]] = {{τ }} = 0, (7)

non-penetration (complementarity):

[[τ − (τ · n)n]] = {{τ − (τ · n)n}} = 0, [[τ · n]] = 0, [[u · n]] ≥ 0,

τ · n ≤ 0, [[u · n]](τ · n) = 0, (8)

and shear crack (transmission with slip):

[[τ − (τ · n)n]] = {{τ − (τ · n)n}} = 0, [[τ · n]] = [[u · n]] = 0. (9)

The power series solution for the Stokes equation (1) when expressed in polar (r, θ)-
coordinates is found in the general form of sum

u(r, θ) =
∑
γ∈R

rγ
M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!
�m(γ , θ),

p(r, θ) =
∑
γ∈R

rγ−1
M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!

m(γ , θ), (10)

where the angular functions are determined by the recurrence relations for m =
1, . . . ,M(γ ):

�0 =
4∑

l=1

U0
l ψ l(γ , θ), �m =

4∑
l=1

Um
l ψ l(γ , θ)−

m∑
i=1

(−1)i

i!
∂ i�m−i

∂γ i , (11)


0 =
4∑

l=1

P0l φl(γ , θ), 
m =
4∑

l=1

Pml φl(γ , θ)−
m∑
i=1

(−1)i

i!
∂ i
m−i

∂γ i , (12)

with free coefficients Um
l , P

m
l ∈ R. The four eigenvectors ψ1, . . . ,ψ4 and φ1, . . . ,φ4

(where φ1 = φ2 = 0) of the operator pencil are found from the condition that for
every l = 1, . . . , 4 functions uγ = rγψ l and pγ = rγ−1φl solve the homogeneous Stokes
equation (1).
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Inserting ansatz (10)–(12) into the boundary conditions (5)–(9) as θ = π and θ = −π ,
for every condition we determine the admissible eigenvalues γ , the presence of general-
ized eigenvectors bymeans ofM(γ ), and coefficientsUm

1 , . . . ,U
m
4 , P

m
3 , P

m
4 form = 0, 1, . . ..

The important observation is that, if only trivial �0 = 0 and 
0 = 0 are possible in (11)
and (12), then �1 = 0 and 
1 = 0 too, thus M(γ ) = 0, and there is no logarithms.
Otherwise, if non-trivial �0,
0,�1,
1 exist, then natural number M(γ ) ≥ 1 may be
arbitrary.

The energy H1-solution u excepting possible constant u(0) restricts to γ > 0. In par-
ticular, we found the crack-tip singular of energy solutions (the principal asymptotic
terms) according to the following expansions as r → ∞ for the boundary conditions of
Dirichlet (5), mixed Dirichlet–Neumann (6), Neumann (7) and non-penetration (8):

u(r, θ)− u(0) = r1/2�0
(
1
2
, θ
)

+ O(r) (13)

using the Landau notations, whereas in the case (9) of shear crack:

u(r, θ)− u(0) = r�0(1, θ)+ O(r2). (14)

The structure of the paper is as follows. In Section 2, we reformulate in polar coordinates
the boundary value problems for the Stokes model (1), (2) under the boundary condi-
tions (5)–(9) at the crack. Introducing proper feasible sets, we prove weak solutions to
the corresponding variational Stokes problems in bounded domains with cracks. Based
on the Fourier asymptotic expansion, in Section 3, we justify rigorously the power series
solution (10)–(12) and derive explicitly the eigenvectors ψ1, . . . ,ψ4,φ3,φ4. In Section 4,
the asymptotic expansion is specified in a sector of angle 2π around the crack tip for every
boundary conditions (5)–(9) bymeans of the eigenvalues γ , eigenvectors�0,
0, and gen-
eralized eigenvectors�1,
1. This allows us to write the principal asymptotic terms in (13)
and (14) and validate singular properties of the solution. Some concluding remarks and
further perspectives are outlined in Section 5.

2. Variational Stokes problems

We begin with the geometric description of a planar sectorial domain around a crack tip.
Let � ⊂ R

2 be a star-shaped domain with respect to the origin 0. Let it have a Lipschitz
continuous boundary ∂�, which consists of mutually disjoint parts �N 
= ∅ and �D 
= ∅,
and the normal vector n outward from �. We assume that the origin 0 coincides with the
tip of a semi-infinite direct crack, whose intersection with� forms a line segment �c. The
cracked domain �c := � \ �c implies a finite part of sector of angle 2π bounded by ∂�.
We introduce the polar coordinates r>0 and θ ∈ (−π ,π) such that the upper and lower
crack faces correspond to θ = ±π , respectively, as illustrated in Figure 1.

In the sectorial domain �c, we look for unknown vector u = (ur, uθ )(r, θ) and scalar
p(r, θ) functions. They constitute the linearized strain ε(r, θ) and the Cauchy stress τ (r, θ)
defined according to (2), which in the polar coordinates are represented by symmetric
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Figure 1. Example geometry of a planar sectorial domain�c with crack �c.

tensors in R
2×2
sym as

τ =
(
τrr τrθ
τrθ τθθ

)
=
(
2μεrr(u)− p 2μεrθ (u)
2μεrθ (u) 2μεθθ (u)− p

)
, ε(u) =

(
εrr(u) εrθ (u)
εrθ (u) εθθ (u)

)
,

(15)

where the strain components are

εrr(u) = ur,r, εrθ (u) = 1
2

(
uθ ,r + 1

r
ur,θ − 1

r
uθ
)
, εθθ (u) = 1

r
uθ ,θ + 1

r
ur, (16)

using the convention for partial derivatives ( · ),r = ∂( · )/∂r and ( · ),θ = ∂( · )/∂θ .
Applying the constitutive relations (15), the Stokes equation (1) turn into the equilib-

rium equations

−divτ = 0, trε(u) = 0 in�c, (17)

where the identity for the trace trε(u) = divu was used, such that in polar coordinates

τrr,r + 1
r
τrr + 1

r
τrθ ,θ − 1

r
τθθ = 0, τrθ ,r + 2

r
τrθ + 1

r
τθθ ,θ = 0, εrr(u)+ εθθ (u) = 0.

(18)

At the outer boundary ∂�, we endow (17) with the mixed, homogeneous Dirich-
let–inhomogeneous Neumann boundary conditions

u = 0 on �D, τn = g on �N (19)

for a prescribed force g ∈ L2(�N)2, where τn stands for boundary traction.
Next we set admissible function spaces for the Stokes problems (17), (19) under bound-

ary conditions (5)–(9) at the crack �c. Taking into account the no-slip condition in (19),
we introduce the Sobolev space

V(�c) :=
{
u ∈ H1(�c)

2| u = 0 on �D
}
. (20)
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Admissible at crack functions are restricted in a feasible set K ⊂ V(�c) meeting the
Dirichlet case (5) as

K = {u ∈ V(�c)| [[u]] = {{u}} = 0 on �c} , (21)

the case of impermeability (6) as

K = {u ∈ V(�c)| [[uθ ]] = {{uθ }} = 0 on �c} , (22)

respectively in the Neumann case (7)

K = V(�c), (23)

the case of non-penetration (8) implies

K = {u ∈ V(�c)| [[uθ ]] ≤ 0 on �c} , (24)

and the shear crack from (9) reads

K = {u ∈ V(�c)| [[uθ ]] = 0 on �c} . (25)

In all cases (21)–(25), the topological set K yields a convex closed cone.
For stress tensors τ ∈ L2(�c;R2×2

sym ) such that divτ ∈ L2(�c)
2, the following Green’s

formula takes place using (18), and the notation from (3) and (4):

−
∫
�c

([
(rτrr),r + τrθ ,θ − τθθ

]
vr + [

(rτrθ ),r + τθθ ,θ + τrθ
]
vθ
)
drdθ

=
∫
�c

(τrrεrr(v)+ 2τrθ εrθ (v)+ τθθ εθθ (v)) rdrdθ

−
∫
�N

τn · v dS +
∫
�c

([[τrθ ]]{{vr}} + {{τrθ }}[[vr]] + [[τθθ ]]{{vθ }} + {{τθθ }}[[vθ ]]) r dr
(26)

for smooth functions v = (vr, vθ ) such that v = 0 on �D, and the strain operator ε(v)
defined according to (16). After integration of Equation (17) with the help of constitu-
tive relations (15), boundary conditions (19) and Green’s formula (26), we arrive at the
variational inequality: find (u, p) ∈ K × L2(�c) satisfying∫

�c

((
2μεrr(u)− p

)
εrr(v − u)+ 4μεrθ (u)εrθ (v − u)

+ (
2μεθθ (u)− p

)
εθθ (v − u)

)
rdrdθ ≥

∫
�N

g · (v − u) dS (27)

for all test functions v ∈ K. This system is completed with the weak form of incompress-
ibility as ∫

�c

(εrr(u)+ εθθ (u)) q rdrdθ = 0 (28)

for all test functions q ∈ L2(�c). Conversely, for the smooth solution (u, p) ∈ H2(�c)
2 ×

H1(�c), the boundary conditions on the stress in (5)–(9) follow from the variational
inequality (27) after applying Green’s formula (26).
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Proposition 2.1: (Well-posedness of the weak Stokes problems). Let K ⊂ V(�c) be
a generic feasible set, which is convex and closed (e.g. (21)–(25)). Then there exists a
pair (u, p) ∈ K × L2(�c), the stress and strain τ , ε ∈ L2(�c;R2×2

sym ) determined from (15)
and (16), which solve uniquely the variational relations (27) and (28).

