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ITERATIVE PENALTY METHOD
FOR PLATE WITH A CRACK!
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Abstract. Problems with cracks often arise in applications (solid mechanics, geophysics)
and need to essentially describe mathematical conditions fulfilled on the crack. We can quote
the works [1,2,10,11] and others. In this paper we deal with the nonpenetration condition
on the crack faces stated by A.M. Khludnev in [4,5] as the inequality. The obtained problem
with the unilateral constraint is described by the variational inequality (see [3,6,9]). Here
we construct approximate solutions of this variational inequality using penalty and iterative
methods. Convergence of the solutions is proved and it’s application at the one-dimensional
problem is discussed. Similar approaches for elastic and plastic plates contacted with an
obstacle were considered by the author in [7,8].

1. Introduction. A thin isotropic homogeneous plate is assumed to occupy a bounded
domain )y C R? with a smooth boundary dQ. A crack T inside Qy is described by a
sufficiently smooth function. Choosen direction of the normal v = (v',2?) to I' defines
positive ' and negative I'™ crack faces (see the figure).

Yy Let us denote = Qo\I'. Vector u = (u',u?) of the
plate horizontal displacements must satisfy the following
boundary conditions. Firstly, the jam condition v = 0
must hold on 0€. Secondly, the nonpenetration con-
dition of the crack faces without friction condition is
imposed on the internal boundary [4,5]:

[u]ly = [u']vt + [W)r? >0,
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[] is the jump of w on T, i.e. [u] = ulr+ —ufp-. Here we consider u|p+ and u|r- as the traceg
of the function v from (H 1(Q*’))2 and (H 1(Q7))?, respectively, for the domain Qo divided oy
O* and O~ by means of a smooth continuation of I' to some closed curve inside g (brokep
line on the figure).

Let us define the basic Hilbert space

2

X ={ue (H'(Q), u=0 ondN)}
and the close and convex set
K={ueX, [ulyv>0}
Using the Poincare inequality for X |
[l < el Vu'lls i =12,
where || - |jo is the norm in L?(Q2), we define the inner product in X by
(u,v) = (Du, Dv) + A[u]u- [v]vdT

and the norm in X by
[l = (u,u).

Here Du = (ul,ul,u?,u2) and brackets {-,-) denote integration over ). We introduce the

following bilinear form known in the elasticity by

2

a(u,v) = A(uiv; + uzvz + &(ulvz + qui) + K(u; + ui)(v; + vz)) dQ.
Constant 0 < & < 0.5 is given. The following first Korn inequality will be valid:
(1) a(u,u) > Mu|®, M >0.

Let f = (f%, f?) € (Lo(£2))? be the given vector of external forces. The equilibrium
problem for the thin elastic plate with the crack is formulated as follows (f is reduced by a
factor E(1 — £?)71) [4,5]:

(2) ve K, a(u,v—u)>(f,v—u), Yvelk.

The unique solution of the variational inequality (2) exists by virtue of the coercivity (1),
boundedness of bilinear form a(,-) [9].

2. Approximate models. Formally integrating by the parts, we can obtain that the
following relation hold

a(u,v) = (Au,v) — /F[O'(’U,)I/ vv + o(u)7 - vr]dl,
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where

1—k 1+« 1—k& 14+ &
A(u) = <—ui‘l‘ - 2 u:lljy - 2 uZ‘y? _ugy - 2 ufxb‘ - 2 ui}y))

1 - 1 —
)t (4 Rl + ),

Here 7 = (—v?, %) is the tangent vector on I'. Let the solution u be smooth enough. Then
we can rewrite (2) as follows

o(u) = ((ui + rul)vt +

(Au— fio—u) — /F<[a(u)1/ (v —u)v]+ [o(u)r - (v — u)r])dF > 0.

By varying the test function v € K, it can be deduced (see [3]) that the variational inequality
(2) with a smooth enough solution u is equivalent to the following boundary problem

Au=f in €2,
[J(U)] =0, G(U)T =0, on I’
[ulpy 20, o(u)y <0, [uly-o(u)y=0.

The exact meaning of boundary relations on I' is studied in [4,11].
To construct a penalty problem, we introduce a penalty operator 8 : X — X* by the
relation .

(Blu),v) = — /F ([u]v)™ ([v]v)dT.