Proof: In the proof we recall the well-known facts from the theory of mixed variational
problems for the Stokes equations (see, e.g. Ref. [5]). The weak formulation (27) and (28)
gives rise to the Lagrangian function L : V(�c)× L2(�c) �→ R (the free energy), which
is well-defined by

L(u, p) =
∫
�c

((
2μεrr(u)− p

)
εrr(u)+ 4μεrθ (u)εrθ (u)

+ (
2μεθθ (u)− p

)
εθθ (u)

)
rdrdθ −

∫
�N

g · u dS. (29)

The mapping [u �→ L(u, p)] in (29) is quadratic, convex and coercive due to Poincare
inequality provided by the Dirichlet condition in (20) such that

L(u, p) ≥ cP‖u‖2H1(�c)2

− c
(‖p‖L2(�c) + ‖g‖L2(�N)2

) ‖u‖H1(�c)2 → +∞ as ‖u‖H1(�c)2 → ∞. (30)

The operator [u �→ trε] : V(�c) �→ L2(�c) in (18) is surjective. Therefore, the inf-sup
condition (see Ref. [1]) for the linear mapping [p �→ L(u, p)] in (29) follows directly from
the definition of dual norm in L2(�c):

sup
0 
=u∈H1(�c)2

1
‖u‖H1(�c)2

∫
�c

(εrr(u)+ εθθ (u)) p rdrdθ ≥ cLBB‖p‖L2(�c), cLBB > 0.

(31)

As the consequence of Ladyzhenskaya–Babuška–Brezzi–Nečas minimax theorem, there
exists a unique saddle point (u, p) ∈ K × L2(�c) such that

L(u, q) ≤ L(u, p) ≤ L(v, p) (32)

for all test functions (v, q) ∈ K × L2(�c). After differentiation with respect to u and p, the
optimality conditions for (32) lead to the variational inequality (27) and Equation (28).
The proof is completed. �

Evidently, the assertion of Proposition 2.1 holds formuchmore general geometries than
assumed at the beginning of this section. In the subsequent sections, we use these geo-
metric assumptions for construction of a semi-analytic solution for the variational Stokes
problems locally in a neighbourhood of the crack tip.

3. Power series solution in the general form

To write the equilibrium equations in terms of u, we substitute the stress τ from (15) and
strain ε(u) from (16) into the first two equations in (18), and use the incompressibility
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εrr(u)+ εθθ (u) = 0 such that

2μ
(
εθθ ,r(u)− 1

r
εrr(u)− 1

r
εrθ ,θ (u)+ 1

r
εθθ (u)

)
+ p,r = 0,

2μ
(
εrθ ,r(u)+ 2

r
εrθ (u)− 1

r
εrr,θ (u)

)
− 1

r
p,θ = 0.

Due to the symmetry of mixed derivatives, differentiating (16) yields two compatibility
conditions

εθθ ,r(u) = 1
r
εrr(u)+ 2

r
εrθ ,θ (u)− 1

r
εθθ (u)− 1

r2
ur,θθ + 1

r2
uθ ,θ ,

1
r
εrr,θ (u) = 2εrθ ,r(u)+ 2

r
εrθ (u)− uθ ,rr.

Inserting these conditions justifies the equilibrium equations as

μ

r
η(u),θ + p,r = 0, μη(u),r − 1

r
p,θ = 0, where η(u) := uθ ,r + 1

r
uθ − 1

r
ur,θ . (33)

In its turn, the incompressibility condition in terms of u reads

ur,r + 1
r
ur + 1

r
uθ ,θ = 0. (34)

We look for the solution of Stokes Equations (33) and (34) by the Fourier series (10) with
respect to powers γ (see Ref. [22]). For every fixed γ ∈ R, we consider the asymptotic
terms

uγ (r, θ) = rγ
M∑

m=0

(ln r)M−m

(M − m)!
�m(γ , θ),

pγ (r, θ) = rγ−1
M∑

m=0

(ln r)M−m

(M − m)!

m(γ , θ) (M ≥ 0) (35)

with unknown angular vector �0, . . . ,�M and scalar 
0, . . . ,
M functions. Here, the
γ − 1-power for the pressure is due to compatibility of the terms in the stress τ entering
the constitutive equation (15). Our task needs few auxiliary lemmas.

Lemma 3.1: (Recurrence equations for angular functions). If the angular functions satisfy
the following recurrence equations:

(γ + 1)�0
r +�0

θ ,θ = 0, (γ + 1)�m
r +�m

θ ,θ +�m−1
r = 0 for m = 1, . . . ,M, (36)

μ
[
(γ + 1)�0

θ ,θ −�0
r,θθ
]+ (γ − 1)
0 = 0,

μ
[
(γ + 1)�m

θ ,θ −�m
r,θθ +�m−1

θ ,θ
]+ (γ − 1)
m +
m−1 = 0 for m = 1, . . . ,M,

(37)

μ(γ − 1)
[
(γ + 1)�0

θ −�0
r,θ
]−
0

,θ = 0,

μ
[
(γ 2 − 1)�1

θ − (γ − 1)�1
r,θ + 2γ�0

θ −�0
r,θ
]−
1

,θ = 0,
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μ
[
(γ 2 − 1)�m

θ − (γ − 1)�m
r,θ + 2γ�m−1

θ −�m−1
r,θ +�m−2

θ

]
−
m

,θ = 0 for m = 2, . . . ,M, (38)

then ansatz (35) fulfils the Stokes equations (33) and (34).

Proof: For differentiation of the power series with respect to r, we exploit the following
calculus:

uγ,r = rγ−1

(
γ

M∑
m=0

(ln r)M−m

(M − m)!
�m +

M−1∑
m=0

(ln r)M−m−1

(M − m − 1)!
�m

)

= rγ−1

(
(ln r)M

M!
γ�0 +

M∑
m=1

(ln r)M−m

(M − m)!
(
γ�m +�m−1)) , (39)

where shifting of the summation index was used. Inserting ansatz (35) into the incom-
pressibility equation (34), after the differentiation of uγ with respect to θ and r as in (39),
gathering like terms gives

uγr,r + 1
r
uγr + 1

r
uγθ ,θ = rγ−1

(
(ln r)M

M!
[
(γ + 1)�0

r +�0
θ ,θ
]

+
M∑

m=1

(ln r)M−m

(M − m)!
[
(γ + 1)�m

r +�m
θ ,θ +�m−1

r
])

(40)

and necessitates relations (36).
Akin to (40), we calculate the expression of η(uγ ) := uγθ ,r + 1

r u
γ
θ − 1

r u
γ
r,θ as

η(uγ ) = rγ−1
(
(ln r)M

M!
[
(γ + 1)�0

θ −�0
r,θ
]

+
M∑

m=1

(ln r)M−m

(M − m)!
[
(γ + 1)�m

θ −�m
r,θ +�m−1

θ

])
, (41)

and, similarly to (39), its derivative with respect to r as

η(uγ ),r = rγ−2
(
(ln r)M

M!
(γ − 1)

[
(γ + 1)�0

θ −�0
r,θ
]

+ (ln r)M−1

(M − 1)!
[
(γ 2 − 1)�1

θ − (γ − 1)�1
r,θ + 2γ�0

θ −�0
r,θ
]

+
M∑

m=2

(ln r)M−m

(M − m)!
[
(γ 2 − 1)�m

θ −(γ − 1)�m
r,θ+2γ�m−1

θ −�m−1
r,θ +�m−2

θ

])
.

(42)

Inserting into equilibrium equation (33), the series for pγ from (35) and its derivative with
respect to r as

pγ,r = rγ−2

(
(ln r)M

M!
(γ − 1)
0 +

M∑
m=1

(ln r)M−m

(M − m)!
(
(γ − 1)
m +
m−1)) ,



APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 457

the series (41) and (42) for η(uγ ), this provides respectively

μ

r
η(uγ ),θ + pγ,r = rγ−2

(
(ln r)M

M!
{
μ
[
(γ + 1)�0

θ ,θ −�0
r,θθ
]+ (γ − 1)
0}

+
M∑

m=1

(ln r)M−m

(M − m)!
{
μ
[
(γ + 1)�m

θ ,θ −�m
r,θθ +�m−1

θ ,θ
]+ (γ − 1)
m +
m−1}) ,

μη(uγ ),r − 1
r
pγ,θ = rγ−2

(
(ln r)M

M!
{
μ(γ − 1)

[
(γ + 1)�0

θ −�0
r,θ
]−
0

,θ
}

+ (ln r)M−1

(M − 1)!
{
μ
[
(γ 2 − 1)�1

θ − (γ − 1)�1
r,θ + 2γ�0

θ −�0
r,θ
]−
1

,θ
}

+
M∑

m=2

(ln r)M−m

(M − m)!
{
μ
[
(γ 2 − 1)�m

θ − (γ − 1)�m
r,θ

+ 2γ�m−1
θ −�m−1

r,θ +�m−2
θ

]−
m
,θ
})

,

which leads to (37) and (38) and completes the proof. �

With the help of differentiationwith respect to θ , we decouple the relations in Lemma3.1
as follows.

Lemma 3.2: (Decoupled equations for angular functions). The recurrence equa-
tions (36)–(38) are equivalent to the following subsequent system of equations for {
m},
{�m

r }, and {�m
θ }:


0
,θθ + (γ − 1)2
0 = 0, 
1

,θθ + (γ − 1)2
1 = −2(γ − 1)
0,


m
,θθ + (γ − 1)2
m = −2(γ − 1)
m−1 −
m−2 for m = 2, . . . ,M, (43)

μ
[
�0

r,θθ + (γ + 1)2�0
r
] = (γ − 1)
0,

μ
[
�1

r,θθ + (γ + 1)2�1
r + 2(γ + 1)�0

r
] = (γ − 1)
1 +
0,

μ
[
�m

r,θθ + (γ + 1)2�m
r + 2(γ + 1)�m−1

r

+ �m−2
r

] = (γ − 1)
m +
m−1 for m = 2, . . . ,M, (44)

(γ + 1)�0
r +�0

θ ,θ = 0, (γ + 1)�m
r +�m

θ ,θ +�m−1
r = 0 for m = 1, . . . ,M, (45)

excluding non-zero constant values of the left-hand side in Equation (38).

Proof: Indeed, after differentiation of (38) with respect to θ and using (37), it follows


m
,θθ = (γ − 1)μ

[
(γ + 1)�m

θ ,θ −�m
r,θθ
]+ μ

[
2γ�m−1

θ ,θ −�m−1
r,θθ +�m−2

θ ,θ
]

= −(γ − 1)2
m − 2(γ − 1)
m−1 −
m−2

for all m = 0, . . . ,M supposing 
−1 = 
−2 = 0, hence (43). Inserting �m
θ ,θ = −(γ +

1)�m
r −�m−1

r and �m−1
θ ,θ = −(γ + 1)�m−1

r −�m−2
r from (36) into (37) and setting
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�−1
r = �−2

r = 0 yields (44). The relations (37) and (45) coincide, constant in the left-hand
side of (38) due to the differentiation is excluded. �

Since Equations (43) and (44) imply an inhomogeneous Sturm–Liouville problem for
two eigenvalues γ + 1 and γ − 1, its solutions can be constructed as a linear span of four
eigenvectors

φ1(γ , θ) = cos(γ + 1)θ , φ2(γ , θ) = sin(γ + 1)θ ,

φ3(γ , θ) = cos(γ − 1)θ , φ4(γ , θ) = sin(γ − 1)θ (46)

in the form of (11) and (12). For further use, we remind the properties of derivatives
for (46):

φ1,θ = −(γ + 1)φ2, φ2,θ = (γ + 1)φ1, φ3,θ = −(γ − 1)φ4, φ4,θ = (γ − 1)φ3,
(47)

φ1,γ = −θφ2, φ2,γ = θφ1, φ3,γ = −θφ4, φ4,γ = θφ3, (48)

formulas of the Sturm–Liouville operator applied to these functions:

φl,θθ + (γ + 1)2φl = 0 for l = 1, 2, φl,θθ + (γ − 1)2φl = 0 for l = 3, 4, (49)

and after differentiation with respect to γ :

φl,γ θθ + (γ + 1)2φl,γ = −2(γ + 1)φl for l = 1, 2,

φl,γ θθ + (γ − 1)2φl,γ = −2(γ − 1)φl for l = 3, 4. (50)

Lemma 3.3 (Recurrence formula of angular functions): The angular functions solv-
ing (43)–(45) for all m = 0, . . . ,M are determined by the recurrence sequence


0 =
4∑

l=3

P0l φl, 
m =
4∑

l=3

Pml φl −
m∑
i=1

(−1)i

i!
∂ i
m−i

∂γ i , (51)

�0
r =

4∑
l=1

U0
l φl, �m

r =
4∑

l=1

Um
l φl −

m∑
i=1

(−1)i

i!
∂ i�m−i

r
∂γ i , (52)

�0
θ =

4∑
l=1

Ũ0
l φl, �m

θ =
4∑

l=1

Ũm
l φl −

m∑
i=1

(−1)i

i!
∂ i�m−i

θ

∂γ i , (53)

with arbitrary 10 coefficients Um
1 , . . . ,U

m
4 , Ũ

m
1 , . . . , Ũ

m
4 , P

m
3 , P

m
4 ∈ R satisfying the six

relations

4μγUm
l = (γ − 1)Pml for l = 3, 4, (54)

Ũm
1 = −Um

2 , Ũm
2 = Um

1 , (γ − 1)Ũm
3 = −(γ + 1)Um

4 ,

(γ − 1)Ũm
4 = (γ + 1)Um

3 . (55)
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The proof of Lemma 3.3 is leaded by induction over indexes i ∈ {0, . . . ,m} and given in
Appendix A.

Based on auxiliary Lemmas 3.1–3.3, we formulate the main result of this section.

Theorem 3.1: (Power series solution to Stokes equations). The power series solution for the
Stokes equations in polar coordinates (18) has the general form of the sum over powers of r:

u(r, θ) =
∑
γ∈R

uγ , uγ (r, θ) = rγ
M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!
�m(γ , θ),

p(r, θ) =
∑

γ∈R\{0}
pγ , pγ (r, θ) = rγ−1

M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!

m(γ , θ), (56)

where the angular functions are determined as m = 0, and for m = 1, . . . ,M(γ ) by the
recurrence relations:

�0 =
4∑

l=1

U0
l ψ l(γ , θ), �m =

4∑
l=1

Um
l ψ l(γ , θ)−

m∑
i=1

(−1)i

i!
∂ i�m−i

∂γ i , (57)


0 =
4∑

l=3

P0l φl(γ , θ), 
m =
4∑

l=3

Pml φl(γ , θ)−
m∑
i=1

(−1)i

i!
∂ i
m−i

∂γ i . (58)

If the eigenvalues γ 
= 1, the coefficients Um
1 ,U

m
2 are free, and Um

3 ,U
m
4 , P

m
3 , P

m
4 ∈ R satisfy

two relations

4μγUm
l = (γ − 1)Pml for l = 3, 4, (59)

the eigenvectors ψ1, . . . ,ψ4 are given according to φ1, . . . ,φ4 in (46) by

ψ1 =
(
φ1

−φ2

)
, ψ2 =

(
φ2

φ1

)
, ψ3 =

⎛⎝ φ3

−γ + 1
γ − 1

φ4

⎞⎠ , ψ4 =
⎛⎝ φ4

γ + 1
γ − 1

φ3

⎞⎠ . (60)

If γ = 1, the coefficients Um
3 = Um

4 = 0 and Um
1 ,U

m
2 are free, such that all �m in (57)

depend only on the eigenvectors ψ1 and ψ2 from (60).

Proof: Indeed, setting the ansatz in the form of power series (56), formulas (57)–(60)
follow straightforwardly from the relations (51)–(55), after solving Equation (55) with
respect to Ũm

1 , . . . , Ũ
m
4 by division over γ − 1 
= 0. If γ = 1, we get Um

3 = Um
4 = 0, and

coefficients Ũm
3 , Ũ

m
4 in (55) can be arbitrary. Since φ3 = 1 and φ4 = 0 as γ = 1, the cor-

responding eigenvector components �m
r = Um

4 φ4 = 0 and �m
θ = Ũm

4 φ4 = 0 are trivial,
whereas constant �m

r = Um
3 φ3 = 0 and �m

θ = Ũm
3 φ3 = Ũm

3 are excluded in Lemma 3.2
since do not satisfy Equations (37) and (38). If γ = 0, then the pressure p0 ≡ 0 due to (59)
is skipped from the series for p in (56). The proof is completed. �

It can be observed that if M(γ ) = 0 for fixed γ , then no logarithm terms occur in the
expansion (56), and the system (57)–(59) for angular functions consists of�0 and
0 only.
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Otherwise, ifM(γ ) ≥ 1, we have the log-oscillations in (56). In this respect, the important
criterion of log-oscillations is given next.

Corollary 3.1: (Criterion of log-oscillations). For fixed γ ∈ R in the system (57) and (58)
as m = 0, 1:

�0 =
4∑

l=1

U0
l ψ l(γ , θ), 
0 =

4∑
l=3

P0l φl(γ , θ),

�1 =
4∑

l=1

U1
l ψ l +�0

,γ , 
1 =
4∑

l=3

P1l φl +
0
,γ , (61)

if only trivial functions �0 = 0 and 
0 = 0 solve the inhomogeneous system from (43) to
(45) as M = 1:


0
,θθ + (γ − 1)2
0 = 0, μ

[
�0

r,θθ + (γ + 1)2�0
r
]− (γ − 1)
0 = 0,

(γ + 1)�0
r +�0

θ ,θ = 0,


1
,θθ + (γ − 1)2
1 = −2(γ − 1)
0,

μ
[
�1

r,θθ + (γ + 1)2�1
r
]− (γ − 1)
1 = −2μ(γ + 1)�0

r +
0,

(γ + 1)�1
r +�1

θ ,θ = −�0
r , (62)

then �1 = 0 and 
1 = 0 too, thus continuing m>1 we conclude that M(γ ) = 0. Other-
wise, if non-trivial solutions �0,
0,�1,
1 to (61) and (62) exist, then M(γ ) ≥ 1 may be
arbitrary natural number.

In the following section, we apply the general solution obtained in Theorem 3.1 to the
variational Stokes problems under linear and nonlinear boundary conditions at the crack
from (21) to (25).

4. Specific boundary conditions and singularity at crack

We begin this section with deriving stresses from Theorem 3.1.

Corollary 4.1: (Power series for stresses). The stress components τrθ , τθθ = −τrr in (15)
are represented by the following series:

τrθ (r, θ) =
∑
γ∈R

rγ−1
M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!
Smrθ (γ , θ),

τθθ (r, θ) =
∑
γ∈R

rγ−1
M(γ )∑
m=0

(ln r)M(γ )−m

(M(γ )− m)!
Smθθ (γ , θ). (63)

The angular functions are determined as m = 0, and for m = 1, . . . ,M(γ ) by the recurrence
relations

S0rθ = μ
[
(γ − 1)�0

θ +�0
r,θ
]
, Smrθ = μ

[
(γ − 1)�m

θ +�m
r,θ +�m−1

θ

]
, (64)
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S0θθ = − [2μγ�0
r +
0] , Smθθ = − [2μ(γ�m

r +�m−1
r )+
m] , (65)

where�m
r ,�

m
θ , and


m are from (57) and (58).