Here (-,-) means the duality between X and it’s dual space X*. By the upper minus sign
we have denoted the negative part of a function, i.e. s =st —s~, st,s7 >0, sts™ =0.
It is easy to see that § is the monotonous operator. By u® € X we shall denote the unique
solution of the following penalty equation depending on a small parameter ¢ > 0:

(3) a(u®,v) + e H{B(u),v) = (f,v), YveX.
The last is interpretated in the above sense as follows

Auvt = f in §2,

[o(v)] =0, o(w)7=0, onT
o(u®)r = —e H[u']v)".

Let us fix e. To linearize the left side of (3), we construct the following iterations for an
arbitrary u*® € X, n=0,1,2,...

(4) a(u®™ v) + e 7w v) = (f,0) + et v) — eHB(u™), v).

It is obvious that u®"*! € X exists for the operator’s properties marked. The appropriate
boundary problem is of the form

Aus™ — 71 A (ue’”Jr1 -yt = f in {2,
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(o (ue™) 4 e —u) [ov] =0,
(a(uE’"H) + e o(umt! — uE’”)/az/) T =0, on I'
(o(u™ ) 4 71O e™ — ) Oy — &M ut T — ) v = —e T ([uY)
Here used notations mean
Au = (Aul, Au?), Ou/dv = (du'[dv,du*[dv). |
Theorem 1 u®"t! — ¢ strongly in X asn — oo and
(5) luemtt — | < (14 2Me) ™D |us — P,
u® —u strongly in X ase — 0,

where us™t s, u are the solutions of (4),(3),(2), respectively .
Proof. By subtracting (3) from (4) and adding —e™'(u®,v) to the both parts, we get

a(us"t — uf v) F e (uomM =t v) =67 (Ut —ut, ) — e B (") — B(uf),v).

Let us consider this equation with the test function v = u®"+!

side as integrals:

— u® and express it’s right

(6) a(ue,n+1 . ue7ue,n+1 _ ’LLE) + 5-—1“u5,n+1 _ u5”2 — 5_1(D(u5’" . ue)7D(us,n+1 _ us))+

+e! /F ([us’” —ufly + ([u™")v)” — ([uﬂv)') w1 — uw®udr.

Since s; — 82 + 5] — 55 = s7 — 83 < |s1 — s3], the right side of (6), thanks to the Holder
inequality, is no greater than

ey (D0 )+ 100 =+ (7 = w1+ (5 =)

= (20 (e — e = ).
On the other hand, the left side of (6) is no less than
(M + 6—1)||us,n+1 . UEHQ.

Therefore

Juem [ < (14 2Me) T |

By repeating the last estimate as n,n —1,...,0, we get that (5) holds and, therefore, the first
convergence result is also true.
The weak convergence

(7) u®—u weaklyin X ase — 0
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is proved by familiar methods in [9] using the properties of operators a(-,-), 8(:). Indeed,
equation (3) with v =v®—¢, (€ K (i.e. B(£) =0) gives

a(uf,u® — &) < a(u,u® =€) + e (Bu) = B(E),u" — &) = (f,u” —§).
Hence, ||uf]| < ¢(M, c1, f,€) = const and some subsequence exists such that
u® — ug weakly in X as e — 0.

Then

a(u®, &) — alug, &), lLiminf a(u®,u) > a(uo, uo),
(B(u®),&) =e((f,€) —a(u®,€)) = 0ase — 0.

Therefore, we can obtain that B(ug) = 0, i.e. uo € K and pass to a limit infinum in the
following inequality:

a(uf,v —u') — {fv—u) = HB) - B ),v—u’) >0 YveKkK.

This gives
a(U,o, v - Uo) Z <f, v — ’LLo) Yo € K

and up = u owing to the uniqness property of the solution.
Subtracting a(u,v) from (3) and considering this equation with the test element v =
u® — u, one obtaines

a(u® —u,u’ —u) —e! /F<[u5]1/>—[u5 —uvdl = (f,v® — u) — a(u,u’ — u).

Owing to

and (1), we have

Mluf —ul]® + 71 /F<<[u5]y>—'>2df‘ < A{f,u —u) — a(u,u® — u).