Proof: The representation (63)–(65) follows directly from Equations (56)–(58) using the
incompressibility condition in (18), after calculus of (15) for the components of stress,
and (16) for strain. The calculation employs the differentiation of u with respect to r and θ
akin to formulas (39) and (40). �

Based on Corollaries 3.1 and 4.1, for fixed powers γ , we compute the first two terms in
the general solution (57), (64) and (65) asM(γ ) = 1 explicitly:

�0
r = U0

1φ1 + U0
2φ2 + U0

3φ3 + U0
4φ4,

�0
θ = U0

2φ1 − U0
1φ2 + γ + 1

γ − 1
U0
4φ3 − γ + 1

γ − 1
U0
3φ4,

S0rθ = 2μγ
[
U0
2φ1 − U0

1φ2 + U0
4φ3 − U0

3φ4
]
,

S0θθ = −2μγ
[
U0
1φ1 + U0

2φ2 + γ + 1
γ − 1

U0
3φ3 + γ + 1

γ − 1
U0
4φ4

]
, (66)

and

�1
r = (U1

1 + θU0
2 )φ1 + (U1

2 − θU0
1 )φ2 + (U1

3 + θU0
4 )φ3 + (U1

4 − θU0
3 )φ4,

�1
θ = (U1

2 − θU0
1 )φ1 − (U1

1 + θU0
2 )φ2 +

(
γ + 1
γ − 1

(U1
4 − θU0

3 )− 2
(γ − 1)2

U0
4

)
φ3

−
(
γ + 1
γ − 1

(U1
3 + θU0

4 )− 2
(γ − 1)2

U0
3

)
φ4,

S1rθ = 2μ
[(
γ (U1

2 − θU0
1 )+ U0

2
)
φ1 − (

γ (U1
1 + θU0

2 )+ U0
1
)
φ2

+ (
γ (U1

4 − θU0
3 )+ U0

4
)
φ3 − (

γ (U1
3 + θU0

4 )+ U0
3
)
φ4
]
,

S1θθ = −2μ
{(
γ (U1

1 + θU0
2 )+ U0

1
)
φ1 + (

γ (U1
2 − θU0

1 )+ U0
2
)
φ2

+
[
γ
γ + 1
γ − 1

(U1
3 + θU0

4 )+ U0
3

]
φ3 +

[
γ
γ + 1
γ − 1

(U1
4 − θU0

3 )+ U0
4

]
φ4

}
(67)

for γ 
= 1. Here we have used ∂((γ + 1)/(γ − 1))/∂γ = −2/(γ − 1)2 , and 
0 and 
1

from (58) due to (59) as

(γ − 1)
0 = 4μγ
(
U0
3φ3 + U0

4φ4
)
,

(γ − 1)
1 = 4μγ
(
(U1

3 + θU0
4 )φ3 + (U1

4 − θU0
3 )φ4

)
. (68)

If γ = 1, then we put U0
3 = U0

4 = U1
3 = U1

4 = 0 in (66)–(68), such that 
0
θ = 
1

θ = 0
agrees (38).

At the crack faces �±
c corresponding to the angles θ = ±π , the functions in (46) are

φ1(γ ,±π) = φ3(γ ,±π) = − cos γπ , φ2(γ ,±π) = φ4(γ ,±π) = ∓ sin γπ ,
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which jump and mean according to (3) and (4) are

[[φ1]] = [[φ3]] = 0, {{φ1}} = {{φ3}} = − cos γπ ,

[[φ2]] = [[φ4]] = −2 sin γπ , {{φ2}} = {{φ4}} = 0. (69)

Therefore, inserting (69) into (66)–(68) we find at the crack �c the values

[[�0
r ]] = −2(U0

2 + U0
4 ) sin γπ , {{�0

r }} = −(U0
1 + U0

3 ) cos γπ , (70)

[[�0
θ ]] = 2

(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ , {{�0

θ }} = −
(
U0
2 + γ + 1

γ − 1
U0
4

)
cos γπ , (71)

[[S0rθ ]] = 4μγ (U0
1 + U0

3 ) sin γπ , {{S0rθ }} = −2μγ (U0
2 + U0

4 ) cos γπ , (72)

[[S0θθ ]] = 4μγ
(
U0
2 + γ + 1

γ − 1
U0
4

)
sin γπ , {{S0θθ }} = 2μγ

(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ ,

(73)

and

[[�1
r ]] = −2(U1

2 + U1
4 ) sin γπ − 2π(U0

2 + U0
4 ) cos γπ ,

{{�1
r }} = −(U1

1 + U1
3 ) cos γπ + π(U0

1 + U0
3 ) sin γπ , (74)

[[�1
θ ]] = 2

[
U1
1 + γ + 1

γ − 1
U1
3 − 2

(γ − 1)2
U0
3

]
sin γπ + 2π

(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ ,

{{�1
θ }} = −

[
U1
2 + γ + 1

γ − 1
U1
4 − 2

(γ − 1)2
U0
4

]
cos γπ + π

(
U0
2 + γ + 1

γ − 1
U0
4

)
sin γπ ,

(75)

[[S1rθ ]] = 4μ
(
γ (U1

1 + U1
3 )+ U0

1 + U0
3
)
sin γπ + 4μγπ(U0

1 + U0
3 ) cos γπ ,

{{S1rθ }} = −2μ
(
γ (U1

2 + U1
4 )+ U0

2 + U0
4
)
cos γπ + 2μγπ(U0

2 + U0
4 ) sin γπ , (76)

[[S1θθ ]] = 4μ
[
γ

(
U1
2 + γ + 1

γ − 1
U1
4

)
+ U0

2 + U0
4

]
sin γπ

+ 4μγπ
(
U0
2 + γ + 1

γ − 1
U0
4

)
cos γπ ,

{{S1θθ }} = 2μ
[
γ

(
U1
1 + γ + 1

γ − 1
U1
3

)
+ U0

1 + U0
3

]
cos γπ

− 2μγπ
(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ . (77)

Based on (70)–(77), we distinguish each case of the boundary conditions in (21)–(25).

4.1. Crack under Dirichlet conditions of stick

According to theDirichlet conditions in (5), two pairs of equations {{�0
r }} = [[�0

θ ]] = 0 and
[[�0

r ]] = {{�0
θ }} = 0 in (70) and (71) compose two homogeneous matrix equations with
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respect to free coefficients U0
1 , . . . ,U

0
4 :⎛⎝− cos γπ − cos γπ

2 sin γπ 2
γ + 1
γ − 1

sin γπ

⎞⎠(U0
1

U0
3

)
=
(
0

0

)
,

⎛⎝−2 sin γπ −2 sin γπ

− cos γπ −γ + 1
γ − 1

cos γπ

⎞⎠(U0
2

U0
4

)
=
(
0

0

)
. (78)

The solvability of (78) needs matrix determinant 2/(γ − 1) sin(2γπ) equals to zero, i.e.

sin(2γπ) = 0, (79)

which holds for the half-integer powers

γ = n
2

for integer n ∈ Z. (80)

These eigenvalues distinguish three cases of possible solutions to (78):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos γπ = 0 : U0

1 + γ + 1
γ − 1

U0
3 = 0, U0

2 + U0
4 = 0,

sin γπ = 0, γ 
= 1 : U0
1 + U0

3 = 0, U0
2 + γ + 1

γ − 1
U0
4 = 0,

γ = 1 : U0
1 = U0

2 = U0
3 = U0

4 = 0.

(81)

Here,U0
3 = U0

4 = 0 as γ = 1 due to (59) and follows only trivialU0
1 = U0

2 = 0 in (78), and
the corresponding pressure P03φ3(1, θ)+ P04φ4(1, θ) = P03 is constant.

As m = 1, equations {{�1
r }} = [[�1

θ ]] = 0 and [[�1
r ]] = {{�1

θ }} = 0 from (74) and (75)
now build two inhomogeneous 2 × 2-matrix equations with respect to coefficients
U1
1 , . . . ,U

1
4 as follows:⎛⎝− cos γπ − cos γπ

2 sin γπ 2
γ + 1
γ − 1

sin γπ

⎞⎠(U1
1

U1
3

)

=

⎛⎜⎝ −π(U0
1 + U0

3 ) sin γπ

−2π
(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ + 4

(γ − 1)2
U0
3 sin γπ

⎞⎟⎠ ,

⎛⎝−2 sin γπ −2 sin γπ

− cos γπ −γ + 1
γ − 1

cos γπ

⎞⎠(U1
2

U1
4

)

=

⎛⎜⎝ 2π(U0
2 + U0

4 ) cos γπ

−π
(
U0
2 + γ + 1

γ − 1
U0
4

)
sin γπ − 4

(γ − 1)2
U0
4 cos γπ

⎞⎟⎠ , (82)
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with the same system matrix as in (78). Then (82) is solvable when⎧⎪⎪⎨⎪⎪⎩
cos γπ = 0 : U0

1 + U0
3 = 0, U0

2 + γ + 1
γ − 1

U0
4 = 0,

sin γπ = 0, γ 
= 1 : U0
1 + γ + 1

γ − 1
U0
3 = 0, U0

2 + U0
4 = 0.

(83)

The conditions (81) and (83) together lead to trivial coefficientsU0
1 = U0

2 = U0
3 = U0

4 = 0
for all γ . On the basis of Corollary 3.1, using (80) and (81) we conclude with the following
result.

Theorem 4.1: (Power series for the Dirichlet crack problem). The Stokes equation (18)
with the crack under Dirichlet boundary conditions (5) have the power series solution without
logarithms:

u(r, θ) =
∑

n∈Z\{2}
rn/2�0

(n
2
, θ
)
, p(r, θ) =

∑
n∈Z\{0}

rn/2−1
0
(n
2
, θ
)
, (84)

since �0(1, θ) ≡ 0 and
0(0, θ) ≡ 0, where the angular functions for every n are given by

�0
(n
2
, θ
)

=
4∑

l=1

U0
l ψ l

(n
2
, θ
)
, 
0

(n
2
, θ
)

=
4∑

l=3

P0l φl
(n
2
, θ
)
, (85)

with the eigenvectors ψ1, . . . ,ψ4 and φ3,φ4 from (60) and (46) as γ = n/2. If n 
= 2, six
coefficients U0

1 , . . . ,U
0
4 , P

0
3, P

0
4 ∈ R satisfy the four relations in dependence of k ∈ Z:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n = 2k − 1 : U0
1 + 2k + 1

2k − 3
U0
3 = 0,

U0
2 + U0

4 = 0,

n = 2k, k 
= 1 : U0
1 + U0

3 = 0,

U0
2 + k + 1

k − 1
U0
4 = 0,

4μnU0
l = (n − 2)P0l for l = 3, 4. (86)

If n = 2, then u1 = 0, and p1 = P03 is constant.

As a consequence of Theorem 4.1, for the variational solution from Proposition 2.1
requiring that n>0 (up to constant u(0) when r → 0), we derive the principal asymptotic
term in (84) as n = 1.

Corollary 4.2: (Singular solution for theDirichlet crack problem).The variational solution
to the Dirichlet problem has the following singularity at the crack tip as r → 0:

u(r, θ)− u(0) = r1/2

⎡⎢⎣U0
3

⎛⎜⎝ 3 cos
3θ
2

+ cos
θ

2

−3 sin
3θ
2

− 3 sin
θ

2

⎞⎟⎠
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+ U0
4

⎛⎜⎝ − sin
3θ
2

− sin
θ

2

− cos
3θ
2

− 3 cos
θ

2

⎞⎟⎠
⎤⎥⎦+ O(r3/2), (87)

the pressure p = 4μr−1/2(−U0
3 cos

θ
2 + U0

4 sin
θ
2 )+ O(1) and stresses

τrr = μr−1/2
[
U0
3

(
3 cos

3θ
2

+ 5 cos
θ

2

)
+ U0

4

(
− sin

3θ
2

− 5 sin
θ

2

)]
+ O(1),

τrθ = μr−1/2
[
U0
3

(
−3 sin

3θ
2

+ sin
θ

2

)
+ U0

4

(
− cos

3θ
2

+ cos
θ

2

)]
+ O(1),

τθθ = μr−1/2
[
U0
3

(
−3 cos

3θ
2

+ 3 cos
θ

2

)
+ U0

4

(
sin

3θ
2

− 3 sin
θ

2

)]
+ O(1).

Proof: As n = k = 1, i.e. γ = 1/2, we calculate (γ + 1)/(γ − 1) = (2k + 1)/(2k − 3) =
−3, then U0

1 − 3U0
3 = 0, U0

2 + U0
4 = 0 in (86), and from (84) it follows

u1/2(r, θ) = r1/2
(
U0
3

[
3ψ1

(
1
2
, θ
)

+ ψ3

(
1
2
, θ
)]

+ U0
4

[
−ψ2

(
1
2
, θ
)

+ ψ4

(
1
2
, θ
)])

,

which results in the explicit expression (87). The formula for pressure and stresses follows
respectively from (85), (86) and (63)–(65). �

The asymptotic stresses τrr, τrθ , τθθ corresponding to the dominate singular term in (87)
are depicted around the crack tip in Figure 2 for U0

4 = 0 in plots (a)–(c), and for U0
3 = 0

in plots (d)–(f).

4.2. Crack undermixed Dirichlet–Neumann impermeability condition

Because in the polar coordinates the normal displacement at the crack is u · n = −uθ ,
and the tangential stress is τ − (τ · n)n = τrθ , the mixed Dirichlet–Neumann boundary
conditions in (6) imply the following pairs of equations [[�0

θ ]] = [[S0rθ ]] = 0 and {{�0
θ }} =

{{S0rθ }} = 0. According to their representation in (71) and (72), we get twomatrix equations:

⎛⎝ 2 sin γπ 2
γ + 1
γ − 1

sin γπ

4μγ sin γπ 4μγ sin γπ

⎞⎠(U0
1

U0
3

)
=
(
0

0

)
,

⎛⎝ − cos γπ −γ + 1
γ − 1

cos γπ

−2μγ cos γπ −2μγ cos γπ

⎞⎠(U0
2

U0
4

)
=
(
0

0

)
, (88)
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Figure 2. Singular stresses τrr , τrθ , τθθ in theDirichlet crack problem for Stokes equations in plots (a)–(c)
as the stress intensity factors U03 = 1,U04 = 0, and in plots (d)–(f ) as U03 = 0,U04 = 1.

which solvability necessitates again the condition (79), half-integer powers (80), and
admissible solutions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cos γπ = 0 : U0
1 = U0

3 = 0,
sin γπ = 0, γ 
= 0, 1 : U0

2 = U0
4 = 0,

γ = 0 : U0
2 − U0

4 = 0,
γ = 1 : U0

2 = U0
3 = U0

4 = 0.

(89)

Here, if γ = 1, then U0
3 = U0

4 = 0 holds together with U0
2 = 0 in (88).

As m = 1, equations [[�1
θ ]] = [[S1rθ ]] = 0 and {{�1

θ }} = {{S1rθ }} = 0 according to (75)
and (76) read⎛⎝ 2 sin γπ 2

γ + 1
γ − 1

sin γπ

4μγ sin γπ 4μγ sin γπ

⎞⎠(U1
1

U1
3

)

=

⎛⎜⎝−2π
(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ + 4

(γ − 1)2
U0
3 sin γπ

−4μ(U0
1 + U0

3 ) sin γπ − 4μγπ(U0
1 + U0

3 ) cos γπ

⎞⎟⎠ ,

⎛⎝ − cos γπ −γ + 1
γ − 1

cos γπ

−2μγ cos γπ −2μγ cos γπ

⎞⎠(U1
2

U1
4

)
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=

⎛⎜⎝−π
(
U0
2 + γ + 1

γ − 1
U0
4

)
sin γπ − 4

(γ − 1)2
U0
4 cos γπ

2μ(U0
2 + U0

4 ) cos γπ − 2μγπ(U0
2 + U0

4 ) sin γπ

⎞⎟⎠ , (90)

and they are solvable when⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
cos γπ = 0 : U0

2 = U0
4 = 0,

sin γπ = 0, γ 
= 0, 1 : U0
1 = U0

3 = 0,
γ = 0 : U0

1 − U0
3 = 0, U0

2 + U0
4 = 0,

γ = 1 : U0
1 = U0

3 = U0
4 = 0.

(91)

From (90) and (91) we infer that no logarithms occur except for γ = 0.

Theorem 4.2: (Power series for the impermeability crack problem). The Stokes
equation (18)with the crack under mixed Dirichlet–Neumann impermeability conditions (6)
have the power series solution:

u(r, θ)− u0(r, θ) =
∑

n∈Z\{0}
rn/2�0

(n
2
, θ
)
, p(r, θ) =

∑
n∈Z\{0}

rn/2−1
0
(n
2
, θ
)
, (92)

since 
0(0, θ) ≡ 0, and u0(r, θ) is determined according to (56) and (57) at γ = n/2 =
0. For n 
= 0, the functions �0 and 
0 are given in (85) involving the six coefficients
U0
1 , . . . ,U

0
4 , P

0
3, P

0
4 ∈ R as follows:⎧⎪⎨⎪⎩

n = 2k − 1 : U0
1 = U0

3 = 0,
n = 2k, k 
= 0, 1 : U0

2 = U0
4 = 0,

n = 2 : U0
2 = U0

3 = U0
4 = 0,

4μnU0
l = (n − 2)P0l for l = 3, 4. (93)

For the variational solution n>0, the crack singularity has the explicit form as n = k = 1
in (93):

u(r, θ)− u(0) = r1/2

⎡⎢⎣U0
2

⎛⎜⎝sin
3θ
2

cos
3θ
2

⎞⎟⎠+ U0
4

⎛⎜⎝ − sin
θ

2

−3 cos
θ

2

⎞⎟⎠
⎤⎥⎦+ O(r), (94)

the pressure and stresses

p = 4μr−1/2U0
4 sin

θ

2
+ O(1), τrr = μr−1/2

(
U0
2 sin

3θ
2

− 5U0
4 sin

θ

2

)
+ O(1),

τrθ = μr−1/2
(
U0
2 cos

3θ
2

+ U0
4 cos

θ

2

)
+ O(1),

τθθ = μr−1/2
(

−U0
2 sin

3θ
2

− 3U0
4 sin

θ

2

)
+ O(1),

which are depicted in Figure 3 for U0
4 = 0 in plots (a)–(c), and for U0

2 = 0 in plots (d)–(f).
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Figure 3. Singular stresses τrr , τrθ , τθθ in the Dirichlet–Neumann crack problem for Stokes equations in
plots (a)–(c) as the stress intensity factors U02 = 1,U04 = 0, and in plots (d)–(f ) as U02 = 0,U04 = 1.