Therefore, (7) leads to the second strong convergence to be proved. The proof is completed.
Remark. Obviously, we may use another inner product in X, for instance

(u,v) = a(u,v) + /F[u]y [v]vdl.
Then (4) takes the form

(1 + e Da(us™! — us" v) + e~ /F [+ — oy . [o]wdl =

= (f,v) —a(u™",v) — e {B(u"),v)

and Theorem 1 is also valid.
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3. Application. We will consider the one-dimensional crack problem, i.e. a thin by,
Qo = (a,b) with a cut T' = {y},a <y < b. Hence, Q = (a,y—0)U(y+0,b), X ={uc¢
H(O),ula) =u(d) =0}, K={veX[u=uly+0)—uly— 0) > 0} and the equilibriyp,
problem (2) takes the form

we K, (ugvy—uz) >(fv—u), YwveK

for the load f € L*(). Here (f,9) = [J fgdz + f;’ fgdz. The corresponding boundary
problem is as follows

(8) Uy = f in £,
=0, [ 20, ) <0, [uy) =0
The penalty equation (3) is transformed in
(ug,v5) — e [u] ] = {f,v) VoeX
or

(9) —us_ = f in €,

and the iterations (4) are
(14 &™) ue™, ) + e u™ ] = (f,0) + e {u™ va) + 67 [u o).
We can also write the iterative boundary problem

(10) __(1 4+ 5_1)u5>n+1 — ]L' _ 8—1'Ll,€’n in Q,

T xrr

e =0, (14 e (y) — e ) = e () — e T

T

Lemma 1 Boundary problem
—8zz = [ in (2,

[5:] =0, aisz(y) —eals] =g

has the solution

g + cafw]
11 =
(11) s w—|—01+c2(b_a)a,
where w € HX(Q) N X is the solution of
—Wgp = f in Q,

[we] =0, ws(y)=0

and a(x,)':{ z—a ,2€(6y=0),  oe@)nx.

z—b ,z€(y+0,0),
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This Lemma can be easily proved in view of the following properties of the function a:
o] ==(b—a), oz =1, am=0.

It seems to be natural that we will find the solution of (10) as u®™*! = w+ "t {(e)a,n =
0,1,2,...,c""(¢) € R. Indeed, then the equation (10) is fulfilled in the domain {} for any
ntl(g):
c
—(T4+e ™Mt = (1+e ) (—wee — " (E)aws) = (14+671)f =

= f — e N wgy + " (€)agy) = f — e ST
and it needs to fulfil the corresponding boundary conditions on T' by choosing ¢"**(¢).

Theorem 2 Solutions of (8),(9) and (10) have the following presentations:

- Tl
et+b—a

entt . (L= p" ] ( _ 1 )
“ - v e+b—a @ p-_1+5+b—a )

«,

Proof. Let us choose u®® = w for simplicity. By substituting «Z°(y) — [v*°]" = —[w]* in
(10) and by virtue of the Lemma 1 results, one obtain

N RES
Futher, by calculating uS* (y) — [u!]t = —plw]™ — ([w] + (b — a)p{w] ™)t = —plw]” — ([w]* -
(1+¢)plw]™)t = —p[w]™ — [w]*, the equations (10) and (11) give

—p[w]” — [w]” + [w]
l+e+b—a

u? = w+ a=w—(p+ p*)[w] e

By iterating as n increase we get by the similar way that

1 — pm 1—pn
o p)a_ p

en __ _ 2 n = _ — -
Wr=w—(p+p +..+p")w a=w T, o

[w]™a.
Then we passage to a limit in the last relation as n — oo and € — 0 thanks to the Theorem
1. The proof is completed.
Theorem 2 can be proved by direct substitution of the obtained solutions in (8),(9) and

(10), respectively.

¢z €(ey=0), that corresponds to uniform compression for
—C ,xE(y+0,b), P P
¢ > 0 or stretch for ¢ < 0. Then

Example. Let f(z) =

w(x):c{ ~E e —a)(y—a) ,x€(ay-0),
L (z—b)(y—b) ,z€(y+0,b),

2




[w] = —<((y — a)? + (y — b)?). If ¢ <0, then [w] > 0 (ie. [w]” =0) and u=w. Ifc>q

then v =w — [bi”_l;—a, i.e.

u(z) = E{ @) — (e —a)(y— )+ (v~ b))/(b~ a) =2y — ) = € (a,y~0)
V=30 G-t (=) ((y—al+ (v = b)/(b—a) + 2y — 1) o€ (y+0,)

and [u] = 0.
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