4.3. Stress-free crack under Neumann conditions

The four equations constituting homogeneous Neumann boundary conditions (7) are
decoupled into two pairs, using expressions (72) and (73) asm = 0 for [[S0rθ ]] = {{S0θθ }} = 0
and {{S0rθ }} = [[S0θθ ]] = 0:⎛⎝4μγ sin γπ 4μγ sin γπ

2μγ cos γπ 2μγ
γ + 1
γ − 1

cos γπ

⎞⎠(U0
1

U0
3

)
=
(
0

0

)
,

⎛⎝−2μγ cos γπ −2μγ cos γπ

4μγ sin γπ 4μγ
γ + 1
γ − 1

sin γπ

⎞⎠(U0
2

U0
4

)
=
(
0

0

)
. (95)

Zero matrix determinant in (95) leads to γ in (79) and (80), such that admissible coeffi-
cients are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos γπ = 0 : U0
1 + U0

3 = 0, U0
2 + γ + 1

γ − 1
U0
4 = 0,

sin γπ = 0, γ 
= 0, 1 : U0
1 + γ + 1

γ − 1
U0
3 = 0, U0

2 + U0
4 = 0,

γ = 0 : arbitrary U0
1 ,U

0
2 ,U

0
3 ,U

0
4 ,

γ = 1 : U0
1 = U0

2 = U0
3 = U0

4 = 0,

(96)
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where U0
3 = U0

4 = 0 as γ = 1 was used from Theorem 3.1.
For m = 1, equations [[S1rθ ]] = {{S1θθ }} = 0 and {{S1rθ }} = [[S1θθ ]] = 0 in (76) and (77)

read: ⎛⎝4μγ sin γπ 4μγ sin γπ

2μγ cos γπ 2μγ
γ + 1
γ − 1

cos γπ

⎞⎠(U1
1

U1
3

)

=

⎛⎜⎝ −4μ(U0
1 + U0

3 ) sin γπ − 4μγπ(U0
1 + U0

3 ) cos γπ

−2μ(U0
1 + U0

3 ) cos γπ + 2μγπ
(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ

⎞⎟⎠ ,

⎛⎝−2μγ cos γπ −2μγ cos γπ

4μγ sin γπ 4μγ
γ + 1
γ − 1

sin γπ

⎞⎠(U1
2

U1
4

)

=

⎛⎜⎝ 2μ(U0
2 + U0

4 ) cos γπ − 2μγπ(U0
2 + U0

4 ) sin γπ

−4μ(U0
2 + U0

4 ) sin γπ − 4μγπ
(
U0
2 + γ + 1

γ − 1
U0
4

)
cos γπ

⎞⎟⎠ . (97)

The inhomogeneous system (97) is solvable when⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
cos γπ = 0 : U0

1 + γ + 1
γ − 1

U0
3 = 0, U0

2 + U0
4 = 0,

sin γπ = 0, γ 
= 0, 1 : U0
1 + U0

3 = 0, U0
2 + γ + 1

γ − 1
U0
4 = 0,

γ = 0 : U0
1 + U0

3 = 0, U0
2 + U0

4 = 0.

(98)

Together with (96), conditions (98) imply U0
1 = U0

2 = U0
3 = U0

4 = 0 for γ 
= 0 and the
next theorem.

Theorem 4.3: (Power series for the Neumann crack problem). The Stokes equation (18)
under the stress-free crack conditions (7) have the power series solution:

u(r, θ)− u0(r, θ) =
∑

n∈Z\{0,2}
rn/2�0

(n
2
, θ
)
, p(r, θ) =

∑
n∈Z\{0}

rn/2−1
0
(n
2
, θ
)
, (99)

where u0(r, θ) is determined according to (56) and (57). The angular functions for n 
= 0 are
defined in (85) and (60) as γ = n/2, with the coefficients determined according to formula
(96) for k ∈ Z:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n = 2k − 1 : U0
1 + U0

3 = 0,

U0
2 + 2k + 1

2k − 3
U0
4 = 0,

n = 2k, k 
= 0, 2 : U0
1 + k + 1

k − 1
U0
3 = 0,

U0
2 + U0

4 = 0,

4μnU0
l = (n − 2)P0l for l = 3, 4.

(100)
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Figure 4. Singular stresses τrr , τrθ , τθθ in the Neumann crack problem for Stokes equations in plots
(a)–(c) as the stress intensity factors U03 = 1,U04 = 0, and in plots (d)–(f ) as U03 = 0,U04 = 1.

For the variational solution as n>0, the crack-tip singularity as r → 0 is expressed explicitly:

u(r, θ)− u(0)=r1/2

⎡⎢⎣U0
3

⎛⎜⎝− cos
3θ
2

+ cos
θ

2

sin
3θ
2

− 3 sin
θ

2

⎞⎟⎠+U0
4

⎛⎜⎝ 3 sin
3θ
2

− sin
θ

2

3 cos
3θ
2

− 3 cos
θ

2

⎞⎟⎠
⎤⎥⎦+ O(r3/2),

(101)

whenU0
1 + U0

3 = 0 andU0
2 − 3U0

4 = 0 are set for n = k = 1 in (100), and γ = 1/2 in (60).
The pressure p = 4μr−1/2(−U0

3 cos
θ
2 + U0

4 sin
θ
2 )+ O(1) and stresses are

τrr = μr−1/2
[
U0
3

(
− cos

3θ
2

+ 5 cos
θ

2

)
+ U0

4

(
3 sin

3θ
2

− 5 sin
θ

2

)]
+ O(1),

τrθ = μr−1/2
[
U0
3

(
sin

3θ
2

+ sin
θ

2

)
+ U0

4

(
3 cos

3θ
2

− 2 cos
θ

2

)]
+ O(r1/2),

τθθ = μr−1/2
[
U0
3

(
cos

3θ
2

+ 3 cos
θ

2

)
+ U0

4

(
−3 sin

3θ
2

− 3 sin
θ

2

)]
+ O(1),

as depicted around the crack tip in Figure 4 for U0
4 = 0 in plots (a)–(c), and for U0

3 = 0 in
plots (d)–(f).

4.4. Crack under non-penetration conditions

The boundary conditions describing non-penetration between the crack faces (8) in the
polar coordinates at m = 0 yield as in the Neumann case {{S0rθ }} = [[S0θθ ]] = 0, hence
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the second system in (95) providing the determinant in (79) and the half-integers pow-
ers in (80). The other conditions consisting of [[S0rθ ]] = 0 and complementarity relations
{{S0θθ }}[[�0

θ ]] = 0, {{S0θθ }} ≤ 0, [[�0
θ ]] ≤ 0, using (71)–(73) yield

4μγ (U0
1 + U0

3 ) sin γπ = 0, 2μγ
(
U0
1 + γ + 1

γ − 1
U0
3

)2
sin(2γπ) = 0,

2μγ
(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ ≤ 0, 2

(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ ≤ 0. (102)

The second system in (95) for U0
2 ,U

0
4 and nonlinear relations (102) for U0

1 ,U
0
3 have

admissible solutions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos γπ = 0 : U0
1 + U0

3 = 0,
1

γ − 1
U0
3 sin γπ ≤ 0, U0

2 + γ + 1
γ − 1

U0
4 = 0,

sin γπ = 0, γ 
= 0, 1 : γ

(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ ≤ 0, U0

2 + U0
4 = 0,

γ = 0 : arbitrary U0
1 ,U

0
2 ,U

0
3 ,U

0
4 ,

γ = 1 : U0
1 ≥ 0, U0

2 = U0
3 = U0

4 = 0,
(103)

whereU0
3 = U0

4 = 0 at γ = 1 followsU0
1 ≥ 0 in (102), andU0

2 = 0 from the second system
in (95).

At m = 1, linear conditions {{S1rθ }} = [[S1θθ ]] = 0 imply the second system in (97).
According to (98) we find U0

2 + U0
4 = 0 for cos γπ = 0 or γ = 0, and U0

2 + γ+1
γ−1U

0
4 = 0

for sin γπ = 0 and γ 
= 0, 1. Together with (103) this means that logarithms for the
eigenvectors φ2 and φ4 may appear only if γ = 0.

The nonlinear conditions [[S1rθ ]] = 0 and {{S1θθ }}[[�1
θ ]] = 0, {{S1θθ }} ≤ 0, [[�1

θ ]] ≤ 0
in (75) and (77), after division by 2 and 2μ > 0 are

γ (U1
1 + U1

3 ) sin γπ = −(U0
1 + U0

3 ) (sin γπ + γπ cos γπ) ,([
γ

(
U1
1 + γ + 1

γ − 1
U1
3

)
+ U0

1 + U0
3

]
cos γπ − γπ

(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ

)
×
([

U1
1 + γ + 1

γ − 1
U1
3 − 2

(γ − 1)2
U0
3

]
sin γπ + π

(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ

)
= 0,

γ

(
U1
1 + γ + 1

γ − 1
U1
3

)
cos γπ ≤ −(U0

1 + U0
3 ) cos γπ

+ γπ

(
U0
1 + γ + 1

γ − 1
U0
3

)
sin γπ ,(

U1
1 + γ + 1

γ − 1
U1
3

)
sin γπ ≤ 2

(γ − 1)2
U0
3 sin γπ

− π

(
U0
1 + γ + 1

γ − 1
U0
3

)
cos γπ . (104)
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If cos γπ = 0 in (104) for γ = k − 1/2, using U0
1 + U0

3 = 0 from the first string in (103)
shortens it to

U1
1 + U1

3 = 0,
(
U1
3 − 1

γ − 1
U0
3

)
U0
3 = 0,

γ

γ − 1
U0
3 sin γπ ≥ 0,

1
γ − 1

(
U1
3 − 1

γ − 1
U0
3

)
sin γπ ≤ 0,

which leads to the complementary cases: either U0
3 = 0 (following U0

1 = 0 due to (103))
or

U1
1 + U1

3 = 0, U1
3 = 1

γ − 1
U0
3 ,

γ

γ − 1
U0
3 sin γπ > 0. (105)

But the last inequality in (105) contradicts to the opposite inequality in (103) when
γ = k − 1/2 > 0. Thus, (105) is possible and may lead to the logarithms only for γ =
k − 1/2 < 0.

If sin γπ = 0 for γ = k and γ 
= 0, from conditions (104) we have

U0
1 + U0

3 = 0,
1

γ − 1

(
U1
1 + γ + 1

γ − 1
U1
3

)
U0
3 = 0,

γ

(
U1
1 + γ + 1

γ − 1
U1
3

)
cos γπ ≤ 0,

1
γ − 1

U0
3 cos γπ ≤ 0. (106)

The last inequality in (106) contradicts to the opposite inequality in the second string
of (103) when γ = k < 0. For γ = k > 1, this complementarity holds when either(
U1
1 + γ + 1

γ − 1
U1
3

)
cos γπ ≤ 0, U0

3 = 0 or U1
1 + γ + 1

γ − 1
U1
3 = 0,

1
γ − 1

U0
3 cos γπ < 0,

and for γ = k = 1 whenU1
1 ≥ 0 andU0

1 = U0
3 = 0 due to (59), thus excluding logarithms.

For γ = 0, the relations (104) hold when U0
1 + |U0

3 | = 0. Thus, logarithms for the eigen-
vectors φ1 and φ3 may appear for the powers γ = 0 and γ = k > 1. We summarize the
results in the next theorem.

Theorem 4.4: (Power series for the non-penetration crack problem). The Stokes
equation (18) describing the non-penetrating crack under unilateral conditions (8) possess
the power series solution, for k ∈ Z:

u(r, θ) =
∑
k>0

rk−1/2
4∑

l=1

U0
l ψ l

(
k − 1

2
, θ
)

+
∑
k≤0

rk−1/2
M(k)∑
m=0

(ln r)M(k)−m

(M(k)− m)!
�̃

m
(
k − 1

2
, θ
)

+
∑

{k<0,k=1}
rk

4∑
l=1

U0
l ψ l(k, θ)+

∑
{k>1,k=0}

rk
M(k)∑
m=0

(ln r)M(k)−m

(M(k)− m)!
�̃

m
(k, θ), (107)
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p(r, θ) =
∑
k>0

rk−3/2
4∑

l=3

P0l φl
(
k − 1

2
, θ
)

+
∑
k≤0

rk−3/2
M(k)∑
m=0

(ln r)M(k)−m

(M(k)− m)!

̃m

(
k − 1

2
, θ
)

+
∑

{k<0,k=1}
rk−1

4∑
l=3

P0l φl(k, θ)

+
∑
k>1

rk−1
M(k)∑
m=0

(ln r)M(k)−m

(M(k)− m)!

̃m(k, θ), (108)

where reduced functions �̃m and 
̃m for the powers γ = k − 1/2 and γ = k are defined by
the recurrence:

�̃
0
(γ , θ) =

∑
l=1,3

U0
l ψ l(γ , θ), �̃

m =
∑
l=1,3

Um
l ψ l(γ , θ)−

m∑
i=1

(−1)i

i!
∂ i�̃

m−i

∂γ i ,


̃0(γ , θ) = P03φ3(γ , θ), 
̃m = Pm3 φ3(γ , θ)−
m∑
i=1

(−1)i

i!
∂ i
̃m−i

∂γ i . (109)

For the variational solution as k>0, the singularity of the non-penetrating crack is the same as
in (101) for the stress-free crack, the next asymptotic term is of order O(r), and the coefficients
U0
3 are such that

U0
3 ≥ 0. (110)

4.5. Shear crack under transmissionwith slip conditions

The transmission with slip boundary conditions at the crack (9) expressed in the polar
coordinates as [[S0rθ ]] = [[�0

θ ]] = 0 and {{S0rθ }} = [[S0θθ ]] = 0, using formulas (71)–(73), are⎛⎝4μγ sin γπ 4μγ sin γπ

2 sin γπ 2
γ + 1
γ − 1

sin γπ

⎞⎠(U0
1

U0
3

)
=
(
0

0

)
,

⎛⎝−2μγ cos γπ −2μγ cos γπ

4μγ sin γπ 4μγ
γ + 1
γ − 1

sin γπ

⎞⎠(U0
2

U0
4

)
=
(
0

0

)
. (111)

The solvability of (111) requires that sin γπ = 0, that holds for γ = n, n ∈ Z, and admis-
sible coefficients ⎧⎪⎨⎪⎩

sin γπ = 0, γ 
= 0, 1 : U0
2 + U0

4 = 0,
γ = 0 : arbitrary U0

1 ,U
0
2 ,U

0
3 ,U

0
4 ,

γ = 1 : U0
2 = U0

3 = U0
4 = 0.

(112)

Form = 1, equations [[S1rθ ]] = [[�1
θ ]] = 0 and {{S1rθ }} = [[S1θθ ]] = 0 from (75)–(77) imply(

4μγ sin γπ 4μγ sin γπ

2 sin γπ 2γ+1
γ−1 sin γπ

)(
U1
1

U1
3

)
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=
⎛⎝−4μ(U0

1 + U0
3 ) sin γπ − 4μγπ(U0

1 + U0
3 ) cos γπ

4
(γ−1)2U

0
3 sin γπ − 2π

(
U0
1 + γ+1

γ−1U
0
3

)
cos γπ

⎞⎠ ,

(−2μγ cos γπ −2μγ cos γπ

4μγ sin γπ 4μγ γ+1
γ−1 sin γπ

)(
U1
2

U1
4

)

=
⎛⎝ 2μ(U0

2 + U0
4 ) cos γπ − 2μγπ(U0

2 + U0
4 ) sin γπ

−4μ(U0
2 + U0

4 ) sin γπ − 4μγπ
(
U0
2 + γ+1

γ−1U
0
4

)
cos γπ

⎞⎠ . (113)

Since sin γπ = 0, the inhomogeneous system (97) is solvable when⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin γπ = 0, γ 
= 0, 1 : U0

1 = U0
3 = 0, U0

2 + γ + 1
γ − 1

U0
4 = 0,

γ = 0 : U0
1 − U0

3 = 0, U0
2 + U0

4 = 0,

γ = 1 : U0
1 = U0

2 = U0
3 = U0

4 = 0.

(114)

Conditions (112) and (114) together imply that U0
1 = U0

2 = U0
3 = U0

4 = 0 and no log-
oscillations for γ 
= 0.

Theorem 4.5: (Power series for the share crack problem). The Stokes equation (18) under
the transmission boundary conditions with slip at the crack (9) possess the power series
solution:

u(r, θ)− u0(r, θ) =
∑

n∈Z\{0}
rn�0(n, θ), p(r, θ) =

∑
n∈Z\{0}

rn−1
0(n, θ), (115)

where u0(r, θ) is given in (56) and (57) as n = 0. The functions�0 and
0 are expressed by
the sum

�0 =
4∑

l=1

U0
l ψ l(n, θ), 
0 =

4∑
l=3

P0l φl(n, θ) (116)

of the eigenvectors from (60) as γ = nwith the coefficients satisfying relations (112) and (59).
For the variational solution as n>0, the crack-tip singularity is described by the asymp-

totic formula

u(r, θ)− u(0) = U0
1 r
(

cos 2θ
− sin 2θ

)
+ O(r2), (117)

the pressure p = O(r) and stresses τrr = 2μ cos 2θ + O(r), τrθ = −2μ sin 2θ + O(r), τθθ =
−2μ cos 2θ + O(r).

5. Concluding remarks

The main purpose of the analytical derivation of asymptotic solutions near the crack tip is
to describe singular behaviour for the underlying crack-like problems. Thus, the principal
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asymptotic term obtained from the power series answers the questions of square-root and
log-oscillations. The important point for analysis is that the derived singular term restricts
maximal regularity of variational solutions for the Stokes problem, which can be expressed
in weighted Sobolev spaces, see Ref. [22, Section 5.8].

The power series solutions for the Stokes equation obtained in our work are validated
theoretically by the rigorous asymptotic analysis. The main advantage concerns nonlin-
ear and non-standard boundary conditions which can be treated within our approach.
In comparison with the classical Dirichlet and Neumann problems, the present solutions
coincide with those ones known from the literature. For numerical techniques which are
suitable for the singular field modelling, we cite the methods of potential [23], locking-free
elements [24], extended finite element [25] and boundary element methods [26,27].

The example solutions are presented for the crack that is a void in a solid body. A
crack-like object in an incompressible fluid can describe flow around a thin plate subject to
boundary conditions imposed on the plate faces, e.g. the fluid adhesion [28]. In the general
case, a thin plate in a body can be considered as an inclusion made from another phase of
material (called anti-crack, stiffener, defect). The problemdefinitionwas extended to inclu-
sions in the works by Khludnev and Popova [29] with the help of Robin-type boundary
conditions:

[[u]] = 0, [[τ ]] = 1
δ
u,

where δ > 0 is the rigidity parameter. The limit case δ → 0 describes a rigid inclusion
corresponding to the Dirichlet conditions (5), and the crack-free state is recovered as δ →
∞. The asymptotic solution was extended to a poroelastic body with a fluid-filled crack
in Ref. [30]. For the other possible nonlinear boundary conditions due to the stick–slip, we
refer to Ref. [5].
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Appendix 1 Proof of Lemma 3.3

The proof of (51)–(55) is leaded by induction over indexes i = 0, . . . ,m. As i = 0, the general
solution
0 is the direct consequence of the second equation in (49):


0 = P03φ3 + P04φ4, 
0
,θθ + (γ − 1)2
0 = 0,

which leads to representation of�0
r by the sum of general and particular solutions from (49):

�0
r = U0

1φ1 + U0
2φ2 + U0

3φ3 + U0
4φ4, 4μγU0

l = (γ − 1)P0l for l = 3, 4,

μ
[
�0

r,θθ + (γ + 1)2�0
r
] = (γ − 1)
0,

and to the similar expression of�0
θ :

�0
θ = Ũ0

1φ1 + Ũ0
2φ2 + Ũ0

3φ3 + Ũ0
4φ4, where Ũ0

1 = −U0
2 , Ũ0

2 = U0
1 ,

(γ − 1)Ũ0
3 = −(γ + 1)U0

4 , (γ − 1)Ũ0
4 = (γ + 1)U0

3 , (γ + 1)�0
r +�0

θ ,θ = 0

according to (47). As i = 1, the solution
1 in the form of a linear span


1 = P13φ3 + P14φ4 + P03φ3,γ + P04φ4,γ , 
1
,θθ + (γ − 1)2
1 = −2(γ − 1)
0

follows from the second equations in (49) and (50). This again leads to the combination of general
and particular solutions satisfying (49) and (50) such that

�1
r = U1

1φ1 + U1
2φ2 + U1

3φ3 + U1
4φ4 + U0

1φ1,γ + U0
2φ2,γ + U0

3φ3,γ + U0
4φ4,γ ,

4μγU1
l = (γ − 1)P1l for l = 3, 4,

μ
[
�1

r,θθ + (γ + 1)2�1
r
] = −2μ(γ + 1)�0

r + (γ − 1)
1 +
0.

Let us suppose that equations in (43) hold for all
0, . . . ,
m−1, that is


m−i
,θθ + (γ − 1)2
m−i = −2(γ − 1)
m−i−1 −
m−i−2 = 0 for i = 1, . . . ,m, 
−1 = 
−2 = 0.

(A1)

Inserting the ansatz (51) into the left-hand side of Equation (43) for
m, using the second equation
in (49) and Equation (A1), after shifting the summation indexes, gives the expression


m
,θθ + (γ − 1)2
m =

4∑
l=3

Pml
(
φl,θθ + (γ − 1)2φl

)−
m∑
i=1

(−1)i

i!

(
∂ i
m−i

,θθ
∂γ i + (γ − 1)2

∂ i
m−i

∂γ i

)

=
m∑
i=1

(−1)i

i!

(
∂ i

∂γ i

[
(γ − 1)2
m−i

+ 2(γ − 1)
m−i−1 +
m−i−2]− (γ − 1)2
∂ i
m−i

∂γ i

)

=
m∑
i=1

(−1)i

i!

(
∂ i[(γ − 1)2
m−i]

∂γ i − i
∂ i−1[2(γ − 1)
m−i]

∂γ i−1

+ i(i − 1)
∂ i−2
m−i

∂γ i−2 − (γ − 1)2
∂ i
m−i

∂γ i

)
. (A2)
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With the help of calculus using the triangle numbers, for k ∈ {2, . . . , i}:
∂ i[(γ − 1)2
m−i]

∂γ i = ∂ i−k

∂γ i−k

(
(γ − 1)2

∂k
m−i

∂γ k + 2(γ − 1)k
∂k−1
m−i

∂γ k−1 +k(k − 1)
∂k−2
m−i

∂γ k−2

)

= (γ − 1)2
∂ i
m−i

∂γ i + 2(γ − 1)i
∂ i−1
m−i

∂γ i−1 + i(i − 1)
∂ i−2
m−i

∂γ i−2 , (A3)

∂ i−1[2(γ − 1)
m−i]
∂γ i−1 = ∂ i−k

∂γ i−k

(
2(γ − 1)

∂k−1
m−i

∂γ k−1 + 2(k − 1)
∂k−2
m−i

∂γ k−2

)

= 2(γ − 1)
∂ i−1
m−i

∂γ i−1 + 2(i − 1)
∂ i−2
m−i

∂γ i−2 , (A4)

we proceed the expression (A2) as


m
,θθ + (γ − 1)2
m =

m∑
i=3

(−1)i

i!
0 +

2∑
i=1

(−1)i

i!

(
2(γ − 1)i

∂ i−1
m−i

∂γ i−1 + i(i − 1)
∂ i−2
m−i

∂γ i−2

)

− (−1)2

2!
2
(
(γ − 1)2
m−2

,γ + 2
m−2
)

= −2(γ − 1)
m−1 −
m−2,

which proves formula (43) for the series (51) by the induction argument.
Now let equations in (44) hold for all�0

r , . . . ,�m−1
r , such that setting�−1

r = �−2
r = 0 we have

μ
[
�m−i

r,θθ + (γ + 1)2�m−i
r

]
= −μ [2(γ + 1)�m−i−1

r +�m−i−2
r

]+ (γ − 1)
m−i +
m−i−1 for i = 1, . . . ,m. (A5)

Inserting the ansatz (51) and (52) into the left-hand side of Equation (44) for �m
r and applying

Equations (49), (A5) and shift of the summation indexes akin to (A2) result in

μ
[
�m

r,θθ + (γ + 1)2�m
r
] = μ

4∑
l=1

Um
l
(
φl,θθ + (γ + 1)2φl

)
− μ

m∑
i=1

(−1)i

i!

(
∂ i�m−i

r,θθ
∂γ i + (γ + 1)2

∂ i�m−i
r

∂γ i

)

= 4μγ
4∑

l=3

Um
l φl +

m∑
i=1

(−1)i

i!

×
(
∂ i

∂γ i

[
μ
[
(γ + 1)2�m−i

r + 2(γ + 1)�m−i−1
r +�m−i−2

r
]− (γ − 1)
m−i −
m−i−1]

−μ(γ + 1)2
∂ i�m−i

r
∂γ i

)
= 4μγ

4∑
l=3

Um
l φl+

m∑
i=1

(−1)i

i!

(
∂ i[μ(γ + 1)2�m−i

r −(γ − 1)
m−i]
∂γ i

−i
∂ i−1[2μ(γ + 1)�m−i

r −
m−i]
∂γ i−1 + μi(i − 1)

∂ i−2�m−i
r

∂γ i−2 − μ(γ + 1)2
∂ i�m−i

r
∂γ i

)
.

Using similar to (A3) and (A4) identities

∂ i[μ(γ + 1)2�m−i
r − (γ − 1)
m−i]
∂γ i

= μ(γ + 1)2
∂ i�m−i

r
∂γ i + 2μ(γ + 1)i

∂ i−1�m−i
r

∂γ i−1 + μi(i − 1)
∂ i−2�m−i

r
∂γ i−2
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− (γ − 1)
∂ i
m−i

∂γ i − i
∂ i−1
m−i

∂γ i−1 ,

∂ i−1[2μ(γ + 1)�m−i
r −
m−i]

∂γ i−1

= 2μ(γ + 1)
∂ i−1�m−i

r
∂γ i−1 + 2μ(i − 1)

∂ i−2�m−i
r

∂γ i−2 − ∂ i−1
m−i

∂γ i−1 ,

we continue the calculation

μ
[
�m

r,θθ + (γ + 1)2�m
r
]− 4μγ

4∑
l=3

Um
l φl

= −(γ − 1)
m∑
i=1

(−1)i

i!
∂ i
m−i

∂γ i +
2∑

i=1

(−1)i

i!

(
2μ(γ + 1)i

∂ i−1�m−i
r

∂γ i−1

+μi(i − 1)
∂ i−2�m−i

r
∂γ i−2 − i

∂ i−1
m−i

∂γ i−1

)
− (−1)2

2!
2
(
μ(γ + 1)2�m−2

r,γ + 2μ�m−2
r −
m−2

,γ

)
= (γ − 1)

(

m −

4∑
l=3

Pml φl

)
− 2μ(γ + 1)�m−1

r − μ�m−2
r +
m−1.

This equality leads to the relation between coefficients (54) and proves Equation (44).
Finally, using (47) we calculate the derivative of
m

θ in (53) as


m
θ ,θ = (γ + 1)Ũm

2 φ1 − (γ + 1)Ũm
1 φ2 + (γ − 1)Ũm

4 φ3 − (γ − 1)Ũm
3 φ4 −

m∑
i=1

(−1)i

i!
∂ i�m−i

θ ,θ
∂γ i .

(A6)

Based on the assumption that the terms in the series (52) and (53) satisfy the equations in (45):

�m−i
θ ,θ = −(γ + 1)�m−i

r −�m−i−1
r for i = 1, . . . ,m,

the sum in (A6) can be represented in such a way that

−
m∑
i=1

(−1)i

i!
∂ i�m−i

θ ,θ
∂γ i =

m∑
i=1

(−1)i

i!
∂ i

∂γ i

[
(γ + 1)�m−i

r +�m−i−1
r

]
=

m∑
i=1

(−1)i

i!

(
∂ i[(γ + 1)�m−i

r ]
∂γ i − i

∂ i−1�m−i
r

∂γ i−1

)

= (γ + 1)
m∑
i=1

(−1)i

i!
∂ i�m−i

r
∂γ i

+ (−1)
1!


m−1
r = (γ + 1)

( 4∑
l=1

Um
l φl −
m

r

)
−
m−1

r . (A7)

Consequently, inserting (A7) into (A6) we derive the relation between coefficients (55) and
Equation (45). This completes the proof.


	1. Introduction
	2. Variational Stokes problems
	3. Power series solution in the general form
	4. Specific boundary conditions and singularity at crack
	4.1. Crack under Dirichlet conditions of stick
	4.2. Crack under mixed Dirichlet–Neumann impermeability condition
	4.3. Stress-free crack under Neumann conditions
	4.4. Crack under non-penetration conditions
	4.5. Shear crack under transmission with slip conditions

	5. Concluding remarks
	Acknowledgments
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


